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Abstract

Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity

to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly

limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that

12–15 million people in the United States are diagnosed with PAD, with a much larger population

that is undiagnosed. The presence of PAD predicts a 50–1500% increase in morbidity and

mortality, depending on severity. Treatment of patients with PAD is limited to modification of

cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy.

Extended exercise programs that involve walking ~5 times/wk, at a significant intensity that

requires frequent rest periods, are most significant. Pre-clinical studies and virtually all clinical

trials demonstrate the benefits of exercise therapy, including: improved walking tolerance,

modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the

limb (angiogenesis, arteriogenesis, mitochondrial synthesis) that enhance oxygen delivery and

metabolic responses, potentially delayed progression of the disease, enhanced quality of life

indices, and extended longevity. A synthesis is provided as to how these adaptations can develop

in the context of our current state of knowledge and events known to be orchestrated by exercise.

The benefits are so compelling that exercise prescription should be an essential option presented to

patients with PAD in the absence of contraindications. Obviously, selecting for a life style pattern,

that includes enhanced physical activity prior to the advance of PAD limitations, is the most

desirable and beneficial.

1. Introduction

Peripheral arterial disease (PAD) is a fairly common degenerative vascular condition that

leads to inadequate blood flow (BF), typically in the legs. PAD is due to atherosclerosis that

causes chronic narrowing of arteries, which can precipitate acute thrombotic events. This

atherosclerotic condition often affects a large primary conduit artery (e.g., iliofemoral/

femoral artery region), but it can also be multilevel and diffuse, causing complex and

generally more severe complications. The initial narrowing of an artery reduces the flow

capacity to the limb. The loss of this BF reserve seems benign until the flow demands of the

limb muscles require a BF that exceeds the reduced flow capacity. At this time, exercise

tolerance becomes limited, with a significant but limited fraction of the patients (10–35%)

exhibiting pain on exertion with an altered gait typical of intermittent claudication, while

~50% describe atypical symptoms that limit exercise (181, 336, 388). Upon resting, the pain

or discomfort goes away, but returns with renewed exertion. Unfortunately, the vascular

lesions often progress leading to a greater loss of flow reserve resulting in an even greater

limitation to mobility. In its extreme, BF can become limiting at rest, leading to frank
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ischemia, ulcerations, pathological changes, gangrene, and, all too often, amputation of the

distal tissues (388). As illustrated in Figure 1, the prevalence of intermittent claudication

increases markedly with age, with a generally higher rate in men than women (180, 661).

There is some evidence that the prevalence of PAD is influenced by race/ethnicity, with a

higher rate among African American men and women and a lower rate among Hispanic

women and Chinese men (601) and that heritability of PAD is real, but limited (20–45%),

after adjusting for other risk factors (656). It is estimated that approximately 12–15 million

people in the United States are diagnosed with PAD, with a much larger number that are not

diagnosed (180). Since there is such a strong influence of age on the prevalence of PAD and

the population of older individuals in the US has increased disproportionally in the past 10

years, the number with PAD must be much greater. In one study, with a population base in

southern California, between 2% and 20% of individuals between the ages 38 to 82 years

exhibited BF deficits in large vessel(s) of the limb (181). This is similar to the prevalence of

PAD observed in other studies, again increasing dramatically with age (cf., Figure 1)(661).

Since PAD is an atherosclerotic disease, the risk factors are numerous, predictable, and

common to cardiovascular diseases in general, and associated with inflammation (94, 348,

829). Thus, the typical risk profile of smoking, dyslipidemia, hypertension, diabetes,

obesity, and physical inactivity raise the prospects that numerous co-mobidities are frequent

with PAD. Figure 2 (55, 661) illustrates the hazardous odds ratios for developing

symptomatic PAD, as a function of various risk factors, with diabetes and smoking as the

strongest modifiable risk factors. Smoking and diabetes are particularly noteworthy risks, as

the ischemic limitations and dysfunction are more exaggerated, as compared to their absence

(9, 315). Not considered by this Study Group [Trans-Atlantic Inter-Society Consensus

Document on Management of Peripheral Arterial Disease (TASC II)] is the impact of

physical inactivity. In view of the evidence that physical inactivity is a major risk factor for

coronary heart disease (CHD) (511, 706), with significant impact of associated risk factors

of atherosclerotic diseases (86), it stands to reason that physical activity should have a major

influence in the primary prevention of PAD. Thus, physical inactivity should be listed as an

additional modifiable risk factor for PAD, although the precise quantitative impact has not

been studied. In addition, it is becoming recognized that PAD invokes inflammatory

responses (94) that exhibit themselves as elevated biomarkers of the inflammatory process,

such as C-reactive protein (483, 603). The coincidence of CHD in patients with PAD is

fairly high, generally ranging from 35 to 60% of patients based upon clinical history and

ECG (656, 829); however, when a more sensitive criteria of angiographic-defined coronary

stenosis of >50% was applied ~90% of PAD patients were identified to have CHD (309).

Similarly, the coincidence of PAD and cerebrovascular disease (CBVD) is extensive with up

to 20%, up to 50%, or up to 80% of PAD patients exhibiting CBVD, based upon criteria of

clinical history, bruits, or ultrasonic evaluation, respectively (309). Diabetes engenders a 1.5

to 4-fold increased risk of developing PAD (55). This comorbidity is especially difficult,

since large vessel disease occurs earlier in life and appears more aggressive (661). Further,

PAD patients with diabetes tend to experience more complex distal obstructions, have

revascularization interventions that are less successful, and have higher rates of

perioperative complications and death (470). Thus, while PAD can have serious

consequences, independent of other chronic diseases, it is particularly ominous when

exacerbated by the presence of CHD, CBVD, and/or diabetes.

PAD leads to a reduced mobility, to a significant loss in the quality of life, and to premature

death. The impact of PAD can be overwhelming, as depression occurs at a high frequency

among affected patients, and is associated with reduced success of surgical intervention and

recurrence of symptomatic PAD (148). Nonetheless, PAD rarely presents as the cause of

death. Rather, CHD and CBVD account for the vast majority (~65%) of deaths, with other

vascular diseases accounting for an additional 10% leaving the remainder of 25% due to
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non-vascular diseases (213). There is an increase in mortality based upon the severity of

PAD. Premature death due to cardiovascular disease increases 50% to 1500%, depending

upon the severity of PAD (182). As illustrated in Figure 3 the ten-year survival of patients

with intermittent claudication is well below that of the normal population, but further

exceeded by patients with critical limb ischemia (661). Even the diagnostic measure of the

ankle-brachial index (ABI) provides clear evidence for the severity of PAD. This is

illustrated in Figure 4 by the increase in CV and all-cause mortality, as the ABI approaches

and declines below 0.60 (596). As would be expected from the above, the presence of PAD

also predicts an increase in morbidity, independent of other comorbidities, as seen by

increased cardiovascular events and complications. This high prevalence of PAD and its dire

predictions of increased morbidity and mortality places an importance on primary care for

detection and management of such patients (387). Interestingly, the presence of PAD, in the

absence of CHD, is a more powerful predictor of cardiovascular events than is the presence

of CHD, in the absence of PAD (309). As shown in Figure 4, even patients that present with

borderline PAD, as defined by an ABI less than 1.0 but greater than 0.9, experience an

increased risk of all-cause mortality (266). In the face of this risk and the high prevalence of

~10% of these borderline individuals in the general population older than 40 yr of age (499),

has placed greater emphasis on clinical recognition of borderline PAD in the primary care

setting (596). Thus, since PAD represents such a major health hazard that, unfortunately,

leads to increased frequency of medical events and premature death, it is critical to establish

early disease detection and appropriate treatment, even for secondary prevention measures

(264).

2. Treatment of Peripheral Arterial Disease

There has been a relatively small arsenal available to manage patients with PAD. Typical

management includes treatment for general cardiovascular risk factors, cessation of

smoking, loss of body weight, pharmacological interventions, increased physical activity,

and in certain candidates surgical intervention (304, 375, 388, 661, 752); however, there

have been no ‘breakthroughs’ to reverse or eliminate the disease. There has been success in

managing patients with PAD by pharmacological treatments to inhibit phosphodiesterase III

(782) and influence blood rheology and hemostasis (618). However, the magnitude of

benefit is not as great as that observed with participation in a supervised exercise program

(304, 618). While surgical intervention can provide a marked improvement in distal

perfusion with critical benefit to tissue oxygenation (557), the success rate has been less than

optimal (689), especially if there is early surgical failure of the procedure (768), and the long

term outlook has been guarded (728), owing to the complex and progressive nature of the

disease. Interestingly, while vascular surgery imparts an advantage to patients, as compared

to an exercise program at six months post intervention (154), the long-term benefit was

observed with exercise training to increase claudication and maximal walking distance,

especially in patients with superficial femoral artery obstructions (710). Indeed, surgical

patients can gain an additional benefit by participation in an exercise training program (557).

Thus, the treatment of enhanced physical activity is a worthy means of managing patients

with PAD.

3. Influence of Exercise Training in Peripheral Arterial Insufficiency

There are several comprehensive meta analyses (69, 88, 290, 304, 326, 738, 985), exhibiting

some overlap in studies evaluated, and a host of excellent reviews presenting various aspects

of exercise training in patients with PAD that should be consulted (108, 127, 133, 290, 304,

336, 578, 597, 618, 699, 728, 743, 744, 748, 764, 886–888, 985). The wealth of this

information and attention reveals the extensive clinical interest in the myriad of biological

responses to exercise that can impart potential benefits to patients with PAD. These include:
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enhanced 6 min walking distance, increased walk time to pain onset, increased walk time to

maximal pain, improved self-defined quality of life index, improved muscle function,

enhanced metabolic response, improved inflammatory/hemostatic function, reduced

morbidity and mortality risk, and possibly a reduced rate of disease progression.

Virtually all studies that have evaluated the impact of exercise training in patients with PAD

have demonstrated a benefit in exercise tolerance, a primary outcome measure (69, 88, 290,

738, 985). Exercise tolerance has been evaluated using the time of exercise or the distance

walked during fairly standard treadmill conditions where the patient must conform to a

defined exercise protocol. Further, the duration of walking to the onset of pain, as well as the

duration of walking until maximum pain causes cessation of the exercise, have been used as

valuable parameters of walking tolerance. A recent analysis has identified that progressive

treadmill tests provide the best reliability for patient evaluation (658). These involve

walking at a given speed and then progressively increasing the grade of the treadmill over

time (291, 377). As you can appreciate, the patients must conform to the progressive

intensity of the task until the onset of pain and/or until maximal tolerance. Relying on these

walking tests, the improvements in exercise tolerance with training are substantial, with

typical increases in walking to the onset of pain of ~180% and increases in maximal walking

of ~120%, as compared to before exercise training began. In addition, numerous studies

have evaluated less standard exercise conditions, for example where patients walk for a 6

min period at their own pace, or walk at their selected pace until the onset of pain or

maximal pain. As illustrated in Figure 5, the duration of walking that can achieved at the

patient’s selected pace can be far greater than that observed in the more rigorous conditions

of a laboratory treadmill test. Thus, while the standard treadmill test is most useful for

quantification of the patients’ capacity, the ‘free walking’ ability likely better characterizes

the real impact of increased mobility that translates to an improved quality of life for the

patient. The actual improvement in exercise tolerance realized from participation in a

training program depends upon a number of parameters in the study, including: patient

population, mode of exercise, intensity of exercise, duration of each exercise bout,

frequency of exercise periods per week, duration of the training program, the exercise

setting, and compliance to the exercise program.

3.1. Patient population and exercise program compliance

The population of patients with PAD is rather heterogeneous, presenting from single large

vessel to multiple-level vascular involvement (181). This varying degree of vascular

obstruction leads to varied presentation of symptoms, from a noticeable limit to mobility

during taxing locomotion, to a substantial impairment in walking tolerance, to an extremely

limited mobility associated with rest ischemia. Thus, studies evaluating the influence of

exercise training involve those patients who are at least mobile and able to achieve the

demands of the exercise program, even when the walking task is made relative to each

individual patient. The presence of co-morbidities, such as diabetes or risk biomarkers of the

metabolic syndrome, is associated with worsened PAD, physical function, and peripheral

circulation (285), although for the same disease presentation in diabetics a poorer exercise

tolerance was attributed to obesity (315). It is well-recognized that due to the nature of PAD,

patients select for a much reduced level of leisure-time physical activity (288). Indeed, the

amount of leisure-time activity declines directly with the severity of the disease, as reflected

in the ankle-brachial pressure index (281). For these patients, barriers to walking include the

walking surfaces, uncertainty about the outcome of walking, the need to take rest breaks,

and the concern about leg pain (278). Thus, it can be expected that PAD patients enrolled in

controlled studies represent the near-extreme of inactive individuals. This should optimize

the opportunity to realize a response, should increased physical activity impart any change.

Further, as nearly all patients enrolled in studies exhibit intermittent claudication, it is
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relatively easy to establish changes in performance. However, it is important to recall that

the majority of patients with PAD do not exhibit intermittent claudication, but rather

experience a rather non-descript feeling of impaired mobility. Interestingly, McDermott and

coworkers (598) have observed that the impairment in walking performance, that scales with

the reduction in ankle-brachial index, is similar between PAD patients that exhibit

intermittent claudication (10–35% of total (181, 336, 388)) and those that do not. This raises

the expectation that the physiological response to training by PAD patients with intermittent

claudication reasonably well characterize the responses of all PAD patients in the general

case.

Supervised exercise therapy provides a significant and clinically relevant improvement of

maximal treadmill walking distance, compared with non-supervised exercise programs (69).

Obvious benefits of supervised exercise programs include potential advantages as available

instruction, oversight and accountability for compliance, favorable facilities, and the

availability of social interactions. However, the most successful programs are likely to be

those that combine regular, supervised exercise with daily home exercise (738). This may be

attributed to the development of behavior patterns that encourage exercise compliance and

continuation of increased activity long after supervision has ended. Further, while short-term

supervised programs typically achieve better program management, in a two year follow-up

the adherence rate to the program was only 36%, compared to 68% in a home-based

exercise program (37). As mentioned above, concern about the onset of pain is one reported

reason for reduced leisure-time activity; however, pain intensity was not considered a

dominant factor influencing walking behavior. Rather, it was the individual’s proclivity for

planned behavior that favored activity (277). This implies that individual motivation for

exercise and a conviction toward its merits is a critical factor in compliance to an exercise

program.

3.2. Training program: type, intensity, and duration of exercise bout

Most studies evaluating exercise prescription have utilized walking as the primary or sole

activity. Training by walking has been shown to impart greater increases in performance, as

compared to mixed or alternative activity programs (290) that have included cycling (799)

and resistance-type exercise (380). This could be due, in part, to the well-known specificity

of training, wherein the best means of training is to employ the activity of the measurement

outcome--walking performance. On the other hand, exercise performance can be markedly

influenced by the muscle mass available to perform the task (790). Thus, the muscle atrophy

that accompanies aging, which can be compounded by inactivity in PAD patients, could

provide a significant impediment to patient mobility. One strategy to address this potential

problem has been to utilize resistance training as the exercise prescription. While a 12 wk

‘weight’ training program increased the strength of the lower limb muscle (12–17%) in

patients, there was only a modest 36% increase in maximal walking time, compared to the

74% increase observed in the group of patients who trained by treadmill walking (380).

Further, introducing strength training during a subsequent 12 wk period of walking training

did not further increase walking performance. Thus, while the rationale to minimize muscle

atrophy was reasonable, it appears that conditioning by walking remains the most important

feature of exercise to improve the condition of PAD patients. This places emphasis on

endurance-type exercise training, which primarily enhances the duration of performing

exercise at a reasonable intensity.

PAD patients with intermittent claudication who performed any amount of physical activity,

beyond light intensity, have a lower mortality rate than similar patients who were effectively

sedentary (286). This reduced risk of mortality remained evident even when the findings

were adjusted for age, disease severity (ankle-brachial index), and obesity (body mass

index) (286). While these findings illustrate the importance of being physically active, in the
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general case, there can be different viewpoints as to what intensity of exercise should be

proposed for patients with PAD. There is unanimity in the need to recommend an exercise

intensity that is tailored to the capacity of each individual patient. Obviously, even a modest

intensity of exercise, for a normal individual, would be overwhelming for PAD patients with

limited mobility. Thus, recommendations typically involve walking until the onset of pain or

to the limit of when the severe pain stops exercise. In analyzing 33 earlier studies evaluating

training responses in patients with PAD, Gardner and Poehlman (290) identified intensity of

exercise as the most important factor that determines the improvement in walking tolerance

after training. Exercise programs that involved repeated walking to the limit of maximal

pain could account for 55% and 40% of the total variance in the improved performance,

marked either as the onset of pain or maximal walking tolerance, respectively. This

emphasis on exercise intensity is consistent with accepted training rationale, even in normal

healthy people. The higher the intensity of exercise the greater the cardiovascular responses

approach their limit (781), the more encompassing motor unit recruitment occurs within the

active muscles (797), and the greater the metabolic responses are stressed (612). These

typically lead to quantitatively greater adaptations. In the absence of severe central

cardiovascular disease, patients with PAD are typically limited by vascular problems within

the limbs. Thus, walking to the limit of pain may not challenge all physiological responses

equally, resulting in a heterogeneity of adaptations. However, there has been some concern

for PAD patients that exercise to the pain limit induce an extensive inflammatory response

that may exacerbate the their condition (930). While this is true and can affect other tissues

(e.g., coronary endothelium (95)), it is generally recognized that the inflammatory response

to the very intense exercise attenuates with continuation in the exercise program (714).

Nonetheless, the stress for the individual patient can be overwhelming due to the leg pain.

This can be counterproductive, as there can be intolerable discomfort that reduces

compliance with the exercise program. Rather, placing emphasis on tempering the intensity

of the training bouts by, for example, walking only until the onset of pain could result in

more successful physical activity. While this may not provide for an optimal stimulus for

training adaptations, it can foster greater success in the exercise program. Further, even

modest intensity training can enhance exercise performance. This improvement in walking

performance can permit extended walking which can in turn impart greater benefit. Thus,

while performing intense exercise, that may provide an optimal training stimulus and

outcome, is desirable for patients with PAD, a more tempered intensity of walking may be

the best, since some benefit is derived and success with the exercise program may be

superior. In time, an increase in the intensity of exercise may be better tolerated, as the

patient’s capacity for walking improves.

