
HAL Id: hal-01551110
https://hal.archives-ouvertes.fr/hal-01551110

Submitted on 30 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exegesis of Sect. II and III.A from ” Fundamentals of
the Mechanics of Continua ” by E. Hellinger

Simon R. Eugster, Francesco Dell’Isola

To cite this version:
Simon R. Eugster, Francesco Dell’Isola. Exegesis of Sect. II and III.A from ” Fundamentals of the
Mechanics of Continua ” by E. Hellinger. 2017. <hal-01551110>

https://hal.archives-ouvertes.fr/hal-01551110
https://hal.archives-ouvertes.fr


Zeitschrift für Angewandte Mathematik und Mechanik, 22 May 2017

Exegesis of Sect. II and III.A from “Fundamentals of the Mechanics of
Continua”∗ by E. Hellinger

Simon R. Eugster1,2∗∗ and Francesco dell’Isola3,2

1 Institute for Nonlinear Mechanics, University of Stuttgart, Stuttgart, Germany
2 International Research Center for the Mathematics and Mechanics of Complex Systems, MEMOCS, Università
dell’Aquila, L’Aquila, Italy
3 Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma La Sapienza, Rome, Italy

Received XXXX, revised XXXX, accepted XXXX
Published online XXXX

Key words Ernst Hellinger, virtual work, continuum mechanics, foundations of kinetics, constitutive laws

This is a second exegetic essay on the fundamental review article DIE ALLGEMEINEN ANSÄTZE DER MECHANIK
DER KONTINUA in the Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Bd. IV-4,
Hft. 5 (1913) by Ernst Hellinger which concerns the translation and the commentary of pp. 629–662. Within these pages,
the setting of the basic constitutive equations for field theories, whose formulations are based on the principle of virtual
work or on the principle of stationary action, are discussed. The interest for a contemporary reader for the herein presented
subject is still substantial, as this article clearly contains some considerations and visions being still topical. However, there
is also an epistemological interest in examining it from the point of view of a historian of science. Indeed, it represents
an available but forgotten source of an important piece of mechanical sciences. Available, because it is still present in our
libraries in its complete form, but forgotten because, being written in German by a Jewish refugee escaped to the United
States, has been ignored by the main stream of the dominant groups in continuum mechanics. The ideas by Hellinger and
the German school of continuum mechanics (remark that this school includes, as we have discovered reading this article,
even Gauss himself!) were lost or dramatically deformed in translation. We believe that the destiny of Hellinger’s paper
is an evidence supporting Lucio Russo’s view about history of science. Our aim is to trace the origins of current ideas of
mechanical sciences to their original sources.

Copyright line will be provided by the publisher

1 Introduction

As in the previous paper [23] of this exegetic series, the presented English translation of the original text written in German
by Hellinger is typed in italic and is indented on both sides. The comments and explanatory remarks are in standard
text style. We tried to produce a word-by-word translation totally refraining from allowing us to include any comment
or interpretation of the original text because of translation. When we were obliged to introduce a word which had no
correspondence in the German text, we included it in square brackets as follows: [xxxx]. For more general considerations
about Hellinger’s masterpiece, we refer to the introduction of [23]. Additionally, we remark that some translated excerpts
of Hellinger’s paper can also be found in Maugin [46]. In the present introduction we want to develop some considerations
which may be of utility not only to frame Hellinger’s contribution to our understanding of continuum mechanics, but also
to examine other contexts, in particular those discussions where the attribution of a text to an author is questioned, denied
or, on the contrary, strongly supported.

For the moment, we propose the following imaginary situation to the reader: let us assume that the article by Hellinger,
which we are translating here, in a far future (but if human beings will not be careful such a future may not be so far,
unfortunately) may be so corrupted in its transmission that the author’s name is lost. It could even happen that then a
courageous, but a little bit naive, philologist and historian of science arrives to have a conjecture about its authorship.
The imaginary future philologist and historian, which we will call the Courageous Philologist, may arrive at the following
chain of ideas: the article which he holds in his hands is of very high quality (this he manages to understand) and it deals
with continuum mechanics. He can more or less determine the presumed period when this article has been written and he
discovers that it was indeed written in a period very close to the age in which two famous experts of continuum mechanics

∗ DIE ALLGEMEINEN ANSÄTZE DER MECHANIK DER KONTINUA. Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer
Anwendungen. Bd. IV-4, Hft. 5 (1913).
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2 S. R. Eugster and F. dell’Isola: Exegesis of the “Fundamentals of the Mechanics of Continua”

flourished. He therefore conjecturally attributes the article to Truesdell and Noll. As a further strong hint for this attribution
he comes to know that Noll was of German origin and he could also find papers by Truesdell written in German (see
e.g. [1]). Future philology and history of science may therefore be traversed by a violent, sharp and endless dispute about
the question of authenticity of the article entitled DIE ALLGEMEINEN ANSÄTZE DER MECHANIK DER KONTINUA
(henceforth denoted by the acronym DAADMDK). This kind of disputes is not rare. To give an example, the reader is
referred to the work entitled: Mhqanik�, i.e. Mechanics, Mechanica or Mechanical Problems. By tradition, this work is
attributed to Aristotle but its authorship has been questioned also in ancient sources (cf. the Loeb edition of Aristotle’s
Minor Works [3]). While Winter [91] suggests with really persuading arguments that the author was Archytas of Tarentum,
Coxhead [11] claims that it is only possible to conclude that the author was one of the Peripatetics. What is certain is
only that during the Renaissance an edition of this work was published by Francesco Maurolico. Many future historians
of mechanics in the imagined dispute, henceforth called the Skeptical Scholars, will attack the Courageous Philologist by
stating that:

i) The style of the DAADMDK is too inhomogeneous and it is thus not reasonable to assume that it is authored by a single
author. Indeed, they will observe that at the beginning of No. 2 (see [23]) a very primitive notation for placements is
introduced recalling the one used in various works written between 1824 and 1850 by an author using Italian language
which is also cited in Truesdell and Toupin [82]. Most likely the author’s name is Gabrio Piola, see [18], whose traces
would be lost if not two kinds of stress tensors were named after him: it is anyway disputable that Piola is so primitive,
as his name is used very often together with the name of Kirchhoff. The Skeptical Scholars will add that the evidence
of multi-authorship is then given by footnote 8) on page 607 of DAADMDK (see also footnote 19 in [23]) which is
a clear missing link between pre-Levi-Civita tensorial notation and mature Levi-Civita one. They will remark that
this intermediate notation towards a Levi-Civita one is sometimes abandoned in the text and then resumed. They will
conclude stating that formula (12a) appearing in No. 16 of DAADMDK (to be translated in the forthcoming last paper
of this series) is formulated with a mature Levi-Civita notation and that all these discrepancies definitively prove that
the hands who wrote different parts of DAADMDK are not the same.

ii) The authors of DAADMDK must be aware of the contributions by Noll, therefore at least one of them must be posterior
to Noll. Indeed, the Skeptical Scholars will observe that part III-A of DAADMDK, which includes Nos. 6, 7 and 8,
makes extensive use of the principle of objectivity1 unanimously attributed to Noll in the literature which reached
them. In their opinion, the apparent anachronism can be solved only by assuming that non-contemporary authors in
different times contributed to DAADMDK. Moreover, the greatest lack of internal coherence in the presented matter
becomes obvious in No. 4 of Part I of DAADMDK. The much later theories, called generalized continuum theories
or theories of structured continua appear in this number. These theories were clearly unknown to Truesdell and Noll,
which together with their followers, believe that they are not logically consistent.

iii) The text of DAADMDK is clearly corrupted. In any case, it cannot be attributed to Truesdell and Noll as it is based
on the principle of virtual displacements, which has been understood and developed later (see e.g. [35] and [26]).
About this point, the Skeptical Scholars do not have unanimous opinions. Indeed, some of them remark that Truesdell
and Toupin introduce in a previous work some variational principles in continuum mechanics. This undoubted and
undisputed philological observation is explained in two ways: a) by assuming that also Truesdell and Toupin is a
corrupted text, where some subsequent authors or revisers added some references to variational principles or b) by
assuming that Toupin is a later reviser of Truesdell’s works who was aware of the later development of continuum
mechanics, eventually based on the principle of virtual work. Another controversy among the Skeptical Scholars
concerns the relationship between the principle of virtual displacements and the principle of virtual work. Some
among them claim that the second one is the more advanced version of the first one, even if they cannot establish in
what exactly this last improvement consists. Others claim the principles to be the same but named differently.

iv) The text of DAADMDK shows a mathematical competence which seems much more advanced than the mechanical
competence. The authors which wrote the mathematical parts must be of a later period than the authors of the me-
chanical parts. Here the Skeptical Scholars are unanimous. It is clear that in DAADMDK the understanding of the
concept of Fréchet and Gâteaux derivatives is rather deep and sophisticated. Furthermore the Lemma of Urysohn
(at least in its form valid in the three-dimensional Euclidean space endowed with natural topology) is mastered with
clever applications and the method of Lagrange multipliers is used in its full potentiality.

1 To this (and the same) principle many different names were given. Piola did not formulate explicit axioms for naming the assumption expressed by
this principle, but formulates them clearly in formulas. In particular, see the considerations which led Piola to write Eq. (10) on p. 60 in No. 35 of Chap. I
“Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione” of [18],
cf. also Eq. (12) in [14]. In [80], Truesdell seems to recover the spirit of Piola by calling it either principle of material frame-indifference or invariance
under superposed rigid motions.
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v) Both the Skeptical Scholars and the Courageous Philologist are puzzled by the historical references to Lagrange (an
author openly despised by Truesdell), to Hamilton and to the Cosserat brothers. Concerning this point they all do
agree that further investigations are required. They are also puzzled by the reference to relativity. This point seems to
cause them serious troubles and they tend to assume that this part was added by a much later reviser.

The reader should not believe that the previously described imaginary situation has absolutely no chances to become
true. He should refer himself to the destiny of the pseudo-Aristotelian Mhqanik�. Risking to be considered as a naive
version of the Courageous Philologist, we dare to give our opinion about the destiny of such a famous text (see also
McLaughlin [47]). The pseudo-Aristotelian Mhqanik� attracted our attention because it contains undoubtedly one of the
first evidences of the application of the principle of stationarity of potential energy in equilibrium. The reader should
remark that (if our sources are correct) Aristotelian dynamics postulates that in the absence of external interactions a body
remains at rest. Therefore, the principle of inertia was most likely unknown to Aristotle. Russo [68], pp. 286–293, claims
that Hipparchus of Nicaea was probably one of the first mechanicians to formulate a correct principle of inertia2. The
fact that Aristotle had not yet in his hands the correct formulation of dynamics does not exclude that he could have had
a correct formulation of statics. The attentive reader3 will agree that the passage from statics to dynamics is not easy and
not immediate, especially if one has not in his hands the texts by D’Alembert, Lagrange or Hamilton (and also in this case
one may have some troubles!). Accordingly it is possible that Aristotle could have correctly formulated the problem of the
equilibrium of the lever. Hence, it cannot be excluded that the particular application of the principle of virtual work found
in the pseudo-Aristotelian Mhqanik� could have been written by Aristotle. In contrast, Winter [91] believes that the author
of the complete Mhqanik� is Archytas. The attribution to Archytas of Tarentum of those parts involving the principle
of virtual work is really appealing to the senior author: being himself a philosopher from Magna Graecia, he cannot be
unhappy of such a conjecture. A lot has been written about Mhqanik�. We will simply dare to add some remarks. As in our
opinion the book by Russo [68] clearly places the birth of science and scientific technology in the Hellenistic period, we
tend to disagree about the attribution to Archytas, if it is true that he flourished at least one century earlier. Moreover, if one
has studied physics using a modern textbook (cf. for instance [2, 37, 41]), one will be surprised with the analogies which
can be found with the pseudo-Aristotelian Mhqanik�. First of all, in all aforementioned textbooks it is tried to transmit the
general ideas by means of “practical” examples of applications. Second, the general style tries to be friendly and to limit
the use of mathematics to the minimum possible. Finally, they all provide a set of questions which can be supposedly asked
during a student’s exam together with a list of answers that a teacher expects to hear: all these textbooks seem to have been
conceived “ad usum delphini”. In other words, by examining its style, we dare to conjecture that Mhqanik� was a textbook
which was used to introduce the ancient students to mechanics and to its mathematical formulation exactly in the style of
modern textbooks at university level. It seems to us very similar to an ancient version of the Berkeley physics course [41].

We conclude this introduction remarking that the style of Hellinger is different from the one adopted by the Berkeley
physics course: Hellinger is a mathematical physicists. He shows the theory, its logical consistence and simply gives some
hints to possible applications. The article by Hellinger is the intelligent compilation of many related topics and theories
whose trait-d’union must be found in the fact that they are all formulated in terms of a field theory (as made explicit in
Part III-A). The list of particular examples is given in Part III-B. Hellinger shows us how a (meta-)theory can be applied to
supply the formulation of particular “concrete” theories. The reason for which Hellinger’s article is, in our opinion, very
original can be stated in other words as follows: Hellinger presents in an unified way all field theories which were already
formulated at his times, assuming as fundamental paradigm for physics the concept of field (in contrast to the concept of
particle). From this point of view Hellinger presents the modern point of a follower of Aristotle (see e. g. [90]). This does
not imply that he did not believe in the discrete nature of matter (i. e. that he was not an Epicurean), but his article was
intended to the aforementioned aim. It is remarkable that later epigones (see [81]) continued his work, however, never
introducing any variational principle.

2 Annotated translation of No. 5 (pp. 629–637)

We start our commentaries by remarking that while evaluating the impact of a scientific text, its historical role and its
overall relevance, it is very important to understand the exact nominalistic4 frame in which the author places his work.

2 This statement can be supported, for instance by remarking that Lucretius in “On the Nature of Things” [39], pp. 60–65, following most likely
Epicurean School, stated that the “default state” of matter is motion, not stasis.

3 For an amusing definition of such a kind of reader go to http://www.ma.rhul.ac.uk/~uvah099/Sat/reader.html.
4 We use the word nominalism with the meaning given to it by Ockham (one of the founders of modern epistemology [76]). Indeed, exactly as done

by his follower Lagrange, Ockham assumed the strongly argued position that while it is possible to state the existence of individuals, on the contrary the
supra-individual universals (essences, or forms) have a secondary ontological status: universals are only the products of abstraction from individuals by
the human mind and they have not any extra-mental existence.
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Many controversies raised among mechanicians which seem to have been caused by misunderstandings simply due to the
different use of words. Moreover, many works seem to have as only true original content the change of names of well-
known abstract concepts, while they seem to be simply formulating very well-know statements concerning these concepts.
Lagrange, in his masterpiece the “Mécanique Analytique” [42] not only frames his work in its historical context5 but also
starts immediately by clarifying its nominalistic choices. On page 1, on the second line of his treatise, he clearly specifies
what he intends with the word force and he clearly specifies that for him this word is equivalent to the word puissance
(i.e. power). This nominalistic choice is perfectly legitimate: however6, some detractors of his works (see Truesdell’s
Essays in the History of Mechanics [79]) have used a different nominalistic choice (their own!) for interpreting Lagrange.
In this way they are lead to misleading conclusions and to misplace the contribution by Lagrange to mechanical sciences.
On the contrary, Lagrange introduces on pp. 8–9 of [42] coherently with his lucid point of view the word moment in a
non-conventional7 way. Indeed, at the end of p. 8 one can read (the upcoming English translations of Lagrange’s excerpts
in the footnotes are ours):

«Galilée entend par moment d’un poids ou d’une puissance appliquée à une machine, l’effort, l’action, l’énergie,
l’impetus de cette puissance pour mouvoir la machine [...] & il fait voir que le moment est toujours proportionnel
à la puissance multipliée par la vitesse virtuelle, dépendante de la maniere dont la puissance agit.»8

It is therefore clear that Galileo and Lagrange with the word moment mean what nowadays is called (virtual) power.
Consequently, it is not surprising that a distracted reader could completely misunderstand all the statements by Lagrange
and believe that they are all non-sense. Naive Platonistic writers believe that their own nomenclature is intrinsically true
and moreover that it is the only possible one. On p. 9 of [42], Lagrange states that Galilean nomenclature was adopted
also by Wallis in his Mechanics published in 1670, i. e. [89]. Then Lagrange clarifies why in the common usage the word
moment has assumed another (although related) technical meaning. On p. 9 one reads that:

«Aujourd’hui on n’entend plus communément pour moment, que le produit d’une puissance par la distance de
sa direction à un point ou à une ligne, c’est-à-dire par le bras de levier par lequel elle agit; mais il me semble
que la notion du moment donnée par Galilée & par Wallis est bien plus naturelle & plus générale, & je ne vois
pas pourquoi on l’a abandonnée pour y en substituer une autre qui exprime seulement la valeur du moment dans
certains cas, comme dans le levier, &c.»9

The reader should consider in detail the phenomenon of the shift in meaning which occurred to the word moment as it is
documented without any doubt by the (easily available!) text by Lagrange. This phenomenon and its importance are fully
described in [68]. Moment of a force (for Lagrange force is equivalent to power) is the energy expended per unit time by
the force on a virtual velocity. Then in some cases (i.e. rigid virtual velocities) this moment can be calculated in terms
of the force times its lever arm (multiplied by the virtual angular velocity!). Therefore Lagrange remarks that the general
concept is confused with the particular one and that the particular concept manages to monopolize the word originally used
in a more general sense. Note that Lagrange was visionary: he knew that the concept of moment expended by a force was
important and regrets that only a particular application of this general concept appeared to be considered more important. It
is ironic that Truesdellism gave such an importance to the word moment in its more particular meaning refusing to consider
the importance of the (Galilean and Lagrangian) concept to which the word moment is referred in the more general case.

We conclude these preliminary considerations remarking that in the last decades the term dynamics has largely su-
perseded kinetics in the textbooks of mathematical-physics and physics. The nomenclature used by Hellinger was rather
common at the beginning of 20th century (one is refereed for instance to the very nice textbook of Wright [92]).

II. The foundations of kinetics.

5a. The equations of motion of the continuum. It is the task of kinetics to determine, what motion arises
within the continuum considered so far, when force effects occur in it somehow specified in time, or vice versa,

5 Of course also Lagrange’s opinions can be criticized: we cannot refrain from remarking that his vision of Hellenistic mechanics was at least
reductive.

