UCSF

UC San Francisco Previously Published Works

Title

Executive summary: heart disease and stroke statistics--2014 update: a report from the American Heart Association.

Permalink

https://escholarship.org/uc/item/28q5f3j4

Journal

Circulation, 129(3)
ISSN
0009-7322

Authors

Go, Alan S
Mozaffarian, Dariush
Roger, Véronique L
et al.

Publication Date

2014

DOI

10.1161/01.cir.0000442015.53336.12

Peer reviewed

Executive Summary: Heart Disease and Stroke Statistics-2014 Update

A Report From the American Heart Association

WRITING GROUP MEMBERS
Alan S. Go, MD; Dariush Mozaffarian, MD, DrPH, FAHA; Véronique L. Roger, MD, MPH, FAHA; Emelia J. Benjamin, MD, ScM, FAHA; Jarett D. Berry, MD, FAHA; Michael J. Blaha, MD, MPH; Shifan Dai, MD, PhD*; Earl S. Ford, MD, MPH, FAHA*; Caroline S. Fox, MD, MPH, FAHA; Sheila Franco, MS*; Heather J. Fullerton, MD, MAS; Cathleen Gillespie, MS*; Susan M. Hailpern, DPH, MS; John A. Heit, MD, FAHA; Virginia J. Howard, PhD, FAHA; Mark D. Huffman, MD, MPH; Suzanne E. Judd, PhD; Brett M. Kissela, MD, MS, FAHA; Steven J. Kittner, MD, MPH, FAHA; Daniel T. Lackland, DrPH, MSPH, FAHA; Judith H. Lichtman, PhD, MPH; Lynda D. Lisabeth, PhD, MPH, FAHA; Rachel H. Mackey, PhD, MPH, FAHA; David J. Magid, MD; Gregory M. Marcus, MD, MAS, FAHA; Ariane Marelli, MD, MPH; David B. Matchar, MD, FAHA; Darren K. McGuire, MD, MHSc, FAHA; Emile R. Mohler III, MD, FAHA; Claudia S. Moy, PhD, MPH; Michael E. Mussolino, PhD, FAHA; Robert W. Neumar, MD, PhD; Graham Nichol, MD, MPH, FAHA; Dilip K. Pandey, MD, PhD, FAHA; Nina P. Paynter, PhD, MHSc; Matthew J. Reeves, PhD, FAHA; Paul D. Sorlie, PhD; Joel Stein, MD; Amytis Towfighi, MD; Tanya N. Turan, MD, MSCR, FAHA; Salim S. Virani, MD, PhD; Nathan D. Wong, PhD, MPH, FAHA; Daniel Woo, MD, MS, FAHA; Melanie B. Turner, MPH; on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee

Table of Contents $\boldsymbol{\dagger}$

Summary. .e29

1. About These Statistics.e36
2. Cardiovascular Health.e39

Health Behaviors
3. Smoking/Tobacco Usee60
4. Physical Inactivity. e65
5. Nutrition .e73
6. Overweight and Obesitye87

Health Factors and Other Risk Factors
7. Family History and Geneticse96
8. High Blood Cholesterol and Other Lipids e101
9. High Blood Pressure e107
10. Diabetes Mellitus . e117
11. Metabolic Syndrome e129
12. Chronic Kidney Disease e137

Conditions/Diseases
13. Total Cardiovascular Diseases e142
14. Stroke (Cerebrovascular Disease) e166

[^0]15. Congenital Cardiovascular Defects
and Kawasaki Disease e191
16. Disorders of Heart Rhythm e199
17. Subclinical Atherosclerosis e217
18. Coronary Heart Disease, Acute Coronary Syndrome, and Angina Pectoris e227
19. Cardiomyopathy and Heart Failure e242
20. Valvular, Venous, and Aortic Diseases e248
21. Peripheral Artery Disease e256
Outcomes
22. Quality of Care e259
23. Medical Procedures e275
24. Economic Cost of Cardiovascular Disease e280
Supplemental Materials
25. At-a-Glance Summary Tables e285
26. Glossary e290

Summary

Each year, the American Heart Association (AHA), in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a critical resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best available national data on heart disease, stroke, and other cardiovascular disease-related morbidity and mortality and the risks, quality of care, use of medical procedures and operations, and costs associated with the management of these diseases in a single document. Indeed, since 1999, the Statistical Update has been cited >10500 times in the literature, based on citations of all annual versions. In 2012 alone, the various Statistical Updates were cited ≈ 3500 times (data from Google Scholar). In recent years, the Statistical Update has undergone some major changes with the addition of new chapters and major updates across multiple areas, as well as increasing the number of ways to access and use the information assembled.

For this year's edition, the Statistics Committee, which produces the document for the AHA, updated all of the current chapters with the most recent nationally representative data and inclusion of relevant articles from the literature over the past year. This year's edition includes a new chapter on peripheral artery disease, as well as new data on the monitoring and benefits of cardiovascular health in the population, with additional new focus on evidence-based approaches to changing behaviors, implementation strategies, and implications of the AHA's 2020 Impact Goals. Below are a few highlights from this year's Update.