The duration of exercise performed each day is also an important determinant of the training

outcome. For example, over time the muscle adaptation of an increase in mitochondrial

content reaches its asymptote with exercise bout durations of ~20 -60 min, depending upon

the intensity of exercise (217). In PAD patients, walking for 30 min or greater duration per

session results in greater increases in exercise tolerance than walking for less that 30 min per

session (290). Since patients with PAD have a limited ability to walk continuously (e.g., ~5–

12 min), they must rest to permit the pain to abate. Thus, the means to extend the walking

duration has been to perform repeated walking bouts, separated by sufficient rest periods.

This makes it possible to achieve at least 30 min of exercise, the desired duration that is

often prescribed. As exercise tolerance improves, some PAD patients increase their total

walking time or sometimes introduce two walking periods, morning and afternoon.

3.3. Training program: exercise frequency and program duration

It is generally recognized that physical activity at least three times per week is essential to

realize the benefits of a training program. This should be considered a minimum, as patients
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that exercised three or more times per week exhibited improvements in walking tolerance far

greater than those patients who exercised less than three times per week (290). It is likely

that benefits, other than simply increased walking performance, can be achieved with an

exercise frequency greater than three times per week. For example, the activity-induced

benefit of improved glucose regulation, which is needed by inactive people, is an exercise

adaptation that is relatively short lived, lost within 48 h following an exercise bout (757).

Thus, the improved insulin responsiveness would be lost with long intervals between daily

exercise sessions. Thus, exercise programs with exercise frequency approaching five days

per week are highly advisable.

The duration of the exercise program is also an important determinant for a successful

outcome. An improvement in exercise tolerance can be observed within 3 months after

initiating the exercise prescription. However, involvement in exercise programs greater than

six months proved greater improvements in exercise tolerance than those programs that were

less than six months. Indeed, length of the training program was the second most important

determinant of outcome, with 22% to 28% of the variance of improved walking, depending

on the time to the onset of pain or the maximal pain tolerance (290). Thus, patients who

participate in an exercise program should view their involvement as long term, with benefits

clearly realized in 6 months with continued improvement by 12 months. Further, they should

view their exercise prescription as a lifestyle pattern whose participation would sustain their

enhanced mobility.

3.4 Training versus interventional therapytheray (endovascular angioplasty or surgery)

There have been a number of randomized control trials to evaluate the merits of exercise

therapy compared to surgical reconstruction and endovascular therapies (percutaneous

transluminal angioplasty: PTA) (178, 298, 557, 593, 646, 710, 711, 880), including a

combination of both PTA plus exercise therapy (316, 505, 557, 593). These have been

nicely summarized in reports by META analyses (11, 154, 998) and reviews (267, 985). In

general, these trials indicate that, in successful outcomes, surgical and endovascular

interventions in patients with PAD lead to improvements in distal blood flow (557), distal

perfusion pressure and thereby ABI (178, 393, 505), no change (593) or improvements (646)

in Quality of Life (QoL) indices, and increases in walking performance (298, 316, 393, 505,

557, 593, 646, 668, 710, 880, 991, 992) but not always (178). While these benefits are quite

demonstrable in the early months following treatment, the prolongation of these effects have

been less than optimal (689, 880), especially if there is early failure of the procedure (e.g.,

graft) (768), and the long term outlook has been guarded (728), likely owing to the complex

and progressive nature of the disease. However, this pattern has not always been seen, as

significant longer-term (up to 2 years) benefits can be realized by PTA therapy (710, 991).

This variable pattern of response contributes, in part, to mixed conclusions when compared

to exercise therapy. For example, some studies conclude that surgery and PTA provide a

better outcome as compared to exercise therapy (298, 393, 557, 880), whereas others

conclude that supervised exercise prescription is better than PTA (178, 646, 710).

Comparisons of effects are further obfuscated by studies that have not utilized supervised

exercise prescription but have only provided advice on the benefits of exercise to the

patients (666, 668, 991, 992). It is well establish that supervised exercise prescription leads

to significantly greater improvements in walking performance, as compared with non-

supervised exercise programs (69). Thus, these trials with an intent-to-treat for exercise

prescription do not likely provide the power to assess the comparison to exercise

prescription. There has even been an assessment of the costs of PTA vs supervised exercise

prescription, showing no difference in outcome measures (QoL, performance), but at a

higher cost for PTA (879).
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The improved walking performance with exercise prescription typically persists as long as

participation in the exercise program continues. On the other hand, any loss in clinical

benefit from vascular interventions over time would undermine the comparison to exercise

prescription. What seems clear, however, is that PTA, in combination with supervised

exercise prescription, results in the greatest benefit to the patient (316, 505, 557, 593). While

vascular reconstruction and PTA procedures and supervised exercise prescription can both

impart clinical benefit to the PAD patient, it is presently not possible to provide a definitive

conclusion as which may be superior, owing to the limited number of total patients enrolled

in the published studies to date. Thus, there has been a call for larger, more encompassing

clinical trails to be conducted to provide a more definitive assessment (10).

4. Improved Quality of Life with Exercise Prescription

Although indices of quality of life vary by the focus of the questionnaire, there is general

consensus that patients with PAD exhibit deficits in numerous quality of life parameters.

These are most easily identified as those domains related to physical health, level of

independence, pain and discomfort, energy and fatigue, mobility and activities of daily

living (90). Thus, patients with PAD exhibit substantial impairment, often related to the

severity of disease, in: physical index, including mobility, recreation, and work deficits;

body care; sleep and rest; psychosocial index, social interactions; and even a small impact

on depression (326, 881, 900). The dominance of reduced quality of life index based

primarily upon physical condition, with the resultant impact that can have on mobility,

leisure time activities, level of independence, fatigue, potential social interactions, raises the

expectation that improved activity tolerance induced by exercise training can have a major

influence on the overall quality of life of the patients with PAD. Indeed, participation in an

exercise program establishes significant improvement in the overall health related quality of

life (481).

5. Improved Inflammatory/Hemostatic Function with Training

It is well recognized that risks of cardiovascular diseases are greater in the presence of

abnormal inflammatory/hemostatic biomarkers (637, 657), including those related to: a)

inflammation: elevations in circulating monocyte chemotractant protein-1 (MCP-1),

interlukin-6, C-reactive protein (CPR), soluble forms of vascular cell adhesion molecule-1

(sVCAM-1) and intracellular adhesion molecule-1 (sICAM-1); and b) coagulation and

fibrinolysis: enhanced coagulation, platelet aggregation, and increased plasma fibrinogen,

tissue plasminogen activator (tPA), and plasminogen activator-inhibitor-1 (PAI-1)

concentrations. While not all of these parameters have been measured in any single study,

each one is related to enhanced risk of cardiovascular disease. Since PAD is a general

atherosclerotic/inflammatory disease, with co-morbidities of cardiac and cerebrovascular

disease, there is also strong evidence that these biomarkers provide insight into the risks of

PAD (94, 603). Inflammatory markers such as MCP-1 and IL-6 are significantly associated

with the extent of atherosclerosis, as assessed by angiographic score, and the maximum

treadmill walking distance in patients with PAD (667). In addition to the risk prediction of

PAD (348), elevated MCP-1, D-dimer (fibrin degradation product), CRP, IL-6, sVCAM-1,

and sICAM-1, are associated with poorer 6-min walk performance (599, 602). Further,

platelet aggregation and sensitivity for platelet activation, which could portend to unwanted

thromboembolic events, inversely correlate with the ABI (869). These conditions raise the

potential to accelerate the atherosclerotic and hemostatic processes, which could exacerbate

the condition of the patients with PAD. Thus, a number of these parameters have been

proposed as useful biomarkers of PAD and its severity (603).
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There is a seeming paradox in the circulating inflammatory markers, observed following an

acute bout of exercise, and the inflammatory state of the individual following repeated bouts

of exercise, as observed with participation in an exercise training program. On one hand, an

acute bout of prolonged strenuous exercise can increase some inflammatory markers, even

in healthy young athletes, while at the same time participation in an exercise training

program provides a long-term ‘anti-inflammatory’ effect (475). This acute response in

healthy individuals typically requires prolonged strenuous exercise, as it may or may not be

observed in less demanding exercise. Thus, it is generally believed that the intensity of

exercise, and its resultant stress, is an important determinant of this acute phase response

(24, 475). The situation with patients with peripheral arterial disease is complicated because

their exercise tolerance is so limited and by the potential of an ischemia/reperfusion

response that can occur in the legs when exercise is performed to the onset of pain and

certainly when continued and ultimately limited by claudicant pain. Thus, even at rather

slow walking conditions, that are nonetheless strenuous for patients with PAD, it has been

repeatedly observed that inflammatory biomarkers are elevated in the serum following

exercise to claudication or to the limit of pain tolerance (24, 93, 225, 488, 655, 929, 930,

943, 1003). It is probable that ischemia/reperfusion within the active muscle contributes

significantly to this response. Neumann et al (655) exercised a group of patients with

unilateral PAD to the time of pain limitation and observed an increase in neutrophil count

and neutrophil activation in the venous blood from the affected limb with exercise,

compared to the contralateral limb. Similarly, Nawaz et al., (652) observed increases in

markers of neutrophil activation with leg exercise, but not arm exercise, in patients with

claudication. Neutrophil activation, which may be related to the elevated IL-8 (488), could

contribute to the increase in ROS, that is typically observed in these patients (67, 930, 943).

In accordance with these global indicators of muscle oxidative stress, capillary swelling

within the microvasculature of the ischemic muscle is more pronounced and leukocyte

adherence to venules is augmented in rodent muscles activated by electrical stimulation

(381, 427). While the capillary swelling and leukocyte adherence are seen as negative

effects (i.e. capillary blockage and reduced distribution of flow), it is clear that, overall,

electrical stimulation enhances recovery of muscle function. Thus, additional positive effects

of the muscle activation, which may include improved arteriolar dilatation and angiogenesis,

overcome any deleterious effects of the enhanced inflammatory response. However, the

extent of activity must be low, as more strenuous muscle activity is associated with

aggravated muscle injury without an enhancement of muscle blood flow recovery (424).

These acute responses to demanding exercise could exacerbate the inflammatory risk profile

that already exists in patients with PAD and potentially contribute to endothelial

dysfunction, progression of atherosclerosis, and thromboembolic events. Thus, there has

been some discussion on the advisability of promoting exercise in patients with PAD (930).

However, as discussed in the next paragraph, chronic physical activity can produce anti-

inflammatory effects (475, 705, 706, 714, 930).

It is generally recognized that physically active, as compared to sedentary older adults,

exhibit an enhanced immunity (857). There is a well characterized inverse relationship

between markers of inflammation and the level of physical activity or aerobic capacity of

individuals (63). This relationship is observed, independent of obesity, a major contribution

to chronic inflammatory state. Indeed, the reduction in inflammatory/hemostatic markers

associated with higher levels of physical activity, accounted for a major portion of the

reduced risk of cardiovascular disease in these individuals (637). This inverse relationship

implies that repeated bouts of exercise may have a direct effect on the expression of

inflammatory markers. A number of studies have not observed modifications in

inflammatory markers in healthy subjects with training, possibly related to a modest exercise

program (652). However, other studies observed reductions not only in healthy subjects, but

especially when the markers are initially elevated, as for example in patients with chronic
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disease (63, 929, 1004). Exercise training can lessen the magnitude of the acute phase

response (e.g., neutrophil activation, free radical production and lipid peroxidation) to an

exercise bout (67, 101, 943). The enhanced anti-oxidant capacity, induced within the active

muscle and vasculature (518), should provide a greater buffer to free radical production and

contribute to these observed training effects. In addition, the advancing work of BK

Pedersen and coworkers has provided significant insight into the integrated processes

brought about by exercise training. Muscle can release copious amounts of IL-6 during

exercise (705, 706), which is in turn anti-inflammatory by fostering an increase in anti-

inflammatory cytokines (IL-1receptor antagonists and IL-10) and a reduction in TNFα and

IL-1β (705, 706, 714). Thus, a compelling case is made that exercise is anti-inflammatory to

low-grade inflammation. This benefit of chronic exercise can also be realized by patients

with cardiovascular disease (977, 1004), including PAD (929, 930). Since inflammatory/

hemostatic markers are predictive of disease severity, morbidity and mortality (94, 603), any

reduction of these makers should provide a benefit to these patients and could contribute to

the realized improvement in PAD patients that participate in an exercise program.

6. Training Improves Walking Efficiency in PAD Patients During Extended

Walking

Altered gait caused by PAD has been most well characterized in patients with intermittent

claudication, because it is relatively easy to identify when the limits of activity are

approached by the onset of pain. These patients exhibit an altered gait (986) that can be

characterized by temporal-spatial gait parameters and gait kinematics (183) especially at the

ankle (136). The altered gait is seen prior to, but exacerbated by pain onset (501), and

evident in both limbs, even with unilateral PAD (502, 1011). Thus, the gait pattern of

claudicants may include some entrainment based upon history, since it can be evident before

flow limits become manifest. However, pain slows walking velocity and increases gait

asymmetry (287). While there is a shorted gait that develops in the elderly, possibly related

to vibrotactile sensitivity (206), the altered gait in PAD patients can be viewed as a

consequence of the limited blood flow experienced during exercise. This has been nicely

demonstrated by the induction of a gait change during exercise with cuff occlusion of the

legs, even in normal healthy young subjects (647). There has been the suggestion to evaluate

PAD patients using a cycle ergometer to avoid the gait problems during treadmill walking.

However, the outcome of limited performance and pain onset was similar to that achieved

during walking, although a higher cardiopulmonary response could be elicited (940).

Treatment of PAD patients with pentoxifylline or cilostazol, which improves exercise

tolerance, does not improve gait abnormalities (429, 430). Thus, it appears that gait

abnormality is an inherent feature in the sequelae of PAD.

The altered gait mechanics of claudicants would be expected to increase the energy costs of

walking, especially after the onset of pain, since there is the marked potential for a modified

muscle recruitment that could add inefficiency. This would be particularly seen with the

utilization of an inordinate muscle mass or if relatively high energy-cost motor units were to

become recruited, to support some fatigue in relatively low energy-cost motor units.

Certainly a shortened stride length increases the energy cost of walking, when the velocity

of walking is kept constant (409). However, claudicants typically slow their velocity of

walking at the onset of pain (287) and this is expected to reduce slightly the energy costs of

walking (39). Thus, it is presently unclear whether the energy cost of walking is inherently

greater (i.e., at the onset of steady state oxygen consumption 3–5 min after the start of

submaximal walking), simply due to an altered gait. Steady state oxygen cost of walking in

PAD patients, measured near the onset of exercise, has been found to decrease slightly (378)

or remain unchanged (380, 1005) after exercise training. However, gait abnormalities were
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not improved by 12 months of exercise training, even though there was an enhanced walking

performance and a delay in the onset of pain (183).

There can be a marked consequence of PAD on the energy cost of walking, however, if the

patient attempts an extended duration of walking at a rate that is challenging but within their

capability. It is well recognized in healthy individuals that oxygen consumption increases

gradually with time when the exercise intensity is fairly demanding. Muscle fatigue of some

motor units is a requisite (123) and the increase cost of exercise is thought to be due to the

recruitment of relatively high energy-cost of contraction, fast-twitch motor units to support

the relatively low energy-cost of contraction, slow-twitch motor units that presumably have

fatigued somewhat (955). Since even a modest walking pace is rather challenging for a

person with PAD, the potential for fatigue of the motor units initially recruited during

exercise becomes exaggerated, compared to healthy individuals. Womack and colleagues

(1005) performed an interesting study in which PAD patients walked at 2 mph for nearly 20

min or until fatigue. This challenging effort was followed by a significant increase in oxygen

consumption (~10%) at the end of exercise, as compared to near the beginning of exercise

(at 3 min). Thus, the exercise effort was performed in a less efficient manner over time. It is

easy to imagine how this increase in oxygen consumption could place the distal muscle at

even greater risk of ischemia and lead to the cessation of activity. However, following a

prolonged exercise training program of 4 months there was no increase in oxygen

consumption over the exercise time during the same walking task, whereas the initial energy

cost was unchanged from before exercise training (1005). Thus, the patients performed the

prolonged exercise bout more efficiently after training than before. Since these patients

realized a significant increase in maximal oxygen consumption (~12%) and a markedly

improvement in endurance time (130% increase to the onset of pain, and 67% increase to

maximal duration), it is likely that muscle fatigue was less profound after training, as

compared to before training. This could lead to a lesser need to recruit additional motor units

as time progressed, thereby contributing to the unchanged oxygen consumption. Thus,

exercise training can meaningfully improve the physiological responses of muscle function

in patients with PAD.

7. Improved Endothelial-mediated Vessel Dilation with Training

Dilation of the large conduit arteries occurs with muscle activity and serves to reduce the

upstream resistance to optimally perfuse active muscle. It develops in response to a

reduction in the downstream resistance within the active muscle, resulting in an increase in

flow through the conduit artery. Absence of this dilatation can impede flow to the active

muscles. Flow-mediated dilation (FMD), observed experimentally as the increase in

diameter of conduit arteries established by ischemia-reperfusion, is thought to primarily

reflect endothelial vasodilatation (518). This measure of endothelial ‘health’, typically

obtained from the brachial or femoral artery, has become a useful index of cardiovascular

health, as there is a significant reduction in FMD in patients with chronic cardiovascular

diseases and it is an independent predictor of increased risk of coronary artery disease (307).

Similarly, a low FMD is an independent predictor of PAD (95, 96). Indeed, most patients

with PAD exhibit a significantly lower FMD, as compared to healthy individuals. This could

contribute to the slower rate of perfusion (447), altered Hb saturation kinetics (58, 289), and

metabolic adjustments within the active muscle (317) observed in patients with PAD. The

reduced FMD is associated with both the severity and extent of atherosclerosis in the lower

limb arteries of PAD patients and predicts a worsened health outcome (95). Further, FMD

deficits, in a relatively small group of PAD patients, were related to the presence of the co-

morbidity, coronary artery disease, as evaluated by myocardial perfusion imaging (712).

This reduction in FMD in patients with PAD is likely related to an inadequate bioavailability

of nitric oxide, a potent endothelial-mediated dilator of arteries. Indirect evidence comes
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from the experiment of Boger and colleagues (84) who administered arginine, a precursor of

nitric oxide, to PAD patients. Walking time, measured to the onset of pain and the maximum

tolerated, increased along with an improved FMD. However, it is possible that other dilatory

processes are important, since administration of prostaglandin E1, which is expected to lead

to relaxation of vascular smooth muscle, also improved walking tolerance of these same

PAD patients, although it did not change FMD (84). In addition, an increase in sympathetic

output, thought to be associated with PAD (cf., Section 15 Cardiovascular Control in
Patients with PAD), could be a contributor to the impaired FMD, acting via an exaggerated

α-sympathetic stimulation (383). The increase in the potent vasoconstrictor endothelin-1,

which occurs in the circulation following exercise in PAD patients (576), could also

confound the dilatory response during FMD. Interestingly, PAD patients who exercise to the

maximal limit of tolerance exhibit a further reduction in FMD (23, 95, 469, 856) that is

relatively short-lived with a recovery over 4 h (469). An extreme effort to maximum

exercise tolerance is apparently needed, as submaximal exercise does not alter FMD (856).