6 The careful discussion of this point will deserve more careful future discussion.
7 Of course with conventional we mean: following the conventions applicable in a given time, a given place and for a given group of persons.
8 Galileo means with moment of a weight or of a force (puissance) applied to a machine, the effort, the action, the energy, the impetus of this force

for moving the machine [...] and he shows that the moment is always proportional to the force multiplied with the virtual velocity, depending on the way
in which the force acts.

9 Nowadays one does mean more commonly for moment nothing else than the product of one force times the distance between its direction and one
point or one line, that is [the force] times the lever arm through which it is acting; but it seems to me that the notion of moment given by Galileo and
Wallis is much more natural and more general and I do not see why it has been abandoned to be replaced with another concept which expresses only the
value of the moment in certain cases, as happens [when dealing] with the lever.
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which effects are required for the maintenance of a particular motion. As in statics, the effects are thereby thought
as given by the coefficients of the expression of work δA, while the kind of their dependence on the function of
motion remains open at first.

For now, we address only ordinary media considered in No. 3. The transition from statics to kinetics can
occur as in the mechanics of discrete systems with the help of d’Alembert’s Principle (cf. IV 1, No. 36, Voss); its
generalization to continuous systems is offering itself almost automatically, if one let lead oneself as in statics
(S. 616) by the idea of a limit process to the continuum, or if one proceeds directly in the sense of the analogy
between point systems and continua. From these points of view, already Lagrange 10 has tackled those problems
of hydrodynamics which he considered.

Remark that already Hellinger is aware of the fact that the applications of the principle of virtual work to continuum
mechanics dates back to the work of Lagrange himself. Accordingly, the first observation of this fact made by Piola
(see [20]) is confirmed by the subsequent literature. Moreover, Hellinger already anticipates the possibility to deduce a
continuum model from a discrete one by means of a limit process: of course we do not mean that he could perform this
limit with the methods of Gamma-convergence.

According to [this last analogy] one can state the following principle which is in full correspondence with
the notion of the general mechanics of continua developed by d’Alembert 11 himself: Considering the forces and
stresses which act during the motion at a particular instant of time on the quantum V0 of the media, then they
are in static equilibrium in the former sense, provided that one adds in every position additional forces (“forces
of inertia”), whose components computed per unit of mass of the continuum are the same but opposite to the
accelerations:12

−∂
2x

∂t2
= −x′′, −∂

2y

∂t2
= −y′′, −∂

2z

∂t2
= −z′′.

Even if it frequently seems to be convenient to put this principle as an axiom on the top of kinetics, the question
remains, in which independent constituent parts one can divide it and how much are these independent of the
static axioms — a question, which appears in the very same sense already in the mechanics of discrete systems.
Therefore it should be noticed here just shortly, how such [a formulation of] d’Alembert’s principle incorporates
the statement being equivalent to Newton’s second axiom: that the acceleration of an imagined freely moving
volume element is equal to the sum of all applied forces to this element; that this principle incorporates on
the other hand — which has firmly been pointed out by G. Hamel 13 — a statement being logically independent
of this first constituent part: If there are forces acting on a continuum, such that the accelerations of every
particle following Newton’s second law are admissible with respect to the systems kinematic constraints, then
these accelerations really occur.

Before continuing to read Hellinger, it is worth to read directly what has been written by Lagrange. In [42], one reads at
the end of p. 11, beginning of p. 12:

«Et en général je crois pouvoir avancer que tous les principes généraux qu’on pourrait peut-être encore découvrir
dans la science de l’équilibre, ne seront que le même principe des vitesses virtuelles, envisagé différemment, &
dont ils ne différeront que dans l’expression.»14

By introducing now the principle of virtual displacements as equilibrium condition into d’Alembert’s princi-
ple, one consequently obtains the variational principle used by Lagrange 15 as basic formula in dynamics. For
every instant t, one thinks of the motion as in No. 2, (6) superposed by an infinitesimal virtual displacement,
which is admissible with respect to the kinematic constraints of the continuum arising at the instant of time t;
then the virtual work augmented by the inertia forces must vanish always:

(1) −
∫∫∫
(V )

%(x′′δx+ y′′δy + z′′δz)dV + δA = 0,

10 Cf. in particular Méc. anal., 2. part., Sect. XI, § I.
11 Traité de dynamique, Paris 1743. Cf. IV 1 Voss, p. 77 209).
12 In the following, apostrophes denote the derivatives of the functions of motion (1) with respect to t for constant a, b, c.
13 G. Hamel, Math. Ann. 66 (1908), p. 354; p. 386 the independence for the mechanics of rigid bodies is demonstrated in an example; cf. also the

extensive presentation in Hamel’s Elementarer Mechanik, p. 306f.
14 And in general I believe to be able to conjecture that all the general principles which may be, possibly, discovered in the science of equilibrium

will be nothing else than the principle of virtual velocities conceived in a different way and from which they will differ simply in their expression.
15 Méc. analyt., 2. part., Sect. II.
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and this for every instant of time t of the path of motion. For the case of an arbitrarily continuously deformable
body and under the same assumptions as in No. 3c, one can deduce as equations of the motion for every point of
the continuum at any instant of time [the following ones]:

(2) %x′′ = %X +
∂Xx

∂x
+
∂Xy

∂y
+
∂Xz

∂z

(
x, y, z

X, Y, Z

)
,

while the boundary conditions (5b) of No. 3 remain unchanged for every instant of time t. However, these equa-
tions only determine the motion, when the connection of the force and the stress components with the functions
of motion is specified.

Concerning the consideration of kinematic constraints, we refer here exclusively to the case of so called
holonomic constraints, which contain no time derivatives of the functions of motion.16 Such a requirement
differs from the form considered in No. 4c only by the explicit appearance of t:

(3) ω(a, b, c;x, y, z;xa, . . . , zc; t) = 0.

Now, for the virtual displacements this form of condition at time t comes into question only; the varied
position shall (for arbitrarily small σ) satisfy the condition (3) for the considered fixed value of t, such that by
differentiating with respect to σ (“variation of the motion for fixed t”) it follows

(3′)
∑
(xyz)

∂ω

∂x
δx+

∑
(xyz,abc)

∂ω

∂xa
δxa = 0 for every t.

As mentioned in No. 4c the equations of motion arise out of this.
5b. Transition to the so-called Hamilton’s principle. In a rather similar way to the well-known derivations in

point mechanics, one can still transform d’Alembert’s principle into other variational principles which determine
the motion; here the point concerns in particular the transformation of the terms coming from the motion (the
inertia forces) into the variation of a single expression being determined for every motion.

It is clear that, always using his Tacitean style, Hellinger greatly praises the contribution to continuum mechanics by
D’Alembert, Lagrange and Hamilton. One has to notice that, unfortunately, Hellinger’s opinion has been considered of
minor importance or even explicitly wrong. Indeed, in [79] on p. 134, one can read:

«Granted its more modest scope, estimates of Lagrange’s performance must remain a matter of taste. In music,
in painting, in literature, tastes have changed in the past century. Why should they not also change in mechanics?
The historians delight in repeating the Hamilton’s praise of the Méchanique Analitique as “a kind of scientific
poem”, but it is unlikely that many persons today would find Hamilton’s recommendations in non-scientific
poetry congenial.»

Together with the authority of Hellinger, we believe instead that the ideas by Lagrange, Piola and Hamilton supply us
a superior and more efficient logical tool which allows for easier formulation of more and more complex and general
mathematical models of physical phenomena. Unfortunately, Lagrangian methods are mathematically sophisticated and
only refined mathematical minds, like Hellinger’s, are able to catch their more advanced subtleties. As we have already
remarked in the first paper of this series, Hellinger is well aware of the concepts of Fréchet and Gâteaux derivatives of
functionals. His updated competences in functional analysis are brilliantly used in the following sentences to confirm
some results which had needed some involved reasoning when obtained by Lagrange himself. Remark that also in recent
literature still the commutation rules of the variation delta and time derivatives are sometimes presented as a kind of magic
trick. Note, on the contrary, how clearly and rigorously Hellinger proves the formula which follows below. However,
differently from what is made too often in mathematical literature, Hellinger does not claim to have invented anything new,
simply because he has obtained a well-known result in a more modern formalism: naturally and without any comment,
he attributes the result to Lagrange, even indicating exactly the place where Lagrange, in his “Méchanique Analytique”,
obtains it.

16 If one wants to treat problems including nonholonomic constraints using d’Alembert’s principle, then in the mechanics of continua, as in point
mechanics, one has to refrain from considering that the variation of the motion for small σ satisfies the constraints — moreover the constraint equations
for the displacements are gained in a pure formal way by replacing the time differentiation by the operation δ; cf. below p. 633. Hereto one shall
compare IV 1, No. 37, 38 (Voss) and the cited literature therein, in particular O. Hölder, Gött. Nachr., math.-phys. Kl. 1896, pp. 141–143, furthermore
the presentations appeared so far from G. Hamel, Zeitschr. Math. Phys. 50 (1904), p. 1 and Math. Ann. 59 (1904), p. 416.
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Essential are, as in Lagrange 17, the identities

x′′δx =
d

dt
(x′ · δx)− δ( 1

2x
′2) (x, y, z),

which follow from repeated differentiation of (6) from No. 2 with respect to the independent variables σ, t. By
substituting that [relation] into (1) and taking into account, that the operation-symbols d

dt and δ can be dragged,
regardless of the factor %, in front of the integral, since after the introduction of a, b, c as variables of integration
both the domain of integration V0 and the remaining factor %0 are independent of σ and t, we obtain

(4) − d

dt

∫∫∫
(V )

%
∑
(xyz)

x′δx · dV + δT + δA = 0,

where the abbreviation of the total kinetic energy

(5) T = 1
2

∫∫∫
(V0)

%0
∑
(xyz)

x′2dV0 = 1
2

∫∫∫
(V )

%
∑
(xyz)

x′2dV

has been introduced. Eq. (4) is the equation used by G. Hamel 18 and K. Heun 19 under the name central equation
of Lagrange as the foundation of mechanics of systems with finitely many degrees of freedom, which holds in the
same manner also for the mechanics of continua20, and is completely equivalent to (1): the motion happens to
be such that for every virtual displacement being admissible with respect to the possible constraints, the time
derivative of the virtual work of the momentum (x′, y′, z′) per unit of mass is, at any instant, equal to the
sum of the variation of the kinetic energy and the virtual work of all force effects.21

Considering now the motion within the time interval t0 5 t 5 t1, then (4) holds for every instant, and
by integrating in t with the boundaries t0, t1, it follows the so-called Hamilton’s Principle when the virtual
displacements are taken to be zero at the instants t = t0, t1

22: By superimposing to the motion of the continuum
virtual displacements admissible with respect to any possible conditions, which vanish without exception at the
instants [t0 and t1], then the time integral from t0 to t1 of the sum of the virtual work and the variation of the
kinetic energy vanishes:

(6)

t1∫
t0

(δT + δA)dt = 0.

Since for every time interval in (6) the virtual displacements can be chosen arbitrarily, one can also easily
imply the other way round that (4) or (1) follow from (6): these principles are completely equivalent.

Furthermore, one can now derive directly from these propositions the principle of least action in its various
forms for the mechanics of continua23; nevertheless it seems — except for cases reducing to systems with finitely
many degrees of freedom — that it has not found essential applications [up to now].

In the previous, sentences Hellinger proves how easy it is to generalize the principle of least action to continuum
mechanics (and more generally in field theories). The applications of such principles are nowadays very important: for
instance the great majority of numerical integration schemes are based on one of its formulations. It is astonishing how the
simple and perfectly understood (by Hellinger and his cultural milieu) notions presented in the translated article may have
been ignored or despised in such a large part of literature. In [79] on pp. 173–174, one can indeed read:

17 Mécan. anal., 2. part., sect. IV, art. 3.
18 G. Hamel, Zeitschr. Math. Phys. 50 (1904), p. 14.
19 K. Heun, Lehrbuch der Mechanik, T. 1: Kinematik (Leipzig 1906), p. 92. Cf. also IV 11, No. 11, K. Heun.
20 Cf. IV 11, No. 19 to 21, K. Heun.
21 By varying also the time-parameter t, one can also obtain the relation denoted by G. Hamel (Math. Ann. 59 (1904), p. 423) and K. Heun 19 as

general central equation to the mechanics of continua; cf. IV 11, No. 19 to 21, K. Heun.
22 This principle has been formulated very soon by different authors for individual branches of the mechanics of continua, after one has got it

for point mechanics (see IV 1, No. 42, Voss); one shall compare besides the literature of individual disciplines cited later on A. Walter, Anwendung der
Methode Hamiltons auf die Grundgleichungen der math. Theorie der Elastizität, Diss. Berlin 1868, as well as the summarizing presentation in Kirchhoff’s
Mechanik, p. 117 f. and W. Voigts Kompendium I, p. 227 ff.

23 For instance the considerations of O. Hölder, Die Prinzipien von Hamilton und Maupertius (Gött. Nachr., math.-phys. Kl. 1896, p. 122 ff.) can be
extended immediately to continua.
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8 S. R. Eugster and F. dell’Isola: Exegesis of the “Fundamentals of the Mechanics of Continua”

«Almost as much nonsense has been written about the Méchanique Analitique as about the Principia and the Two
New Sciences. Although Lagrange’s book is far easier to read with understanding than is Newton’s or Galileo’s,
still it does not seem to be easy enough for most historians of science to penetrate the contents. There are few
errors, few novelties, and many routine manipulations in it. While it contains interesting historical parentheses,
the presentation of mechanics is strictly algebraic, with no explanation of concepts, no illustrations either by
diagrams or by developed examples, and no attempt to justify any limit process by rigorous mathematics. It
does not enter at all a number of the fields opened by Newton, and it leaves unmentioned most of the deeper
and harder problems of mechanics solved by the Basel geometers in the century preceding it. In particular, it
does not include the general principle of moment of momentum. It could not do so, because the principle of
virtual work does not yield the principle of moment of momentum until the nature of the contact forces is made
somewhat explicit. Cauchy had still to be born and to create the general concept of stress, by which all theories
of space-filling bodies are united.»

The future philologists (the reader is referred to the introduction) could have difficulties in framing the respective flour-
ishing periods of Hellinger and Truesdell. Hellinger cites the works of Lagrange as if Lagrange had written them only few
years before the article which we translate here. Hellinger treats his predecessors as if he were continuing their work exactly
where they had left it: in this spirit he parallels Galileo who considers himself a disciple of Archimedes (see [68], p. 349)
and behaves similarly as Piola, who few years after Lagrange dared to continue his work. Hellinger even does not remark
that himself by using functional analytic tools can easily overcome some technical difficulties which were remarkable for
Lagrange (see the previous commentary). He considers Lagrange to be such a giant that he treats as an unnoticeable detail
his own superior technical capacity, correctly attributing it simply to a historical accident. In contrast, Truesdell proves
to have an absolutely unjustified fixation for the law of balance of moment of momentum. He arrives to state that the
«principle of virtual work does not yield the principle of moment of momentum» which is a flagrant fake as it was already
known by Gabrio Piola, i.e. the successor of Lagrangian ideas in the context of continuum mechanics (see [18, 20, 21]). It
is also astonishing that in the work [82], which precedes [79] of about eight years, one finds on pp. 596–597 a theorem
of Piola which states that the principle of virtual work is equivalent to Cauchy’s first and second law (i.e. local balance of
forces and local moment of momentum, respectively). We find such a statement somehow ambiguous: however, it proves
that a textbook authored also by Truesdell contains a statement contradicting a statement found into another later textbook
by Truesdell himself. The future philologists could be really puzzled by this circumstance: Nevertheless, we know [from a
private communication with R. Toupin in 2013] that the part of the joint work [82] concerning variational principles was,
in its more technical aspects, written by the youngest author. Also in the same joint work, Hellinger is cited only to be
bitterly criticized (cf. footnote 1 on p. 595). The reader is referred again to the introduction: as the Mechanical Problems
were transmitted to the posterity by attributing them to Aristotle, similarly it could be conjectured that Toupin managed
to transmit in the community of continuum mechanics the basic concepts of variational principles allowing to his senior
author to talk about them in a negative way.

Finally, it is not true that the concept of contact force cannot be developed without the logical procedure introduced by
Cauchy with his tetrahedron argument: the reader is again referred to the works by Piola and the recent literature about
them.

5c. The principle of least constraint. Also without the integration in time, one can transform the inertia
terms in d’Alembert’s principle into the variation of an expression determined for every motion by the state at the
instant [of time] t only, in which certainly the appearance of time derivatives of second order must be allowed.
In this way Gauss’s principle of least constraint emerges24, which A. v. Brill has recently chosen as the starting
point of a systematic treatment of the mechanics of continua.25

To obtain this principle, we take from the virtual displacements a family of varied motions No. 2, (6) of the
following special kind: For the considered instant of time t, every particle a, b, c shall have the same position and
the same velocity as the actual motion, i. e. it shall hold for that very value t:

(7) δx(a, b, c; t) = 0, δx′(a, b, c; t) = 0 (x, y, z),

while the variations δx′′, δy′′, δz′′ of the accelerations are different from zero. One can now use these three
functions as characteristic quantities of the displacements involved in (1). In the case of a freely deformable

24 Gauss’ Werke V, p. 23 = Journal f. Math. 4 (1829). The first analytic formulation of this principle proposed by Gauss only verbally has been given
by R. Lipschitz, Journ. f. Math. 82 (1877), p. 321 ff. and soon after by J. W. Gibbs, Amer. Journ. 2 (1879), p. 49 = Scientif. Pap. II (New-York 1906), p. 1.
For further literature see IV 1, No. 39, A. Voss.

25 A. v. Brill, Vorlesungen zur Einführung in die Mechanik raumerfüllender Massen, Leipzig 1909.
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continuum this is evident. However, when there is a condition of the form (3), two times differentiation with
respect to t yields ∑

(xyz)

∂ω

∂x
x′′ +

∑
(xyz,abc)

∂ω

∂xa
x′′a + · · · = 0,

where with the points some known functions x, . . . , xa, . . . , and their first time derivatives are indicated. By the
variation, i. e. differentiation with respect to σ, it follows due to (7) for the fixed instant t∑

(xyz)

∂ω

∂x
δx′′ +

∑
(xyz,abc)

∂ω

∂xa
δx′′a = 0,

and this is in fact exactly condition (3′) for the δx formulated above. Thus, the introduction of the functions
δx′′, . . . in (1) is allowed and after slight transformations the following new principle is obtained.26): Varying
the actual motion of a continuum in a certain instant in such a way that the position and the velocity of
every particle are conserved, but the acceleration is changed agreeing with the possible constraints, then the
following sum of integrals always vanishes:

(8) − δ
∫∫∫
(V )

1
2%
∑
(xyz)

x′′2dV +

∫∫∫
(V )

(
%
∑

(XY Z)

Xδx′′ −
∑

(XY Z,xyz)

Xx
∂δx′′

∂x

)
dV

+

∫∫
(S)

∑
(XY Z)

Xδx′′dS = 0.