The 2014 Update Expands Data Coverage of the Epidemic of Poor Cardiovascular Health Behaviors and Their Antecedents and Consequences

- Adjusted estimated population attributable fractions for cardiovascular disease (CVD) mortality were as follows ${ }^{1}$: 40.6% (95% confidence interval [CI], $24.5 \%-54.6 \%$) for high blood pressure; 13.7% (95% CI, $4.8 \%-22.3 \%$) for smoking; 13.2% (95% CI, $3.5 \%-29.2 \%$) for poor diet; 11.9% (95% CI, $1.3 \%-22.3 \%$) for insufficient physical activity; and 8.8% (95% CI, $2.1 \%-15.4 \%$) for abnormal blood glucose levels.
- Although significant progress has been made over the past 4 decades, in 2012, among Americans ≥ 18 years of age, 20.5% of men and 15.9% of women continued to be cigarette smokers. In 2011, 18.1% of students in grades 9 through 12 reported current cigarette use.
- The percentage of the nonsmoking population with exposure to secondhand smoke (as measured by serum cotinine levels $\geq 0.05 \mathrm{ng} / \mathrm{mL}$) declined from 52.5% in 1999 to 2000 to 40.1% in 2007 to 2008 . More than half of children 3 to 11 years of age (53.6%) and almost half of those 12 to 19 years of age (46.5%) had detectable levels, compared with just over a third of adults 20 years of age and older (36.7\%).
- The proportion of youth (≤ 18 years of age) who report engaging in no regular physical activity is high, and the proportion increases with age.
- In 2011, among adolescents in grades 9 through 12, 17.7\% of girls and 10.0% of boys reported that they had not engaged in ≥ 60 minutes of moderate to vigorous physical activity (defined as any activity that increased heart rate or breathing rate) at least once in the previous 7 days, despite recommendations that children engage in such activity 7 days per week.
- In 2012, 29.9\% of adults reported engaging in no aerobic leisure-time physical activity.
- In 2009 to $2010,<1 \%$ of Americans met at least 4 of 5 healthy dietary goals. Among adults aged ≥ 20 years, only 12.3% met recommended goals for fruits and vegetables; 18.3% met goals for fish; 0.6% met goals for sodium; 51.9% met goals for sugar-sweetened beverages; and 7.3% met goals for whole grains. These proportions were even lower in children, with only 29.4% of adolescents aged 12 to 19 years meeting goals for low sugar-sweetened beverage intake.
- The estimated prevalence of overweight and obesity in US adults (≥ 20 years of age) is 154.7 million, which represented 68.2% of this group in 2010 . Nearly 35% of US adults are obese (body mass index $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$). Men and women of all race/ethnic groups in the population are affected by the epidemic of overweight and obesity.
- Among children 2 to 19 years of age, 31.8% are overweight and obese (which represents 23.9 million children) and 16.9% are obese (12.7 million children). Mexican American boys and girls and African American girls are disproportionately affected. From 1971-1974 to 2007-2010, the prevalence of obesity in children 6 to 11 years of age has increased from 4.0% to 18.8%.
- Obesity (body mass index $\geq 30 \mathrm{~kg} / \mathrm{m}^{2}$) is associated with marked excess mortality in the US population. Even more notable is the excess morbidity associated with overweight and obesity in terms of risk factor development and incidence of diabetes mellitus, CVD end points (including coronary heart disease, stroke, and heart failure), and numerous other health conditions, including asthma, cancer, end-stage renal disease, degenerative joint disease, and many others.

Prevalence and Control of Cardiovascular Health Factors and Risks Remain an Issue for Many Americans

- An estimated 31.9 million adults ≥ 20 years of age have total serum cholesterol levels $\geq 240 \mathrm{mg} / \mathrm{dL}$, with a prevalence of 13.8%.
- Based on 2007 to 2010 data, 33.0% of US adults ≥ 20 years of age have hypertension. This represents ≈ 78 million US adults with hypertension. The prevalence of hypertension is similar for men and women. African American adults have among the highest prevalence of hypertension (44\%) in the world.
- Among hypertensive Americans, $\approx 82 \%$ are aware of their condition and 75% are using antihypertensive medication, but only 53% of those with documented hypertension have their condition controlled to target levels.
- In 2010, an estimated 19.7 million Americans had diagnosed diabetes mellitus, representing 8.3% of the adult population. An additional 8.2 million had undiagnosed diabetes mellitus, and 38.2% had prediabetes, with abnormal fasting glucose levels. African Americans, Mexican Americans, Hispanic/Latino individuals, and other ethnic minorities bear a strikingly disproportionate burden of diabetes mellitus in the United States
- The prevalence of diabetes mellitus is increasing dramatically over time, in parallel with the increases in prevalence of overweight and obesity.

Rates of Death Attributable to CVD Have Declined, but the Burden of Disease Remains High

- The 2010 overall rate of death attributable to CVD was 235.5 per 100000 . The rates were 278.4 per 100000 for white males, 369.2 per 100000 for black males, 192.2 per 100000 for white females, and 260.5 per 100000 for black females.
- From 2000 to 2010 , death rates attributable to CVD declined 31.0%. In the same 10 -year period, the actual number of CVD deaths per year declined by 16.7%. Yet in 2010, CVD (I00-I99; Q20-Q28) still accounted for 31.9\% (787650) of all 2468435 deaths, or ≈ 1 of every 3 deaths in the United States
- On the basis of 2010 death rate data, >2150 Americans die of CVD each day, an average of 1 death every 40 seconds. About 150000 Americans who died of CVD in 2010 were <65 years of age. In 2010, 34\% of deaths attributable to CVD occurred before the age of 75 years, which is before the current average life expectancy of 78.7 years.
- Coronary heart disease alone caused ≈ 1 of every 6 deaths in the United States in 2010. In 2010, 379559 Americans died of CHD. Each year, an estimated ≈ 620000 Americans have a new coronary attack (defined as first hospitalized myocardial infarction or coronary heart disease death) and ≈ 295000 have a recurrent attack. It is estimated that an additional 150000 silent first myocardial infarctions occur each year. Approximately every 34 seconds, 1 American has a coronary event, and approximately every 1 minute 23 seconds, an American will die of one.
- From 2000 to 2010, the relative rate of stroke death fell by 35.8% and the actual number of stroke deaths declined by 22.8%. Yet each year, ≈ 795000 people continue to experience a new or recurrent stroke (ischemic or hemorrhagic). Approximately 610000 of these are first events and 185000 are recurrent stroke events. In 2010, stroke caused ≈ 1 of every 19 deaths in the United States. On average, every 40 seconds, someone in the United States has a stroke, and someone dies of one approximately every 4 minutes.
- The decline in stroke mortality over the past decades, a major improvement in population health observed for both sexes and all race and age groups, has resulted from reduced stroke incidence and lower case fatality rates. The significant improvements in stroke outcomes are concurrent with cardiovascular risk factor control interventions. The hypertension control efforts initiated in the 1970s appear to have had the most substantial influence on the accelerated decline in stroke mortality, with lower blood pressure distributions in the population. Control of diabetes mellitus and high cholesterol and smoking cessation programs, particularly in combination with hypertension treatment, also appear to have contributed to the decline in stroke mortality. ${ }^{2}$
- In 2010, 1 in 9 death certificates (279098 deaths) in the United States mentioned heart failure. Heart failure was the underlying cause in 57757 of those deaths in 2010. The number of any-mention deaths attributable to heart failure was approximately as high in 1995 (287000) as it was in 2010 (279000). Additionally, hospital discharges for heart failure remained stable from 2000 to 2010, with first-listed discharges of 1008000 and 1023000 , respectively.