This distinction is thought to be due to the accompanying increase in reactive oxygen

species (ROS), observed during maximal exercise (856), which can reduce nitric oxide

bioavailability. Indeed, experimentally providing the antioxidant vitamin C eliminated the

exercise-induced reduction in FMD (856). Thus, considerable evidence indicates that there

is a dysfunction in flow-mediated dilation in the arteries of patients with PAD that likely

contributes to functional limitations in muscle performance.

Exercise training can ameliorate the reduced FMD observed in patients with PAD.

Supervised training programs improved exercise tolerance (time to pain onset and maximal

effort) and FMD in the brachial artery (16, 23, 92); however, an unsupervised activity

program was not effective (16), probably related to lack of compliance. The improvement in

time to the onset of pain, established by exercise training, was correlated with the increase in

plasma nitrite flux, an index of nitric oxide metabolism (16). There is a general association

between higher levels of physical activity and the FMD responsiveness in a selected

population of patients with PAD, even when adjusting for age, sex, race, ABI,

cardiovascular risk factors and other potential confounders (704). This is similar to the

general improvement in vasoresponsiveness observed with exercise training, even in healthy

subjects (518). Thus, an improvement in vasoresponsiveness of the supply arteries likely

contributes to the improvement in muscle perfusion, thereby enhancing walking tolerance in

PAD patients who participate in an exercise training program.

8. Training Adaptations Within the Active Muscle: Increased Capillarity

One of the hallmark adaptations induced within active skeletal muscle by endurance-type

exercise training, is an increase in capillarity of the active muscle brought about by the

process of angiogenesis (21, 100, 441). This increase in capillary density should enhance the

nutritional blood flow within the contracting muscle by increasing red blood cell transit time

to exchange oxygen, by shortening the diffusion path length, and by increasing the capillary

surface area for diffusion. While it is apparent that the shortened average diffusion path

length for oxygen should provide an advantage, Hepple and co-workers (371) provided

evidence that the greater capillarity imparts an advantage due to an enhanced capillary-to-

tissue surface area, which is thought to be a major site of resistance for oxygen diffusion

(411). Regardless of the precise physiological basis, an enhanced muscle capillarity is

expected to result in a greater oxygen extraction and muscle performance (245, 1023, 1024).

Such adaptations with training could be most significant in patients with PAD where

optimizing utilization of the limited oxygen delivery to the distal muscles would be an

advantage, as illustrated year ago by Zetterquist (1036) and Sorlie and Myhre (877). Even in

the absence of training, Askew and co-workers (38) found a correlation between the area of

high-oxidative, high-capillarity fibers in the calf muscle, indicative of well-functioning
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mitochondria (415), and exercise tolerance in patients with peripheral arterial disease. A

reduced capillary density is found in the gastrocnemius muscle of PAD patients who

experience intermittent claudication, and in this population, capillary density correlates

significantly with several indicators of exercise tolerance such as peak oxygen consumption,

peak walking time and claudication onset time (763). Furthermore, an exercise training

program can induce increases in capillary density within gastrocnemius muscle of PAD

patients, which precedes improvements in peak oxygen consumption (221). Thus, it is likely

that an enhanced muscle capillarity, typical of endurance-type exercise training in normal

individuals, is also an important contributor to the improvement of exercise tolerance in

patients with PAD. As such, it is important to better understand the process of angiogenesis

and its control.

8.1. Skeletal Muscle Capillary Morphology

The capillaries within skeletal muscle are composed of a layer of thin endothelial cells,

having an average cell thickness 0.3 μm excepting at the nuclear region. These cells are

tightly opposed to each other, often with overlapping or interwoven junctional regions. The

endothelial cells are surrounded on the abluminal side by a continuous basement membrane,

composed predominantly of the extracellular matrix proteins type IV collagen and laminin.

Pericytes, which are located within the basement membrane, form processes that extend

around the capillary and, at variable regions, extend directly through the basement

membrane inner leaflet to form tight junctions with the abluminal endothelial cell surface

(389). The advential region surrounding the basement membrane is composed

predominantly of fibrillar interstitial collagens, as well as elastin fibers and some amorphous

matrix materials. Perivascular cells (mast cells, macrophages, fibroblasts) also are localized

intermittently within this matrix (106).

Capillaries within skeletal muscle are oriented preferentially in parallel with muscle fibers.

Krogh’s pioneering studies of oxygen transport in skeletal muscle (504), whose model of

oxygen diffusion often is referred to as the “Krogh cylinder”, resulted in the widely accepted

portrayal of skeletal capillaries as straight unbranched structures. However, detailed

morphological analyses of skeletal muscle microcirculation using corrosion casting and

scanning electron microscopy reveals a highly complex capillary geometry, characterized by

the presence of anastamoses formed by lateral branching of capillaries, and a high degree of

capillary tortuosity (451, 486, 587). Furthermore, geometry of the capillary network is not

static, because capillary orientation (degree of tortuosity) varies substantially with sarcomere

length, providing an indication that skeletal muscle capillaries are subjected routinely to

mechanical perturbations. Capillaries are tethered to the surrounding tissue by extracellular

matrix. These tethers serve to transmit load to the abluminal capillary wall when the muscle

fibers change orientation (i.e. during contraction, relaxation or lengthening)(237, 318).

8.2. Assessment of Capillarity in Muscle

Inherent in the capacity to quantify changes in capillary number is the ability to accurately

detect all capillaries within the muscle. Early studies of capillary number in muscle utilized

India ink-infusion to identify capillaries. However, this technique identified only the

perfused vessels, and thus, would lead to under-representation of the anatomical number of

capillaries if the perfusion pressure was not adequate. Direct staining of the endothelium

utilizing a periodic acid Schiff reaction, or utilizing colorimetric substrates for alkaline

phosphatase (an enzyme that is enriched within capillary endothelium of many animals)

facilitates the detection of all capillaries within a muscle. However, alkaline phosphatase is

present in all vessel types in humans, thus cannot be used reliably to detect capillaries in

human tissue samples. Some types of plant-derived lectin bind with high affinity to

glycoproteins on the surface of endothelial cells, and thus, are useful tools for detection of
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capillaries. However, lectin affinities vary between species; for instance, Griffonia

simplicifolia agluttinin I-B4 (which has affinity for α-d-galactosyl and N-acetyl

galactosaminyl residues) interacts strongly with glycoproteins on the surface of rodent

skeletal muscle endothelial cells, but only with human endothelial cells from subjects having

the B blood group (342, 509, 713). Ulex europaeus lectin interacts strongly only with

endothelial cells of human origin (18, 410).

The second issue of concern regards the presentation of capillary number. Data commonly

are reported as capillary density (number of capillaries per mm2 of tissue), capillaries around

a muscle fiber, capillary to muscle fiber ratio, or capillary to fiber perimeter ratio (586).

Capillary density may provide a realistic value of the oxygen distribution to a certain size

region. However, capillary density is dependent on myofiber size, and thus changes in

capillary density do not necessarily correspond to events of capillary growth or rarefaction.

Measurements of capillary density also vary dependent on the fixation technique utilized, as

variable levels of tissue shrinkage will skew the density values. Capillary to fiber ratio, by

normalizing total number of capillaries to the number of whole myofibers within a field of

view, avoids the effects of changes in myofiber size, or tissue shrinkage, and can more

accurately represent changes in the structure of the capillary network. However, an implicit

limitation in presentation of this normalized value is that information about capillary spacing

is lacking.

By combining detection of alkaline phosphatase (for capillaries) and cytochrome oxidase (to

distinguish myofiber type), Romanul (773) made the seminal observation that the density of

capillaries around a muscle fiber is proportional to the oxidative activity of the fiber. This

result fuelled discussion of the concept that structural adaptations generate a non-uniform

capillary network within muscle, specialized to ensure matching of oxygen delivery with

cellular metabolic demand. However, modeling of oxygen delivery in a way that takes into

account the non-homogeneous layout of the capillary network remains a challenge (229).

8.3. Early observations of capillary remodeling in skeletal muscle of animals and humans

The earliest studies that indicated exercise-induced increases in muscle capillary number,

conducted by Vanotti and Magiday and Petren and colleagues in the 1930’s, relied on

detection of capillaries by dye infusion or by the presence of red blood cells (as reviewed in

(329, 422)) and thus their results may have reflected differences in flow to the muscle rather

than an anatomical difference in capillary number. Similarly, Carrow et al (131) reported an

increase in capillary number relative to muscle fiber number following 35 days of either

voluntary or forced exercise, observing also that the greatest increase in capillary number

was detected in association with white, rather than red, muscle fiber. Their detection of

capillaries utilized infusion of India ink, and thus, they concluded that their data provided

evidence of the opening of precapillary sphincters to allow more flow to specific areas of the

muscle.

Myrhage and Hudlicka, using a combination of histological and “real time” intravital

recordings, provided concrete evidence of capillary angiogenesis (i.e. new capillary

sprouting) in response to increased muscle activity induced by electrical stimulation (648).

The type of sprouting they described concurred with descriptions of capillary growth made

from other model systems (41, 159), suggesting the existence of a conserved process.

Adolfsson (8) showed that endurance training (swimming) of rats could induce significant

increases in capillary to fiber number. The pattern of capillary growth varies in association

with the type of motor unit recruitment. Mai and colleagues observed that endurance

training of guinea pigs evoked more capillary growth around oxidative muscle fibers (569).

Conversely, the greatest amount of capillary growth in rat muscle activated by electrical
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stimulation was observed to occur around glycolytic muscle fibers (45), fiber consistent with

recruitment of these muscle fibers by neural stimulation.

Examining the musculature of humans, Hermansen and colleagues (100, 373) reported a

correlation between level of endurance training (as indicated by VO2 max) and capillary to

muscle fiber ratio by cross sectional comparison of untrained and trained individuals. In

concordance with animal studies, Andersen and Henriksson (21) first showed that a training

program induced significant increases in capillary number in human skeletal muscle,

postulating growth of new capillaries in response to the exercise stimulus. Ingjer (442)

replicated and extended this observation by reporting that the exercise-induced change in

capillary number varied relative to the associated muscle fiber type, with the greatest

increases occurring around type I fibers, and the smallest response associated with type IIb

fibers (442).

8.4. Sprouting Angiogenesis

The conventional process of angiogenesis is understood to occur via a series of well-

orchestrated cellular events (as reviewed in (128, 265, 708)). Angiogenic stimuli activate the

endothelium, and through a cascade of intracellular signals, first cause increased endothelial

cell permeability through dissolution of adherens junctions. Endothelial cell proliferation

occurs early in the angiogenesis process, and continues to occur in specific locations as the

new capillary sprout elongates. Proteolysis of basement membrane matrix components is

necessary to promote endothelial sprout invasion into the surrounding interstitial matrix.

Cellular migration is triggered and the sprouting tip of the endothelial cell proceeds into the

interstitium, utilizing filopodia/or lamellipodia extensions to explore the interstitial matrix.

Lumen formation occurs as the sprout forms a multi-cell structure. The new capillary

channel forms an anastamosis with a pre-existing capillary, creating a new patent capillary.

Ultimately, the nascent capillary is stabilized through the construction of basement

membrane matrix proteins, re-establishment of adherens junctions and cessation of

endothelial cell activation. Each of these stages is described below in greater detail.

8.4.1. Increased capillary permeability—Angiogenic factors commonly induce

alterations in endothelial cell permeability. This occurs via re-organization of the adherens

junctions, which form the major permeability barrier throughout the majority of the vascular

system (as reviewed in (199, 200)). The adherens junction is formed by a dimer of Vascular

Endothelial (VE-)-cadherin proteins that interact with each other through extracellular

domains at sites of cell-cell contact. The cytoplasmic domain of VE-cadherin links with

adaptor proteins (p120, β-catenin and plakoglobin), which in turn form a bridge between

VE-cadherin and the anchoring actin cytoskeleton, through association with actin-binding

proteins such as α-actinin. Tyrosine phosphorylation of VE-cadherin, p120 and β-catenin

may occur in response to growth factor stimulation. This phosphorylation likely is mediated

by src kinase, though inhibition of specific phosphatases such as VE-protein tyrosine

phosphatase will promote similar end-effects. Phosphorylation modifies protein-protein

affinities, destabilizing the binding between VE-cadherin proteins as well as between VE-

cadherin-catenin complexes. As a result, the adherens junction loosens. widening the gap

between adjacent endothelial cells, which promotes enhanced filtration of fluids and

macromolecules from plasma to the interstitial space. Permeability also may be regulated by

enhanced clathrin-dependent internalization of VE-cadherinVEcadherin or by proteolytic

cleavage of the extracellular domain of VE-cadherin. It is postulated that these changes in

permeability assist in promoting subsequent events in the angiogenic cascade. Plasma

components that filter into the interstitial matrix (i.e. plasminogen, fibrinogen) may activate

adhesion proteins and growth factor receptors on the cell surface, which further stimulate the

endothelial cell proliferative and migratory phenotype. Furthermore, intracellular signals
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triggered by the changes to the adherens junction promote cell proliferation, migration and

invasion. While it is clear that substantive increases in permeability occur in wound healing

and tumor angiogenesis, the extent of change in capillary permeability that occurs during

activity induced angiogenesis has not been determined.

8.4.2. Proliferation of endothelial cells—Under normal conditions within the adult,

proliferation of capillary endothelial cells is extremely limited. The estimated capillary

endothelial cell half-life is 1000 days (244). However, endothelial cell proliferation does

occur within capillaries that have been exposed to an angiogenic stimulus. Switching from a

quiescent to a proliferative phenotype requires cellular transition from Go to G1 of the cell

cycle, which often is stimulated by PI3K/Akt and ras/MAPK signal pathways. MAPK

(ERK1/2, JNK1/2) transmit the proliferative signals associated with growth factor

stimulation of endothelial cells (691). MAPK, through activation of transcription factors

such as c-fos, c-jun and c-myc, promote simultaneous upregulation of cyclins and cyclin

dependent kinases and downregulation of inhibitory proteins such as p27. Electrical

stimulation of muscle (10 Hz, 8 hrs per day) induces significant increases in endothelial cell

proliferation within 3 days, as indicated directly by BrdU labeling or indirectly by

immunodetection of markers of cell cycle progression such as proliferating cell nuclear

antigen (PCNA) or Ki-67 (228, 420).

8.4.3. Proteolysis of basement membrane and interstitial matrix—The basement

membrane is an uninterrupted layer of matrix proteins surrounding the capillary. Integrin-

mediated adhesion of endothelial cells to these matrix components contributes structurally to

capillary integrity and biochemically, via activation of intracellular survival signal

pathways. Deletion or mutation of basement membrane proteins, such as laminin α4, causes

development of weak, leaky vessels, resulting in embryonic lethality (926). During the

process of angiogenesis, the production, secretion and activation of enzymes facilitate the

cleavage of adhesion proteins and matrix proteins, enabling endothelial cells to be released

from the stabilizing influence of the basement membrane (472). Sprouts protrude through

breaks in the extracellular matrix (334, 341). It has been postulated that sprouts occur most

frequently in the locations that are closest to perivascular cells (pericytes, fibroblasts) (227).

While the process of angiogenesis in tumors or wound healing appears to involve complete

dissolution of the substantial regions of basement membrane, sprouting of skeletal muscle

capillaries involves circumspect proteolysis that is limited to the tip region of the sprout,

while the basement membrane remains intact throughout the remainder of the capillary

(1045).

Enzymes associated with basement membrane proteolysis include matrix metalloproteinases

(MMPs) and plasminogen activators (PA) (333, 709). Chronic electrical stimulation or

muscle overload induces expression of MMP-2 and MT1-MMP in endothelial cells (334,

762). MMPs also are produced by perivascular cells and myocytes. Inhibition of MMP

activity is sufficient to block the angiogenic response to chronic electrical stimulation,

although the endothelial cell proliferation response was not affected (334). This finding

suggests that proteolysis of matrix bound growth factors is not required to initiate the

process of endothelial cell proliferation, but that proteolysis is required to permit sprout

formation.

8.4.4. Migration and extension of the sprout—Extension of the proximal end of the

sprout is led by the “tip” cells which form long filopodia and are enriched with receptors for

Vascular Endothelial Growth Factor A (VEGFA) and other growth factors. These filopodia

are highly dynamic, and may undergo either rapid formation or regression as they “feel” for

directional cues. Deposition of VEGFA165 into the matrix appears to play a predominant

role in providing guidance cues for the migrating tip cell. In the retina of animals expressing
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only the soluble form, VEGF120, filopodia formation occurs less frequently and in a

disorganized way, with loss of polarity (300). Tip cells have a differential pattern of gene

expression compared to stalk cells. Tip cells are characterized by enrichment in VEGFR2

and VEGFR3, PDGFB, Unc5b and, dll4 and jagged (7, 796). Phenotypically, these cells are

migratory rather than proliferative, forming more extensive filopodia/lamellipodia than can

be observed on stalk cells (400). This differential phenotype is in part attained through dll4/

Notch signalling. Signals from dll4 (expressed on tip cells) activate Notch on adjacent stalk

cells, which represses their sprouting (366). Stalk cells express another Notch ligand,

Jagged1, which has only weak capacity to activate Notch. Therefore, Jagged1 competes with

dll4 for binding to Notch receptors on adjacent tip cells, effectively silences Notch signaling.

This reciprocal activation and inhibition of Notch helps to establish the tip cell selection

(71). Cells treated with dll4 show a reduced sensitivity to VEGFA, as evidenced by reduced

capacity to activate ERK1/2 in response to VEGF165 (345). This may be a result of Notch-

dependent downregulation of VEGFR2 (916) or its co-receptor neuropilin-1 (996) or by

upregulation of VEGFR1 (345). VEGFA itself induces the expression of dll4 in tip cells

(548, 892). Thus, cells in which extending filopodia encounter matrix-bound VEGFA165

will be stimulated to produce dll4, which will promote the maintenance of the tip cell

phenotype.