Instead of the variation of a quantity corresponding to an “averaged acceleration” appearing here27 one can also
introduce the exact analogy of Gauss’s constraint; then by attributing to the varied motion the same unchanged
forces, one can write (8) as

(8′)

− δ
{∫∫∫

(V )

1
2%

∑
( x y zXY Z)

(x′′ −X)2dV

}
−
∫∫∫
(V )

∑
(XY Z,xyz)

Xx
∂δx′′

∂x
dV

+

∫∫
(S)

∑
(XY Z)

Xδx′′dS = 0.

The significant relevance of this principle lies, as in point mechanics, in the fact that it is valid completely
unchanged for systems with nonholonomic constraints. For instance, [when] such a constraint equation, in which
besides the functions of motion and their spatial derivatives also their first differential quotient with respect to
time appear:

ω(a, b, c;x, y, z;xa, . . . , zc;x
′, y, z′;x′a, . . . , z

′
c; t) = 0,

then one obtains by once differentiating with respect to t the condition the values of the acceleration [have to
satisfy] for the fixed instant t, and by calculating the variation (differentiation with respect to σ) [subject to
conditions] (7) it follows ∑

(xyz)

∂ω

∂x′
δx′′ +

∑
(xyz,abc)

∂ω

∂x′a
δx′′a = 0,

which henceforth has to be added to (8) as a constraint.
Especially, when ω is linear in the velocities x′, . . . , x′a, . . . , then this result is, by its nature, identical to the

form in which one frequently states d’Alembert’s principle for nonholonomic conditions16 (Note of the translators:
As in the original text, the text refers to the previous footnote 16), whereas the variations of the acceleration
substitute the virtual displacements formally introduced therein.

An additional advantage of this principle in contrast to d’Alembert’s [principle], which has hardly been used
so far in the mechanics of continua, lies therein, that it provides a suitable basis for the treatment of kinetic
problems with inequality constraints: one only has to ask expression (8) to be smaller or equal to zero for all

26 Brill, op. cit. p. 61 ff.
27 It has been used in this context at first by P. Appell, Paris C. R. 129 (1899), p. 317 and in a series of further works (s. IV 1, No. 38, Voss).
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10 S. R. Eugster and F. dell’Isola: Exegesis of the “Fundamentals of the Mechanics of Continua”

variations of the acceleration which at an instant t for a fixed position and velocity are admissible with respect
to the constraints — exactly as it already has been stressed in particular by Gauss.28

For the elder author, this No. 5c is a golden nugget: it is unbelievable that the method conceived by Gauss (who was
not a despicable mathematician, by the way) has not been exploited extensively up to now. The younger author as a
pupil of Glocker, who extended the principle of least constraint in the context of rigid multibody systems subjected to set-
valued force interactions [32,33], enjoyed this principle for finite dimensional systems already in his lectures on multibody
dynamics. However, we have not found often in the literature its formulation (cf. also [63]) and we share with Hellinger the
opinion that it seems to be very powerful and effective. We intend to investigate its uses already available in the literature
and try to apply it to get effective integration codes to be used to predict the evolution of as many continuum systems as
possible. Again, Hellinger seems to have done a very useful work for the community of mechanics, by making available in
his entry of an Encyclopedia a contribution by Gauss not so easily available.

5d. Principles of general nature. To mention principles, which go beyond the so far discussed classical
forms of the fundamental equations of kinetics, one must cite a generalization of Hamilton’s principle, which
plays quite similarly an important role in the dynamics of systems with finitely many degrees of freedom29; [the
generalization] lies therein, to use for the formation of the kinetic energy T a more general function in the
components of velocities, particularly a definite quadratic form:30)

(9) T = 1
2

∫∫∫
(V )

T dV, where T = %11x
′2 + 2%12x

′y′ + · · · .

Thereupon from Hamilton’s principle (6) there follows equations of motion, which differ from (2) only in the
point, that % ·x′′, . . . is substituted by d

dt

(
∂T
∂x′

)
, . . . . The 6 coefficients %11, . . . are known functions of a, b, c; they

determine together the density (mass of inertia) of the medium, which therefore depends on the direction (kinetic
anisotropy).

Much further goes an another postulation, which makes on the particular form of the kinetic energy or the
“inertia forces” due to the motion just as little assumptions, as the work expression in No. 3 on the nature of
forces and stresses: One shall augment the principle of virtual displacements with a fourth independent variable
— the time t — [with] corresponding operations (integration in t and addition of terms with time derivatives
of δx, . . . ) and [one shall] denote the fourfold integral, in which a, b, c, t are considered to be independent, as
virtual work of the moving continuum in the time interval t0, t1:31

(10)

t1∫
t0

dt

∫∫∫
(V0)

dV0

( ∑
( x y zXY Z)

(
%0Xδx+Xt

∂δx

∂t

)
−
∑(

xyz

XY Z
; a b c

)Xa
∂δx

∂a

)
.

Thereby, the components of momentum Xt, . . . , representing the influence on the motion, shall be seen in the
same way as the force and the stress quantitiesX, . . . , Xa, . . . in their relation to the functions of motion accord-
ing to the special nature of the continuum; one obtains the inertia forces commonly assumed so far, as (5), (6)
show, forXt = %0x

′, while (9) corresponds to a general linear ansatz in x′, y′, z′. In addition, there can be added
to (10) as in No. 3 similar integrals over the boundary of the domain of integration in the a-b-c-t-space. The
motion now takes place in such a way, that the virtual work (10) vanishes for every infinitesimal virtual dis-
placement being admissible with respect to the possible constraints; According to the well known methods, one
can easily extract out of this the equations of motion — for instance for an arbitrarily continuously deformable
continuum [it] follows:

(11)
dXt

dt
= %0X +

∂Xx

∂a
+
∂Xy

∂b
+
∂Xz

∂c
(X,Y, Z),

28 Gauss, Werke V, p. 27.
29 Cf. IV 12, P. Stäckel
30 These approaches play an essential role in older optical theories of Lord Rayleigh; see especially Phil. Magaz. (4) 41 (1871), p. 519 (cf. V 21,

No. 29, A. Wangerin). The same approach in T. J. Bromwich, Lond. math. Soc. Proc. 34 (1902), p. 307.
31 For the special case, that this virtual work is the variation of an “action integral”, these approaches are formulated and pursued by E. and

F. Cosserat, Corps déformables , p. 156 ff. (cf. No. 7b). — In a form modified by the requirements of the theory of relativity the same approach appears in
H. Minkowski, Grundgleichungen der elektromagnet. Vorgänge in bewegten Körpern, Gött. Nachr. 1908, p. 106 (cf. No. 16).
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and the boundary conditions are obtained analogously. Like in No. 3c in (10), (11), one can introduce x, y, z
instead of a, b, c as independent [variables]32.

Also this section gives somehow the momentum to future investigations. It seems that the concepts presented here are of
utility in the mechanics of continuum deformable porous media infused with compressible fluids. The interested reader is
referred for instance to [16, 17, 73] and references cited therein.

Completely analogously one has to extend the general kinetics of media with oriented particles considered
in No. 4b, if one associates to these particles a resistance of inertia against angular accelerations: In order to
formulate readily the most general expression, one has to add to (10) only the integral being analogous to No. 4,
(2)33

(12)

t1∫
t0

dt

∫∫∫
(V0)

dV0

( ∑
(LMNπ κ % )

(
%0Lδπ + Lt

∂δπ

∂t

)
−
∑(

LMN

π κ %
; a b c

)La ∂δπ∂a
)
,

where Lt, . . . determines the momentum of the internal rotation, and [one] can herefrom derive as in No. 4b in
every case the equations of motion, which have for a free movability of the triad a second triple [of equations]
analogous to (11).34

All these considerations are with slight modifications also applicable for the dynamics of two- and one-
dimensional continua.35

3 Annotated translation of No. 6 (pp. 637–643)

III. The forms of constitutive laws.
A. Formulation of general classes.

6. The classes with dependence of the force effects on the deformation quantities. While in the previous
discussions the effects — for the sake of brevity this expression includes besides forces and stresses of any kind
also the momentum quantities of No. 5d — have been considered in a mere formal way as coefficients of the
virtual work expression, henceforth, [we] have to account for their connection with the characteristic quanti-
ties of the deformation or the motion of the continuum, which has to exist and has to be known, when after all
the stated fundamental equations shall determine the deformation or the motion of the continuum. Moreover,
[this connection] must express the clearly evident fact, that in every continuum due to motions and deformations
certain force effects are induced, and that vice versa due to impressed forces and stresses motions and deforma-
tion are caused. Thereby primarily the [following] difference must be clarified, if the force effects are external,
i. e. [the effects] have their cause in the relation to media and sources of effects located outside the considered
medium (long-range forces, pressures at the boundary and such like), or internal, i. e. [the effects] are based on
the material constitution of the particular medium and the mutual effects of the particles thereof. The last-named
effects are for the objective at hand more essential; provided that the desired equations yield these [effects], they
characterize the specific dynamic behavior of each one medium within the common classes of all continua and
can consequently be denoted as material laws.

The previous sentences include a lucid distinction between internal and external work functional which has been often
debated in the subsequent literature, where, more often, the article of Hellinger has not been well-understood or even
simply ignored. To find a similarly clear presentation one has to wait, to our knowledge at least until Germain [27, 28] or
the very useful textbook of J. Salençon [69, 70]. This clear set of statements make clear the role of constitutive theory in
the mechanics of continua and reduces it to the most concise and effective formulation.

In the discussion, how these material laws are constituted in general, it is enough to refer primarily to the
media treated in No. 3 and to the effective quantities of stressXx, . . . , Zz and if necessary to the force components

32 Cf. E. and F. Cosserat, op. cit. p. 187 ff.
33 E. and F. Cosserat, op. cit. p. 156 ff., p. 167 ff.
34 Cf. also IV 11, No. 21c (K. Heun)
35 E. and F. Cosserat, op. cit. p. 121. The postulations regarding the kinetics of one- and two-dimensional continua can be based on those [used] in

the statics of two- and three-dimensional [continua], respectively.
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X,Y, Z. Thereafter, the corresponding general schemes for the quantities of stress in the broader sense appearing
in No. 4 and for the components of momentum of No. 5d can be formulated easily — after all, the formulations
[of the material laws] for these [effects] being effectively applied so far, can be deduced as special classes of
dependence [which need] to be discussed in No. 7b,f.

The values of the stress components Xx, . . . , Zz corresponding to the particle a, b, c located at time t at the
position

(1) x = x(a, b, c; t), y = y(a, b, c; t), z = z(a, b, c; t),

must be given by the material laws for every possible motion of the continuum; hence [the values] are represented
explicitly as expressions of any kind depending on a, b, c, t and the functions (1). [These expressions] also include
besides the values of the functions [(1)] and their spatial and time derivatives at the positions a, b, c, t possibly
values at other positions a, b, c, t and in general the complete history in the domain of variability of the four
variables (integrals and similar ones) — Hence, symbolically written in the form:

(2) F (a, b, c, t;x(a, b, c, t), . . . . .).

Changing over to another orthogonal coordinate system x, y, z, then these nine expressions of the stress com-
ponents have to be transformed like the components of a dyad (and similarly the expressions for X,Y, Z like
vector components and so on); if it concerns internal force effects, then there must exist equations between the
transformed components and the new coordinates [which are] exactly of the old form.

This last sentence is a concise statement of the principle of objectivity (or principle of material frame-indifference) for
constitutive equations for stress. The reader is invited to compare the present section by Hellinger to the statements found
in Truesdell’s First Course in Rational Mechanics [80]. Once the difference of notation is taken into account, the reader will
remark the substantial coincidence of the content presented in both works – obviously the change of notations may make a
content clearer but for sure it is not changing the attribution of scientific priority. In [80] (Chap. IV Constitutive Equations,
Sect. 2 Constitutive Equations. Noll’s Axioms) on p. 200, one reads: «The further development of continuum mechanics
in this book will fall within the axioms laid down by Noll in 1958.»36 On p. 202, one finds the “Axiom N3. Principle of
Material Frame-Indifference.”, where capital N stands for Noll. The attentive reader will immediately remark that Truesdell
claims that Noll has written in formulas exactly what Hellinger said in words. This transcription into formulas does not
seem enough to attribute the Axiom to Noll. Consider that Hellinger finished his work in 1913 and did not attribute this
axiom to himself. If one gives a glance to the historical overview about the principle of material-frame indifference in [81]
and by considering Truesdell’s awareness of Hellinger’s article (cf. again footnote 1 on p. 595 of [82]), then Truesdell
can be criticized in his own words found in [78] on p. 152: «Lagranges historische Angaben beziehen sich gewöhnlich
auf die richtigen Quellen, verdrehen oder verringern jedoch ihren Inhalt.»37 Just as a side note, in the aforementioned
textbook [80] published in 1977 which consists of 381 pages, Noll is cited (and highly praised as one of the main contributor
to mechanical sciences) on 80 pages (often more than one time). Remark that instead Lagrange is cited only 12 times and
mainly in a deprecative way. The strategy applied here was used in every era and cultural context and is really clear: a
questionable historical overview together with almost excessive repetition will convince the Skeptical Scholars about the
(desired) priority.

We consider now successively each argument possibly appearing in the expressions of stress; certainly, these
effects which are discussed in the following individually can also appear simultaneously. Primarily, it has to
be noted that the explicit appearance of the parameter a, b, c indicates inhomogeneity, i. e. difference of the
properties from particle to particle; [the] appearance of the time parameter t indicates given external excitations,
whose progress in time is a priori determined, irrespective of the actual occurring motion.

The bare essentials are certainly how the functions (1) themselves enter [in the functional dependence ex-
pressed by (2)]38; to begin with, we consider the case that [for the functions (1)] only their behavior in an arbi-
trary small vicinity of the position a, b, c, t, i. e. the values of the functions and their derivatives at this position,
appear in (2), hence that (2) is of the form

(3) F (a, ..., t;x(a, ..., t), ...;xa(a, ..., t), ..., xt(a, ..., t);xaa(a, ..., t), ...).

36 Noll 1958 corresponds to reference [52] in the paper at hand.
37 Most of [78], even in English, can be found in [79], including the hypothesis about Lagrange on p. 247: «Lagrange’s histories usually give the

right references but misrepresent or slight the contents.»
38 The classes of dependence, quoted in the following to begin with, have according to their form usually appeared at first in the development of the

theory of elasticity; particulars are to be given in IIIB for the Nos. 9—16.
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The occurrence of local values of x, y, z themselves corresponds with effects, which depend on the actual
position of the individual particles in space, as they are for example external given force fields (gravity or sim-
ilar ones). More characteristic for continua are however short-range effects, which manifest themselves in the
appearance of stresses due to local deformations. As characteristic quantities of the whole deformation at a
position (not only the pure shape change of the elementary theory of elasticity), one considers, as is well known,
primarily the values of the nine first spatial derivatives thereof (cf. IV 14, No. 16); thus, the considered effect at
hand expresses itself with an explicit dependence of the stress components on the values xa, . . . , zc at the position
a, b, c, t. The type of these dependences must clarify, if and which individual elements of the deformation have
exclusive or mainly influence on the stress or on the individual elements of the stress, as it will become clear later
in the discussion of the particular fields.

The previous sentences lucidly formulate a property for constitutive equations which has solid physical grounds. Such a
property is formulated in its essence already by Piola (cf. [20]) but named after Noll in some literature, [80].

The state of deformation at a position is described more precisely, if one uses besides the first also higher spa-
tial derivatives of the functions (1), i. e. the deformation in the neighborhood is approximated by a transformation
of higher order instead of a linear one; the dependence of the stresses on the deformation will be represented
more completely, if one includes also these higher derivatives in the material laws. In fact, one has considered
so far [derivatives which are] not higher than second derivatives, this is namely required not until then, when the
state of the medium varies very quickly in space; the stresses at a position then depends also on the spatial slope
of the common deformation quantities of 1. order.

For the senior author, who cannot easily understand German, to read all previously mentioned sentences was rather
astonishing. Indeed, because of the paper of Gurtin [34] and all papers influenced by it, for a long time it was believed, in a
certain group of scientists and in a certain cultural milieu, that second (and a fortiori higher gradient materials) were NOT
logically possible. In the aforementioned paper, one finds on p. 341 the following very clear statement: «One might ask
the question: is it possible to have a material which obeys (1.6) but is not a simple elastic material? Here we prove that it
is not.» What is astonishing is that the footnote 8 in the same paper WAS APPARENTLY not read by many followers of
Gurtin (and sometimes one has the impression that Gurtin himself for a long period forgot his own footnote). This footnote
reads:

«Thus the stress cannot depend upon the gradients of F and η39. Of course this does not mean that higher order
elasticity theories which include multipolar stresses are incorrect because of the dependence of these stresses
on the higher order gradients. It simply means that one should not include such higher gradients if multipolar
stresses are not included.»

After a long neglect of his own footnote, the late works of Gurtin came back to higher order gradient theories (see e.g. [26]
and all related and subsequent papers), where the contribution by Toupin were reevaluated. It is remarkable that in the
aforementioned paper a non-standard (sic!) principle of virtual work is formulated which can be found already in the
present article and that (see the first paper of this series [23]) is proven by Hellinger himself to be exactly equivalent to
the standard principle. We can formulate here a question which is related rather to psychology and history of science
than to mechanics itself: how was it possible that Hellinger gave in 1913 as granted the possibility to introduce second
gradient materials while still in 2016 many mechanicians believe that this possibility is forbidden by the second principle
of thermodynamics? (recently also the younger author met the same difficulties which stopped the elder author some
decades ago!). Nevertheless, there is also a large amount of papers available which prove the applicability of higher
gradient theories, cf. for instance [8, 10, 48, 49, 57, 58, 93, 94]. A very interesting field of applications for higher gradient
theories lies in the description of pantographic structures, see [6, 59, 61, 72, 83–87] to mention just a few.