The 2014 Update Provides Critical Data About Cardiovascular Quality of Care, Procedure Utilization, and Costs

In light of the current national focus on healthcare utilization, costs, and quality, it is critical to monitor and understand the magnitude of healthcare delivery and costs, as well as the quality of healthcare delivery, related to CVD risk factors and conditions. The Statistical Update provides these critical data in several sections.

Quality-of-Care Metrics for CVDs

Quality data are available from the AHA's Get With The Guidelines programs for coronary heart disease, heart failure, and resuscitation and from the American Stroke Association/AHA's Get With The Guidelines program for acute stroke. Similar data from the Veterans Healthcare Administration, national Medicare and Medicaid data, and Acute Coronary Treatment and Intervention Outcomes Network (ACTION)-Get With The Guidelines Registry data are also reviewed. These data show impressive adherence to guideline recommendations for many, but not all, metrics of quality of care for these hospitalized patients. Data are also reviewed on screening for CVD risk factor levels and control.

Cardiovascular Procedure Use and Costs

- The total number of inpatient cardiovascular operations and procedures increased 28%, from 5939000 in 2000 to 7588000 in 2010 (National Heart, Lung, and Blood Institute computation based on National Center for Health Statistics annual data).
- The total direct and indirect cost of CVD and stroke in the United States for 2010 is estimated to be $\$ 315.4$ billion. This figure includes health expenditures (direct costs, which include the cost of physicians and other professionals, hospital services, prescribed medications, home health
care, and other medical durables) and lost productivity that results from premature mortality (indirect costs).
- By comparison, in 2008, the estimated cost of all cancer and benign neoplasms was $\$ 201.5$ billion ($\$ 77.4$ billion in direct costs, and $\$ 124$ billion in mortality indirect costs). CVD costs more than any other diagnostic group.

The AHA, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the Statistics Update.

This annual Statistical Update is the product of an entire year's worth of effort by dedicated professionals, volunteer physicians and scientists, and outstanding AHA staff members, without whom publication of this valuable resource would be impossible. Their contributions are gratefully acknowledged.

Alan S. Go, MD
 Melanie B. Turner, MPH
 On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee

Note: Population data used in the compilation of National Health and Nutrition Examination Survey (NHANES) prevalence estimates are for the latest year of the NHANES survey being
used. Extrapolations for NHANES prevalence estimates are based on the census resident population for 2010 because this is the most recent year of NHANES data used in the Statistical Update.

Acknowledgments

We wish to thank Lucy Hsu, Michael Wolz, Sean Coady, and Khurram Nasir for their valuable comments and contributions. We would like to acknowledge Lauren Rowell for her administrative assistance.

References

1. Yang Q, Cogswell ME, Flanders WD, Hong Y, Zhang Z, Loustalot F, Gillespie C, Merritt R, Hu FB. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA. 2012;307:1273-1283.
2. Lackland DT, Roccella EJ, Deutsch A, Fornage M, George MG, Howard G, Kissela B, Kittner SJ, Lichtman JH, Lisabeth L, Schwamm LH, Smith EE, Towfighi A; on behalf of the American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Quality of Care and Outcomes and Research, and Council on Functional Genomics and Translational Biology. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke. December 5, 2013. DOI: 10.1161/01.str.0000437068.30550.cf. http://stroke.ahajournals.org/lookup/doi/10.1161/01.str.0000437068.30550.cf. Accessed December 5, 2013.

Key Words: AHA Scientific Statements ■ cardiovascular diseases ■ epidemiology ■ risk factors \square statistics \square stroke