It is likely that the same guidance molecules are utilized for sprouting angiogenesis in the

majority of tissues. For instance, blockade of dll4 inhibits tumor growth because it promotes

deregulated formation of nonfunctional vessels (660, 758). However, an important issue to

consider in extrapolating the findings from models of sprouting in zebrafish or retina to

understanding sprouting in skeletal muscle is that of the role of tissue density in determining

permissive sprouting pathways. The myocytes create considerable spatial constraint that

limits the possible routes for sprouting (229). The tightly regulated spatial organization of

capillaries within the muscle suggests that new sprouts are directed in a non-random

process. The role of VEGF gradients and guidance molecules remain to be investigated in

this micro-environment.

8.4.5. Lumen formation and stabilization—The growing sprout must form a patent

lumen in order to establish a new functional flow pathway. The process by which a lumen

forms is not well established, though several potential mechanisms have been described

through combination of cell culture and electron microscopy observations (reviewed in:

(230, 444). Coalescence of intracellular vesicles is one mechanism by which lumena form.

This is substantiated by in vivo observations of “seamless” capillaries (i.e. growing sprouts

that are formed by a single endothelial cell). Sprouts formed by 2–3 co-migrating

endothelial cells also are observed, and these sprouts may form intercellular lumena. In both

cases, it appears likely that fusion of intracellular vesicles with the plasma membrane assists

in the progressive enlargement of the lumen. It also is feasible that both events may occur

within a single growing sprout, with the tip cell acting differently than those cells forming

the stalk of the sprout.

Integrins, particularly α2β1, are required for successful lumen formation in 3D cultured

endothelial cells (190). Ccm1, a gene product associated with cerebral cavernous

malformations, regulates lumen formation through activation of Rac1 GTPase (543). Ccm1

induces production of extracellular matrix proteins and activates the dll4/notch signal

pathway (1012). Ccm1 may contribute to stabilization of the newly formed sprout, through

inhibition of proliferation and migration while protecting cells from apoptosis via activation

of Akt (1012).
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8.5. Alternate forms of capillary angiogenesis: intussusception and luminal splitting

The concept of capillary growth without sprout formation was first proposed by Short (849),

who postulated that capillary growth in the lung occurred through the insertion of interstitial

tissue columns into the lumen of pre-existing vessels. Caduff et al (117) extended these

observations, noting that the tiny “holes” in plaster casts of the post natal rat lung were

actually tissue posts inserted into the lumen of the vessel. This form of angiogenesis was

termed intussusceptive microvascular growth, literally meaning that the growth occurred

with “in-itself”. Since then, intussusceptive microvascular growth has been described in a

variety of embryonic and adult tissues including the chick chorioallantoic membrane, the

myocardium, and tumors (109, 702, 960). Intussusceptive division of capillaries is thought

to occur in response to elevated hemodynamic forces. It is initiated by the inward protrusion

of perivascular cells, which pinches the capillary wall, causing the opposing walls of the

capillary to come into contact with each other, leading to the formation of new intercellular

junctions (571, 891). The endothelial bilayer then appears to be perforated by the interstitial

tissue, which creates a pillar surrounded by the endothelial cells. These cross-luminal pillars

are composed of cellular projections of myofibroblasts and/or pericytes, as well as collagen

fibrils and other matrix components (571).

Rigorous investigation of skeletal muscle capillary morphology by transmission electron

microscopy led to the description of an alternative mechanism of capillary network

expansion, through the luminal division or “splitting” of capillaries (228). In this process,

filopodial extensions are seen to protrude into the lumen rather than from the abluminal

surface. These filopodia often, but not exclusively, form at sites of cell-cell junctions. The

extending filopodia connect with the opposite surface of the capillary, forming a cellular

bridge across the lumen. This bridge continues to extend along the length of the lumen,

effectively creating two parallel flow channels (1046). The internal wall between the two

lumena remodels, which allows for physical separation of the channels and results in two

distinct capillaries. Capillary networks remodelled by this means are characterized by fewer

lateral branches, and a preferentially longitudinal orientation of the capillaries (228). This

process has been observed to occur only under conditions in which capillary blood flow is

elevated, indicating that it is a response to altered hemodynamics. It is postulated that this

process occurs as a means to facilitate self-regulation of shear stress within the

microcirculatory network (435). The addition of parallel flow paths will result in

redistribution of flow, and lower shear stress within individual capillaries. During luminal

splitting, endothelial cells exhibit indications of activation (cell thickening, increased

number of cytoplasmic vacuoles, irregular lumen surface). However, endothelial cell

proliferation is modest (228, 624). There is no upregulation of MMPs (762), and the

basement membrane remains intact throughout this process (1046).

It remains possible that luminal splitting and intussusception describe different aspects of

the same process, or they may be two distinct processes, both capable of remodeling the

microvascular network in response to changes in flow. Ultimately, capillary remodelling by

intussusception or by luminal splitting will generate two parallel capillaries from one initial

capillary. One key advantage of this type of network growth is that it conserves energy, as

there is little energy expended on cellular proliferation or migration.

Angiogenic stimuli are generally identified as metabolic, hypoxic, or mechanical, although

there can be considerable interaction among these factors. For example, metabolic demand,

typical of that that occurs in active muscle, requires cardiovascular adjustments to increase

blood flow (oxygen delivery) to maintain tissue oxygenation. However, even when

oxygenation of normal muscle is adequate for the metabolic demand, there is a reduction in

pO2 within the muscle (65, 66, 753, 754). This relatively low muscle pO2, however, is well

within the range to serve as an important signal for angiogenesis by the up-regulation of
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VEGF (651, 850), a powerful angiogenic regulator. This could contribute to the capillary

proliferation that occurs in the active muscles of normal individuals after exercise training

(cf., Section 8.3). If hypoxia is established (e.g., by inspiring 8% O2), the increases in VEGF

can be amplified (907). Similarly, a limited blood flow, as can occur in PAD, causes

difficulty in maintaining a sufficient pO2 of the muscle, if the metabolic demands of the

activity surpass that that can supported aerobically. Thus, inadequate blood flow, ischemia,

is expected to exacerbate the stimuli for angiogenesis (971). Hypoxemia would also

contribute, if there were attendant pulmonary dysfunction to reduce oxygen saturation or a

reduced inspired pO2 associated with altitude. Thus, exacerbating the decline in muscle pO2

can enhance the stimulus for angiogenesis, as well as alter metabolic and mechanical stimuli

that might normally occur with contractions. While we will separate these factors in the

discussion below, it is apparent that a low pO2 (hypoxia), metabolic factors, and mechanical

stress should be viewed as a comprehensive set of stimuli for angiogenesis.

8.6.1. Metabolic factors that induce angiogenesis—Metabolites produced in

exercising muscle are attractive to consider as potential inducers of angiogenesis because

they could directly couple the elevation in cellular metabolic activity with signals for

capillary growth (237). To address the impact of metabolic stress on skeletal muscle

adaptation to exercise in humans, researchers have utilized an exercise protocol conducted

under flow-restricted conditions, in which flow to the exercising leg is reduced by 15–20%

(81). Venous O2 saturation decreases and plasma lactate increases, indicative of a reduction

in oxygen availability (330, 896). Exercise training under these flow-restricted conditions

induces a greater angiogenic response than comparative exercise under non-restricted

conditions, indicated by increased labeling of proliferating cells (332) and enhanced

capillary to fiber number after 4 weeks (896).

Of the metabolites produced and released by exercising skeletal muscle, adenosine has

received the greatest attention as an angiogenic factor. Other metabolites such as lactate,

pyruvate, hydrogen or potassium ion provide excellent indicators of metabolic status, but

either have no direct effect or they exert a negative effect on endothelial cell angiogenic

behaviour or on the stimulated release of angiogenic factors from other cell types (41, 128,

265). As a result, discussion will be limited to the evidence for adenosine as an angiogenic

stimulus. Key to the hypothesis that adenosine mediates activity-induced angiogenesis is

whether levels of adenosine increase in sufficient quantities, and in an appropriate time

frame, within the active muscle. Extracellular levels of adenosine increase in the heart and

other tissues during exercise and tissue ischemia (6). Interstitial adenosine accumulates in

muscle during exercise, with the amount detected proportional to workload (363).

Extracellular adenosine is derived mainly from cellular release of adenosine triphosphate

(ATP). Extracellular ATP is converted rapidly on the endothelial surface to adenosine, first

through the enzymatic activity of the ecto-apyrase (CD39, which converts ATP to adenosine

monophosphate [AMP]) and then by the ecto-5′-nucleotidase (CD73, which converts AMP

to adenosine) (as reviewed in (549)). The affinity of 5′ nucleotidase for AMP increases

when pH decreases from 7.4 to 6.8, resulting in greater conversion of ATP to adenosine

(145). Multiple cellular sources of ATP/adenosine exist within skeletal muscle. Elevated

extracellular adenosine is detectable in cultures of primary rat skeletal muscle fibers

activated by electrical stimulation(361, 362, 562). Lactic acid and low intracellular pH both

are associated with elevated release of adenosine from skeletal muscle cells (50, 51).

Endothelial cells also release adenosine (207, 208). Furthermore, ATP is released from

transiting red blood cells when the cells are exposed to low oxygen tension (as reviewed by

(238)). Conversely, adenosine can be rapidly cleared from extracellular fluid through

passive or active uptake by nucleoside transporters. Equilibrative nucleoside transporter 1

and 2 (ENT1,2) are expressed at high levels on vascular endothelial cells while skeletal
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myocytes predominantly express ENT1,2,4 (549). Adenosine is degraded rapidly to inosine

by the action of the extracellular ecto-enzyme adenosine deaminase (240). Thus,

extracellular adenosine concentration is regulated not only by cellular production, but also

by the activity of ecto-enzymes and transporters.

In support of the role of adenosine as an angiogenic mediator, adenosine receptor blockers

interfere with vascular development in chick embryos (1047), and with neovascularization

associated with hind limb ischemia (792). Chronic infusion of adenosine leads to increases

capillary numbers in rabbit fast twitch skeletal muscle (334). Adenosine stimulates

endothelial cell proliferation (228, 609), which may involve production of VEGF (321).

Infusion of adenosine into muscle interstitium results in the enhanced interstitial VEGFA

protein levels (399). On the other hand, intra-arterial administration of adenosine in intact rat

skeletal muscle did not enhance VEGFA expression despite initiating a strong vasodilator

response (72). This may reflect the high levels of adenosine deaminase present on the

endothelial surface, which could prevent elevation of interstitial adenosine levels to induce

skeletal muscle VEGFA production. Thus, while adenosine has angiogenic properties, the

contribution of adenosine to exercise-induced angiogenesis requires further investigation.

8.6.2. Hypoxia induces angiogenesis—N. Ashton (36) first suggested that

“endothelial cells themselves are in some way directly sensitive to oxygen-multiplying at

low 02 levels, resting at normal 02, levels and dying at high 02 concentrations”. Myrhage

and Hudlicka postulated that relative lack of oxygen may provoke the growth of new

capillaries in skeletal muscle (648). Considering that addition of new capillaries should

enhance oxygen delivery to the muscle, it would be logical to conclude that low tissue pO2

is a key homeostatic regulator of the process of angiogenesis.

Measurements of oxygen tension in exercising muscle indicate that tissue pO2 is reduced

after a brief delay with the onset of exercise and remains low or recovers slightly, depending

upon the fiber type (66, 604). Poole and co-workers made simultaneous assessments of

VO2, blood flow and red blood cell O2 saturation. They found that capillary red blood cell

velocity increased after just a single muscle contraction, coinciding with the increase in VO2

(487). Similarly, using of nuclear magnetic resonance spectroscopy to assess myoglobin

oxygen saturation in humans, researchers found that intramuscular pO2 levels were reduced

significantly during exercise (660). Myoglobin desaturation occurred rapidly (within 20

seconds) after initiation of exercise, and accordingly, returned to pre-exercise value within

45 seconds of exercise cessation. Surprisingly, the degree of myoglobin desaturation was

similar across a range of workload intensities. However, researchers who employed a

different type of exercise protocol to assess myoglobin desaturation were able to

demonstrate that desaturation was proportional to VO2max (635), indicating a progressive

drop in myocyte pO2 with increased workload. The initial detection of capillary growth to

glycolytic fibers (426), where greater declines in muscle pO2 are expected (66, 604), has

been cited as evidence to support the role of hypoxia in stimulating exercise-induced

angiogenesis.

Adaptive cellular responses to hypoxia are complex, as they differ dependent on whether the

stimulus is intermittent or continuous. Furthermore, there are both acute (rapid) and chronic

(delayed) phases to the cellular responses that are initiated to adapt to the hypoxic

environment (as reviewed by (831, 832). The hypoxia inducible transcription factor (HIF)1

is considered to be a master regulator of the adaptive responses to hypoxia. HIF1, first

identified by Semenza and Wang (833), is a heterodimeric protein that consists of α and β
(ARNT) subunits. HIF2α (also called also called EPAS-1/HRF/HLF/MOP2) is regulated by

hypoxia through similar mechanisms as HIF1α, and also dimerizes with the β subunit

ARNT. In contrast to the universal expression of HIF1α, HIF2α is expressed preferentially,
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although not exclusively, in endothelial cells during development as well as in the adult

(242, 262).

Under normoxic conditions, HIFα subunits are rapidly and efficiently targeted for

degradation through the action of prolyl hydroxylase domain (PHD) proteins (76). Prolyl

hydroxylation facilitates binding of von Hippel-Lindau protein, which in turn promotes the

ubiquitination and proteasomal degradation of the HIF protein (reviewed by (471)).

Reduction in tissue pO2 reduces the enzymatic activity of the PHD proteins, resulting in an

extended half life of the HIFα subunits, enabling dimerization with HIFβ and interaction

with co-activators Creb binding protein (CBP) and p300, to drive transcription of a series of

oxygen sensitive gene products. Factor inhibiting HIF (FIH-1) hydroxylates an asparagine

residue on HIF, which reduces its capacity to interact with p300 and CBP, thus reducing its

transcriptional activity. This enzyme also is inhibited under hypoxic conditions (512).

Because both HIF1 total protein level and DNA binding/transcriptional activity are

enhanced rapidly upon reduction in tissue pO2, substantial changes in HIF target gene

expression occur within a short period of time. “Hypoxia-sensitive” genes include growth

factors (erythropoietin, VEGFA), connective tissue growth factor, stem cell factor),

transcription factors (Ets1, Id2), proteins involved in redox signalling (NOS, hemoxygenase,

cytochrome C oxidase, cyclooxygenase) and proteins involved in metabolic pathways

(Glut1, PGK1, PFK) (reviewed in (832)).

Deletion of either HIF1α or HIF2α results in embryonic lethality, characterized by severe

vascular defects (171, 457, 707), indicating a non-redundant function of these 2

transcriptional regulators. Genes required for glycolysis are exclusively regulated by HIF1α,

but VEGFA is regulated by both HIF1α and HIF2α (417). HIF2α also enhances

transcription of other endothelial cell genes required for angiogenesis, such as VEGFR2

(241) and Tie2 (927). Endothelial cell-specific deletion of HIF1α impairs the proliferative

response to hypoxia, reduces wound healing and tumor angiogenesis, and modifies

expression of VEGFR1 and 2 (911). On the other hand, endothelial cell-specific deletion of

HIF2α results in loss of blood vessel integrity, high permeability, and reduced expression of

VEGFR1, VEGFR2, Ang2 and Dll4, (but not VEGFA) in response to a hypoxic challenge

(860). However, the role of HIF1 in skeletal muscle subjected to chronic hypoxia has been

questioned. Researchers have found minimal change in HIF1α protein level in muscle

biopsies from individuals exposed to environmental hypoxia either briefly or for a period of

days (966).

Angiogenic effects of hypoxia also may be exerted through the influence of adenosine

signaling. Endothelial cell ENT1 and 2 mRNA and protein are down-regulated by hypoxia,

likely involving transcriptional repression by HIF1α (239). Reduced levels of ENT would

potentially raise interstitial adenosine concentration. Consistent with this effect, systemic

hypoxia has been reported to increase the concentration of skeletal muscle interstitial

adenosine in healthy human subjects (567). Hypoxia also induces a shift in human

endothelial and smooth muscle cell expression of adenosine receptors from A2A to the more

angiogenic receptor, A2B, which is associated with HRE-independent upregulation of

VEGFA expression (255). Furthermore, hypoxic stimulation of VEGF mRNA production in

cultured endothelial cells can be blocked by treating cells with the adenosine receptor

blocker, 8-PT (259). Thus, hypoxia facilitates greater responsiveness to adenosine.

Hypoxia stimulates endothelial cell proliferation (111). Hypoxia is a stimulus for increased

capillary density in skeletal muscle of hatchling Canada geese (870) and is a potent stimulus

for capillary growth in chicken/quail embryos (222, 890, 1032). In contrast, numerous

studies using rodents have reported that skeletal muscle capillary density is unchanged by

hypoxic conditions (79, 854, 871, 872). More recently, however, Deveci et al reported that
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significant capillary growth can be observed in rat skeletal muscle following exposure to

chronic hypoxia conditions, noting a considerably stronger response in oxidative muscle

(diaphragm, soleus) compared to glycolytic muscles (EDL, TA) (209). Thus, the degree to

which hypoxia stimulates angiogenesis remains controversial, and varies substantially

between species and between tissue types. The variability in responsiveness to hypoxia

suggests that the local or intracellular environment provides contextual information that

substantially impacts capillary endothelial responsiveness. Importantly, while sustained

systemic exposure to low oxygen may help to explain environmental adaptations of muscle

vasculature, it does not adequately explain the response to exercise. Scenarios in which the

extent of capillary growth does not vary proportionally with the decline in tissue pO2 are

reported under both physiological and pathological conditions (274, 423). Recently, a

longitudinal training study reported that capillary density and capillary to fiber ratio

increased to the same extent (approximately 16–18% above pre-training levels) regardless of

whether subjects were engaged in a low amount, moderate intensiy or a high amount, high

intensity training program (220). This finding provides support for the hypothesis that

workload-dependent alterations in metabolic or hypoxia-related factors on their own cannot

sufficiently account for the angiogenic response to exercise.