Equally to the local values of the spatial derivatives, in kinetics also the values of the time derivatives of the
functions (1) at the position a, b, c, t can enter in (3) explicitly; One has considered in particular the velocity
components x′, y′, z′ of the particles themselves and the “velocities of change” of the deformation quantities
x′a, . . . , z

′
c — which, multiplied by dt, can also be interpreted as components of the deformation of the neighbor-

hood of the particle a, b, c due to the ongoing motion between t and t+ dt40. These basic approaches satisfy the
phenomena of external and internal friction, i. e. viscosity and similar ones.

39 With F and η the deformation gradient and the entropy are meant.
40 Stokes, Cambridge Phil. Trans. 8 (1845) = Math. and Phys. Papers 1 (1880), p. 80; cf. also IV 15, No. 7, Love.
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For all laws of the class (3) the question, how these equations behave under a transformation of the directions
of the a-b-c parameter lines through these points a, b, c, while the x-y-z-coordinates remain unchanged, is of
fundamental evidence.

Here, Hellinger shows to be perfectly aware of the concept of material symmetry. Moreover, he clearly distinguishes
between objectivity and material symmetry.

The attentive reader will also remark that in [80] the only references given to the Chap. IV Constitutive Relations
are [9,52–54]. This observation, which although could be considered anecdotal, is indeed of great relevance at least for the
scholars studying history of science and philology. Imagine that the often evoked Courageous Philologist will find only a
part of nowadays literature: knowing how relevant the authority of Truesdell was, he could conclude that Noll was a giant
of mechanics to whom one can attribute an enormous amount of results. He could courageously, but reasonably, state that
probably the whole body of knowledge which we call continuum mechanics was formulated and advanced by this great
scientist. However, the Skeptical Scholars will possibly have in their hands the article by Hellinger which we translate and
comment here. These Scholars will need to fight a battle to state that:

i) Hellinger’s article was preceding Noll’s papers,

ii) the formalism used by Hellinger and Noll are equivalent,

iii) probably many experts of Linguistic will start to doubt about the meaning of the German words used by Hellinger to
argue against the meaning to be given to his paper and its conceptual content.

What is unfortunately true and proven once more by the very particular history of continuum mechanics between 1822
(Piola’s first work) and 1977 (the date of the aforementioned textbook [80]) is the following statement (see also Russo [68]).
Science is not proceeding linearly. There are many steps ahead and many steps back: in general, more recent papers are
NOT more advanced than elder ones. Also one unique hand may produce works having a not uniform scientific quality.

Thereby it is determined namely, if and which different directions through a point of the medium are tantamount
for its constitution, provided that it is expressed in the considered material laws, i. e. it is decided on isotropy or
aeolotropy of the medium; for specific conditions this connection has been studied thoroughly in the physics of
crystals, where due to the mere restriction to infinitesimal deformation the difference between transformations of
a, b, c and x, y, c does not appear.41

For the more general case, that within the material laws (2) also the values of the functions (1) at different
positions and for different times enter, the characteristic ansatz is of sufficient generality — at first for statics —,
to identify the components of stress with volume integrals over the whole continuum

(4)
∫∫∫
(V0)

f(a, . . . ;x, . . . ;xa, . . . ; a, . . . ;x, . . . ;xa, . . . )da db dc,

whose integrands are given functions of the values of the deformation functions (1) and their derivatives for
the particles a, b, c and a, b, c. Thereby long-range effects are included within the medium: an effect at the
position x, y, z emerges in consequence of the states at all other positions of the continuum. However, besides
forces represented by basic approaches known from classical mechanics acting from mass particles to mass
particles according to the class of forces of attraction, here it appears anew the long-range effects (“influence”)
considered by P. Duhem42, due to which at every position of the continuum superposed forces or stresses are
caused by deformations taking place at all other positions of the continuum.

This statement proves that so called non-local continuum mechanics is formulated already in the works by Duhem. We
managed to read only superficially the Duhem’s second reference cited by Hellinger: it is however clear that Duhem
develops (rather rigorously) a non-local continuum model for fluids which is compatible with thermodynamics. Duhem
does not seem to be aware of the contribution by Gabrio Piola (see [14]). Hellinger’s text indicates that the fundamental
ideas on which peridynamics is founded were known also in the cultural milieu where Hellinger operated.

In the [field] of kinetics one will augment this ansatz such, that one adds a time integral over the whole
motion; or rather — corresponding with our general notion of action and reaction — over the time before the

41 Cf. for instance F. Neumann, Vorles. üb. d. Theorie der Elastizität (Leipzig 1885), p. 164; W. Voigt, Abh. Ges. d. Wiss. Göttingen 34 (1887), 36
(1890), Kompendium I, p. 128 ff. and p. 333, as well as in particular Lehrb. d. Krystallphysik (Leipzig 1910), § 286 ff., § 370 ff., § 414 ff., § 462.

42 P. Duhem, J. de math. (4) 8 (1892), p. 311; Ann. de l’Éc. norm. (3) 10 (1893), p. 215, and 21 (1904), p. 117.
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considered instant t; thereby the integrand contains the values of the functions (1) as well as their derivatives at
the instants t and t (−∞ < t 5 t):

(5)

t∫
−∞

dt

∫∫∫
(V )

da db dc f(a,..., t;x,..., xa;..., xt;...; a,..., t;x,...;xa;...xt;...).

Originally, L. Boltzmann43 has used such expressions for the stress components to formulate the phenomenon of
elastic residual effects, for which the stresses occurring in one instant depend in fact on all states the medium
has passed in advance. Recently, V. Volterra44 has taken up the studies of problems arising from these integral
formulations, once he has created with the theory of integro-differential equations a new tool for the analytical
treatment thereof; by the way, he also allows in (5) multiple integrations with respect to time, where the integrands
depend on the values of more than two instants of time. For all herein contained problems, for which the effects
at one instant depend on the whole previous history of the system, he takes up the name “hereditary mechanics”
introduced by E. Picard 45.

By restricting oneself to analytic functions, then, under corresponding convergence requirements, one can
replace the time integral (5) by a function of all (infinitely many) time derivatives of the functions x, . . . , xa, . . .
at the instant of time t, as it is done by W. Voigt46 for the treatment of elastic residual effects.

We learn from Hellinger another precious historical circumstance: Boltzmann, Picard and Voigt had already started and
developed the ideas put forward by Piola for founding non-local spatial continuum mechanics. Moreover, these authors
also had started to study a version of continuum mechanics non-local in time.

Remark that at the end of [82] a quick reference to the same literature is given. The future Skeptical Scholars may use
this circumstance to prove that Hellinger was a source for the first encyclopedic text by Truesdell, the one where, probably
due to his co-author, at least some references to variational principles are found.

All these forms of material laws have been treated mainly for the special case that the deformations of the
continuum are “infinitesimally small” (cf. IV 14, No. 16, Abraham). The functions (1) include this case, when
one considers a, b, c as spatial coordinates of the particle in the initial position and (cf. No. 2a, p. 607) by setting
[these functions] with the help of a parameter σ, restricted to arbitrary small values, to:

(6) x(a, b, c; t) = a+ σ · u(a, b, c; t) + · · ·
(
x, y, z

u, v, w

)
,

where throughout the higher powers of σ are neglected with respect to the lower ones. If an effect depends now
on these functions of motion by a law of the form (3), then one has to replace the expression F with the first terms
of its expansion with respect to the powers of σ due to (6); If the linear terms in σ do not vanish identically, then
one obtains as a result instead of (3) a law of the form:

(3′) F + σ{Fx · u+ · · ·+ Fxa · ua + · · ·+ Fxt · ut + · · ·+ Fxaa · uaa + · · · }.

F, Fx, . . . are the values of the function (3) and its derivatives for σ = 0, thus known functions of a, b, c, t;
the material law is now linear in the local values of the functions u(a, b, c; t), . . . determining the infinitesimal
deformations, and the derivatives [of these functions] — according to Hooke’s law of the theory of elasticity
(cf. IV 23, No. 4). The term without σ corresponds to initial forces or stresses, which can possibly exist in the
undeformed continuum. Similarly, one could even consider stress laws, for which the coefficient of σ1 vanishes47;
then for infinitesimally small deformations, the stresses would depend on the deformations at least quadratic —
contrary to Hooke’s law, which consequently does not have to be valid necessarily even for infinitesimally small
deformations.

In the previous paragraph, Hellinger accounts for the simplified scheme given by linearized continuum mechanics. In many
cultural ambients, for some unclear reasons, linearized mechanics is considered “more intuitive”. Somebody claims that

43 Wien. Ber. 70 (1874), p. 275 = Pogg. Annalen, Ergänzungsbd. 7 (1876), p. 624 = Wissensch. Abh. I, p. 616.
44 The general fundamentals are included in Roma, Acc. Linc. Rend. (5) 18, 2 (1909), p. 295 and Acta math. 35 (1912), p. 295.
45 Riv. di Scienz. 1 (1907), p. 14.
46 Kompendium I, p. 458; cf. as well Cl. Maxwell, Scientif. Papers 2, p. 623.
47 With particular emphasis, B. de Saint-Venant has pointed this out in the discussion on the validity of Hooke’s law; cf. his remarks in Navier, De la

résistance des corps solides, 3e éd. (Paris 1864), p. 662 and Clebsch, Théorie de l’élasticité des corps solides (Paris 1883), p. 39.
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it is “more engineering”.48 In reality linearizing an equation is a mathematical trick which aims to obtain solutions more
easily. It happens more often that Linearized models have a unique solution and calculation techniques are more easily
found. How it could happen that a choice based on purely mathematical reasons could become the “most” engineering one
is another problem which deserves to be studied with rigor in the framework of the more general context of social sciences.
Also in the linearized theories, Hellinger finds it natural to include second gradient materials. Furthermore, based on very
clear considerations by Saint-Venant, Navier and Clebsch, he remarks that linearized models could NOT be valid also for
small deformations, in some particular cases. The reader is referred, in this context, to the study of so-called statically
undetermined structures, which cannot be studied in the framework of linearized models. Remark also that in the next
paragraph Hellinger reaffirms the existence of higher gradient models.

If the material laws are of the integral form (4), (5), then the same considerations lead to a reduction of the
integrand to a linear — certainly perhaps also to a higher [order] — function of the values of the displacements
and their derivatives at the positions a, b, c, t and a, b, c, t; for example, (4) becomes

(4′)
∫∫∫
(V0)

(f + σ{fx · u+ fx · u+ · · ·+ fxa · ua + fxa · ua + · · · })da db dc,

and similarly the integral (5) simplifies for the case of temporal residual effects.

4 Annotated translation of No. 7 (pp. 643–657)

Hellinger has clearly in his mind the relationship between the principle of stationary action and the principle of virtual work.
Indeed, once integrating also with respect to the time variable (and allowing for time dependent virtual displacements), it
is easy to check that the formulation of the principle of virtual work is a more general form of the principle of stationary
action, in which the dual quantities of velocities and deformation tensors are expressed in terms of the Lagrangian density
of action. The class of theories encompassed in the principle of virtual work includes the class of theories which can be
formulated with the principle of stationarity of action. The constitutive choice possible in the second case is limited to
the choice of the action density, while in the first case one can choose with a constitutive equation all stresses and forces
which are dual (see No. 4a in [23]) to all gradients of the fields δx, δy, δz. Therefore, the constitutive choices when using
the stationary action principle are less rich than the constitutive choices available when using the principle of virtual work.
This point seems not very clear in some literature. Indeed, in [26] we can read «Our goal here is to derive Toupin’s results
within a framework that is independent of constitutive equations. To do so we use a nonstandard form of the principle
of virtual power [..]». This statement seems to imply that the novelties which the authors claim are present in their work
consist in

i) a treatment which is independent of the constitutive equations – whatever this could mean,

ii) a nonstandard form of the principle of virtual power – this point was already discussed in the first paper [23] of this
series.

Both the Courageous Philologist and the Skeptical Scholars eventually reading the paper [26] and the derived literature
may be really puzzled. Whatever the expression “independent of the constitutive equation” may finally be interpreted, the
anachronism with Hellinger’s article and Piola’s works could confuse completely those believing in the linear growth of
knowledge and science. Only those who understood the ideas of Giambattista Vico will be able to eventually solve the
puzzle: being however sharply criticized and attacked by orthodoxy. This potential confusion is proven, for instance, by
the fact that one can read in [62] as criticized by [19]:

«Needless to say, the Principle is an invariant statement. The quantification on velocities is standard, that on body
parts is not. Asking that (2) holds for all body parts is much stronger a requirement than demanding it to hold
only for the whole body.1»

1 We have been unable to assess who introduced this strengthened quantification in continuum mechanics first, when and where. Needless to
say, in the absence of such a quantification, it would not be possible to characterize equilibrium for a system of rigid bodies, nor the method
of Euler cuts would make any sense: [...]

48 The elder author, when preparing his lecture in the national competition for associate professorship, was warned not to use non-linear deformation
measures and to formulate the principle of virtual work only in the case of linear constitutive equations. The advice was intended to hide his mathematical
background. Instead it seems clear that non-linear displacements are the only kind of displacements.
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Future philologists could argue that if authors mastering Italian language could not find in Piola one of the sources of
the formulation of the principle of virtual work for every subbody of a given body, then most likely Piola is an author
subsequent to Gurtin and Truesdell.

7. Media with one characteristic state function.
In the mechanics of continua particularly often media are considered whose characteristic equations can

be reduced to one single function of the state variables. In case we talk at first about statics, such a reduction
originates particularly from the assumption, that the virtual work coming into question is, up to sign, for
every virtual displacement equivalent to the variation of a single scalar expression depending only on the
corresponding state of deformation, [which is] the “potential” or the “potential energy” of the acting forces
and stresses49; this assumption can be traced back to general theorems of thermodynamics.

The footnote 49 reflects clearly the opinion by Hellinger: Green has deduced for the first time the fundamental equations
of elasticity using the principle of stationary action. Leaving aside the question of priority with Piola, we agree with
Hellinger: it is most likely that new equations are derived for the first time by using variational principles. The reader
is referred for instance to the discussions in Landau and Lifshitz [44] and in Feynman [24], Vol. II Sect. 12-1. Some
further examples of situations where new models are introduced and motivated by means of variational principles are given
in [12, 13, 31, 55, 56, 64]. In this sense, there are many disciples of Hellinger all around.

7a. The common potential and its closest generalizations. The most simple form of this potential is charac-
terized by the property that the potential of a domain dissected into parts is equal to the sum of the potentials
Φ∗ of the [corresponding] subdomains V ∗50. Under the obvious assumptions that Φ∗ changes continuously
with the boundary of V ∗ and that the quotient Φ∗ : V ∗ converges to a certain limit value ϕ, when V ∗ con-
tracts around a certain point x, y, z indefinitely — and this regularly in the whole domain V —, it follows
easily51 that the potential of the whole continuum V (and similarly that of any subdomain) is represented by the
volume integral, ranging over V , of the spatial function ϕ:

(1) Φ =

∫∫∫
(V )

ϕdx dy dz =

∫∫∫
(V0)

ϕda db dc, where ϕ = ϕ
∂(x, y, z)

∂(a, b, c)
.

ϕ is the energy density per unit of volume of the deformed continuum, ϕ is [the energy density] per unit of volume
of the initial state; these are scalar quantities, which are for every continuum considered in a certain state of
deformation continuous or yet piecewise continuous functions of x, y, z and a, b, c, respectively. The nature of
the continuum, independent of each of the occurring deformation, is determined when ϕ is given as a function
of the complete history of the deformation functions; if the dissection axiom shall hold for every deformation,
then ϕ can explicitly contain only the values of the functions and their derivatives [evaluated] at the considered
position:

(2) ϕ = ϕ(a, b, c;x(a, b, c), . . . ;xa(a, b, c), . . . ;xaa(a, b, c), . . . )

If it is about internal force effects, this function must be invariant with respect to orthogonal coordinate transfor-
mations in the x-y-z-space.

Hellinger introduces explicitly “the dissection axiom” in a way which seems to us much clearer (but equivalent) to Noll’s(!?)
axiom of local action (see p. 201, [80]). Once again, note that Hellinger considers energy densities depending on higher
gradients and imposes objectivity on theses densities.

49 For simple cases already Lagrange has interpreted in the Méc. anal. such an assumption from the mechanics of discrete masses for continua (Prem.
part., Sect, IV, No. 25) and applied it particularly in hydrostatics, by adding to the virtual work a term being proportional to the variation of the volume
dilatation (1. part., sect VIII, No. 1); [this assumption] has undergone a further development in the theory of elasticity, namely G. Green (Cambr. Phil.
Soc. Trans. 1838 = Math. Papers (London 1871), p. 245) has derived from it the fundamental equations for the first time. Cf. thereto IV 23, No. 5b

50 Already since the first direct introduction of the elastic potential, this assumption, as [being] natural, has been used more or less explicitly. A
detailed explanation is given by P. Duhem, Le potential thermodynamique et la pression hydrostatique, Ann. Éc. Norm. (3) 10 (1893), p. 183.

51 Cf. P. Duhem, l. c., p. 187 ff. It is here merely a precise formulation of the process, common of old in mechanics, of the transformation of functions
of a domain (as e. g. mass) into certain integrals. By the way, one needs to assume the uniform convergence of Φ∗ : V ∗ only for a certain partition
[which] in the limit tends to V and can in addition certainly allow disconnections of the continuity and the uniform convergence at individual surfaces.
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At first we consider, that only the first derivatives appear. To find the connection with the effects52, we compute
the potential of the varied deformation (No. 2a, (3)); Then the variation of Φ is obtained as

δΦ =

∫∫∫
(V0)

∑
(x y z)

(∂ϕ
∂x

δx+
∂ϕ

∂xa
δxa +

∂ϕ

∂xb
δxb +

∂ϕ

∂xc
δxc

)
da db dc,

where in the derivatives of ϕ the unvaried values of x, y, z and the derivatives thereof have to be inserted. From
the identity

(3) δA = −δΦ for all δx, δy, δz

[and] by equating the coefficients of δx, . . . and the derivatives thereof, for a medium, which allows for all
continuous virtual displacements, the material laws follow immediately. If one uses for δA for instance the
Ansatz No. 3c, (7), then53

(4) %0X = −∂ϕ
∂x

, Xa =
∂ϕ

∂xa

(
x, y, z
X, Y, Z

; a, b, c
)

;

changing over to the quantities related to the deformed position by use of (8) from No. 3c and (1), then one
obtains54:55

(5)


%X = −∂ϕ∂x ,
Xx = ∂ϕ

∂xa
· xa + ∂ϕ

∂xb
xb + ∂ϕ

∂xc
xc+ϕ,

Xy = ∂ϕ
∂xa

ya + ∂ϕ
∂xb
· yb + ∂ϕ

∂xc
· yc,

Xz = ∂ϕ
∂xa

za + ∂ϕ
∂xb

zb + ∂ϕ
∂xc

zc.