Table 1. Males and CVD: At-a-Glance Table

Diseases and Risk Factors	Both Sexes	Total Males	White Males	Black Males	Mexican American Males	
Smoking						
Prevalence, 2012*	42.1 M (18.1\%)	23.0 M (20.5\%)	22.0\%	21.6\%	16.6\% \dagger	
PA \ddagger						
Prevalence, 2012*	20.7\%	24.6\%	26.0\%	23.7\%	19.3\% \dagger	
Overweight and obesity						
Prevalence, 2010						
Overweight and obesity, BMI >25.0 $\mathrm{kg} / \mathrm{m}^{2} \S$	154.7 M (68.2\%)	79.9 M (72.9\%)	73.1\%	68.7\%	81.3\%	
Obesity, $\mathrm{BMI}>30.0 \mathrm{~kg} / \mathrm{m}^{2} \S$	78.4 M (34.6\%)	36.8 M (33.6\%)	33.8\%	37.9\%	36.0\%	
Blood cholesterol						
Prevalence, 2010						
Total cholesterol > $200 \mathrm{mg} / \mathrm{dL} §$	98.9 M (43.4\%)	45.3 M (41.3\%)	40.5\%	38.6\%	48.1\%	
Total cholesterol > $240 \mathrm{mg} / \mathrm{dL§}$	31.9 M (13.8\%)	14.0 M (12.7\%)	12.3\%	10.8\%	15.2\%	
LDL cholesterol > $130 \mathrm{mg} / \mathrm{dL} §$	71.0 M (31.1\%)	35.2 M (31.9\%)	30.1\%	33.1\%	39.9\%	
HDL cholesterol $<40 \mathrm{mg} / \mathrm{dLS}$	48.7 M (21.8\%)	34.6 M (31.8\%)	33.1\%	20.3\%	34.2\%	
HBP						
Prevalence, 2010§	77.9 M (33.0\%)	37.2 M (33.6\%)	33.4\%	42.6\%	30.1\%	
Mortality, 2010\|		63119	28373	20819	6670	N/A
DM						
Prevalence, 2010						
Physician-diagnosed DM§	19.7 M (8.3\%)	9.6 M (8.7\%)	7.7\%	13.5\%	11.4\%	
Undiagnosed DM§	8.2 M (3.5\%)	5.3 M (4.7\%)	4.5\%	4.8\%	6.6\%	
Prediabetes§	87.3 M (38.2\%)	50.7 M (46.0\%)	47.7\%	35.7\%	47.0\%	
Incidence, diagnosed DM§	1.9 M	N/A	N/A	N/A	N/A	
Mortality, 2010\|		69071	35490	28486	5640	N/A
Total CVD						
Prevalence, 2010§	83.6 M (35.3\%)	40.7 M (36.7\%)	36.6\%	44.4\%	33.4\%	
Mortality, 2010\|	ๆ	787650	387318	330330	46266	N/A
Stroke						
Prevalence, $2010 \S$	6.8 M (2.8\%)	3.0 M (2.6\%)	2.4\%	4.3\%	2.3\%	
New and recurrent strokes\\|	795.0 K	370.0 K	325.0 K	45.0 K	N/A	
Mortality, 2010\|		129476	52367	43424	6938	N/A
CHD						
Prevalence, CHD, 2010§	15.4 M (6.4\%)	8.8 M (7.9\%)	8.2\%	6.8\%	6.7\%	
Prevalence, MI, 2010 §	7.6 M (2.9\%)	5.0 M (4.2\%)	4.4\%	3.9\%	3.6\%	
Prevalence, AP, $2010 \S$	7.8 M (3.2\%)	3.7 M (3.3\%)	3.3\%	2.4\%	3.4\%	
New and recurrent CHD\#**	915.0 K	530.0 K	465.0 K	65.0 K	N/A	
New and recurrent M1**	720.0 K	420.0 K	N/A	N/A	N/A	
Incidence, AP (stable angina) $\ddagger \ddagger$	565.0 K	370.0 K	N/A	N/A	N/A	
Mortality, 2010, CHD\\|	379559	207580	181386	20615	N/A	
Mortality, 2010, MIII	122071	67435	59181	6445	N/A	
HF						
Prevalence, 2010§	5.1 M (2.1\%)	2.7 M (2.5\%)	2.5\%	4.1\%	1.9\%	
Incidence, 2010才¥	825000	395000	350000	45000	N/A	
Mortality, 2010\|		57757	24385	21540	2444	N/A

AP indicates angina pectoris (chest pain); BMI, body mass index; CHD, coronary heart disease (includes heart attack, angina pectoris chest pain, or both); CVD, cardiovascular disease; DM, diabetes mellitus; HBP, high blood pressure; HDL, high-density lipoprotein; HF, heart failure; K, thousands; LDL, low-density lipoprotein; M, millions; MI, myocardial infarction (heart attack); N/A, data not available; and PA, physical activity.
*Age ≥ 18 y (National Health Interview Survey).
\dagger All Hispanic (National Health Interview Survey).
\ddagger Met 2008 full Federal PA guidelines for adults.
§Age $\geq 20 \mathrm{y}$.
$\| A l l$ ages.
ITotal CVD mortality includes deaths from congenital heart disease.
\#New and recurrent MI and fatal CHD.
**Age $\geq 35 \mathrm{y}$.
$\ddagger \ddagger$ Age $\geq 45 \mathrm{y}$.