8.6.3. Mechanical stimuli that induce angiogenesis: Tensional forces/stretch

and shear stress—Experiments in which cultured endothelial cells are exposed to cyclic/

static stretch or to shear stress demonstrate the direct responsiveness of these cells to

tensional forces. Mechanical stimuli activate a wide range of sensors on the endothelial cell

surface, referred to as “mechanosensors”, which include integrins, cell-cell adhesion

proteins, tyrosine kinase receptors, G proteins and G protein-coupled receptors, ion channels

and glycocalyx components (150). Mechanosensor activation is followed by recruitment of

intracellular adaptor proteins (Shc, Grb2) and/or activation of signal cascades, often

involving a combination of kinases (PKC, ERK1/2, JNK1/2, p38, Akt) and Rho family

GTPases (42, 189, 851). Mechanotransduction is not a feature exclusive to endothelial cells,

as fibroblasts, resident immune cells and skeletal myocytes all respond to mechanical

activation (102, 440). In endothelial cells, major outcomes include rearrangement of actin

cytoskeleton, modulation of proliferation and migration, and altered gene expression. The

specific mechanosensors involved, as well as the types of intracellular signaling pathways

and resultant shifts in cellular phenotype, vary dependent on the type of mechanical

stimulus.

Capillary dimensions are altered significantly with changes in muscle sarcomere length

(237). Attachments to the extracellular matrix effectively tether capillaries to the

surrounding tissue and act to transmit load to the abluminal capillary wall when the muscle

fibers change orientation (i.e. during contraction, relaxation or lengthening). Prolonged

muscle overload, evoked experimentally by removal of a synergist muscle, results in

lengthening of myofibers (as indicated by increased sarcomere length) induces capillary

growth via abluminal sprouting (226, 1045). Overload induces expression of VEGF, which

correlates with increased proliferation of endothelial cells, as well as increased production

and activation of MMP-2 and MT1-MMP, correlating with basement membrane degradation

and abluminal sprout formation (762). Evidence in humans that passive muscle stretch is

sufficient to evoke increased adenosine and VEGF(364) provides additional support to the

role of altered conformation of the tissue in transducing angiogenic signals.

Application of stretch to cultured endothelial cells elicits an angiogenic phenotype of the

cells. Stretch enhances proliferation and migration of endothelial cells (659). Production of

ROS via NADPH oxidase increases with endothelial cell strain, which may modulate

endothelial cell proliferation, survival and migration pathways (500). Specific integrins (i.e.

α2 β1) are required to transmit stretch signals that promote alterations in cell shape (386).
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Angiogenic genes induced by exposure of cultured endothelial cells to stretch include

MMP-2, VEGF, (627), VEGFR2, VEGFR1, Tie2 (627, 1044). Endothelial cell stretch

modulates the levels of pro-angiogenic transcriptional regulators such as c-jun, HIF1α and

HIF2α. These factors also are elevated in response to muscle overload, and their inhibition

prevents overload-induced angiogenesis (627). These findings are consistent with the

hypothesis that tensile forces acting on endothelial cells contribute to the overload-induced

angiogenic response.

Shear stress is generated by the flow of blood past the luminal surface of the endothelium.

Both blood velocity and vessel diameter play significant physiological roles in determining

shear stress. Arteries and arterioles actively modulate vessel diameter to manage elevated

shear stress associated with increased blood flow, a feedback mechanism referred to as flow-

mediated dilation. Long term adaptations to elevated flow involve outward remodelling of

the arterial wall (815, 950). However, capillaries lack the capacity to substantially modulate

diameter. Under resting conditions, it is estimated that close to 100% of capillaries within

the skeletal muscle circulation are perfused (690, 871). Thus, arteriolar vasodilatation results

in increased flux through the capillary network. Capillary red blood cell velocity increases

1.5–2 fold within 500 milliseconds of initiation of a skeletal muscle contraction (487). The

elevation in capillary shear stress is not limited to the duration of the muscle contraction

itself, but remains significantly elevated between episodes of muscle activity (231).

Adaptation to chronic elevation in capillary shear stress involves addition of new capillaries

via the process of luminal splitting (as described earlier). Chronic administration of the

vasodilator dipyridamole induces endothelial cell proliferation and increases capillary

number in skeletal and cardiac muscle (575, 591, 932). The alpha adrenergic receptor

antagonist prazosin, which induces vasodilatation of skeletal muscle arterioles, stimulates

significant capillary growth in skeletal muscle (191). Other vasodilators (adenosine,

xanthenes analogs) also show capacity to induce capillary growth in skeletal muscle (1047).

In contrast, passive hyperperfusion (1 hr) of the dog hindlimb has not been shown to

increase VEGF or FGF2 mRNA, while there was a slight increase in TGFβ mRNA (770). It

is possible that the time frame of stimulation or the shear stress magnitude within the

microcirculation was not comparable to the vasodilator treatments.

Shear stress is sensed by luminal surface molecules, as well as those at the apical and basal

surfaces of the cell. This broad response is credited to the arrangement of the cytoskeletal

proteins within the cell, which forms a network that links transmembrane proteins to the

nucleus. Shear sensors include glycocalyx, receptor tyrosine kinases (VEGFR2), G protein

coupled receptors, cell adhesion molecules (PECAM1) and integrins (839). Elevated shear

stress of cultured cells induces re-organization of junctional proteins, reducing endothelial

cell permeability (595, 827). . VEGFR2 itself acts as a shear sensor, with its auto-

phoshorylation stimulated by exposure to shear stress, which leads to recruitment of

downstream signal molecules such as Gab1, Akt, p38MAPK (297, 463, 464). Activation of

eNOS also occurs downstream of shear stress-induced VEGFR2 activation (463).

While some of the signaling intermediaries associated with shear sensitivity now are

established, there is less known about the specific changes in gene expression that are

required in order to support the process of shear stress-induced angiogenesis. Shear stress

exposure leads to increased production of VEGFR2 in cultured endothelial cells (4) and in

skeletal muscle capillaries subjected to chronic increases in shear stress (997). VEGF

production is increased in response to prazosin treatment, and can be localized to capillary

endothelial cells (624, 762). The shear stress-induced increase in VEGF production is

regulated via activation of VEGFR2 and p38 MAPK (297). Blockade of p38MAPK

signaling is sufficient to repress skeletal muscle angiogenesis induced by prazosin

administration, perhaps due to the reduction in VEGF production (297). Shear stress
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increases NO production, which plays a key role in shear stress-induced angiogenesis.

Reduction of NO levels either through pharmacological inhibition of NOS, or by genetic

knockout of eNOS inhibits new capillary growth (59, 421). Shear stress inhibits production

of MMP-2 (623) and MT1-MMP (1033) and also enhances production of protease inhibitors

including PAI-1, TIMP1 and TIMP3 (630), all of which may contribute to capillary

stabilization and the prevention of abluminal sprouting.

8.7. Angiogenic Role of Vascular Endothelial Cell Growth Factor-A (VEGFA)

Among the known growth factors present in mammals, VEGFA is considered to play the

predominant role in promoting angiogenesis. Alternate splicing results in production of

multiple forms of VEGFA protein, with amino acid lengths of 121, 145, 148, 165, 183, 189

or 201 (529, 692, 928). These isoforms have conserved N-terminal domains, which include

sites for dimerization and for binding to VEGFR1 or VEGFR2. They differ predominantly

in the C-terminal portion (exons 6 and 7), which contains domains that enable heparin

binding, and sites for binding to co-receptor neuropilin 1, affecting the capacity of VEGFA

protein to interact with extracellular matrix components and with VEGFR2 (1006). The

predominant pro-angiogenic splice forms of VEGFA are VEGF121 and VEGF165. The

significant difference between these isoforms is that VEGF121 is freely diffusible while

VEGF165 predominantly is sequestered to the matrix through interaction with heparin

sulphate groups on extracellular matrix and cell surface proteoglycans. Some studies have

indicated that VEGF121 appears to be less angiogenic than VEGF165 (does not stimulate

proliferation, weakly activates ERK1/2, but strongly induces increases in endothelial cell

permeability through activation of p-src) (1040). However, other researchers have not

observed significant differences in the proliferative capacity of these two isoforms (1039).

Nonetheless, mice that were deficient in exons 6 and 7 (resulting in expression only of

VEGF121 and no larger isoforms) were shown to be reduced in capacity for angiogenesis

(130, 883). mRNA levels of Tie2 and neuropilin-1 were reduced in the muscle and

myocardium of VEGF120/120 mice. While VEGF120/120 embryos could undergo

vasculogenesis and angiogenesis, the resultant networks were characterized by large caliber

vessels with excessive numbers of endothelial cells, and with fewer branch points. This led

to the conclusion that heparin-bound forms of VEGF are required to appropriately direct

filopodial extensions (784). Interestingly, these investigators also observed that expression

of only a heparin binding form of VEGFA (VEGF188/188) generates vascular

abnormalities, characterized by thin vessels with many, but disorganized, branches. Thus

both soluble and bound forms of VEGFA appear to contribute significantly to appropriate

angiogenesis.

More recently, a distal splice variant of exon 8 was reported that gives rise to VEGFAxxxb

isoforms (57, 1007). These isoforms differ from their VEGFAxxxa counterparts only in the

final 6 amino acids of the C-terminus. They can bind to VEGFR2, but have reduced capacity

to activate the receptor, which may be the result of impaired binding to neuropilin 1. Thus,

these isoforms act as competitors for VEGFAxxxa isoforms. It has been postulated that the

presence of VEGFxxxb isoforms in the adult helps to maintain endothelial cells in a

quiescent state, and that disruption of the ratio between VEGFxxxa and xxxb isoforms

correlates with disease progression (tumour growth, diabetic retinopathy)(1006). The

VEGFA165b isoform was reported to be undetectable in biopsies from healthy human

skeletal muscle (331). At this time, there is no evidence that this VEGFAxxxb isoforms

contributes to the homeostatic regulation of capillary networks in the skeletal muscle

microcirculation.

Heparin sulfate-bound isoforms of VEGFA can be released from the matrix as a soluble

protein through cleavage by the serine protease plasmin (416) and by matrix

metalloproteineases (74). Plasmin cleavage results in ~17 kDa forms of VEGF165 and
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VEGF188. Likewise, cleavage of these isoforms by MMP-3, 7,9,19 also generates a small ~

16 kDa fragment (VEGF113). This fragment can bind to, and induce, VEGFR2

phosphorylation, but is not as efficient at stimulating tumour growth as VEGF165 (523).

Interestingly, VEGF165 promotes a migratory phenotype (sprouting and branching) while

VEGF113 stimulation primarily results in increased cellular proliferation.

An emergent theme is that the means by which VEGFA is presented to endothelial cells

significantly factors into the phenotypic response of the endothelial cells, thus modulating

the resultant angiogenic response. This is dependent in part on which isoforms are being

produced within the local environment. Isoform expression varies from tissue to tissue.

However, shifts in isoform production within a tissue may favor pathological angiogenesis

(1006). Interestingly, the microenvironment also may regulate VEGFA presentation to the

endothelial cells. For example, VEGFA binding to heparin sulfates, and to fibronectin is pH

dependent. As pH decreases, there is enhanced binding of VEGFA to cell surface HSPG and

to fibronectin (305, 306).

8.7.1. Regulation of VEGFA production: transcription, splicing and translation

—Transcription of VEGFA increases substantially when cells are subjected to hypoxic

conditions (631, 692). This regulation is dependent in part on the presence of hypoxia

response elements (HRE) in both 5′ and 3′ flanking regions of the coding sequence, which

facilitate the binding of HIF1 or HIF2 transcriptional regulators (632). Despite the strong

evidence of the requirement for these sites based on in vitro studies (850), researchers found

that deletion of the HRE sites in the VEGFA promoter does not result in substantial

physiological reduction in VEGFA production in vivo (685). Mice expressing this mutant do

not have global vascular defects, and skeletal muscle VEGF levels are unaffected in

normoxia (685). In fact, this study reported reduced VEGFA mRNA levels in skeletal

muscle of both wildtype and HRE-mutant mice upon exposure to hypoxia. These findings

indicate that HIF is not a prominent physiological regulator of VEGFA expression in

muscle.

Numerous cis-elements aside from the HRE regulate VEGFA expression under both

normoxic and hypoxic conditions (as reviewed by (692). PGC1α interaction with estrogen

response elements within the VEGFA promoter results in enhanced, but HIF-independent,

expression of VEGFA in response to hypoxia and nutrient stress. This supports a mechanism

by which metabolic status of the tissue can regulate VEGF production. In support of this

hypothesis, AICAR, which is an activator of energy-sensor kinase AMPK, stimulates

VEGFA production in skeletal muscle. This effect does not occur in PGC1α−/− mice,

providing evidence that PGC1α mediates the AMPK-induced increase in VEGFA

production (526). However, the role of the AMPK signal pathway in regulation of VEGFA

is not as apparent when considering data obtained from muscle specific AMPK−/− mice.

These animals have lower than normal basal muscle capillarization, which is consistent with

a reduced expression of VEGFA. However, exercise-stimulated VEGFA levels are greater in

these mice compared to wildtype controls (1055), suggesting both that alternative regulatory

mechanisms control VEGFA production, and that AMPK/PGC1α may limit VEGFA

expression, under exercise conditions.

VEGFA transcription is upregulated by activation of tyrosine kinase receptors including

those responsive to EGF, insulin/IGF, HGF, PDGF and FGF, which share the feature of

inducing activation of Ras/MEK/ERK1/2 and PI3K/Akt pathways. Sp family, AP1 and

Egr-1 transcription factors are associated with growth factor induced transcription of VEGF-

A, with Sp1 and Sp3 playing predominant roles (692). ERK1/2 phosphorylates Sp1, which

stimulates Sp1 binding and trans-activation of the VEGFA promoter (619). Interestingly,

skeletal myocyte expression of VEGFA is regulated by MyoD, linking VEGFA production
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with the skeletal muscle differentiation program (107). In fact, stimulation of embryonic

stem cells with VEGFA promotes differentiation of cells into myocytes (107).

Given the evidence for differential functional consequences of VEGF121 versus VEGF165

cell stimulation, the regulation of isoform splicing may be critical for understanding the

physiological and pathological modulation of VEGFA signaling in skeletal muscle. There is

evidence that the microenvironment can modify the production of VEGFA splice forms.

Decreased cellular pH results in elevated production of VEGF121 alone. Similarly, cobalt

chloride (used as a hypoxia mimetic) induces VEGF121 to a greater extent than VEGF165

(236). However, regulation of VEGFA isoform splicing remains poorly understood.

Overall, cellular rate of transcription declines upon exposure to hypoxia. Thus, in order for

cells to upregulate specific hypoxia-inducible gene products such as VEGFA, they must

employ posttranscriptional regulatory mechanisms. mRNA stability is regulated through

interaction of RNA binding proteins to 5′ or 3′ untranslated regions of mRNA. These

proteins likely function through competing for binding with degradation-inducing RNA

binding proteins or microRNAs. Human antigen R (HuR) is an example of an RNA binding

protein that enhances the stability of VEGFA mRNA (as reviewed by (582)). 5′ cap-

dependent translation of proteins also is inhibited under hypoxic conditions. Thus, increased

production of VEGFA under hypoxic conditions relies on translation from one of two

internal ribosomal entry sites (IRES) (13, 87). An upstream open reading sequence acts as a

negative regulator of VEGF121 transcription under normoxic conditions (56), providing

evidence of a mechanism by which isoform switching may be regulated by hypoxia.

Additional regulation of VEGFA translation occurs through the actions of various miRNA

(418).

8.7.2. VEGF receptors and intracellular signaling—VEGFR1, VEGFR2 and

VEGFR3 (restricted to lymph endothelial cells) (which correspond to flt1, flk1, flt3,

respectively, in the mouse) belong to the tyrosine kinase receptor family (as reviewed in

(683, 804, 844)). Their intracellular tyrosine kinase domains are highly conserved, and

recruit similar activation pathways as EGF and IGF receptors. The extracellular domain

consists of 7 Ig domains, classifying VEGF receptors as part of the immunoglobulin

superfamily. VEGFR1 plays a significant role in development of the vasculature, however in

the adult, its primary role is thought to be as a decoy receptor. VEGFR1 competes with

VEGFR2 to bind VEGFA. The VEGFR1-VEGFA interaction is high affinity, but VEGFR1

possesses a much lower kinase activity than VEGFR2, and minimal intracellular signalling

is initiated by this binding (804). Soluble VEGFR1 is produced by alternative splicing and

by proteolytic clipping of the full length receptor. This product retains the capacity to bind

VEGFA but is no longer tethered to the membrane, and cannot induce intracellular signals.

This form of VEGFR1 is associated with downregulation of angiogenic signaling (976).

Formation of VEGFR1-VEGFR2 heterodimers also reduces signaling associated with

VEGFA stimulation. Thus, the balance between VEGFR1 and VEGFR2 modulates VEGFA

efficacy, and may serve as a physiological mechanism to limit angiogenesis in the adult.

Pathological expression of VEGFR1 also may be associated with impaired angiogenesis (as

discussed in later section). Neuropilins (Nrp) act as co-receptors for VEGFRs. Nrp1

interacts with VEGFR2, and enhances the binding of VEGF165 (but not VEGF121) to

VEGFR2 (874). Mice lacking nrp have vascular defects associated with defective VEGF

signalling (903). Nrp1 may preferentially regulate cell motility signals associated with

VEGFR2 signalling (982). Mice deficient in nrp1 are characterized by deficiency in cell

migration, while cell proliferation is not affected (301, 468).

Binding of VEGFA to VEGFR2 causes receptor dimerization and phophorylation of a

subset of the 17 tyrosine residues within the intracellular domain of the receptor. This
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facilitates recruitment of adaptor proteins containing SH2 (Src homology 2) or PTB

(phosphotyrosine binding) domains. The specific downstream signaling molecules recruited

and activated following receptor phosphorylation depends in part on which specific tyrosine

residues have been phosphorylated (as reviewed in (683)). Tyrosine residue Y951 binds T-

cell-specific adapter molecule (TSAd), which promotes actin reorganization and migration,

but does not affect proliferation (589). Y1175 can bind to multiple SH2-domain containing

molecules, including phospholipase C-γ1, and p85 of phosphatidylinositol 3 kinase (PI3K)

and Shb. The downstream consequences of VEGFR2 activation will depend on which of

these molecules is recruited. For instance, activation of PLC-γ1 recruits Ras-MEK1/2-

ERK1/2, leading to cell proliferation (902). On the other hand, PI3K and Shb stimulate cell

migration, and PI3K-dependent activation of Akt will promote cell survival and enhanced

production of NO (408). Y1001 also binds to PLC-γ1, promoting cell differentiation rather

than proliferation (613). Y1214 recruits adaptor protein Nck, which induces cdc42 activation

and p38 phosphorylation, leading to actin reorganization and cellular migration (510). Src

activation and calcium mobilization are associated with increased cell permeability. While

tyrosine residue-specific activation of downstream signal pathways is recognized, there

remains little knowledge about the conditions that govern the pattern of tyrosine

phosphorylation upon receptor activation.