( x y z
X Y Z

)

Thereby, all of the considered material laws in No. 5 are reduced to the single equation (2), which gives ϕ or
ϕ as scalar functions of the local state of deformation.

In the previous paragraph, Hellinger writes in formulas what we announced in the commentary immediately after the title of
Sect. 4. He shows the particular form of constitutive equations which have to be used in the principle of virtual work when
actually the principle of stationary action is indeed valid. Hellinger gives us a careful account of the contributions to this
part of continuum mechanics of which he is aware. He recognizes the contribution due to Lagrange concerning the general
methods of the calculus of variations. Furthermore, he refers to Kirchhoff and attributes to him a variational approach to
continuum mechanics, but Hellinger is wrong in attributing to Boussinesq the first representation of Eulerian components
of stress as given by formula (5). Here, he seems to ignore that the transformations from Lagrangian to Eulerian description
of the equilibrium conditions are (most likely) correctly to be attributed to Piola (see [14]). However, Hellinger is prudent.
After the aforementioned attribution he wisely adds: By the way, in the theory of elasticity of finite deformations these
formulas have been repeatedly derived and formulated anew. Both the future Courageous Philologist and the Skeptical
Scholars will be completely confused in reading this text and in comparing it with Truesdell’s ones. Indeed:

i) In [79] one can find a series of harsh negative evaluations about Lagrange’s contribution to mechanical sciences.

ii) Piola is qualified by all sources and by himself as a follower of “our schoolmaster” the great Lagrangia (as Piola calls
Lagrange, that is using his Italian family name).

iii) Truesdell attributes (p. 554 of [82]) to Piola the formula transforming Piola stress (the dual of the virtual displacement
(velocity) gradient in material description, the quantities called Xa etc. by Hellinger) into Cauchy stress.

iv) In [81], Piola is cited at least on 31 pages (many times several times on each page) in a very positive way (to be precise
these citations nearly always concern one of the two Piola-Kirchhoff tensors).

52 Here, merely the approach common in the calculus of variations for the computation of the first variation for multiple integrals comes into
consideration, as Lagrange (Misc. Taur. 2 (1760/61) = Oeuvres 1, p. 353) originally has formulated it and [as he has] applied it in the Méc. anal. in many
cases.

53 G. Kirchhoff, Sitzungsber. d. Akad. Wien, math.-nat., Kl. 9 (1852), p. 772.
54 J. Boussinesq, Mém. prés. p. div. sav., Paris 20 (1872), note 3. p. 591. Here only ϕ instead of ϕ is used, but, what is essential, for the first time the

components Xx, . . . instead of Xa, . . . are determined. By the way, in the theory of elasticity of finite deformations these formulas have been repeatedly
derived and formulated anew.

55 Correction of the translators in the second equation of (5): The last addend ϕ seems to be a typo.
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v) Hellinger does not cite Piola in this context but cites Kirchhoff.

vi) In the subsequent paragraph Hellinger states how the presented treatment can be generalized to include higher gradi-
ents, but seems not to be aware of the contributions by Piola.

If the energy density (2) depends also on the second derivatives xaa, xab, . . . of the deformation functions —
which in turn only comes into consideration for very quick changes in space of the state —, then new terms with
second derivatives in the virtual displacements δxaa = δ2δx

δa2 , . . .
56 will appear in δΦ, and this results precisely

in the in No. 4a discussed additional terms to the original expression of the virtual work; thereupon both the
components of this new effect, whose expressions emerge immediately from ϕ, and the old stress components,
whose expressions have to be modified slightly, depend also on the second derivatives xaa, . . . .

A special case, which can be classified here, shall be emphasized especially: namely, that to the potential (1)
an integral over the surface of the continuum can be added:

(6) Φ1 =

∫∫
(S)

ψdS =

∫∫
(S0)

ψdS0,

where the “surface density” ψ or ψ of the potential depends on the values at the surface S of the deformation
functions and the first derivatives thereof; such a potential can be characterized analogously to the foregoing
axiom, [which] determines the form (1), that Φ∗1 : S∗ approaches a finite value ψ, when the surface element
S∗ contracts around a point. In fact, one can transform (6) into a volume integral over V , if one adds second
derivatives xaa, . . . . By the way, one can also compute δΦ1 directly and obtains then for the virtual work
immediately a term of the form considered in No. 4a, (1).

The previous sentence describes a series of results which, in a completely analytical form, were later developed in [38].
Useless to say that an attentive reader may consider this last paper less original than what is claimed by its authors: actually
its original result consists in the quantitative estimate of boundary conditions to be associated to second gradient continua
in contact with an energetic material boundary. What had to be expected as a result is clearly described here by Hellinger.
Remark that the following formula (6a) can also be found in [36].

If ψ depends in particular only on the values of the deformation functions x, y, z themselves, [and] not on
the derivatives thereof, then δΦ1 has precisely the form of the work δA3 of the compressive forces applied at the
surface of the continuum (No. 3, (1)), and indeed their components become

(6a) X =
∂ψ

∂x
, Y =

∂ψ

∂y
, Z =

∂ψ

∂z
.

One can easily extend such potential-based approaches in such a way, that they yield force effects of the more
general form (4) considered in No. 6. Thereto one only needs, according to the procedure of P. Duhem57, to
substitute the axiom of the additive composition of the potential of the subdomains to the total potential by the
assumption, that for a dissection of the continuum into n subdomains V1, . . . , Vn, the potential Φ becomes a
double sum

Φ =

n∑
i,k=1

Φik

of n2 summands, each of which Φik depend only on the state of two subdomains Vi, Vk. By the application of
similar continuity assumptions as mentioned above, Φ becomes equal to a sixfold integral, [which is] twice over
V or V0, whose integrand depends on the values of the deformation functions and the derivatives thereof in two
points a, b, c and a, b, c 58:

(7) Φ =

∫∫∫
(V0)

∫∫∫
(V0)

ϕ(a, . . . ;x, . . . ;xa, . . . ; a, . . . ;x, . . . ;xa, . . . )da . . . dc

56 There is a typo in the original source. The variation of the second spatial derivative writes commonly as δxaa = ∂2δx
∂a2

.
57 P. Duhem, l. c., p. 188.
58 P. Duhem, l. c., p. 205.
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(In particular, when ϕ includes a summand independent of the point a, b, c, a summand of the form (1) can be
included herein.) The variation of Φ becomes

δΦ=

∫∫∫
(V0)

∫∫∫
(V0)

{∑
(x y z)

(∂ϕ
∂x

δx+
∂ϕ

∂x
δx
)

+
∑

(x y z;a b c)

( ∂ϕ
∂xa

δxa +
∂ϕ

∂xa
δxa

)}
da...dc,

and from the identity (3) [it] therefore follows for a medium, which allows for all continuous virtual displace-
ments, the force and stress components at the point a, b, c:

(8)


%0X = −

∫∫∫
(V0)

∂(ϕ+ϕ1)
∂x da db dc,

Xa =
∫∫∫
(V0)

∂(ϕ+ϕ1)
∂xa

da db dc;

( x, y, z
X, Y, Z

; a, b, c
)

thereby ϕ1 corresponds to the function arising from ϕ by the permutation of the overlined and non-overlined
arguments. As above the material laws, which express Xx, . . . by means of the one function ϕ, emerge directly
out of this; P. Duhem has developed this [Ansatz] with respect to special assumptions corresponding with the
circumstances of a pure theory of elasticity.59 Basically, there are approaches of this type, which are frequently
used for the foundations of the mechanics of continua based on the perception of molecules.60 The double sums,
which one formulates there for the potentials of the systems of molecules, become within the limit processes
directly to integrals of type (7), and it is the question of the theory to formulate such assumptions, that for a
correct guidance of the limit processes they transform into potentials of the simple forms (1) or (6); One confers
for instance the presentation of H. Minkowski in V 9, No. 14.

In the previous paragraphs a quick presentation of the basic ideas of so called peridynamics are presented. In previous
papers (see [14]), the credit as first founder of peridynamics is given to Piola. Hellinger credits Duhem and also claims
that Duhem has found results to assure when peridynamics reduces to classical elasticity. Therefore not only in the Italian
mechanical literature, but also in the German and French literature, peridynamics was known long before its modern
formulation by Silling [75]. The historical analysis by Russo [68] applies precisely to this further case, in which there is no
loss of sources: they are all easily available. It is therefore very difficult to claim that it is impossible to apply it to ancient
Hellenistic sources: we claim that the continuous loss and rediscovery of scientific theories is such a common phenomenon
that it continues to occur, EVEN WHEN SOURCES ARE NOT RARE OR LOST.

To be emphasized particularly is again the formulation of the potential-based approaches for the case of “in-
finitesimal” deformation of the continuum (No. 6, (6)). By neglecting the quadratic terms in σ61, the expressions
of force and stress components turn according to (4) into

(9a) %0X = − 1

σ

∂ϕ̃

∂u
, Xa = − 1

σ

∂ϕ̃

∂ua
,

( u, v, w
X, Y, Z

; a, b, c
)

thereby ϕ̃ corresponds to those terms of the power series of the energy density ϕ being linear and quadratic in σ,
which arise from the terms linear in σ of the series (6) of No. 6:

(9b)
ϕ̃ = ϕ0 + σ(ϕ0

xu+ · · ·+ ϕ0
xaua + · · · )

+
σ2

2

(
ϕ0
xxu

2 + ϕ0
xyuv + · · ·+ ϕ0

xxauua + · · ·+ ϕ0
xaxau

2
a + ϕ0

xaxb
uaub + · · ·

)
,

wherein the derivatives of ϕ signed with the label 0 have to be evaluated for σ = 0, i. e. for the arguments
x = a, . . . , xa = 1, xb = 0, . . . . The expressions (9a) are in fact of the class of Hooke’s law considered in No. 6,
(3′); thereby [it] is naturally required, that the terms of the expansion of ϕ constituting ϕ̃ do not vanish identically.
The stress components with respect to the deformed position of the continuumXx, . . . differ according to No. 3c,
(8) from Xa, . . . by the following expressions linear in σ:

(10) Xx −Xa = σ(−ϕ0
xa(vb + wc) + ϕ0

xb
ub + ϕ0

xcuc), . . . ,

59 P. Duhem Ann. Éc. Norm., (3) 21 (1904), p. 117 ff. Also separately: Récherche sur l’élasticité, Paris 1906.
60 E. g. in Navier’s theory of the elastic potential (cf. IV 23, No. 5a, Müller-Timpe) and in the theory of capillarity of P. S. Laplace and C. Fr. Gauss

(cf. V 9, No. 13, Minkowski).
61 H. Poincaré, Leco̧ns sur la théorie de l’Élasticité, Paris 1892, p. 54 ff.; E. and F. Cosserat, Ann. de la Fac. des Sciences de Toulouse 10 (l896), p.

J. 70 ff.
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and these become only zero or of the order of magnitude σ2 of the otherwise neglected quantities, when the
“initial stresses” given by ϕ0

xa vanish before the infinitesimal deformation.62 — Thereafter no more detailed
presentation is required, how one reformulates in a similar way the more general potential-based approach of
Duhem (7) for infinitesimal deformations.

The previous paragraphs describe the linearization process in the case of conservative continua. The treatment is standard:
the reader will remark that here the choice to avoid Levi-Civita notation makes the presentation rather cumbersome and
that the consideration of initial stresses is rather quick and maybe too synthetic.

7b. The potential-based approach for media with oriented particles.

The works by the Cosserat brothers have been intensively and carefully studied since their first appearance and Hellinger
is carefully reporting their results in this section. One remark is appropriate here. In the previous sections, Hellinger did
not introduce yet any “measure of deformation” for first and second gradient (or higher gradient) continua: we will find a
detailed description for these measures later in the presently translated article. Moreover in the subsequent p. 686, Hellinger
states:

«It is said briefly, that the entire physics is invariant with respect to the group of all orthogonal coordinate trans-
formations of the ordinary geometry, the so-called “basic group” or “Euclidean group”. Herefrom it follows in
particular, that the virtual work of all internal effects within a continuous system necessarily vanishes for a vir-
tual displacement corresponding to an infinitesimal change of the coordinate system, or that the total potential of
these effects remain unchanged for any such displacement of the continuum, i.e. [that the potential] is a euclidean
potential in the sense of E. and F. Cosserat (cf. No. 7b, p. 650).»

In [18] it is shown how Gabrio Piola (see also e.g. [14]) had examined carefully the consequences of the invariance under
superimposed rigid motions on constitutive equations for stresses and managed to characterize the whole set of deformation
measures for N-th gradient continua (i.e. continua whose internal work depends on all gradients of the placement up to the
order N). Here, Hellinger introduces very carefully the deformation measure for Cosserat continua and it is clear that the
sources he could master are much more detailed in this context than those concerning Piola. Most probably, Piola’s textbook
reached Hellinger only via indirect citations63 or possibly Hellinger could read French much better than Italian. The future
Skeptical Scholars are warned: Piola did introduce the correct deformation measures for continua whose kinematics is
characterized by the placement field only and Piola is antecedent the Cosserat brothers. Hellinger is aware of the need to
impose to the internal work functionals some invariance requirements and states that these functionals must be invariant.
He does report in his article the analytical results obtained by Piola for this characterization (see for instance the Nos. 9
and 12 to be translated in the next paper of this series) but he neither attribute these results to Piola nor cites Piola’s works,
which contain fundamental results in this context.

According to the procedure of E. and F. Cosserat64 one can extend this potential-based approach also to continua,
whose particles are endowed with a certain orientation; one only has to assume, that the energy density ϕ, usually
defined as in No. 7a, depends besides the so far considered quantities also on the parameters λ, µ, ν, [which]
determine the actual orientation of the particle a, b, c (No. 2b, (9)), and the (first) derivatives with respect to
a, b, c of these [parameters]:

(11) ϕ = ϕ(λ(a, b, c), . . . ;λa(a, b, c), . . . , νc(a, b, c)).

A virtual rotation of the individual particles No. 2 (10) then yields the following contribution to the variation of
the potential:

δΦ =

∫∫∫
(V0)

∑
(λµ ν)

(∂ϕ
∂λ

δλ+
∂ϕ

∂λa
δλa +

∂ϕ

∂λb
δλb +

∂ϕ

∂λc
δλc

)
da db dc.

If one introduces now due to No. 2, (11), (12) the angular velocities δπ, δκ, δ% of the virtual rotation and by
considering that

δλa =
∂δλ

∂a
=
∑

(lmnπκ%)

(∂l1
∂a

δπ + l1
∂δπ

∂a

) (
λ, µ, ν
1, 2, 3

; a, b, c
)
,

62 J. Boussinesq, op. cit.54, p. 598, E. and F. Cosserat, l. c., p. J. 74 f.
63 Hellinger’s reference to Piola in No. 3d, see [23], implies that his source is Müller and Timpe [51], where Piola’s ansatz is described briefly.
64 E. and F. Cosserat, “Corps déformables” 5), chap. IV, p. 122 ff.
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then, by identification of −δΦ with No. 4, (2) and (2′), respectively, the following formulas for the torques acting
at the mass and surface elements emerge65:

(12)


%0L = −

∑
(λµν123)

{
∂ϕ
∂λ · l1+

∂ϕ
∂λa

∂l1
∂a + ∂ϕ

∂λb
∂l1
∂b + ∂ϕ

∂λc
∂l1
∂c

}
,

La = ∂ϕ
∂λa

l1 + ∂ϕ
∂µa

l2 + ∂ϕ
∂νa

l3.

( L,M,N
l,m, n

; a, b, c
)

The footnote 65 is really interesting. Here, Hellinger writes the stationarity condition for the action of the Cosserat continua
WITHOUT requiring any invariance condition for the deformation energy and without introducing any objective deforma-
tion measure. Anybody who had to develop a numerical code for studying the deformation of any kind of body knows how
useful these equations may be. The invariance must be most suitably introduced in subsequent developments of the theory.
Exactly as suggested by Hellinger. For more recent applications and developments in the theory of generalized continua
we refer to [25, 60, 65, 77, 88].

Often it is useful to introduce in these formulas the angular velocities analogously to the δπ, δκ, δ%, which
appear in the transition from one triad of a particle to the one of the neighboring particle; we consider especially
the neighboring particles in direction of the parameter lines a, b, c, i. e. the components of the angular velocities

(13) pa =
∑
(123)

β1
∂γ1
∂a

, qa =
∑
(123)

γ1
∂α1

∂a
, ra =

∑
(123)

α1
∂β1
∂a

(a, b, c).

Then one has analogously to the relation (12) of No. 2

∂λ

∂a
= l1pa +m1qa + n1ra

( λ, µ, ν
1, 2, 3

; a, b, c
)
,

and [one] can substitute the λa, . . . , νc with the angular velocities pa, . . . , rc in the expression (11) of the energy
density:

(14) ϕ = ϕ(λ, µ, ν; pa, pb, . . . , rc).

If one computes δΦ with this expression and by considering the relation following from (13) (the analogue to the
so called “transition equations”66 of kinetics)

δpa =
∂δπ

∂a
+ raδκ− qaδ%

(
p, q, r
π, κ, %

; a, b, c
)
,

then similar considerations which lead to (12)65 (Note of the translators: As in the original text, the text refers to
the previous footnote 65) result in:

(15)


%0L = −

{
∂ϕ
∂λ l1+ ∂ϕ

∂µ l2+ ∂ϕ
∂ν l3+

∑
(abc)

(
qa

∂ϕ
∂ra
− ra ∂ϕ∂qa

)}(
L,M,N
l,m, n

)
La = ∂ϕ

∂pa
.

(
L,M,N
p, q, r ; a, b, c

)
Using No. 4b, (5), the transformation to the components of the torques with respect to the deformed continuum

Lx, . . . , Nz can be carried out easily.
E. and F. Cosserat considered in particular the internal actions in a medium represented by this ansatz[.]