Table 2. Females and CVD: At-a-Glance Table

Diseases and Risk Factors	Both Sexes	Total Females	White Females	Black Females	Mexican American Females		
Smoking							
Prevalence, 2012*	42.1 M (18.1\%)	19.1 M (15.9\%)	19.2\%	14.2\%	7.5\% \dagger		
PA \ddagger							
Prevalence, 2012*	20.7\%	17.1\%	19.9\%	10.8\%	12.2\% \dagger		
Overweight and obesity							
Prevalence, 2010							
Overweight and obesity, BMI $>25.0 \mathrm{~kg} / \mathrm{m}^{2} \S$	154.7 M (68.2\%)	74.8 M (63.7\%)	60.2\%	79.9\%	78.2\%		
Obesity, , MMI $>30.0 \mathrm{~kg} / \mathrm{m}^{2} \S$	78.4 M (34.6\%)	41.6 M (35.6\%)	32.5\%	53.9\%	44.8\%		
Blood cholesterol							
Prevalence, 2010							
Total cholesterol > $200 \mathrm{mg} / \mathrm{dL§}$	98.9 M (43.4\%)	53.6 M (44.9\%)	45.8\%	40.7\%	44.7\%		
Total cholesterol > $240 \mathrm{mg} / \mathrm{dL§}$	31.9 M (13.8\%)	17.9 M (14.7\%)	15.6\%	11.7\%	13.5\%		
LDL cholesterol > $130 \mathrm{mg} / \mathrm{dL} \S$	71.0 M (31.1\%)	35.8 M (30.0\%)	29.3\%	31.2\%	30.4\%		
HDL cholesterol $<40 \mathrm{mg} / \mathrm{dL} §$	48.7 M (21.8\%)	14.1 M (12.3\%)	12.4\%	10.2\%	15.1\%		
HBP							
Prevalence, 2010§	77.9 M (33.0\%)	40.7 M (32.2\%)	30.7\%	47.0\%	28.8\%		
Mortality, 2010\|		63119	34746	26798	6923	N/A	
DM							
Prevalence, 2010							
Physician-diagnosed DM§	19.7 M (8.3\%)	10.1 M (7.9\%)	6.2\%	15.4\%	12.0\%		
Undiagnosed DM§	8.2 M (3.5\%)	2.9 M (2.3\%)	1.8\%	2.9\%	4.7\%		
Prediabetes§	87.3 M (38.2\%)	33.6 M (30.5\%)	30.0\%	29.0\%	31.9\%		
Incidence, diagnosed DM§	1.9 M	N/A	N/A	N/A	N/A		
Mortality, 2010\|		69071	33581	25764	6486	N/A	
Total CVD							
Prevalence, 2010§	83.6 M (35.3\%)	42.9 M (34.0\%)	32.4\%	48.9\%	30.7\%		
Mortality, 2010\|	l		787650	400332	342581	49977	N/A
Stroke							
Prevalence, 2010§	6.8 M (2.8\%)	3.8 M (3.0\%)	2.9\%	4.7\%	1.4\%		
New and recurrent strokesll	795.0 K	425.0 K	365.0 K	60.0 K	N/A		
Mortality, 2010\|		129476	77109	65695	9027	N/A	
CHD							
Prevalence, CHD, 2010§	15.4 M (6.4\%)	6.6 M (5.1\%)	4.6\%	7.1\%	5.3\%		
Prevalence, MI, 2010§	7.6 M (2.9\%)	2.6 M (1.7\%)	1.5\%	2.3\%	1.7\%		
Prevalence, AP, 2010§	7.8 M (3.2\%)	4.1 M (3.2\%)	2.8\%	5.4\%	3.3\%		
New and recurrent CHD\#**	915.0 K	385.0 K	330.0 K	55.0 K	N/A		
New and recurrent M1**	720.0 K	300.0 K	N/A	N/A	N/A		
Incidence, AP (stable angina) $\ddagger \ddagger$	565.0 K	195.0 K	N/A	N/A	N/A		
Mortality, 2010, CHDII	379559	171979	148891	19015	N/A		
Mortality, 2010, MIII	122071	54636	47023	6298	N/A		
HF							
Prevalence, 2010§	5.1 M (2.1\%)	2.4 M (1.8\%)	1.8\%	3.0\%	1.1\%		
Incidence, 2010 $\ddagger \ddagger$	825000	430000	375000	55000	N/A		
Mortality, 2010\|		57757	33372	29750	3084	N/A	

AP indicates angina pectoris (chest pain); BMI, body mass index; CHD, coronary heart disease (includes heart attack, angina pectoris chest pain, or both); CVD, cardiovascular disease; DM, diabetes mellitus; HBP, high blood pressure; HDL, high-density lipoprotein; HF, heart failure; K, thousands; LDL, low-density lipoprotein; M, millions; MI, myocardial infarction (heart attack); N/A, data not available; and PA, physical activity.
*Age ≥ 18 y (National Health Interview Survey).
\dagger All Hispanic (National Health Interview Survey).
\ddagger Met 2008 full Federal PA guidelines for adults.
§Age $\geq 20 \mathrm{y}$.
\|All ages.
ITTotal CVD mortality includes deaths from congenital heart disease.
\#New and recurrent MI and fatal CHD.
**Age $\geq 35 \mathrm{y}$.
$\ddagger \ddagger$ Age $\geq 45 \mathrm{y}$.