VEGFA signaling most frequently is considered in association with the induction of

angiogenesis. However, it also is evident that constitutive production of VEGFA, and the

associated activation of VEGFR2-dependent signal pathways, is required to maintain

endothelial cell survival. Notably, this effect involves an autocrine signal loop. Endothelial

cell-restricted deletion of VEGFA results in increased apoptosis, despite “normal” plasma

levels of VEGF (522). Paracrine VEGF is not able to compensate for loss of endothelial cell

expression of VEGF (522).

Other members of the VEGF family elicit angiogenic responses, and may play significant

roles in maintaining the stable vascular network. VEGFB displays angiogenic characteristics

in some cellular environments, and may be elevated in response to exercise. Placental

growth factor (PlGF) also is capable of stimulating angiogenesis (194). These factors bind

with highest affinity (VEGFB) or exclusively (PlGF) to VEGFR1. Neither VEGFB nor

PlGF appear to be regulated by hypoxia.

8.8. Other Potential Angiogenic Growth Factors within Skeletal Muscle

8.8.1. Erythropoietin (Epo)—Epo is known to induce angiogenesis under some

conditions. Activation of the Epo receptor induces JAK2/STAT phosphorylation, Akt

signaling, and production of matrix metalloproteinases. Epo induces VEGF production, and

may stimulate recruitment of endothelial progenitor cells (988). Sustained Epo release

stimulates capillary growth in a model of hindlimb ischemia (534). Epo and the Epo receptor

are present in skeletal muscle tissue. Exercise stimulates activation of the Epo receptor

(788). This suggests it may play a role in exercise-induced angiogenesis. However, neither a

single bolus injection nor repeated injections of Epo promote angiogenesis in healthy human

skeletal muscle (556). Thus, the physiological relevance of Epo signaling within skeletal

muscle remains unclear.

8.8.2. Hepatocyte growth factor (HGF)—HGF has been described as an angiogenic

master trigger (3), in part due to its modulation of Ets-1, which in turn initiates transcription

of numerous genes encoding angiogenic modulators (347). Angiogenesis within rabbit

ischemic hindlimbs can be induced by protein-or plasmid-based delivery of HGF (29, 638).

HGF also has been used to induce therapeutic angiogenesis in a diabetic hind limb ischemia

model, and it was postulated that this positive effect may have been a result of reversing the
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diabetic reduction in Ets-1 production (913). HGF also plays significant roles in satellite cell

activation (see Section 9.12.2), thus may coordinate multiple remodelling processes in

skeletal muscle.

8.8.3. Fibroblast growth factor 2 (FGF2)—This 18–23 kDa mitogen is capable of

inducing proliferation of a number of cell types, including endothelial cells. FGF2 (or, basic

FGF) also stimulates the release of VEGF, thus further extending its angiogenic influence

(884). FGF2 does not contain a secretory signal peptide, and thus, it is postulated that

extracellular FGF2 may arise from cell damage, rather than routine release mechanisms.

Extracellular FGF2 interacts with heparin sulphate groups on extracellular matrix proteins,

and may be released from matrix by protease cleavage (665). In human muscle, FGF2 is

localized to the cytosol and sarcolemma of skeletal myocytes, and is found within the

interstitium, but is not localized to endothelial cells (462). FGF2 mRNA in skeletal muscle

is repressed by chronic hypoxia (681).

8.8.4. Angiopoietins (Ang) 1, 2—Ang1 and Ang2 both interact with the endothelial cell

specific tyrosine kinase receptor Tie2. Ang1 promotes Tie2 kinase activity and downstream

intracellular signaling while Ang2 antagonizes Tie2 activation (570). Ang1-dependent

activation of Tie2 is associated with promoting the later stages of sprouting (pericyte

recruitment, sprout stabilization) and the maintenance of the quiescent endothelial cell

phenotype that predominates in the adult vasculature (as reviewed by (40). Ang1 appears to

promote events that oppose the effects of VEGFA stimulation, as it reduces capillary

permeability and inhibits the expression of pro-inflammatory and pro-thrombotic cell

adhesion molecules. However, sustained over-activation of Tie2 also has negative

consequences, resulting in dysregulated vascular formations (967). The result of Ang2

antagonism of Ang1 signaling is vessel destabilization and regression (547, 687). The

physiological roles of Ang2 now are appreciated to be more complicated than that of a

competitive antagonist. For instance, Ang2 activates Tie2 in cultured endothelial cells,

inducing chemotaxis and tube formation (634, 919). Thus, Ang2 may be more appropriately

classified as a weak agonist of Tie2 (1031). Ang2 cellular effects also vary dependent on the

existing levels of VEGFA. If VEGFA is present, Ang2 facilitates the classic angiogenic

behaviors of endothelial cell sprouting, migration and proliferation (547). Ang2 also induces

basement membrane remodeling and enlargement of capillary diameter. However, if

VEGFA levels are reduced, then Ang2 enhances the rate of cell apoptosis, thus promoting

vessel regression (547). Thus the phenotype resulting from activation of the angiopoietin-

Tie signal axis depends substantially on the ratio of Ang1, Ang2 and VEGFA within the

local environment, and examination of only a single molecule has limited usefulness in

elucidating functional consequences.

8.8.5. Transforming growth factor β (TGFβ)—TGFβ is secreted in a latent form that

requires cleavage or a change in conformation to permit function of the active 25 kDa TGFβ
molecule, which then binds to TGFβRI, II (581). TGFβ modulates endothelial cell

migration, proliferation, and mural cell recruitment (400). It is known to exert conflicting

patterns of action, suggesting that local environment provides strongly modulatory cues that

ultimately define the cellular response. The hallmark response to TGFβ is the production of

extracellular matrix proteins (collagen) and PDGFB, thus it may play a role in stabilizing

newly sprouted and pre-existing capillaries. However, interactions with notch signalling

pathway may be necessary to realize these functions.

8.8.6. Platelet derived growth factor-BB (PDGF-BB)—PDGF-BB complements the

functions of TGFβ. It plays a role in recruitment of mural cells, resulting in vessel

stabilization, and it could promote the remodeling of capillaries to arterioles (77, 360).
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PDGF-BB also regulates the deposition and turnover of extracellular matrix proteins. In

endothelial cells, PDGF-BB production is responsive to shear stress (694), thus may play

role in protecting endothelial cells from excessive shear forces through promoting capillary

remodeling by processes of luminal splitting, intussusception or arteriolarization.

8.9. Additional Molecular Participants in Angiogenesis

8.9.1. RhoGTPases—The Rho GTPase family includes RhoA, Cdc42 and Rac1. As

regulators of major cellular processes including cytoskeletal dynamics, membrane transport,

gene expression, cell cycle regulation, survival/apoptosis signalling, RhoGTPases play

significant roles in all phases of the angiogenic process. These molecular machines regulate

cell shape by modifying cytoskeletal tension. RhoA induces actin stress fiber formation;

Cdc42 promotes formation of filopodia and Rac1 induces polymerization of cortical actin

and the formation of lamellipodia (250). All three GTPases are activated subsequent to

VEGF stimulation. Cellular migration requires co-ordinated and spatially distinct activities

of these enzymes, as the extending endothelial tip is pushed forward by nucleating cortical

actin to form filopodia (Cdc42) and lamellipodia (Rac1). Conversely, RhoA activity at the

rear of the cell induces contractile forces that help to drive the cell forward. Together with

these effects on cell migration, the RhoGTPases play significant roles in stabilizing and

modulating endothelial cell permeability, through manipulation of the stability of the

adherens junctional complexes (878). RhoA, Rac1 and Cdc42 each are implicated in

activation of cell cycle progression through stimulation of cyclins D1 and A, and repression

of p21 and p27 (875). Rac1/Cdc42 activity is associated with increased production, secretion

and activation of matrix metalloproteinases (454), which will facilitate the proteolysis of cell

adhesion proteins and extracellular matrix proteins. Cdc42 and Rac1 both are involved in

endothelial lumen formation in vitro, through regulating the fusion of intracellular vacuoles

(62, 261, 498). While considerable information with respect to the specific roles of these

proteins has been generated using cultured cell models of angiogenesis, very little is known

about the extent of their involvement in the process of sprouting in vivo.

8.9.2. Angiomotin (Amot)—Amot is a transmembrane receptor for the angiostatic

peptide, angiostatin (89, 934). There are two isoforms of Amot, p80 and p130. The p80 form

stimulates migration and angiogenesis (which is inhibited by angiostatin). Conversely, the

p130 form tightly associates with the actin cytoskeleton, does not stimulate migration, and is

associated with a stabilized, quiescent phenotype (246, 247). Amot p80 interacts with the

Rho GEF syx, thus regulating focal RhoAGTPase activity at the leading front of migrating

cells (247). The p80/p130 ratio correlates with training and may be an indicator of the

angioadaptive responsiveness of muscle (779).

8.9.3. β-catenin—β-catenin plays an essential role in stabilization of adherens junctions,

as described previously. However, β-catenin exerts additional functions by acting as a

transcriptional co-activator. VEGFA stimulation induces tyrosine phosphorylation of

VEcadherin and β-catenin, which provokes dissociation of the two proteins (636). Release

from the VEcadherin complex allows β-catenin to translocate to the nucleus, where it binds

to T cell factor (TCF) or other transcription factors, and acts as a transcriptional co-activator

of numerous genes. Key transcriptional targets include c-myc and cyclinD1, two positive

regulators of cell cycle progression (310, 664). β-catenin promotes the transcription of

several members of the matrix metalloproteinase family. Consensus TCF-binding sites are

located within the promoter regions of MT1-MMP and MMP-2, and β-catenin triggers

enhanced transcription of these enzymes (214, 391). Furthermore, β-catenin is a

transcriptional regulator of dll4 (175), promoting tip cell phenotype. Thus, β-catenin exerts

influence at multiple steps of the angiogenesis cascade, promoting changes in permeability,

and induction of the proliferative and invasive phenotype required to sustain sprouting.
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8.9.4. Matrix metalloproteinases (MMPs)—The matrix metalloproteinases (MMPs)

are a family of zinc and calcium dependent endopeptidases. MMPs (more than 20 in total)

are divided into the following groups based on common structural elements and proteolytic

specificities: matrilysins (MMP-7 and MMP-26), collagenases (MMP-1, MMP-8 and

MMP-13), stromelysins (MMP-3, MMP-10 and MMP-11) gelatinases (MMP-2 and

MMP-9) and membrane type (MT)-MMPs (MMP-14 (MT1-MMP), MMP-15, MMP-16,

MMP-17, MMP-24 and MMP-25) (649, 1001). These enzymes have established roles in the

remodeling of basement membrane and interstitial matrix proteins. Additionally, MMP

cleavage of extracellular matrix proteins may result in exposure of matricryptic sites. For

instance, collagen IV cleavage by MMP-2 makes available a new epitope that acts as a

ligand for the integrin αvβ3 rather than α1β1, resulting in a highly pro-angiogenic phenotype

(1016).

However, MMPs also modulate cellular functions independently of extracellular matrix

proteolysis. For example, some MMPs cleave the ectodomain of cell surface receptors (141).

For example, MT1-MMP cleavage of full length Tie2 regulates activation of the Ang-Tie2

signal pathway) (684). MMP-dependent cleavage of VE-cadherin modulates endothelial cell

proliferation through enhanced accumulation of β-catenin in the nucleus (434). MMPs also

modulate growth factor activity. This includes the release of active peptides from latent

complexes (in the case of TGFβ1) or the cleavage of growth factors to release them from

matrix binding sites. For example, MMP-9 releases VEGF165 from the extracellular matrix,

which results in VEGF-dependent angiogenesis (74). As mentioned earlier, proteolytic

cleavage of VEGF165 or VEGF188 to form VEGF113 alters the capacity of VEGF to

activate VEGFR2 (523). MMP-2 and MMP-9 both may cleave latent TGF-β, releasing the

active factor (1030).

MMP-2,-9 and MT1-MMP (MMP-14) have established pro-angiogenic roles (333).

Production of these MMPs is controlled predominantly at the level of transcription. Trans-

activation of MMP promoters commonly occurs via binding of transcription factors

including AP1, AP2 and NFκB, in response to growth factor or cytokine stimulation (160).

VEGF stimulation of endothelial cells induces increases in MMP-2 and MT1-MMP mRNA,

involving transcriptional regulation by c-jun and β-catenin/Tcell factor (214, 453).

Production of MMP-2 and MT1-MMP also is responsive to mechanostimulation, as stretch

of endothelial cells and myocytes is capable of increasing mRNA levels of these enzymes

(627).

8.9.5. Nitric oxide (NO) and reactive oxygen species (ROS)—NO is generated

under physiological conditions by nNOS or eNOS, which are present in endothelium and in

skeletal myocytes. The activity of both of these two NOS enzymes is regulated by a

calmodulin binding domain, which separates the oxygenase and reductase domains. Calcium

binding to calmodulin provides the conformational shift to allow for efficient generation of

NO, making NO production sensitive to intracellular Ca2+ levels. Akt phosphorylation of

ser1177 on eNOS is a major regulatory mechanism, enhancing the production of NO at any

concentration of Ca2+ (210, 275, 615). VEGF induces production of NO, which then

stimulates angiogenesis (696, 1048). Conversely, NO also is reported to regulate VEGF

production, which would confer to it both upstream and downstream roles in the VEGF

signal pathway.

The effects of NO have concentration and time dependent variations, such that opposing

influences of NO on angiogenic behaviour have been reported. Elevated shear stress

enhances NO production (263), however this may promote vessel stabilization rather than

angiogenesis. For example, NO production contributes to the shear stress inhibition of

MMP-2 production and activity (623).
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ROS, including superoxide and hydrogen peroxide, are produced in endothelial cells due to

activation of NADPH oxidase, xanthine oxidase, nitric oxide synthase, as well as in the

mitchondrial electron transport chain. ROS production via NADPH oxidase may be

stimulated by growth factor receptor signalling (VEGFR2, Ang1, Angiotensin II) as well as

by mechanotransduction signal pathways (i.e. in response to shear stress or cell stretch).

ROS produced by NADPH oxidase are credited with inhibition of protein tyrosine

phosphatases and activation of numerous redox-sensitive cell signal pathways, including,

Akt, MAPK, src, PKC, which in turn activate transcription factors such as Ets1, HIF1α,

NFκB, p53 (as reviewed by (268, 952). Notably, many of these factors are established pro-

angiogenic mediators. In vitro experiments indicate that ROS production promotes

endothelial cell permeability, migration, proliferation and survival (268). VEGFA-

stimulated tyrosine phosphorylation of VEcadherin and βcatenin, which provokes increased

endothelial cell proliferation, is dependent on ROS production and rac activation (636). In

agreement with angiogenic behaviours attributed to ROS in cultured endothelial cells, mice

null for gp91phox (NOX2; the catalytic subunit of NADPH oxidase) exhibit a reduced

recovery to hindlimb ischemia (931, 952). However, ROS effects are concentration

dependent, with higher levels inducing substantial oxidative damage.

8.10. Modification of Angiogenic Factors with Activity

The capacity of exercise to induce soluble angiogenic mediators was first observed by

Hudlicka et al (428), who reported that tissue samples from exercised hearts stimulated

vascular growth in chick allantoic membranes more frequently than those derived from non-

exercised hearts. Other researchers also used heparin binding affinity to extract factors

(likely FGF2) from muscle homogenates of stimulated or control muscles, showing that the

extract from stimulated muscle had an enhanced capacity to induce proliferation of

fibroblasts (639). Figures 6 and Table 1 summarizes changes in key angioadaptive factors in

response to acute and repeated exercise.

8.10.1. VEGFA—Initial investigations reported that VEGFA mRNA in rat TA/EDL

muscle increases significantly after 4 days of electrical stimulation, returning to control

levels by 21 days of stimulation (340). Since HIF1 can enhance the transcription of VEGF

expression is responsive to HIF1, the authors concluded that VEGF expression and

subsequent vessel growth is triggered by a low muscle pO2, acting in a negative feedback

loop to reduce the original hypoxic signal. Further investigation using rodent models

demonstrated that a single intense exercise bout is sufficient to increase levels of VEGFA

mRNA within the exercised muscle (80, 80, 91, 296). Exercise-induced changes in VEGFA

mRNA are paralleled by increases in VEGFA protein, which localizes predominantly in the

type IIb(d) fibers (80), perhaps reflecting a greater decrease in pO2 in these large fibers, as

compared to slow-twitch red fibers (604).. In chronically stimulated rabbit muscles, VEGFA

immunostaining is detectable in the interstitial matrix between myofibers, and also in

interstitial cells and endothelial cells, but not within the myocytes themselves (26). Because

the amount of increase in protein was similarly increased between 3 and 21 days, and even

was sustained after 56 days of stimulation, the authors discounted a role for hypoxia in

stimulating this increase in VEGFA production.

Analogous findings have been reported in humans in response to exercise. Increased

VEGFA mRNA and VEGFA protein are detectable in muscle after a single submaximal

exercise bout (292, 293, 330, 332, 390, 398, 755, 787). Further increases in VEGFA mRNA

are observed if the exercise is conducted under flow restricted conditions (332). The

VEGFA165 isoform is most abundant (~40% of total VEGFA mRNA) in human skeletal

muscle, but isoforms 121, 165 and 189 all increase in response to an acute submaximal

exercise bout conducted under flow-restricted conditions (331). Interestingly, the temporal
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dynamics varies between isoforms, with the peak increase in VEGFA121 observable

immediately after exercise, while the peak in VEGFA165 occurs 2 hr after exercise, and the

increase in VEGFA189 occurs only 6 hours post-exercise. It may be speculated that the

delayed production of these heparin-binding forms of VEGFA contributes to the promotion

of an angiogenic or chemotactic response to subsequent exercise bouts.

Together with increased transcription of VEGFA, synthesis and/or release of VEGFA

protein occurs in response to exercise. The plasma VEGFA arteriovenous difference is

decreased 1 hour after a single 3 hr bout of submaximal exercise. Given that arterial VEGFA

levels remains constant, this indicates increased production and or release from the muscle

(390). Other investigators have detected increased VEGFA in microdialysate derived from

the muscle interstitial fluid during first 30 minutes of exercise (397). Similarly, VEGFA

levels in venous blood are significantly elevated during a single 1 hour exercise bout (787).