For these [actions] ϕ is, as a function of x, . . . and λ, . . . , invariant with respect to orthogonal coordinate
transformations in the x-y-z-space, or — what implies the same — these [actions for which] every motion of
the continuum together with the adjoint triads being regarded as rigid leaves the potential unchanged; they call
such a potential a euclidean one (action Euclidienne). To describe this class of potentials, they use in every
point x, y, z as (moving) frame of reference the actual position of the triad attached to the particle just located

65 These formulas cannot be found explicitly in the book of the Cosserats, since therein the assumption of a “Euclidean” potential, which is achieved
below, forms the basis; however, they are contained in the equations of p. 132 ff. and 141 or p. 130 ff. and 134 ff.; The identification occurs easiest starting
from the formulas for the work given on p. 138 ff.

66 They change into these [equations], when a is replaced by a time parameter; cf. IV 6 (P. Stäckel), No. 30, p. 584 f. and remark417) as well as IV 11
(K. Heun), No. 14c.
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there; The components pa, . . . , rc are substituted by the components of the same angular velocities formulated
with respect to these new axes:

(16a) pa=α1pa+ β1qa+ γ1ra = α3
∂α2

∂α
+ β3

∂β2
∂α

+ γ3
∂γ2
∂α

(
p, q, r
1, 2, 3

; a, b, c
)
,

and in a similar way the 9 deformation quantities xa, . . . , zc shall be transformed to:

(16b) xa = α1xa + β1ya + γ1za

(
x, y, z
1, 2, 3

; a, b, c
)
.

Then the most general euclidean potential, which depends at most on the first derivatives of the deformation
functions, is an arbitrary function of these 18 quantities pa, . . . zc, [functions] which moreover can explicitly
contain a, b, c67:

(17) ϕ = ϕ(a, . . . ; xa, . . . , zc; pa, . . . , rc).

For the derivation of the equilibrium conditions for this ansatz one also introduces the components of the
virtual displacement and rotation with respect to the new moving axes:

δx = α1δx+ β1δy + γ1δz,

δi = α1δπ + β1δκ+ γ1δ%;

( x, y, z
i, j, k
1, 2, 3

)
then one has the “transition equations”

δxa = ∂δx
∂a + qaδz− raδyaδk− zaδj,

δpa = ∂δi
∂a + qaδk− raδj

( x, y, z
p, q, r; a, b, c
i, j, k

)
and is therefore immediately able to compare the variation of the potential formulated with (17)

δΦ =

∫∫∫
(V0)

∑(
x,y,z
p,q,r ; a, b, c

)
( ∂ϕ
∂xa

δxa +
∂ϕ

∂pa
δpa

)
da db dc

with the following form of the virtual work:

δA =

∫∫∫
(V0)

∑(
XYZ

x y z
;

QMN

i j k

)
{
%0Xδx + %0Lδi−

∑
(abc)

(
Xa

∂δx

∂a
+ La

∂δi

∂a

)}
da db dc,

in which the components of the earlier considered forces, stresses and torques appear with resepct to the moving
coordinate triad. Accordingly, this results in formulas68 of the type

(18)


%0X =

∑
(abc)

(
ra

∂ϕ
∂ya
− qa

∂ϕ
∂ya

)
, Xa = ∂ϕ

∂xa

%0L =
∑

(abc)

(
ra

∂ϕ
∂qa
− qa

∂ϕ
∂ra

+ za
∂ϕ
∂ya
− ya

∂ϕ
∂za

)
, La = ∂ϕ

∂pa
.

7c. The potential-based approach for two- and one-dimensional continua.

In this section, Hellinger sketches in a few sentences the most effective procedure to obtain from a three-dimensional
continuum model a reduced continuum model of lower dimensions – although still moving in three-dimensional space.
He considers as natural the introduction of lower dimensional Cosserat continua by starting (eventually) from a three-
dimensional Cosserat continuum. The attentive reader will remark that Hellinger considers as obvious that the best way
to proceed is the following: one must write the energy for lower dimensional continua in terms of the energy of the three-
dimensional continuum to be reduced, once an integration with respect to the “smaller” dimensions is performed. Not much

67 E. and F. Cosserat, “Corps déformables”, p. 127.
68 E. and F. Cosserat, l. c., p. 130 f.; cf. also IV 11 K. Heun No. 21.
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details are given so that one cannot guess how far Hellinger was from the concept of Gamma-convergence. However, the
idea of the identification of energies arising in different models is there. Moreover, the procedure of Piola to get macro-
models from micro-models (what we try to call Piola’s Ansatz, see e.g. [15]) was formulated before Hellinger and used
in many contexts. As future Courageous Philologists, we can conjecture that Hellinger was at least aware of the heuristic
importance of the homogenization procedure via identification of energies. Indeed, Hellinger:

i) was a great expert and one of the founders of modern functional analysis,

ii) quotes the available results in this context by Lagrange,

iii) was able to distinguish two different mathematical models for one single physical object due to his epistemological
understanding of mechanics.

Anyway, the reader is referred to the next sections for further considerations about the last point.

For the two- and one-dimensional extended continua in the tree-dimensional space, one can gain the potential-
based approach without any difficulties using rather similar considerations.69 The energy density ϕ — as the
assumed existing limit of the quotient between the potential of a part of the continuum becoming continuously
smaller and the area or length thereof — becomes a given function of the 6 functions x, y, z, λ, µ, ν of a, b (or of
a) and the derivatives thereof, the potential itself [becomes] consequently a two- or one-dimensional integral:

Φ =

∫∫
(S0)

ϕda db or Φ =

l∫
0

ϕda.

The variation of these potentials and therefore the force, stress and torque components formulated with respect to
the initial parameters are obtained immediately from the corresponding formulas of the three-dimensional case
by omitting the terms concerning c or b and c; The transformation to the quantities formulated with respect to
the deformed state follows then according to No. 3e, (16) and No. 4b, (12).

If one focuses on oriented particles, then the angular velocities pa, . . . as defined in No. 7b play again a
crucial role, and indeed one has now naturally only 2 or 1 triple of these quantities. E. and F. Cosserat have
widely developed the theory of such media using the triad associated with every particle as moving frame of
reference70 and have considered also here the internal actions, which are derived from a euclidean potential as
defined above; the expression of this potential and the corresponding force, stress and torque formulas are again
obtained by the specialization of the equations (16) ff. of No. 7b.

7d. The relevance of the effective minimum. An essential advantage of the existence of a potential Φ of the
total force effects is the possibility to express the equilibrium conditions without explicitly using infinitesimal dis-
placements. The equilibrium condition δΦ = 0 is namely the condition that Φ has for the considered deformation
an extremum (maximum or minimum, but possibly also a so called “saddle point”)71: For an equilibrium posi-
tion of the portion V0 of the continuum, the potential of V0 therefore becomes an extremum (in the broadest
sense), compared with the values for all neighboring states of deformations admissible with respect to possibly
occurring constraints.

Here, Hellinger continues to use the authority of Lagrange to show the features of the presented theories. In particular, he
refers the visionary understanding by Lagrange of a circumstance which has been exploited systematically in modern com-
putational mechanics: one can characterize equilibrium configurations of INFINITE DIMENSIONAL continuous systems
via the search of a MINIMA of functionals. Hellinger contradicts here the future commentator (i.e. Truesdell) who sharply
criticizes Lagrange in this aspect. Indeed in the preface of [80] one finds the following statements.

«The mechanics of finite systems of points and rigid bodies was given a fairly definitive form by Lagrange’s
exposition in his Méchanique Analitique, 1788. While that book covers only certain aspects of the rational
mechanics created by Lagrange’s great predecessors,»

69 Already Lagrange applied [the ansatz] to the problems in this area which he considered23) (Note of the translators: This corresponds to the
footnote 39 in [23], i. e. «Mécan. anal., 1. part., sect. IV. § II, as well as for a series of particular problems in sect. V—VIII.») ; [the ansatz] was developed
further in the theory of elastic wires and plates (cf. IV 6 (P. Stäckel), No. 23, 24 and IV 25, Kap. III, Tedone-Timpe), but particularly also in the theory of
capillarity (cf. V 9 (Minkowski), No. 2).

70 One shall have a look at the extensive presentation in chap. II, III of “corps déformables”, in which the equilibrium conditions of such media with
euclidean potential are developed using the various possible coordinate systems and according to most manifold specializations.

71 In the Méc. anal. (see 1. Part., sect. IV, § III) Lagrange has particularly emphasized the relevance of this perception also for continua.
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Here, Truesdell writes “only certain” while Hellinger assumes that all mechanics can be framed with Lagrangian methods.

«it presents them systematically and as a branch of mathematics: “Ceux qui aiment l’Analyse, verront avec plaisir
la Méchanique en devenir une nouvelle branche,. . . .” The physics and the applications are omitted. He who
will apply and interpret the theory, or dwell upon the intricacies and mysteries of its place among the relations
between mind and external nature, is expected to learn it first.»

This comment is epistemologically very naive. Archimedean tradition of mechanics is teaching us that the true understand-
ing of physical reality is obtained via the formulation of rigorous mathematical models. It is ironic that Truesdell, i. e. the
champion of mathematical formalism, criticized Lagrange because of his rigorous mathematical presentation of mechanics.

«While the knowledge he thus acquires does not of itself put applications into his hands, it gives him the tools to
fashion them efficiently, or at least to classify, describe, and teach the applications already known. By consistently
leaving applications to the appliers, Lagrange set them on common ground with the theorists who sought to pursue
the mathematics further: Both had been trained in the same workshop and spoke the same jargon. Even today this
comradeship of infancy lingers on, provided discrete systems and rigid bodies exhaust the universe of mechanical
discourse.»

The previous statements are baroque, difficult to follow and fundamentally polemical. The rhetoric trick is very well-
known since Demosthenes: the conclusion is completely unrelated with the previous half-polemical comments. We share
with Hellinger the opinion that Lagrangian methods does not apply ONLY to finite dimensional systems.

«In 1788 the mechanics of deformable bodies, which is inherently not only subtler, more beautiful, and grander
but also far closer to nature than is the rather arid special case called “analytical mechanics”, had been explored
only in terms of isolated examples, brilliant but untypical. Unfortunately most of these fitted into Lagrange’s
scheme; those that did not, he passed over in silence.»

Hellinger’s article proves that the last paragraph has a completely false content. Truesdell applies the infamous logical
deduction scheme: ex falso (sequitur) quodlibet, EFQ, or translated “from falsehood, anything (follows)”, i. e. the principle
of Pseudo-Scotus. We share with Hellinger the persuasion that all continuum mechanics falls in the scope of Lagrangian
methods. Hellinger includes in Lagrangian (or Variational) Mechanics also dissipative systems by considering the postu-
lation scheme which is usually attributed to Hamilton and Rayleigh.72 In this postulation scheme to the Lagrangian action
functional one adds a suitable Hamilton-Rayleigh dissipation functional for accounting for dissipation and formulates the
principle of virtual work by adding to the first variation of action the variation (with respect to the time derivative of the vir-
tual displacement) of the dissipation functional, with a negative sign and replacing in this last variation the time derivative
of the virtual displacement with the virtual displacement (for more details consult e.g. [22] and references cited therein).
With the generalization due to Hamilton and Rayleigh it is possible to formulate all equations of mathematical physics
which are known in a variational frame (see again [22] or, just to cite a few works [7,43,50,74]). However, there are results
(see e.g. [71]) which seem to indicate that, by suitably embedding it into a larger dimensional system or by introducing
Lagrangians suitably depending on time, also a dissipative system can be studied as a (strictly) Lagrangian system, i.e.
without introducing Hamilton-Rayleigh dissipation functionals. While such results are considered controversial, we will
shortly cite here that sometimes it has been conceived to describe (macroscopically) dissipative systems with conservative
models in which many unobservable (microscopic) degrees of freedom trap some of the energy initially present at macro
level. This possibility is rigorously included in the Lagrangian postulation by the Liouville Theorem and its consequence
the Poincaré Recurrence Theorem (see e.g. [4]): given a Lagrangian system with finite energy, then there exists a recurrence
time (eventually very large) after which the system will return back in the neighborhood of any initial configuration. On
p. 71 in [4], Arnold suggests that a system of particles trapped in half a box by a diaphragm also after the removal of the
diaphragm can be modeled by a Lagrangian even if its behavior is apparently irreversible. The apparent paradox being the
fact that the recurrence time is very large (as it has to happen for every apparently macroscopically irreversible systems).
In this way Arnold seems to suggest that Lagrangian models DO include all possible models for all physical systems.

Hence, the equilibrium conditions can be classified just as the common problem of the calculus of variations, to
determine inside a given domain V0 of the variables a, b, c the functions x, . . . , λ, . . . thereof, such that a certain

72 The Hamilton-Rayleigh principle is not, stricto sensu, a principle of least action. Indeed, it is not formulated in terms of the first variation of a
functional. However, as remarked by Hellinger himself, the principle of virtual work is formulated in such a way that it has the structure of a stationarity
condition. Actually it states that a differential form is vanishing. Of course not all differential forms are exact forms, and in this sense the principle of
virtual work is more general than the principle of stationary action. The Hamilton-Rayleigh principle is building the differential form which has to vanish
as the sum of two exact forms. The first exact form appears in the variation of one action functional, the second one is obtained by the variation of a
dissipation functional, which then can also be applied to virtual displacements.
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spatial and surface integral including these functions and their derivatives becomes an extremum — for possibly
yet undetermined boundary values; differential equations and boundary conditions, which originate herefrom
according to the rules of the calculus of variations, correspond exactly to the previously formulated equilibrium
conditions.

We cannot delve ourselves into the even more difficult subject of the history of finite elements method, its precursor methods
and its relevance in the development of mechanical science. However, we cannot avoid to remark that:

i) In the previous paragraphs it is clearly stated that some boundary conditions are to be assumed “a priori” (these
conditions will be called later “essential boundary conditions”) before imposing the condition of the minimum of
energy while the other boundary conditions (which are necessarily used in the strong formulation of stationarity) are
obtained as necessary conditions for extremality of the total energy and are often called “natural boundary condi-
tions”. The reader will remark that while formulating numerical integration codes based on stationarity ONLY the
essential boundary conditions are imposed, while the natural boundary conditions are automatically computed by the
minimizing process.

ii) Hellinger identifies as equilibrium conditions also the boundary conditions calculated when looking for extrema of
energy functionals.

iii) In the subsequent paragraphs it is considered the case of variations of kinematical fields which vanish on the bound-
aries: it is clearly specified that the obtained equilibrium conditions need to be added to some boundary conditions in
order to find well-posed problems.

iv) Hellinger shows clearly to be aware of the need of developing a differential calculus in infinite dimensions in order to
be able to find maxima and minima of functionals.

Particularly emphasized is often the case, that Φ is only the potential of the effects applied within the contin-
uum; then to −δΦ in the equilibrium condition a surface integral, the virtual work of the external compressive
forces applied to the boundary, is added, and δΦ itself vanishes necessarily only for those virtual displacements,
which have the value zero on S. For an equilibrium position, thus the potential Φ of the forces and stresses
applied within V0 becomes an extremum, compared with all neighboring states of deformations, admissible
with respect to possibly occurring constraints, [and] for [those states of deformations in] which every bound-
ary particle of V0 is located at the same point as in the equilibrium position; certainly, the solution of this
variational problem is only determined when the position of the boundary particles, i. e. the boundary conditions
of the deformation functions, are given directly.

The main interest, which is associated with this formulation, belongs to the question, if here, as in the me-
chanics of discrete masses, depending on the type of extremum of Φ also the type of equilibrium is determined,
in particular, if Dirichlet’s stability criterion73 holds, that for the appearance of a stable equilibrium the occur-
rence of an effective minimum is crucial. The general answer of this question can only be founded on the theory
of the motion of the continuum, and indeed it depends, if in the case of an effective minimum Φ a motion out of
the equilibrium state caused by small impulses takes place always in the arbitrary neighborhood of exactly this
state of deformation. However, in doing that one can interpret the notion of “arbitrary neighborhood” differently,
depending on whether one bounds the distance of every individual particle from its equilibrium position, or [one]
imposes this requirement only in average for the whole continuum or for individual subdomains; one obtains
accordingly various types of stability.

The fact that Hellinger is a first class mathematician appears here clearly. Remark that the translated article was published
in 1913, where we are at the very beginning of functional analysis. Gâteaux was very close to die during World War I
after having introduced his derivative and Tonelli was starting to develop his direct methods in the calculus of variations.
Hellinger describes the methods to be used in order to characterize the stability of configurations for infinite dimensional
systems. He is aware of the fact that not all norms are equivalent in infinite dimensional systems: indeed, he warns
the reader about the fact that different concepts of “neighborhood” are possible in the considered context. Being a very
measured and self-critical scientist, Hellinger avoids to refer to his famous distance (which he introduced in 1909), which
could have been cited here. In the following paragraphs one finds a concise and effective account of the state of the art
updated to 1913.

73 P. L. Dirichlet, Journ. f. Math. 32 (1846), p. 85 = Werke II (Berlin 1897), p. 5.
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Apart from the cases of the ordinary theory of elasticity, where the circumstances are very easy74, only for
a few problems complete analyses of stability have been carried out; and moreover, mostly Dirichlet’s criterion
or an equivalent theorem is taken directly as a basis.75 With reference to this circumstance and to the difficulty,
which the direct transition of Dirichlet’s proof to continua is opposed to, A. Kneser 76 has shown the validity of
Dirichlet’s criterion for the catenary; for the problem of the elastic line M. Born77 has elaborated the proof with
explicit use of Osgood’s theorem78 of the calculus of variations in a way [which is] also applicable to other one-
dimensional problems. Nevertheless in general, for multidimensional integrals, Osgood’s theorem and therefore
also Dirichlet’s criterion may not hold without further ado.79

7e. Direct determination of the stress components.