Table 3. Race/Ethnicity and CVD: At-a-Glance Table

Diseases and Risk Factors	Both Sexes	Whites		Blacks		Mexican Americans		Hispanics/ Latinos		Asians: Both Sexes	American Indian/Alaska Native: Both Sexes	
		Males	Females	Males	Females	Males	Females	Males	Females			
Smoking												
Prevalence, 2012*	42.1 M (18.1\%)	22.0\%	19.2\%	21.6\%	14.2\%		11.3\%	16.6\%	7.5\%	10.4\%	18.8\%	
PA \dagger												
Prevalence, 2012*	20.7\%		20.6\%		21.4\%		14.9\%		15.7\%	18.7\%	16.8\%	
Overweight and obesity												
Prevalence, 2010												
Overweight and obesity, BMI $>25.0 \mathrm{~kg} / \mathrm{m}^{2} \ddagger$	154.7 M (68.2\%)	73.1\%	60.2\%	68.7\%	79.9\%	81.3\%	78.2\%	N/A	N/A	N/A	N/A	
Overweight and obesity, BMI $>30.0 \mathrm{~kg} / \mathrm{m}^{2} \ddagger$	78.4 M (34.6\%)	33.8\%	32.5\%	37.9\%	53.9\%	36.0\%	44.8\%	N/A	N/A	N/A	N/A	
Blood cholesterol												
Prevalence, 2010												
Total cholesterol > $200 \mathrm{mg} / \mathrm{dL} \ddagger$	98.9 M (43.4\%)	40.5\%	45.8\%	38.6\%	40.7\%	48.1\%	44.7\%	N/A	N/A	N/A	N/A	
Total cholesterol > $240 \mathrm{mg} / \mathrm{dL} \ddagger$	31.9 M (13.8\%)	12.3\%	15.6\%	10.8\%	11.7\%	15.2\%	13.5\%	N/A	N/A	N/A	N/A	
LDL cholesterol > $130 \mathrm{mg} / \mathrm{dL} \ddagger$	71.0 M (31.1\%)	30.1\%	29.3\%	33.1\%	31.2\%	39.9\%	30.4\%	N/A	N/A	N/A	N/A	
HDL cholesterol $<40 \mathrm{mg} / \mathrm{dL} \ddagger$	48.7 M (21.8\%)	33.1\%	12.4\%	20.3\%	10.2\%	34.2\%	15.1\%	N/A	N/A	N/A	N/A	
HBP												
Prevalence, 2010 \ddagger	77.9 M (33.0\%)	33.4\%	30.7\%	42.6\%	47.0\%	30.1\%	28.8\%		20.9\%*	21.27\%*	24.8\%*	
Mortality, $2010 \S$	63119	20819	26798	6670	6923	N/A	N/A	N/A	N/A	1578	331	
DM												
Prevalence, 2010												
Physician-diagnosed DM \ddagger	19.7 M (8.3\%)	7.7\%	6.2\%	13.5\%	15.4\%	11.4\%	12.0\%	N/A	N/A	N/A	N/A	
Undiagnosed DM \ddagger	$8.2 \mathrm{M}(3.5 \%)$	4.5\%	1.8\%	4.8\%	2.9\%	6.6\%	4.7\%	N/A	N/A	N/A	N/A	
Prediabetes \ddagger	87.3 M (38.2\%)	47.7\%	30.0\%	35.7\%	29.0\%	47.0\%	31.9\%	N/A	N/A	N/A	N/A	
Incidence, diagnosed DM \ddagger	1.9 M	N/A										
Mortality, 2010§	69071	28486	25764	5640	6486	N/A	N/A	N/A	N/A	1838	857	
Total CVD												
Prevalence, 2010 \ddagger	83.6 M (35.3\%)	36.6\%	32.4\%	44.4\%	48.9\%	33.4\%	30.7\%	N/A	N/A	N/A	N/A	
Mortality, 2010§\\|	787650	330330	342581	46266	49977	N/A	N/A	N/A	N/A	16829	3667	
Stroke												
Prevalence, 2010 \ddagger	6.8 M (2.8\%)	2.4\%	2.9\%	4.3\%	4.7\%	2.3\%	1.4\%		2.7\%*	1.8\%*	4.3\%**	
New and recurrent strokes§	795.0 K	325.0 K	365.0 K	45.0 K	60.0 K	N/A	N/A	N/A	N/A	N/A	N/A	
Mortality, $2010 \S$	129476	43424	65695	6938	9027	N/A	N/A	N/A	N/A	3833	559	
CHD												
Prevalence, CHD, 2010 \ddagger	15.4 M (6.4\%)	8.2\%	4.6\%	6.8\%	7.1\%	6.7\%	5.3\%	N/A	N/A	N/A	N/A	
Prevalence, MI, $2010 \ddagger$	7.6 M (2.9\%)	4.4\%	1.5\%	3.9\%	2.3\%	3.6\%	1.7\%	N/A	N/A	N/A	N/A	
Prevalence, AP, 2010 \ddagger	7.8 M (3.2\%)	3.3\%	2.8\%	2.4\%	5.4\%	3.4\%	3.3\%	N/A	N/A	N/A	N/A	
New and recurrent CHD\#**	915.0 K	465.0 K	330.0 K	65.0 K	55.0 K	N/A	N/A	N/A	N/A	N/A	N/A	
Mortality, CHD, 2010§	379559	181386	148891	20615	19015	N/A	N/A	N/A	N/A	7821	1831	
Mortality, MI, 2010§	122071	59181	47023	6445	6298	N/A	N/A	N/A	N/A	2530	594	
HF												
Prevalence, 2010 \ddagger	5.1 M (2.1\%)	2.5\%	1.8\%	4.1\%	3.0\%	1.9\%	1.1\%	N/A	N/A	N/A	N/A	
Incidence, 2010才才	825000	350000	375000	45000	55000	N/A	N/A	N/A	N/A	N/A	N/A	
Mortality, 2010§	57757	21540	29750	2444	3084	N/A	N/A	N/A	N/A	714	225	

AP, angina pectoris (chest pain); BMI, body mass index; CHD, coronary heart disease (includes heart attack, angina pectoris chest pain, or both); CVD, cardiovascular disease; DM, diabetes mellitus; HBP, high blood pressure; HDL, high-density lipoprotein; HF, heart failure; K, thousands; LDL, low-density lipoprotein; M, millions; MI, myocardial infarction (heart attack); N/A, data not available; and PA, physical activity;.
*Age ≥ 18 y (National Health Interview Survey, 2012).
\dagger Met 2008 full Federal PA guidelines for adults.
\ddagger Age $\geq 20 \mathrm{y}$.
§All ages.
ITotal CVD mortality includes deaths from congenital heart disease.
qFigure not considered reliable.
\#New and recurrent MI and fatal CHD.
**Age $\geq 35 \mathrm{y}$.
$\ddagger \ddagger$ Age $\geq 45 \mathrm{y}$.