Overall, these measurements portray a scenario in which both rapid release of VEGFA from

the interstitial matrix (potentially through increased proteolytic release of heparin-bound

VEGF) and a sustained increase in the production and secretion of VEGFA contribute to the

elevation of tissue and plasma VEGFA protein during, and immediately subsequent to, a

single exercise bout. Interestingly, venous VEGFA levels drop below pre-exercise levels

during recovery from exercise, suggesting that there may be tissue uptake of circulating

VEGFA (787). In contrast to the reduced responsiveness of VEGFA mRNA to repeated

bouts of exercise, the substantial increase in interstitial VEGFA protein observed within

human skeletal muscle following an acute bout of exercise is not attenuated following 4

weeks of moderate intensity exercise training (398). While it is not known whether this

reflects increased VEGFA protein production or secretion, or release of matrix-bound

VEGFA, these data emphasize the relevance of post-transcriptional mechanisms of control

for VEGF protein in exercising muscle.

The elevation in VEGF mRNA and protein observed with an acute exercise bout persists

after repeated exercise sessions (26, 328, 332, 340, 762). However, in humans, the response

of VEGFA mRNA to a single bout of exercise appears to be blunted by long term training

(398, 756). This finding may reinforce the interpretation that the exercise-induced

adaptations (capillary growth, metabolic changes within the myocytes) within the muscle

result in a reduced production of pro-angiogenic factors.

Several studies support the hypothesis that VEGFA plays a significant role in the process of

angiogenesis in skeletal muscle. Inhibition of VEGFA signalling through use of a blocking

antibody prevents angiogenesis stimulated by shear stress and by muscle overload. In that

study, endothelial cell proliferation was reduced, and morphological analysis by electron

microscopy showed that capillary endothelial cells exhibited less signs of activation in the

presence of VEGF-trap (993). Administration of a pharmacological inhibitor of VEGFR to

rats partially blocks exercise training induced increases in capillary contacts per muscle fiber

(544). Finally, disruption of the VEGF-A gene in skeletal muscle using cre/lox technology,

either using injection of adenoviral expression of cre recombinase (908), or using mice with

muscle-specific cre expression (Myo-Cre) substantially reduces capillary to fiber ratio under

basal conditions (682). The latter mice also exhibit a reduced angiogenic response to

endurance exercise (679).

8.10.2. VEGFR—VEGFR1 mRNA is reported to increase following a single bout of

exercise in most studies (80, 293, 331, 332, 678). However, it may be unaffected by some

exercise conditions (292), or may increase only under flow-restricted conditions (331).

Studies in which VEGFR2 mRNA was assessed following a single exercise bout have

reported variable outcomes, ranging from modest increases in mRNA and protein (292, 293,

332), to no change in mRNA (80), to a reduction in mRNA (678). The increases in VEGFR2
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mRNA are no longer observed in response to exercise subsequent to weeks of exercise

training (332, 678). In the rat, electrical stimulation of glycolytic muscle enhances VEGFR2

(flk1) protein within 2 days and this response is blocked by inhibition of nitric oxide

synthase (626).

8.10.3. HIF—In rats, mRNA for HIF1α and HIF2α increase significantly in muscle

samples taken 6 hours after a single exercise bout, and this response is not seen after a 4

week training program (555), which again may reflect reduced hypoxic stress following

adaptation to exercise. However, because substantial regulation of HIF occurs at the protein

level, it is not apparent that changes in mRNA reflect an increase in HIF protein and

transcriptional activity. Other investigators have not observed a change in HIF1α mRNA

with exercise (80, 330), which again may indicate that the majority of HIF regulation occurs

at the level of protein. HIF1α protein does increase in rat muscle subjected to functional

overload of the EDL. Furthermore, inhibition of HIF activity prevents overload induced

angiogenesis (627).

In healthy humans, a single bout of exercise in normal or flow-restricted conditions does not

result in a change in HIF1α mRNA (330). However, in both conditions, there is a significant

and sustained post-exercise increase in HIF1α protein that correlates with increased nuclear

immunolocalization of HIF1α and enhanced DNA binding activity (20). Levels of HIF

target genes VEGF and EPO also increase after exercise. Interestingly, VEGF levels

increase to a greater extent in the restricted flow vs. non-restricted flow exercise condition

although HIF1α protein levels are comparable in each condition (20), suggesting that other

transcriptional regulators participate in this induction of VEGF.

The physiological role of HIF1α in maintenance and adaptation of skeletal muscle capillary

networks is unclear. Myocyte-specific deletion of HIF1α in mice actually enhances their

endurance capacity (579). Baseline capillary to fiber ratio is higher in the HIF1α−/− animals

compared to control, and exercise induces a greater increase in capillary density in these

mice (580), which would point to an angio-repressive role of HIF1α. It is possible that

enhanced HIF2α signaling results in the capillary network adaptations observed in these

mice. These results do indicate that HIF1α involvement in skeletal muscle angiogenesis is

not as straightforward as originally hypothesized.

8.10.4. PGC1α—Exercise transiently increases the transcription of PGC1α mRNA in

human muscle, and this response is greater in men who have undergone a training routine

(717). PGC1α mRNA is further enhanced by exercise under flow-restricted conditions, and

this increase is not fiber type-specific (663). A variety of genetic approaches provide

consistent evidence for PGC1α involvement in exercise-induced angiogenesis. PGC1α
expression and activity is regulated via activation of p38γ MAPK. Mice deficient in p38γ
have reduced expression of PGC1α which correlates with blunted mitochondrial biogenesis

and angiogenesis in response to exercise (726). PGC1α global knockout mice exhibited

normal capillary density (although lower capillary to fiber ratio due to reduction in myofiber

size) as well las lower basal levels of VEGF protein and lacked a training induced increase

in VEGF (526). Similarly, mice with muscle specific ablation of PGC1α (myo PGC1α−/−)

have normal basal capillary to fiber ratio. However, these mice do not exhibit exercise

induced angiogenesis (in response to 14 days of voluntary running exercise (151).

8.10.5. VEGF-B/PlGF—While PlGF is capable of inducing angiogenesis within an

ischemic environment, PlGF levels do not increase in muscle in response to a single bout of

exercise (303). Furthermore, deletion of PlGF in mice does not impact exercise induced

angiogenesis (303). Interestingly, these mice do have a lower basal capillary to fiber ratio in

muscle (303), similar to that observed for the myocyte-specific VEGFA−/− mice (682),
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implying that PlGF does play a role in the developmental formation of a complete

microvascular network.

8.10.6. Ang1,2—Several studies have reported that neither Ang1 nor Ang2 mRNA change

in response to a single bout of exercise, either in trained or untrained subjects, regardless of

whether exercise is conducted under normal or flow-restricted conditions (295, 332).

However, basal levels of Ang2 mRNA are elevated after 10 days or 5 weeks of training,

which results in an increase in ratio of Ang2 to Ang1 (332). This suggests a pro-angiogenic

status within the muscle, supported by the detection of elevated Ang2 protein also is

detectably elevated in muscles following 10 days of training (332). In contrast, mRNA

levels of Ang2 and Tie2 have been shown to increase in muscle 3 hours following an acute

exercise bout (398). It is possible that exercise regimen and timing of muscle samples

contribute to these different findings.

8.10.7. FGF2—FGF2 was the first pro-angiogenic molecule characterized to be present in

extracts from exercised muscle (639). The release of FGF2 from cultured skeletal myocytes

can be induced by electrical stimulation of the cells (462). However, in vivo experiments do

not provide strong evidence of a role for FGF2 in mediating exercise-induced angiogenesis.

In rats, FGF2 mRNA is not affected by an acute exercise bout (294, 678), but it does

increase after 8 wk normoxic exercise training (678). Likewise, there is no observable

increase in FGF2 mRNA or its receptors, is observed in rat EDL muscle subsequent to

chronic electrical stimulation (105). In humans, FGF2 mRNA also does not increase either

after a single bout of exercise (330, 755) or after 8 weeks of exercise training (756).

8.10.8. TGFβ—A moderate increase in TGFβ mRNA occurs after a single bout of exercise

(91, 296, 678), which may be augmented following an exercise training period (296, 678).

TGFβ mRNA also increases with acute exposure to hypoxia, however, this effect is not

additive when combined with exercise (91). Conversely, chronic hypoxia represses TGFβ
mRNA, and prevents the increase in TGFβ normally associated with exercise (678). These

studies do not indicate a clear role for TGFβ in angiogenesis. The stimulation of

extracellular matrix, and other known effects of TGFβ on skeletal myocyte differentiation,

may be more consistent with an effect on myofiber adaptation.

8.10.9. Nitric oxide (NO)—Protein levels of nNOS and eNOS increase with sustained

muscle activity (626, 747, 895). Resting levels of eNOS protein also are increased in human

skeletal muscle following a 4 week period of moderate intensity exercise training (398).

These data support the premise that NO plays an important role in exercise-induced

adaptations within the capillary network. Consistent with this hypothesis, NO inhibition with

LNNA blocks electrical stimulation-induced capillary growth, with an associated reduction

in endothelial cell proliferation (421), and reduced expression of VEGF and VEGFR2 (626).

LNAME treatment of rats prevents the increase in VEGF mRNA in response to an acute

bout of running exercise, but does not block the exercise induced increase in TGFβ mRNA

(294).

Shear stress also increases eNOS protein levels (59, 994). NO inhibition prevents prazosin-

induced angiogenesis, but does not block overload induced angiogenesis (994), pointing to a

differential requirement for NO in the processes underlying luminal splitting and abluminal

sprouting forms of angiogenesis. However, it is interesting to note that basal capillary to

fiber ratio is 20% higher in the EDL of eNOS−/− compared to wildtype mice, which would

appear consistent with an angiostatic role of basal NO production. In these mice, chronic

vasodilatation using prazosin treatment does not induce a further increase in capillarization

(59). Elucidating the role of NO in these angiogenic processes is complicated by the direct

Haas et al. Page 34

Compr Physiol. Author manuscript; available in PMC 2013 October 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



effect that alteration in NO production exerts on blood flow. For example, inhibition of NOS

with LNNA prevents exercise-induced increases in capillary shear stress (425), which itself

could significantly impact VEGF production and angiogenic responsiveness. The majority

of studies indicate a predominant role of NO is in mediating the shear stress induced signals

that regulate both arteriogenesis and angiogenesis.

However, NO has been shown to dampen angiogenic responsiveness in some conditions.

For example, treatment of cultured human myocytes with the NO donor SNAP significantly

reduces the normal increase in VEGFA and FGF2 mRNA following electrical stimulation.

Medium collected from these cells has a reduced capacity to induce endothelial cell

proliferation (462). The apparent disparity between this reported inhibitory role of NO

compared to the pro-angiogenic role of NO surmised from in vivo studies that inhibited

synthesis of endogenous NO may be related to concentration differences. The levels of NO

that accumulate with SNAP treatment likely greatly surpass typical endogenous levels of

NO.

8.10.10. Matrix metalloproteinases—Increased levels of MMP-2 and MT1-MMP

mRNA and protein are detected in rat muscle within 4 days of chronic electrical stimulation

(334), correlating in timing with the physical appearance of degraded basement membrane

and the formation of abluminal sprouts. Inhibition of MMP activity (using the general MMP

inhibitor GM6001) prevents the normal increase in capillary to fiber ratio seen in response

to chronic electrical stimulation, while not impairing endothelial cell proliferation (334). In

human studies, elevation of MMP-9 (both pro and latent forms) is detectable in muscle after

1 and 3 hours of a single intense exercise bout (398, 787). Conversely, repeated exercise

bouts induce increases in expression of MMP-2 and MT1-MMP in human muscle (786).

The majority of cells within the muscle tissue (including endothelial cells, fibroblasts,

resident immune cells and skeletal myocytes) are capable of producing and secreting MMPs.

The individual contributions of these cells to the overall proteolytic landscape within the

muscle tissue has have not been established.

While muscle activity or muscle overload both elicit substantive increases in MMP-2

production and activity, the lack of increase in these MMPs is a hallmark of luminal splitting

angiogenesis (762). In fact, exposure of cultured microvascular endothelial cells to shear

stress results in a repression of MMP-2 production, dependent both on NOS activity and p38

MAPK activation (623).

8.11. Angiostatic Molecules and Their Regulation in Skeletal Muscle

The capacity to evoke an angiogenesis response is determined not only by the presence of

angiogenic mediators, but also by the levels of angiostatic signals. The local balance

between angiogenic and angiostatic signals will determine whether angiogenesis occurs (as

reviewed in (680). Several relevant angiostatic mediators are described below.

8.11.1. Thrombospondin 1 (TSP1)—TSP1 is a large molecular weight homotrimeric

heparin binding protein. TSP1 induces anti-proliferative/apoptosis signals in endothelial

cells, promotes p53 activity and inhibits nitric oxide signaling (327, 445). Consistent with

these known cellular effects, TSP1−/− mice have increased basal capillary to fiber in

gastrocnemius and soleus muscles, and higher VEGF protein levels (574).

A single bout of exercise induces an immediate but transient increase in TSP1 mRNA (677),

which may counteract early angiogenic signals such as those elicited by the production and

release of VEGFA. However, after several exercise bouts, TSP1 mRNA no longer exhibits

an exercise response (677) and basal levels also may be suppressed (492), consistent with a

shift towards angiogenesis. The elevation of TSP1 mRNA with an acute exercise bout is
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detectable once again following a longer period of exercise training (at which point,

capillary remodeling may have been completed) (398, 677). Interestingly, chronic exposure

to hypoxia reduces the basal level of TSP1, and reduces the increase in TSP1 mRNA in

response to a single exercise bout (677), which may enhance angiogenesis.

TSP1 also affects nitric oxide production (450), thus impacting arteriolar resistance and,

potentially, the capacity to dilate in response to exercise. This negative effect is greater in

aged animals and impairs recovery of hindlimb blood flow post-ischemia (448, 449). This

signaling also could exert a negative influence on shear stress-induced angiogenesis. More

recently, TSP1 ligation of its receptor, CD47, was shown to inhibit VEGFR2-dependent

intracellular signaling in microvascular endothelial cells, providing another mechanism

through which TSP1 exerts angiostatic effects (478).

8.11.2. Angiostatin—Angiostatin is a 38 kDa proteolytic cleavage fragment of

plasminogen. First recognized for the capacity to suppress tumor growth (670, 672), it

inhibits endothelial cell proliferation and induces apoptosis (158). At least 5 membrane

binding partners, including angiomotin, have been identified to date (972). Angiostatin can

inhibit HGF (but not VEGFA or FGF) -stimulated proliferative and migratory signals (973).

Although it is feasible that the increased production of MMPs in response to exercise may

result in higher levels of angiostatin, these assessments have not been made. There is some

evidence of increased angiostatin in diabetic animals, but this is not a consistent finding

across studies (269, 873).

8.11.3. Endostatin—Endostatin is a 20–22 kDa fragment consisting of the heavy C-

terminal fragment of collagen XVIII, which is produced by cleavage of the full length

collagen by MMPs (359) or by cathepsin L (254). It is known to inhibit angiogenesis (671),

in part by binding to αv and α5 integrins, thus competing with native ECM components and

serving to reduce signals associated with cell migration and survival (746). It also promotes

the intracellular activation of protein phosphatase PP2A, which enhances the

dephosphorylation (Ser1177) of eNOS (951).

The contribution of endostatin to exercise induced angiogenic signalling is unclear. Some

researchers have reported minor, time dependent fluctuations in the arterial-venous

difference in plasma endostatin levels, but no change in tissue endostatin levels, following

an acute exercise bout (787). Others have reported increases in circulating endostatin in

response to exercise (322, 893), although muscle levels of endostatin decrease after exercise

training (323). Endostatin levels are increased in skeletal muscle of diabetic patients

compared to non-diabetic controls (873), suggesting that endostatin may play a role in

maintaining an angiostatic environment in the muscle of diabetic patients.

8.11.4. Vasohibin-1—Vasohibin-1 is an endothelial cell-secreted protein that is induced

by VEGF or FGF2 stimulation, and is thought to act as a negative feedback regulator of the

VEGF signal pathway (983). It is associated with downregulation of endothelial cell

proliferation and tube formation (983). Vasohibin-1 is hypothesized to promote vessel

stabilization, as evidenced by its localization to stalk rather than tip cells of extending

sprouts, and based on the observation that knockdown of vasohibin-1 results in excessive

numbers of immature vessels (485). Interestingly, hypoxia represses the VEGF-induction of

vasohibin-1 (983).

Vasohibin-1 is present in skeletal muscle. While vasohibin levels are upregulated transiently

by brief exercise bout, this response is lost after short term training (490). Further evidence

of the physio/pathophysiological role of vasohibin-1 is that it increases significantly in

response to unloading of the soleus muscle, correlating with capillary regression. It also is
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elevated in the muscles of Zucker diabetic fatty rats (490). These results suggest that

vasohibin-1 may regulate the process of skeletal muscle angiogenesis both under

physiological and pathological conditions.

8.12. Contributions of a Multi-cellular Environment to Angiogenesis in Skeletal Muscle

Interactions between the resident cells within skeletal muscle have been proposed to

facilitate the coordinated responsiveness of muscle to stressors (exercise; regeneration)

(Figure 7). In recent years, numerous reports have provided some evidence in support of this

hypothesis.

8.12.1. Skeletal myocyte-endothelial cell interactions—Myocyte-derived VEGFA

likely is the largest source of VEGFA within muscle, and thus plays a significant paracrine

function in regulating activation of the adjacent capillary endothelial cells. Electrical

stimulation of isolated human myocytes induces greater VEGFA mRNA production, and the

media collected from these cells enhances endothelial cell proliferation (462). Takahashi and

colleagues (901) showed that hypertrophic stimuli that induce Akt activation (such as IGF-1

or insulin/dexamethasone) will elicit myocyte production of VEGFA. Notably, injection of

muscle with constitutively active Akt promotes both myocyte hypertrophy and the growth of

new capillaries. Thus, stimuli that activate myocyte Akt serve to elicit the production of

VEGFA, leading researchers to hypothesize that Akt plays a critical role in coupling the

adaptation of skeletal myocytes and their capillary network to an enhanced load.

Mice harboring a genetic deletion of VEGFA confined to the skeletal myocytes have

provided compelling evidence for the requisite role of this source of VEGFA in the

development and adaptive maintenance of skeletal muscle capillary networks. VEGFA

protein levels in these muscles are reduced by 80% compared to wildtype littermates (682).

Normal development of the capillary networks is impaired significantly within these mice,

with capillary to muscle fiber ratios that are half to one third that observed in muscles from

wildtype mice. Furthermore, the typical exercise training-induced increase in capillary

number is not detectable in these animals (679).