Without telling it explicitly, in this section Hellinger leaves an original contribution to mechanical science, whose impor-
tance cannot be overestimated, especially in computational mechanics: note that the formulated variational principle holds
in the general nonlinear regime. Due to the presentations of the same variational principle, including also boundary terms,
in Reissner [66, 67], this principle is generally referred to as the Hellinger-Reissner principle. On pp. 2.14–2.15 of [40],
Reissner translates the present No. 7e into English and gives an astonishing commentary in which he questions the historical
relevance of Hellinger’s contribution due to technical details:

«While the absence of any consideration of boundary integrals in the above is generally known, other difficul-
ties appear not to have been noted previously. These include the entirely casual reference to the matter of the
invertibility of the relations sij = ∂φ/∂zj,i

80 (which is, of course, a much more significant restriction than the
corresponding condition for σij = ∂Σ/∂εij), the absence of a concern with conditions on φ or H so as to ensure
moment equilibrium, and, most importantly, the unqualified conclusion concerning the statement of a general
variational theorem for stresses alone, as an obvious consequence of (1.38)81, with this clearly being the purpose
of this section, given the wording of the heading of the section. Altogether, these difficulties make it question-
able whether it is in fact historically meaningful to consider Hellinger’s considerations as a stepping-stone to the
variational theorem for displacements and stresses in Ref. [15]82.»

Concretely, Reissner demands priority about this variational principle for himself – rather self-confident. Risking again to
be considered as a naive version of the Courageous Philologist, we dare to construct a provocative hypothesis concerning
mechanical science after World War II. Scientists in mechanics from the United States, thus scientists from the victorious
power, tried to demolish the scientific heritage of Europe by slighting the contents of the earlier contributions or by not
even citing the correct references. The rise of the English language as the new lingua franca, as discussed in the first
part of this exegetic series [23], played amongst others into the hands of Truesdell and Reissner83 to rewrite the recent
history of mechanics. Thus, we also claim that the “history of mechanical science is written by the victors”. Certainly, this
provocative statement should be investigated further and more scientifically.

For some purposes a transformation of the principle of minimum energy is important, which is analogue to the
so called canonical transformation of the dynamics of discrete media.84 At first it involves — when for the sake
of brevity, we refer only to the first case of No. 7a — that one introduces in place of the 9 derivatives xa, . . . , zc
as new unknowns, the 9 corresponding components of stress formulated with respect to the initial parameters

(19) Xa =
∂ϕ

∂xa
, Xb =

∂ϕ

∂xb
, . . . , Zc =

∂ϕ

∂zc

74 Cf. the overview in IV 25, No. 21, Tedone-Timpe.
75 See IV 25, No. 21, p. 211.
76 A. Kneser, Journ. f. Math. 125 (1903), p. 189.
77 M. Born, Untersuch. über die Stabilität der elastischen Linie. Preisschrift, Göttingen 1906, Appendix.
78 W. F. Osgood, Amer. Trans. 2 (1901), p. 273; cf. II A 8 a (H. Hahn and E. Zermelo), Remark 11).
79 According to a private communication of A. Haar. However, Haar has proven, that a similar theorem holds again as soon as sufficiently high

derivatives appear in the integrand of the variational problem (cf. the report on a presentation in the math. Ges. Göttingen, Jahresber. d. d. Math.-Ver. 19
(1910), p. 254.)

80 With φ and sij the potential ϕ and the stress components Xa, Xb, . . . , Zc of Hellinger are meant.
81 This corresponds to Eq. (20) in the next section.
82 This corresponds to reference [66] in the paper at hand.
83 Even though Reissner is of German origin, he got his scientific education in the United States and received his United States citizenship in 1945 at

the age of 32.
84 Cf. IV 12, P. Stäckel as well as for instance the presentation of the Jacobi-Hamilion theory in II A 5, No. 31, E. v. Weber. An extension to several

independent variables is given by M. Born77, Appendix.
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— provided that the corresponding Jacobians do not vanish. If one determines then

(20) H = ϕ−
∑

(xyz ; abc)

xaXa = H(x, . . . ;Xa, . . . , Zc)

as a function of x, y, z and the new quantities Xa, . . . , Zc, then one shows easily with the help of known methods
form the calculus of variations85, that the vanishing δΦ is equivalent to the vanishing of the first variation of the
integral

(21)
∫∫∫
(V0)

(
H(x, . . . ;Xa, . . . , Zc) +

∑
(xyz ; abc)

∂x

∂a
Xa

)
da db dc,

which contains as unknown functions x, y, z together with their (linearly appearing) derivatives and moreover
Xa, . . . , Zc without derivatives. Thereof, the new “canonical” form of the equilibrium conditions follow, [which]
hold in the interior:

(22a)
∂Xa

∂a
+
∂Xb

∂b
+
∂Xc

∂c
− ∂H

∂x
= 0

( X,Y, Z
x, y, z

)
,

(22b)
∂H

∂Xa
+
∂x

∂a
= 0

( X,Y, Z
x, y, z

; a, b, c
)
.

In the theory of elasticity, the equations (22b) play a crucial role, since they give as solution of (19) an explicit
expression of the deformation with respect to the stress components.

The characteristics of this new variational principle, that not only the deformation quantities but rather
the stress components do appear, finds expression even more for the special case, that the energy density ϕ is
independent of the values of the deformation functions x, y, z, [that it] depends therefore only on the shape
change (in the broadest sense). ThenH contains thus only the stress components, and one can substitute (21) with
the following variational problem with constraints, which is analogous to the [principle] known in the theory of
frameworks as the principle of L. F. Menabrea and A. Castigliano86: The first variation of the integral

(23)
∫∫∫

H(Xa, Xb, . . . , Zc)da db dc

shall vanish, where for comparison all systems of functions Xa, . . . , Zc are allowed, which satisfy the 3
equations

(23a)
∂Xa

∂a
+
∂Xb

∂b
+
∂Xc

∂c
= 0 (X,Y, Z);

If one denotes the Lagrange multipliers associated with these three constraints by x, y, z, then herefrom the
equations (22b) are obtained after all. By elimination of these Lagrange multipliers from (22b), for the 9 unknown
functions just the 6 equations follow:

(24)
∂

∂b

( ∂H
∂Xa

)
=

∂

∂a

( ∂H
∂Xb

)
(a, b, c;X,Y, Z);

these are the so called compatibility conditions87 of the theory of elasticity, which express, that a system of
stresses being compatible with the conditions (23a) can in fact be an equilibrium system in a continuum with
energy density ϕ or H . — This principle of Castigliano becomes particularly important in such cases, where in
the medium only stresses of a certain type can appear; the conditions representing these restrictions can easily
be added [to the principle] as constraints.88

85 Cf. M. Born, l. c.77 p. 91 ff.
86 L. P. Menabrea, Torino Mem. (2) 25 (1871), p. 141 and A. Castigliano, Théorie d’équilibre des systèmes élastiques (Turin 1879); cf. IV 29a,

No. 7 ff., M. Grüning. Cf. also E. and F. Cosserat, Corps déform., p. 26 ff. for the case of the one-dimensional continuum.
87 See IV 24, No. 7a, Tedone; cf. also A. Haar and Th. v. Kármán, Gött. Nachr., math.-phys. Kl. 1909, p. 204 ff.
88 Haar and Kármán, l. c. 87, p. 212.
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7f. The appropriate approaches to kinetics.

This section left us without words. Hellinger gives a complete description of what could be called Analytical Continuum
Mechanics, which, whatever is said in the preface of [80] exists, is very effective and full of physical meaning (whatever
the meaning of this expression could be). Of course a lot remains to be done: the reader is referred to Germain [29, 30] for
a more updated report about the state of the art. However, let us remark that Hellinger includes a surprisingly advanced list
of concepts, ideas and results.

In the first place, also for moving media the so far considered effects, in which only t enters as parameter, come
into consideration. If one summarizes at first the ansatz of No. 7a with the expression of Hamilton’s principle
No. 5, (5), (6), then the theorem being analogous to the formulation of 7d is obtained: For the actual motion of
the continuum V0 within the time interval t0 5 t 5 t1 the fourfold integral

(25)

t1∫
t0

dt

∫∫∫
(V0)

dV0
{

1
2%0(x′2 + y′2 + z′2)− ϕ

}
has an extremum with respect to its values for all neighboring motions being admissible with respect to possibly
occurring constraints, which, at the time instants t0 and t1, leave the continuum in the same position.

As one does it in the case of finitely many degrees of freedom, one can immediately extend this ansatz,
by giving up the special dependency of the integrand on the [terms with] time derivatives. To readily include
also the case of oriented particles, one only needs to make the connection to the formulas (10), (12) of No. 5d
and to demand analogously like in the beginning of No. 7a: For every virtual displacement, the virtual work
of the moving continuum in the time interval t0, t1 shall be equal to the variation of a single expression
depending only on the respective motion, which shall specifically be a fourfold integral over a known function
of the functions of motion and the temporal and spatial derivatives thereof:

(26) Φ=

t1∫
t0

dt

∫∫∫
(V0)

dV0ϕ(a, b, c, t;x,..., ν;xa,..., νc;x
′,..., ν′;x′a,..., ν

′
c),

and [shall] be called action integral.89 In that case, the formulas for the force, stress and torque components
remain basically unchanged, only for the components of momentum additional equations do appear

(27) Xt = − ∂ϕ
∂x′

, Lt = − ∂ϕ
∂λ′

l1 −
∂ϕ

∂µ′
l2 −

∂ϕ

∂ν′
l3

(
x, y, z;

L,M,N
l, m, n

)
.

Also here, E. and F. Cosserat90 have followed the assumption of a “euclidean potential”, which does not
change for an arbitrary motion of the continuum together with its triads being regarded as rigid; Besides the
quantities (16) it will also include the (nonholonomic) velocity coordinates with respect to the movable coordinate
system

(28) x = α1x
′ + β1y

′ + γ1z
′, p = α3α

′
2 + β3β

′
2 + γ3γ

′
2

(x, y, z
p, q, r
1, 2, 3

)
,

and according to this, the components entering the equations of motion can be determined immediately analo-
gously to (18).

Also here a canonical transformation, analogous to No. 7e, can be carried out; if one transforms merely with
respect to the time derivatives, then for ϕ being independent of t it appears

E = ϕ−
∑
(x y z)

x
∂ϕ

∂x
−
∑
(p q r)

p
∂ϕ

∂p

the energy density of the moving system.91

89 Cf. E. and F. Cosserat, Corps déform., p. 4.
90 “Corps déformables”, p. 156 ff.
91 M. Born, l. c. p. 94 f.; E. and F. Cosserat, Corps déform., p. 171, 219.
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Besides this far-reaching generalization there is to be pointed out additionally a special kind of emergence
of the temporal derivatives of the functions of motion in the effects, which appears in frictional effects and
similar ones and for which an ansatz appears being in a way analogous to the potential-based approach. If we
restrict us, that the stress dyad contains a part depending on the time derivatives of the 9 deformation quantities
x′a, . . . , z

′
c, then it is about the specialty, that the stress components are just the derivatives of a known function

F (x′a, x
′
b, . . . , z

′
c) with respect to x′a, . . . , z

′
c:

(29) Xa =
∂F

∂x′a
, Xb =

∂F

∂x′b
, . . . , Zc =

∂F

∂z′c
.

Additional to the work done during the actual motion, the stress dyad contributes with (computed per unit of
time):

(30) −
∑

(xyz;abc)

Xa
dxa
dt

= −
∑

(xyz;abc)

∂F

∂x′a
· x′a = −D(x′a, . . . , z

′
c).

If D is a positive definite function of its 9 arguments, then the stresses Xa, . . . always use work, and indeed
[they use work] in an amount measured by the function D; D is called the dissipation function associated to
the stresses.92 By the way, merely the case of F being a quadratic function of x′a, . . . is effectively used; then it
follows

(29′) Xa =
1

2

∂D

∂x′a
, Xb =

1

2

∂D

∂x′b
. . . , Zc =

1

2

∂D

∂z′c
.

In a quite similar way one can also consider the dependency on higher time derivatives and determine the
corresponding dissipation functions; this has been carried out by W. Voigt93 for linear dependency of Xa, . . . on
the derivatives.

5 Annotated translation of No. 8 (pp. 658–662)

8. Limit cases of the ordinary three-dimensional continuum.
Eventually it remains to be discussed how one can gain by certain typical limit processes from the theory of

the free three-dimensional continuum the foundations of other classes of continua which [have been obtained]
so far without direct connection by a purely formal analogy; thereby it is sufficient to relate everything to the case
of an existing potential of the most simple form (No. 7a, beginning).

Another very interesting subject which should be investigated concerns the history of the parallel development of so called
“direct” models as opposed to “deduced” models in mechanics. Complexity can be approached from different points of
view: one can formulate a direct model, heuristically taking into account the detail of considered phenomena by increasing
the set of introduced kinematical descriptors. Otherwise one can try to deduce, via a reduction process, a macroscopic model
starting from a microscopic one where the elementary constituents of the considered system have a “simple” behavior and
where the complexity is represented by their array in space and in the interaction laws among elementary constituents. In
order to answer to polemical objections by Poisson, Piola uses in his later works (see [18]) such an approach for introducing
higher gradient models: in Piola’s case, the microscopic and macroscopic models have the same dimension. In the present
section Hellinger reports the state of the art in the modeling of lower dimensional continuum models as obtained by reducing
three dimensional models via an asymptotic expansion.

8a. Infinitely thin plates and wires. Primarily, it is about the theory of media whose extension in one or
two dimensions can be considered as infinitesimal (plates and wires). In reality there exists always a three-
dimensional extended domain V, which depends on a parameter ε measuring those very small extensions; we
will express the abstract limit cases of infinitesimal extension, when we consider a whole family of domains V,
which in the limit ε = 0 — furthermore we may assume: continuously — approach the surface or line element,
which the direct approach (s. No. 2c) is based on.

92 Lord Rayleigh (J. W. Strutt), Lond. Math. Soc. Proc. 4 (1873), p. 357.
93 W. Voigt, Kompendium I, p. 459 ff.; Lehrbuch der Krystallphysik, Leipzig 1910, p. 792 ff.
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We regret not to have read the previous paragraphs by Hellinger at the beginning of our studies in continuum mechanics.
The ontological intrinsic three-dimensional nature of deformable bodies is here synthetically described «In reality there
exists always a three-dimensional extended domain» and the mathematical nature of the abstraction which leads to lower
dimensional continua is clearly stated by means of the introduction of the concept of “families” of models depending on a
small parameter ε and in the calculation of suitable limits when this parameter is vanishing. The presentation by Hellinger
avoids the objections, which since at least the works by Sextus Empiricus, are used to deny to “reduced” models the status
of effective conceptual tools. In Sextus’ “Adversus Mathematicos” (Präs majhmatikoÔs, Pros mathematikous) which is
sometimes translated as “Against Professors”, he claims that the abstract concepts as those presented here by Hellinger
cannot exist (see Russo [68] for a detailed discussion of the role of Sextus and his doctrine as a cause and a consequence of
the decadence of Hellenistic science). In particular, Sextus refuses to consider any abstract geometrical entity as model for
a real body having a physical reality.

Due to this perception, the theory of plates and wires can be connected to the theory of three-dimensional
continua, and in fact already S. D. Poisson has chosen this way consistently for one case94: One is formulating the
characteristic quantities for the domain V as a function of ε and arrives at the laws holding for the limit case by
the just mentioned process lim ε = 0 or else by the restriction to the first terms in the series expansion with respect
to ε. From an axiomatic point of view, this approach would be the consequence of a general continuity postulate,
which can be formulated as follows: In a medium, whose shape or physical property depends on a continuously
variable parameter, the equations of state change without exception continuously with this parameter.

The presentation of this approach shall be based on the variational principle95.

The criticism implicit in the footnote 95 can be extended to even more modern textbooks! For instance it applies to [45],
Sect. II, where the equations of beams and plates, in large deformations, are deduced assuming that the three-dimensional
subjacent continuum deforms only in linear elastic regimes.

As a typical example a medium is considered, which in the initial state occupies the domain −ε 5 c 5 +ε lying
over the surface element S0 of the a-b-plane; let its potential be:

(1) Φ =

∫∫
(S0)

dadb

+ε∫
−ε

dcϕ(a, b, c;x, . . . ;xa, . . . ).

The functions of equilibrium x = x(a, b, c), . . . , which under certain boundary conditions make Φ to a minimum,
will depend now on ε; let them be expandable in a series expansion of ε and c:

(2) x = x(0)(a, b) + cx(0)c (a, b) + εx(1)(a, b) + εcx(1)c (a, b) + · · · (x, y, z).

If one introduces these expressions in ϕ and subsequently expands ϕ itself with respect to the powers of ε and c,
then the [following] series for Φ is obtained

(3) Φ = ε

∫∫
(S0)

ϕ0dadb+ ε2
∫∫
(S0)

ϕ1dadb+ · · ·

where

ϕ0 = 2ϕ
(
a, b, 0;x(0), . . . ;

∂x(0)

∂a
,
∂x(0)

∂b
, x(0)c , . . .

)
depends merely on the functions x(0), . . . , their first partial derivatives with respect to a, b and the functions
x
(0)
c , . . . , while in ϕ1, . . . more and more coefficients can enter, [which] appear in the series expansion (2) as

functions of a, b. The actual problem is now to calculate the equilibrium position of the “infinitely thin” plate (or
rather its midsurface c = 0) determined by the limit function

lim
ε=0

x(a, b, 0) = x(0)(a, b) (x, y, z).

94 For the treatment of the problem of the elastic plate; Mém. de l’Acad., Paris 8 (1829), p. 523 ff.
95 Such series expansions and limit processes are since Poisson the more or less declared basis for all theories of plates and wires (s. IV 25, No. 13 ff.,

Tedone-Timpe); but the overall view is complicated by restricting oneself from the beginning to infinitesimal deformations in small subdomains and
only afterwards one changes over to the finite deformation of the whole under citation of auxiliary hypotheses. The text follows the exposition, which
C. Carathéodory presented for the elastic line in a “Göttinger Vorlesung” in the winter term 1906/7.
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Besides, also the determination of further terms in the series (2) can be important, for instance the functions
x
(0)
c (a, b), which determine the new position of the initial normals of the plate, i. e. the deflection of the material

against the geometric shape of the midsurface. These functions belong in fact to the characteristic quantities of
the deformation, just because in reality it is not about a strict one- or two-dimensional medium; in the direct
theory they are given by the Cosserat triad.

The presentation by Hellinger is a short but elegant resumé of the most important results in asymptotic analysis as applied
to reduced order and reduced dimension mechanical models. Remark the very elegant observation about the interpretation
of the gradients in the orthogonal direction as Cosserat triad. In the subsequent paragraphs a careful list of difficulties which
may arise in the asymptotic expansions involved is considered. Note that Hellinger is aware of the possibility of meeting
singular perturbation problems.