Table 4. Children, Youth, and CVD: At-a-Glance Table

Diseases and Risk Factors	Both Sexes	Total Males	Total Females	NH Whites		NH Blacks		Mexican Americans	
				Males	Females	Males	Females	Males	Females
Smoking, \%									
High school students, grades 9-12									
Current cigarette smoking, 2011	18.1	19.9	16.1	21.5	18.9	13.7	7.4	19.5*	15.2^{*}
Current cigar smoking, 2011	13.1	17.8	8.0	19.0	7.5	15.1	8.5	17.2*	9.1*
PA \dagger									
Prevalence, grades 9-12, 2011 \ddagger									
Met currently recommended levels of PA, \%	49.5	59.9	38.5	62.1	42.6	57.1	31.9	57.1*	33.0*
Overweight and obesity									
Prevalence, 2010									
Children and adolescents, ages 2-19 y, overweight or obese	23.9 M (31.8\%)	12.7 M (33.0\%)	11.2 M (30.4\%)	30.1\%	25.6\%	36.9\%	41.3\%	40.5\%	38.2\%
Children and adolescents, age 2-19 y, obese \ddagger	12.7 M (16.9\%)	7.2 M (18.6\%)	5.5 M (15.0\%)	16.1\%	11.7\%	24.3\%	24.3\%	24.0\%	18.2\%
Blood cholesterol, mg/dL, 2010									
Mean total cholesterol									
Ages 4-11 y	161.9	162.3	161.5	160.9	161.6	165.2	157.9	159.6	160.7
Ages 12-19 y	158.2	156.1	160.3	156.8	161.1	154.1	160.6	157.8	158.0
Mean HDL cholesterol									
Ages 4-11 y	53.6	55.1	51.9	53.9	51.4	59.9	55.3	53.5	50.5
Ages 12-19 y	51.4	49.2	53.6	48.4	53.0	53.9	55.4	47.5	53.3
Mean LDL cholesterol									
Ages 12-19 y	89.5	88.6	90.5	90.4	90.9	85.8	91.8	90.6	87.1
Congenital cardiovascular defects									
Mortality, 2010§	3196	1718	1478	1333	1120	311	271	N/A	N/A

Overweight indicates a body mass index in the 95th percentile of the Centers for Disease Control and Prevention 2000 growth chart.
CVD indicates cardiovascular disease; HDL, high-density lipoprotein; LDL, low-density lipoprotein; M, millions; N/A, data not available; NH, non-Hispanic; and PA, physical activity.
*All Hispanic subgroups.
\dagger Regular leisure-time PA.
\ddagger Eaton DK, Kann L, Kinchen S, Shanklin S, Flint KH, Hawkins J, Harris WA, Lowry R, McManus T, Chyen D, Whittle L, Lim C, Wechsler H; Centers for Disease Control and Prevention. Youth risk behavior surveillance: United States, 2011. MMWR Surveill Summ. 2012;61:1-162.
§All ages.

Disclosures

Writing Group Disclosures

Writing Group Disclosures, Continued

Writing Group Member	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Sheila Franco	Centers for Disease Control and Prevention/ National Center for Health Statistics	None						
Heather J. Fullerton	University of California, San Francisco	$\mathrm{NHH} \dagger$; AHA \dagger	Private Philanthropy \dagger	None	None	None	None	None
Cathleen Gillespie	Centers for Disease Control and Prevention	None						
Susan M. Hailpern	Independent Consultant	None						
John A. Heit	Mayo Clinic	NIH^{*}	None	None	None	None	Daiichi Sankyo*; Janssen Pharmaceutical*	None
Virginia J. Howard	University of Alabama at Birmingham	$\mathrm{NIH} \dagger$	None	None	None	None	None	None
Mark D. Huffman	Northwestern University Feinberg School of Medicine	National Heart, Lung, and Blood Institute†; Eisenberg Foundation \dagger	Fogarty International Center (travel)*; World Heart Federation (conference, travel, and contract proposal under development) \dagger; American Heart Association (travel)*; Cochrane Heart Group (travel)*	None	None	None	None	None
Suzanne E. Judd	University of Alabama at Birmingham	$\mathrm{NHH} \dagger$; diaDexus \dagger	None	None	None	None	diaDexus \dagger	None
Brett M. Kissela	University of Cincinnati	$\mathrm{NIH} \dagger$	AbbVie and Reata*	None	None	None	Allergan*	None
Steven J. Kittner	University of Maryland School of Medicine and Veterans Administration Health Care System	NINDS Ischemic Stroke Genetics Consortium (U01NS069208) \dagger	None	None	None	None	None	None
Daniel T. Lackland	Medical University of South Carolina	None						
Judith H . Lichtman	Yale University	AHA \dagger; $\mathrm{NHH} \dagger$	None	None	None	None	None	None
Lynda D. Lisabeth	University of Michigan	R01 NS38916†; R01 NS062675*; R01 HL098065†; R01 NSO70941 \dagger	None	None	None	None	None	None
Rachel H . Mackey	University of Pittsburgh	LipoScience Inc. \dagger	None	National Lipid Association*	None	None	None	None

Writing Group Disclosures, Continued

Writing Group Member	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
David J. Magid	Colorado Permanente Medical Group	NHLBI†; NIMH*; NIA*; AHRQ \dagger; PCORI $\dagger ;$ Amgen*	None	None	None	None	None	None
Gregory M. Marcus	University of California, San Francisco	American Heart Association \dagger; Gilead Sciences \dagger; Medtronic \dagger; SentreHeart \dagger	None	None	None	None	InCarda*	None
Ariane Marelli	McGill University Health Center	None						
David B. Matchar	Duke University Medical Center/DukeNUS Graduate Medical School	Singapore National Medical Research Council (NMRC) \dagger	None	None	None	None	None	None
Darren K. McGuire	UT Southwestern Medical Center	None	Astra Zeneca*; Boehringer Ingelheim*; Bristol Myers Squibb*; Daiichi Sankyo*; Eli Lilly*; Genentech*; Glaxo Smith Kline*; F. Hoffmann LaRoche \dagger; Merck*; Orexigen Therapeutic†; Takeda Pharmaceuticals North America*	None	Takeda Pharmaceuticals North America \dagger	None	Boehringer Ingelheim*; Bristol Myers Squibb*; Genentech*; Janssen†; F. Hoffmann LaRoche*; Merck*; Sanofi Aventis*	None
Emile R. Mohler III	University of Pennsylvania	GSK*; NIH*; Pluristem*	None	None	None	Cytovas $\dagger ;$ Floxmedical \dagger	Pfizer*; Takeda*	None
Claudia S. Moy	National Institutes of Health	None						
Michael E. Mussolino	National Heart, Lung, and Blood Institute	None						
Robert W. Neumar	University of Michigan Health System	None						
Graham Nichol	University of Washington	Resuscitation Outcomes Consortium (NIH U01 HL077863-06) 20102015, Co-Pl†; Dynamic AED Registry (Food and Drug Administration, Cardiac Science Corp., Philips Healthcare Inc., Physio-Control Inc., HealthSine Technologies Inc., ZOLL Inc) 20122016, Pl*; Velocity Pilot Study of Ultrafast Hypothermia in Patients with ST-elevation Myocardial Infarction (Velomedix Inc.) 2012-2014, National Co-PI (Waived personal compensation)*	Novel method of tracking location of medical devices in time and space. (Patent pending, assigned to University of Washington)*	None	None	None	Medic One Foundation Board of Directors (Money to Institution)*	None
								(Continued)

Writing Group Disclosures, Continued

Writing Group Member	Employment	Research Grant	Other Research Support	Speakers' Bureau/ Honoraria	Expert Witness	Ownership Interest	Consultant/ Advisory Board	Other
Dilip K. Pandey	University of Illinois at Chicago	None						
Nina P. Paynter	Brigham and Women's Hospital	Celera†; National Institutes of Health \dagger	None	None	None	None	None	None
Matthew J. Reeves	Michigan State University	None						
Paul D. Sorlie	National Heart, Lung, and Blood Institute, NIH	None						
Joel Stein	Columbia University	None	Myomo*; Tyromotion*	QuantiaMD*	None	None	Myomo*	None
Amytis Towfighi	University of Southern California	AHA \dagger; NIH/NINDS \dagger	None	None	None	None	None	None
Tanya N. Turan	Medical University of South Carolina	NIH/NINDS K23 - CHIASM PI \dagger	None	None	Expert witness in Strokerelated medical malpractice cases*	None	Boehringer Ingelheim, BI1356/ BI 10773 Trials - Clinical Endpoint Adjudication Committeet; Gore REDUCE Trial- Clinical Endpoint Adjudication Committee*; NIH/ NINDS VERITAS study - Clinical Endpoint Adjudication Committee*	None
Melanie B. Turner	American Heart Association	None						
Salim S. Virani	Department of Veterans Affairs, Baylor College of Medicine	Agency for Health Care Research and Quality*; Department of Veterans Affairs \dagger; NIH^{*}; Roderick D. MacDonald Research Foundation \dagger	None	None	None	None	None	None
Nathan D. Wong	University of California, Irvine	Bristol-Myers Squibb \dagger; Regeneron \dagger	None	None	None	None	Genzyme*	None
Daniel Woo	University of Cincinnati	None						

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be "significant" if (1) the person receives $\$ 10000$ or more during any 12 -month period, or 5% or more of the person's gross income; or (2) the person owns 5% or more of the voting stock or share of the entity, or owns $\$ 10000$ or more of the fair market value of the entity. A relationship is considered to be "modest" if it is less than "significant" under the preceding definition.
*Modest.
\dagger Significant.

[^0]: *The findings and conclusions of this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.
 \dagger The Table of Contents reflects the full text of the "Heart Disease and Stroke Statistics-2014 Update."
 The 2014 Statistical Update full text is available online at http://circ.ahajournals.org/content/129/3/e00.full.
 The American Heart Association makes every effort to avoid any actual or potential conflicts of interest that may arise as a result of an outside relationship or a personal, professional, or business interest of a member of the writing panel. Specifically, all members of the writing group are required to complete and submit a Disclosure Questionnaire showing all such relationships that might be perceived as real or potential conflicts of interest.

 The American Heart Association requests that this document be cited as follows: Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB; on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics- 2014 update: a report from the American Heart Association. Circulation. 2014;129:399-410.

 A copy of the document is available at http://my.americanheart.org/statements by selecting either the "By Topic" link or the "By Publication Date" link. To purchase additional reprints, call 843-216-2533 or e-mail kelle.ramsay @ wolterskluwer.com.

 Expert peer review of AHA Scientific Statements is conducted by the AHA Office of Science Operations. For more on AHA statements and guidelines development, visit http://my.americanheart.org/statements and select the "Policies and Development" link.

 Permissions: Multiple copies, modification, alteration, enhancement, and/or distribution of this document are not permitted without the express permission of the American Heart Association. Instructions for obtaining permission are located at http://www.heart.org/HEARTORG/General/Copyright-Permission-Guidelines_UCM_300404_Article.jsp. A link to the "Copyright Permissions Request Form" appears on the right side of the page.
 (Circulation. 2014;129:399-410.)
 © 2014 American Heart Association, Inc.
 Circulation is available at http://circ.ahajournals.org