Now, since Φ with respect to the considered boundary conditions shall become a minimum for every ε, ac-
cording to (3) primarily

∫∫
S0
ϕ0dadb must become a minimum; but this is directly a condition for those functions

x(0)(a, b), . . . , x
(0)
c (a, b), . . . , where for comparison all the functions are allowed, which satisfy the boundary

conditions for x(0), . . . , x(0)c induced by the given boundary conditions together with (2).
Now it is possible, that the functions x(0), . . . are hereby not yet completely determined, but that only certain

relations between them emerge. If thereupon one restricts oneself to functions, which satisfy these relations, then
it follows secondly, that x(0)(a, b), . . . and the functions still entering ϕ1 make the second term in the series∫∫

(S0)
ϕ1dadb to a minimum, where the boundary conditions emerge analogously as before; if those relations

allow for instance for the elimination of x(0)c , . . . , then this new variational principle can contain higher deriva-
tives of the functions x(0), . . . . If one possibly continues with this procedure, then one obtains for the functions
x(0), . . . a series of two-dimensional variational problems, which contain higher derivatives and to which con-
straints can be added.

Carrying out this ansatz, however, a crucial difficulty arises: for the solution of the three-dimensional prob-
lem, hereby the expansibility into a series of the form (2) is assumed, i. e. a certain regular behavior of these
solutions as functions of a parameter ε included in the boundary equation of the continuum is demanded. For
problems of this kind, the value ε = 0 now does not only need to be not a regular point, but it could even be
an essentially singular point96; the possibility of an expansion (2) remains therefore a priori quite questionable.
Hence, as long as the dependency of the solutions on the parameters in the boundary conditions is not explored
in detail, in this way, a completely satisfying theory of plates and wires, which goes beyond the disclosure of the
formal connection with the properties of the three-dimensional media, is not obtained, and the direct approaches,
which have especially been formulated by E. and F. Cosserat (see No. 3e, 7c) remain the only reference for now.

8b. Media with one kinematic constraint.

The content of this last section is also based on some lectures held by D. Hilbert in Göttingen and based on some illumi-
nating considerations due to Lagrange himself. To our knowledge the subject treated by Hellinger carefully and with great
circumspection is not yet completely understood and clarified. Concerning this point we refer to more modern literature to
verify that a general conceptual scheme for studying constrained continua is still to be found. Indeed, it is clearly stated in
the fundamental paper by Ball [5] that

«Note, however, that the constraint of inextensibility [..] is not included [in the presented treatment]. It seems
possible, therefore, that solutions do not in general exist for boundary-value problems of inextensible elasticity,
and that a higher order theory is required to make such constraints well behaved.»

Actually, Hilbert’s lectures consisted in some hints for studying incompressible fluids and incompressibility which is the
only kind of constraint that is treated in Ball’s approach. Therefore it is a fortiori a difficult problem, which yet has found
only partial solutions to concern the “reduction” process from three-dimensional to one- or two-dimensional continua when
the three-dimensional continuum, we start from, is actually subjected to internal constraints. The method of Lagrange
multipliers is introduced and applied in the presented context. Without daring to criticize Hellinger, whose standing seems
to us indisputable, we however remark that, to our knowledge, in the presented asymptotic expansions it is sometimes
necessary to expand in terms of the parameter ε also the Lagrange multiplier itself. Unless we are not aware of some
technical details or we have misunderstood the content of this section, it seems to us that such an expansion is not assumed
by Hellinger, although equation (8a) may induce to believe the contrary. A comment is needed here: until we could use

96 E. and F. Cosserat, Paris C. R. 145 (1907), p. 1139; 146 (1908), p. 169.
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more mature and developed theories to understand Hellinger’s treatment it was easy for us to reach his level of mastery
of the presented subject. On the contrary, this last section was, at least for us, difficult: most likely because the subjacent
theory is either not well-developed yet or not well-understood by us.

In principle, one can make equivalent considerations to derive from the theory of the freely deformable continuum
the laws of such media which are subjected to constraints, and for which the direct ansatz in No. 4c has been
given. To discuss again only one typical easy case, it is about a medium M, for which there exists the constraint

(4) ω(x, . . . ;xa, xb, . . . ) = 0

between its deformation quantities[;] by the way [the constraint] can also contain a, . . . explicitly. Now in
reality such a medium will never be realized strictly in nature, moreover this here is again only an abstraction
from considerations of such media Mε, which almost satisfy the relation (4). Mε may be characterized by a
potential of the form No. 7, (1) with the energy density ϕε, and it shall depend on a parameter ε, such that
without exception for every equilibrium position

(5) |ω(x, . . . ;xa, . . . , zc)| < ε

holds. We consider now such media Mε for a family of values of the parameter ε converging to 0; according
to the above declared general continuity postulate (p. 31), in the limit ε = 0 the laws of the behavior of M will
follow97.

ϕε is characterized as follows: besides the deformation functions and the derivatives thereof it depends also
on the expression ω explicitly:

(6a) ϕε = ϕε(x, . . . ;xa, . . . ;ω(x, . . . ;xa, . . . )).

If one considers ϕε especially as a function of the last argument ω, then with increasing ω, ∂ϕε∂ω shall increase
continuously, for ω = 0 [it shall] vanish identically for all other arguments and for every interval [which] does
not contain 0, for lim ε = 0 [it shall] have uniformly the limit ±∞ (depending on whether ω ≷ 0); furthermore,
for the value ω = 0, [the function] ϕε shall have uniformly a limit within the domain of variability coming into
consideration.

(6b) lim
ε=0

ϕε(x, . . . ;xa, . . . ; 0) = ϕ0(x, . . . ;xa, . . . ).

An example of such a function would be ϕε = ϕ0 + ω2

2ε .
The equilibrium deformation of Mε, considering the corresponding boundary conditions, is now determined

by the variational principle

(7) δ

∫∫∫
(V0)

ϕε(x, . . . ;xa, . . . ;ω(x, . . . ;xa, . . . ))da db dc = 0

For the preparation of the limit process a transformation is used [which is] analogous to the canonical transfor-
mation of mechanics.85 (Note of the translators: As in the original text, the text refers to the previous footnote
85): Using

(8a)
∂ϕε(x, . . . ;xa, . . . ;ω)

∂ω
= λ

ω is expressed as a function of λ as well as of x, . . . ;xa, . . . :

(8b) ω = ωε(x, . . . ;xa, . . . ;λ)

and thereby the expression

(9) ϕε(x, . . . ;xa, . . . ;ω)− ωε · λ = Hε(x, . . . ;xa, . . . ;λ)

97 Apparently, Lagrange had such a limit process in mind, as he denoted in his analytical mechanics the multiplier associated to ω = 0 as “force”,
which tries to change the function ω; one shall compare in particular Sect. II, No. 9, Sect. IV, No. 6, 18, Sect. V, No. 53, Sect. VII, No. 21 of the first part,
as well as the notes of J. Bertrand hereto — meanwhile the transition is not carried out in more detail. The presentation of the text is formulated following
suggestions, which D. Hilbert has given in a “Göttinger Vorlesung” in the winter term 1906/7 for the treatment of incompressible fluids.
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as a function of λ, x, . . . , xa, . . . is set up. Then from the well-known methods of the calculus of variations85 it
follows that (7) is equivalent to the variational principle

(10) δ

∫∫∫
(V0)

{Hε(x, . . . ;xa, . . . ;λ) + λ · ω(x, . . . ;xa, . . . )}da db dc = 0

for the four unknown functions x, y, z, λ.
Herein the limit process can easily be carried out; according to the assumptions on ϕε, ωε(x, . . . ;xa, . . . ;λ)

converges with decreasing ε uniformly to 0, and since from (9)

∂Hε(x, . . . ;xa, . . . ;λ)

∂λ
= −ω

follows, under consideration of (6), the uniform existence of the limit

(11) lim
ε=0

Hε(x, . . . ;xa, . . . ;λ) = ϕ0(x, . . . ;xa, . . . ),

is easily obtained, which is independent of λ. Hence, one obtains finally as limit case of (10) the variational
principle

(12) δ

∫∫∫
(V0)

{ϕ0(x, . . . ;xa, . . . ) + λ · ω(x, . . . ;xa, . . . )}da db dc = 0;

herein one can consider λ finally as Lagrange multiplier and has therewith in fact provided exactly the ansatz of
No. 4c for a medium with energy density ϕ0 and constraint (4). Moreover one can gather from this consideration
the relevance of the Lagrange multiplier: according to (8), λ is related to the connection of the deformation
quantities ω in the same sense as the stress components Xa [are related] to the deformation quantities xa (see
No. 7, (4)); it is in a way the stress component associated to this connection ω, more precisely: the factor of δω
in the expression of the virtual work for a medium “almost” satisfying the constraint ω = 0.97 Thus, the reactive
effects originating from the occurrence of constraints are to be classified as limit cases of the impressed effects
thoroughly considered so far.98

6 Some further conclusions

When reading the pages which we have translated and commented in the present paper, it becomes clear that Hellinger is
a follower of the Lagrangian School. History of science is traversed by memberships to schools since the birth of libraries
and written texts. Since the very beginning, the relationship between master and pupil has characterized the process
of transmission and improvement of knowledge. The school of (astronomical) mechanics, which moved its first steps
presumably with the Epicurean School (having Starchy of Argument as one of the main leading figures), was represented
by Conn of Samoa, Archimedes of Syracuse, Eratosthenes of Corene and later by Hipparchus of Nicaean and Seleucus of
Seleucid These are the few names of Hellenistic scientists which reached us and whose contribution to science is more or
less deducible by available sources (see [68]). Except the personal relation between Conn and Archimedes, which is fully
documented, there is no evidence (and in some case the absolute prove of the contrary) of any personal relationship between
them. However, they all participated to the great adventure of localizing human beings in their place in the universe. Using
logical-deductive theories this great group of Hellenistic scientists formulated (most likely basing their mechanical theories
on the principle of virtual work) the mechanical science and applied it to many different problems, including the one
concerning the motion of the earth in the solar system. Among other phenomena, they could explain the tides and they
started (see the catalog of stars established by Hipparchus) experiments which lasted also millennia (in the case of the
observation of the apparent motion of stars from the earth this is indeed the required time span). Hellenistic science has
shown what is necessary for the human knowledge to proceed:

i) a school master recognized as a prominent personality – as Archimedes was one;

ii) transmission of knowledge in a formal written form with a rigorous process of selection and review of published books
and articles – as organized by Eratosthenes, the librarian at the library of Alexandria;

98 Cf. above No. 7e, p. 27 as well as remark84.

Copyright line will be provided by the publisher



ZAMM header will be provided by the publisher 35

iii) common methods and perseverance in the accumulation of experimental data and development of predictive mathe-
matics – as shown by the coherent activity by Hipparchus and Seleucus;

Centuries may be waited before the work of a scientist finds a successor who is capable to continue it: the Dark Ages pre-
vented any development of the theories of Hipparchus whose first follower resulted to be named Copernicus. This scheme
has been reproduced also, in a different time scale, by the perfectly known history of the principle of virtual velocities.
Including the change of name: now it is called principle of virtual work. Lagrange, following the intuitions by D’Alembert
(whose personal influence was very negative, if we want to believe Truesdell99), started the modern formalization of the
principle of virtual work. Piola was one of his first admirers and continuators, explicitly stating that his intention was to
continue his school master’s work starting from where death had stopped him to complete it. Also, the Cosserat brothers
used the Lagrangian formalism for formulating their more advanced theory of continua and Hellinger laid the basis for
very effective computing algorithms by generalizing Lagrangian formulation of continuum mechanics. Hellinger was not
very familiar with the content of Piola’s contributions. He was much more familiar to the contributions by the Cosserat
brothers. It is clear that the babel of languages of science caused some problems in the transmission of knowledge and
allowed for some losses, rediscoveries and reformulations of the same concepts in different eras and situations. However,
a unity of vision and intents can be found: Analytical Continuum Mechanics has been formulated and developed and sup-
plies a powerful tool for technological applications. Hellinger clarifies also the important contribution to this subject by
the German literature: his report about Gauss’ formulation of the principle of least constraint is remarkable, among the
many other contributions of which he gives a synthetic resumé. Reading Hellinger proves also, once more, that the problem
of attribution of scientific results is complicated. Tracking how the ideas of Lagrange, Piola and Hellinger are twisted in
some literature is not important for the problem of personal attribution of priority (which is very local in space and time
and is, at the end, irrelevant). There is (as underlined in [68]) a more important question which concerns the dynamics
of advancement of science which requires to be investigated with scientific methods. Referring to the first paper of this
series for a discussion about the efforts of Giambattista Vico in formulating such a new science, we want here to state
once more: it is not true that science is advancing linearly, that a more modern text is more detailed, advanced and better
grounded than older texts. Still in modern times linguistic and cultural barriers are a true problem for the advancement of
knowledge. Hellinger’s masterpiece clearly shows the genius of Lagrange and of the Lagrangian School, even if Hellinger
underestimates the contribution by Piola and even if the discussion by Hellinger of the correct measures of deformation
in continuum mechanics is not as complete as in Piola. However, in a later (and more popular) book [79] one can find on
pp. 246–247 the following statements:

«While Lagrange’s book is a good starting place, experience with it has led me to the following working
hypotheses:

1. There was little new in the Méchanique Analitique; its contents derive from earlier papers of LAGRANGE
himself10 or from works of Euler and other predecessors.

2. General principles or concepts of mechanics are misunderstood or neglected by Lagrange.

3. Lagrange’s histories usually give the right references but misrepresent or slight the contents.

When we read Lagrange’s sarcastic comment about d’Arcy, “... he even made out of it a kind of metaphysical
principle, which he calls the conservation of action..., as if vague and arbitrary names were the essence of the
laws of nature and could by some secret virtue raise to final causes some simple consequences of the known laws
of mechanics,” Hypotheses 3 and 2 suggest that maybe d’Arcy had something. However, this is a bad lead; we
find d’Arcy assumes Ḣ = 0 for bodies that “act on each other in any way, whether by wires, by inflexibles lines,
by laws of attraction, etc.11” As a reason he says only, “It is known that a body, all of whose parts are connected
together, cannot take on any motion in virtue of their reciprocal actions.”

Turning to Hypothesis 1, we can choose first to follow up Lagrange’s own earlier work. Moving slowly
backward in his Œuvres is a tedious process. The task is lightened by use of a fourth working hypothesis:

4. Lagrange’s best ideas in mechanics derive from his earliest period, when he was studying Euler’s papers and
had not yet fallen under the personal influence of d’Alembert.»

10 E.g., the famous Lagrangean equations had been derived before, namely in §§7–11 of his “Théorie de la libration de la lune, et des
autres phénomènes qui dependent de la figure non sphérique de cette planète,” Nouv. Mem. Acad. Berlin 1780, 203–309 (1782)= (Œuvres 5,
5–122). Here Lagrange begins by writing the inertial forces in rectangular Cartesian co-ordinates, while the accelerating forces are expressed
in terms of distances from “any centers” (§ 5). He states (§ 13) that the Lagrangean equations hold for “an infinity of particles subject to any

99 On p. 248 in [79] on can read that «Lagrange’s best ideas in mechanics derive from his earliest period, when he was studying Euler’s papers and
had not yet fallen under the personal influence of d’Alembert.», so that one must conclude that in Truesdell’s opinion Lagrange was a scientist whose
weak personality could be easily influenced.
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forces proportional to functions of the distances”; the meaning of this statement is not certain, but with any meaning I can conjecture it is
generally false. In this paper Lagrange stops short of deriving the equations of motion of a rigid body by his method.

Likewise, the general integrals derived in the Méchanique Analitique are foreshadowed in the paper, “Remarques générales sur le
mouvement de plusieurs corps qui s’attirent mutuellement en raison inverse des carrés des distances,” Nouv. Mem. Acad. Berlin 1777,
155–172 (1779)= (Œuvres 4, 401–418); this paper rests on the “Newtonian” equations with a “Newtonian” potential function. While in §§
4-8 Lagrange derives the integrals of momentum, moment of momentum, and energy, use of special properties of the potential function tends
to conceal their meanings. For three bodies, the results are given in §§ II of his “Essai sur le probleme des trois corps,” Prix de l’acad. sci.
Paris 9, 1772=Œuvres 6, 229–324.

Finally, the principle of virtual work for dynamics, on which the entire Méchanique Analitique is founded, had been given more than
twenty years earlier in § IV of his “Recherches sur la libration de la lune, dans lesquelles on tâche de résoudre la question proposée par
l’Académie royale des sciences pour le prix de l’année 1764,” Prix de l’acad. sci. Paris 9, 1764 OEuvres 6, 5–61.

11See the argument based on Fig. 2 in his “Principe général de dynamique, qui donne la relation entre les espaces parcourus et les
temps, quel que soit le système de corps que l’on considère, et quelles que soient leurs actions les unes sur les autres” (read in 1746), Mém.
Acad. Sci. Paris 1742, 348–356 (1752), and an addition of 1747, pp. 356–361. The paper is not easy to read. Nothing is added in his later
“Réflexions sur le principe de la moindre action de M. de Maupertuis,” Mém. Acad. Sci. Paris 1749, 531–538 (1753).

The previous excerpt indicates that Truesdell seems to have made up for his own technical mediocrity by cultivating a sharp
and cutting wit, bolstered by his unusually strong command of English, hoping to intimidate detractors into silence by
instilling fear of his undeniable literacy. In this way Truesdell managed to shadow and hide the weak points of his vision
of mechanics. For sure Truesdell IS NOT a follower of the Lagrangian school. In contrast, Noll was technically much
stronger and managed to “set the house in order” (we will deepen this point in the upcoming last part of the exegetic series),
by reordering all available results in nonlinear mechanics in such a way that they became accessible to the great majority
of mechanical practitioners. However, while giving a precise and rigorous description of the state of the art in mechanical
sciences, Noll managed to hide their origins and the principles used for getting them. Eventually, it has to be stated clearly
that

i) as recognized also by Landau and Feynman (among many others) all novel theories have been formulated using
Lagrangian variational approaches.

ii) no truly new theories were formulated by using the axiomatics which Truesdell attributed to Noll.

iii) the translated text by Hellinger proves that Noll was aware of its content and simply reformulated it, skipping the
variational part.

This last point will need to be substantiated as in our opinion it represents a phenomenon of much more general occurrence
as it is usually believed.
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