8.12.2. Satellite cell-endothelial cell interactions—Satellite cells reside beneath the

myocyte basal lamina. Upon activation, these cells proliferate and subsequently differentiate

into myofibers. Many factors that induce satellite cell activation and proliferation also are

known angiogenic stimuli, including mechanical stretch and growth factors (102, 349). For

example, angiotensin II is produced locally by satellite cells/regenerating myofibers, and can

exert growth and chemotactic effects on nearby endothelial cells and satellite cells (68, 465).

This leads to the hypothesis that the process of angiogenesis is coordinated with muscle

growth/regeneration, which would provide a means of maintaining balance between

metabolic demand and the capacity to deliver oxygen to the tissue. The termination of

satellite cell proliferation and angiogenesis also share common signaling. For instance,

satellite cells synthesize the Tie2 receptor. Ang1 stimulation of satellite cells represses

apoptosis, but also inhibits proliferation and differentiation (2). Thus, the actions of the

Ang1/Tie2 signal axis may co-ordinately promote stabilization of newly formed capillaries

and quiescence of the satellite cell population.

Signaling cross-talk between endothelial and satellite cells may be necessary in order to

achieve full responses in both cell types. Christov et al (156) provided strong evidence that

endothelial cells stimulate satellite cell proliferation, and conversely, that satellite cells

stimulate endothelial cell angiogenic behavior. Satellite cell number per muscle fiber

correlates strongly with the number of capillaries around a muscle fiber, either when

comparing glyolytic versus oxidative muscles, or in cases of pathological or physiological
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muscle adaptation. They also demonstrated that co-culturing of satellite cells with

endothelial cells stimulates greater endothelial cell sprouting, which could be blocked by

addition of an anti-VEGF neutralizing antibody (156). Satellite cell induction of HIF1α
occurs in response to stretch injury and also in response to hypoxia, suggesting that HIF/

VEGF production and subsequent release by satellite cells stimulates the adjacent capillaries

to induce sprouting (751).

While these studies provide provocative support for the hypothesis of co-operative and

coordinated signaling between satellite and endothelial cells, definitive cause-effect

relationships have yet to be established in vivo. In fact, radiation treatment of muscle, which

prevents satellite cell proliferation, does not impair angiogenesis induced by long term

voluntary exercise (535).

8.12.3. Perivascular cell (fibroblasts and pericytes)-endothelial cell

interactions—Pericytes reside within capillary endothelial basal lamina and thus are in a

privileged position to exert strong paracrine effects on the adjacent endothelial cells. In

vitro, co-culturing of pericytes and endothelial cells has provided insight into such paracrine

signaling (389). Co--cultured pericytes exert an anti-proliferative effect on endothelial cells,

but this requires cell-cell contact (686). Pericyte production of TGFβ1 in the retina promotes

capillary stabilization, both by stimulating production of basement membrane matrix

components and by inhibiting endothelial cell proliferation (974). Absence of pericytes is

associated with endothelial cell hyperplasia (365). Conversely, VEGFA production by

pericytes contributes substantially to endothelial cell survival (187).

Analysis of the distribution of pericytes along capillaries in muscle exposed to angiogenic

stimuli indicates that increased muscle activity (overload or chronic electrical stimulation) is

associated with a retraction of pericyte processes, so that less of the abluminal surface of the

capillary is in contact with the pericyte (232). Interestingly, angiogenesis occurring through

luminal splitting (in response to prazosin administration), is associated with an increased

pericyte coverage, which is consistent with the maintenance of an intact basement

membrane and lack of abluminal sprouting observed in this form of angiogenesis (227).

However, the nature (if any) of the modulatory role of pericytes in the physiological

angiogenic process remains unclear.

8.12.4. Immune cell-endothelial cell interactions—Mast cells are present in the

muscle, situated around neurovascular bundles and adjacent to capillaries (106).

Accumulation of mast cells occurs subsequent to myofiber membrane damage, with the peak

increase corresponding to the time of muscle fiber regeneration (311, 525). Mast cells are

known to release pro-angiogenic factors (i.e. VEGFA), as well as factors that can activate

satellite cells. However, a causal relationship has not been established between mast cell

accumulation or activation and angiogenesis within skeletal muscle (629).

Muscle damage is associated with an influx of immune cells, first neutrophils and then

macrophages and mast cells (319). VEGFA is chemotactic for macrophages (F4/80

positive), neutrophils and mast cells, likely through activation of VEGFR1 (846). In turn, the

activated macrophages produce and secrete numerous pro-angiogenic factors, including

FGF-2, IGF-1, IL6, TNFα, TGFβ, VEGFA (846), thereby amplifying the angiogenic signal

cascade. In support of the importance of macrophages in the response to muscle damage,

inhibition of chemokine receptor 2 (CCR2) reduces macrophage infiltration at sites of

muscle injury, and also delays the increase in VEGFA and new capillary growth in response

post-muscle injury (673). Macrophage accumulation and secretion of IGF-1 in response to

skeletal muscle injury also promotes muscle regeneration (552). However, the contribution

of macrophages to angiogenesis within non-injured muscle appears to be minimal.
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Exercise induces an elevation of factors known to stimulate release of endothelial progenitor

cells (EPCs) from bone marrow (VEGFA, interleukins). The number of circulating EPCs

increases after a single bout (30 min) of moderate or intense exercise (515). Exercise

training of coronary artery patients also increased number of circulating EPC (516). Exercise

training (7–28 days) improves the total number of EPC residing in the bone marrow, and

those in circulation. This effect is blunted severely in eNOS−/− mice (or those treated with

LNNA), suggesting that NO plays a substantial role in stimulating this effect (516).

8.13. Aging and the Angiogenic Response to Exercise

The angiogenic response in exercised muscle is diminished in aged rats/mice compared to

their younger counterparts (897). It was reported initially that capillary growth did not occur

in response to exercise in the aged human muscle. These investigators showed that an

apparent increase in capillary density was due to a decrease in myofiber size in the aged

muscle, rather than an increase in capillary number (there was no change in capillary

contacts) (204). The increase in interstitial VEGFA protein in response to a single exercise

bout was substantially lower in aged compared to young men (295, 791). Not surprisingly,

aged men had lower basal capillarization compared to young counterparts (791). However,

several studies provide evidence that capillary number does increase in response to a

prolonged exercise training program, albeit not as much as the increase observed in younger

individuals (295, 372). The latter studies provide evidence that endothelial cells retain the

capacity to undergo angiogenesis during the aging process. However, the extent of the

response appears to be blunted due to a reduced amount of angiogenic factors, such as

VEGFA, which decreases during aging. Fortunately, exercise training reverses this effect

(526).

8.14. Inactivity and Capillary Loss

Physical inactivity is associated with a reduction in muscle capillary to fiber ratio. While this

has been attributed in part to the decrease in fiber size (924), it is clear that unloading

provokes unfavorable conditions for capillaries. Unloading results in significant decreases in

capillary diameter and increased apoptotic labelling of endothelial cells, suggesting

progression loss of endothelial cells (186, 271). Molecular mechanisms underlying this

switch to apoptosis could include decreased survival signalling through the VEGFA-

VEGFR2 pathways, as both VEGFA mRNA (78) and VEGFR2 protein levels (778) were

reduced with muscle unloading reduces VEGFR2 protein. Fourteen days of unloading also

reduced eNOS mRNA and protein expression in soleus muscle, and attenuated endothelial

cell dependent vasodilatation (460, 826). These changes are consistent with a reduced

capacity of endothelial cells to respond to changes in hemodynamics and growth factor

stimuli. Additional factors that correlate with an angiostatic and potentially pro-apoptotic

environment during muscle unloading include increased levels of p53 and TSP1 (778).

8.15. Angiogenesis in Human Critical Limb Ischemia (CLI)

Lower leg muscle biopsies from individuals with intermittent claudication are characterized

by reduced capillary density compared to individuals without PAD (467, 763). In contrast,

biopsies from patients with prolonged CLI show a higher density of microvessels, and

increased microvessel to muscle fiber ratio within the ischemic tissue. However, microvessel

structure in these biopsies is abnormal. Lack of Ki67 staining indicates that there is no

longer a proliferative response, leading researchers to conclude that the angiogenic response

is short-lived and does not adequately respond to the continued ischemic environment (392).

The increase in capillary to fiber ratio within the medial gastrocnemius appears localized to

type IIA fibers. However, this may be skewed by the reduction in type IIB fibers found in

muscles of patients with peripheral artery disease compared to controls (337). Conversely,
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others have reported a decrease in the capillary to fiber ratio in the gastrocnemius of patients

with stable intermittent claudication compared to healthy age-matched controls (38).}

Chronic ischemia is characterized by the presence of both normal and atrophic muscle

fibers. Elevated levels of VEGFA and VEGFR2 mRNA (detected using in situ

hybridization) is limited only to the atrophic fibers, and correlates strongly with presence of

inflammatory cells (759). These authors suggest that VEGFR2 signalling may play a role in

differentiation of regenerating myocytes. VEGFR1 was detectable only on endothelial cells

in both chronic and acute ischemia. HIF1α expression is not prominent in chronic ischemia

(963).

The expression of growth factors, etc. depends substantially on the severity and duration of

ischemia. Gene array has been used to examine gene expression in acute onset versus

chronic critical ischemia. While acute onset ischemia induces upregulation of hundreds of

genes (growth factors and receptors, particularly the HIF1α/VEGF/VEGFR2 pathway,

MMPs, TNFα and inflammatory pathways, caspases), chronic critical ischemia modulates

few genes, and these mostly belong to anabolic and cell survival pathways (IGF1,2) (941).

Expression of VEGFA and VEGFR2 is observed in distal ischemic muscles in humans with

acute-onset ischemia (for example, induced by thrombosis of the femoral artery). Strong

immunostaining of HIF1α in nuclei within this region suggests that VEGFA expression is

mediated by HIF1α (759). In muscle biopsies from chronic limb ischemia patients, VEGFA,

SDF1 and CXCR4 mRNA levels are increased in acute-on chronic ischemia (compared to

non-ischemic muscle), but these gene products tend to be decreased in those patients with

chronic ischemia (963).

Muscle of patients with chronic CLI does not exhibit elevated mRNA levels of VEGFR2,

HIF-1α, ephrins or Tie2 (941). In some individuals, VEGF expression appears to correlate

with areas of increased microvessel density (941). However, the observed higher density of

microvessels may not be the result of angiogenesis but rather be due to muscle atrophy,

which reduces myocyte cross-sectional area substantially, making capillary density appear

greater. This concurs with another human study showing that chronic ischemia reduces the

extent of VEGFA expression in skeletal muscle (963).

Plasma VEGFA levels are elevated in humans with PAD compared to healthy controls

(572), and the extent of VEGF expression appears to correlate with disease severity (258). A

limitation is that it is not possible to get non-invasive measurement of interstitial skeletal

muscle VEGFA in these patients. Circulating HGF, but not FGF2, is elevated and correlates

with disease severity (538).

8.16. Animals Models of Ischemia

Various animal models have been developed to facilitate investigation of the pathology of

peripheral artery disease, and to test therapeutic options (984, 1049). Generally, ischemia is

induced through surgical ligation or removal of one or more major hindlimb feed arteries.

This induces acute onset ischemia, the extent to which will depend greatly on the species

and the location of surgical ligation. Muscle and vascular morphology and gene expression,

blood flow recovery and limb function may then be monitored over a period of time (often

up to 4 weeks) following ligation.

8.16.1. Rabbit—The model of ‘resting’ limb ischemia in rabbits was first described in

1990 (367). Surgical ligation of the common iliac artery induces moderate limb ischemia,

which results in functional limb impairment. Substantial recovery of blood flow and oxygen

levels to 80% of control values occurs by 17 days post-ligation, however complete recovery

is not observed even after 31 days.
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Femoral artery ligation (without excision) (455) generates a moderate level of ischemia that

is characterized by an absence of overt muscle wasting, gangrene, or impairment of

hindlimb function. There is no blood flow deficit observable at rest or after maximal dilation

in the proximal muscle groups, but there is consistent flow deficit in the lower limb muscles

(455). This model is associated with arteriogenesis observed in thigh region (surrounding the

site of ligation) while angiogenesis occurs in the distal muscle groups (lower leg). An

increased number of BrdU-positive capillary endothelial cells may be detected 1 week post-

ligation, corresponding with a slight increase in total density of capillaries within glycolytic

but not oxidative muscles. Monocytes (positive for FGF2 and TNFα) accumulate 7 days

post-ligation, and their accumulation correlates temporally with angiogenesis. Fibroblasts

and myocytes also are positive for FGF2. Investigators have observed that the greatest

angiogenic response occurs in areas with the highest levels of tissue-resident macrophages,

indicating they may play a key role in regulating angiogenesis in the ischemic muscle (34).

Complete removal of the femoral artery (which also may involve ligation of femoral artery

branches) (734) results in severe ischemic damage, and shows similarities to human acute

ischemia induced by thrombosis (759). There is widespread necrosis of muscle, substantive

influx of inflammatory cells, and widespread enhancement of VEGFA expression. In this

model, capillary sprouting is an early post-ischemic event that correlates temporally with the

inflammatory response (occurring after 5 days) while collateralization is a later response

(374).

8.16.2. Rat—Ligation of the femoral artery has been reported to induce a modest reduction

of blood flow at rest (25), or to have no significant effect on resting blood flow (98). It is

likely that muscle ischemia at rest is minimal because collateral flow pathways maintain

oxygen delivery to distal muscle groups and this may be sufficient to meet the low metabolic

needs of the inactive muscle. However, during muscle contraction, blood flow to the active

muscle is markedly below that of non-ligated muscle, which results in severely limited

exercise performance (98, 1022, 1025). Based on this pattern of blood flow insufficiency,

this model approximates the intermittent claudication observed in humans with peripheral

artery disease, where symptoms are observed during activity but not at rest (585). Minimal

or no angiogenesis response is observed in response to femoral artery ligation. Some reports

indicate a reduction in capillary density, which is restored only partially over 28 days

following ligation (436). In accordance with these observations, endothelial cell

proliferation is not detected in the hindlimb muscles of sedentary ligated rats (205, 545).

Iliac artery ligation significantly reduces resting muscle blood flow acutely, with flow

recovering to 40% and 60% of control levels after 1 and 5 weeks, respectively (104). Due to

these altered hemodynamics, capillary shear stress is reduced following iliac artery ligation

(103). Again, this deficiency in muscle flow is exaggerated greatly in active muscle. Muscle

fatigue index is reduced substantially, although there is recovery to approximately 80% of

control by 35 days post-ligation (427). Ischemia also results in swelling of capillary

endothelial cells visible after 7 days, which results in a narrowed lumen (381, 382, 427).

Notably, capillary swelling appears to be a systemic effect not limited to the region of

ischemia, as it also is observed (though to a lesser extent) in non-ischemic skeletal muscle

(382). The ischemic microcirculation also is characterized by increased leukocyte rolling

and adherence to venules (381, 427). The adherence of leukocytes correlates with increased

venular permeability, as assessed by visualizing leakage of FITC-albumin (381). Despite the

inflammatory signals observed within the microvascular network, there is no increase in

macrophage number within the ischemic muscle. An increase in PCNA-positive nuclei can

be observed at 2 weeks post-ligation, while there is no change in capillary to fiber ratio until

week 5, when it is moderately elevated above control values (104).
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While the majority of ischemia studies involve acute-onset ischemia due to complete artery

ligature, a chronic gradual ischemia model has been used successfully. In this approach, an

ameroid constrictor placed around the iliac artery causes progressive arterial occlusion over

a period of 2 weeks. This gradual onset ischemia, which may more closely mimic the human

onset of ischemia, is characterized by very poor blood flow recovery (i.e. formation of

collaterals), lack of inflammation, and minimal angiogenesis (910). Likewise, if iliac artery

ligation is followed 2 weeks later by femoral artery ligation within the same limb, the

resultant ischemic state is chronic and the blood flow recovery is limited (103). The absence

of inflammatory infiltrate appears to be a defining characteristic that distinguishes acute

onset and chronic ischemic states, and correlates substantially with the extent of

angiogenesis that is observed.

8.16.3. Mouse—Femoral artery ligation of mice induces mild to severe ischemia

depending on the type of ligation and whether it is accompanied by excision of the artery. It

is important to note that the extent of muscle ischemia (based on measurements of the acute

reduction in flow and on tissue ATP measurements), and the types of responses observed,

also differ substantially between mouse strains (825). These differences must be recognized

when interpreting data from various mouse strains. One variable that contributes

significantly to the severity of ischemia is the presence and caliber of pre-existing collateral

vessels, which correlate inversely with magnitude of tissue hypoxia, extent of tissue

necrosis, inflammation and myocyte regeneration. The C57/Bl6 strain response to femoral

artery ligation is characterized by a moderate acute hypoxic stimulation, followed by rapid

recovery of flow. Conversely, BALB/c mice exhibit very poor recovery of blood flow, and

there is evidence of more ischemic tissue damage (necrosis and edema) (358). Ischemic

muscles in BALB/c mice are characterized by a reduced angiogenic response compared to

those of C57/Bl6, which correlates with reduced expression of VEGFA (particularly

isoforms 165 and 188). Bioinformatics analysis using quantitative trait loci mapping

indicates that polymorphisms near the VEGFA gene, as well as associated with HIF1α,

sonic hedgehog, and Src homology region 2 domain-containing phosphatase-2 (SHP-2),

may be responsible for the modified responsiveness of the BALBc mice (139). A similar

quantitative trait loci mapping strategy has identified chromosome 7 as harboring genes that

are associated with the severity of hindlimb-ischemia post-ligation (212). These studies

provide an example of the opportunity that exists to differentiate responsiveness to ischemia

based on genetic polymorphisms. To date, there has been limited analysis of genetic traits

underlying susceptibility to (or severity of) PAD in humans. One study has used linkage

analysis to localize a gene associated with susceptibility for PAD to chromosome 1p31,

providing evidence that genetic variants mapping to PAD severity can be found in the

human population as well (325).

Ligation and excision of the femoral artery of C57Bl/6 mice generates a severe reduction in

limb blood flow lasting up to 7 days. Blood flow is reduced sufficiently within the first week

such that toe necrosis is observed in about 10 percent of animals. Blood flow gradually

increases until reaching a plateau between 21 and 28 days (177). Revascularization

(capillary density) correlates with blood flow recovery, increasing between 7 and 35 days.

Proliferation of endothelial cells is highest at 7 and 14 days post-ligation (695).

8.17. Acute ischemia, inflammation and EPCs

In most animal models of critical limb ischemia, inflammation is an immediate and short

term consequence of acute arterial ligation. Substantial infiltration of inflammatory cells

occurs within 3 days of ischemia (695). The recruitment of circulating immune cells plays a

crucial role in facilitating the subsequent angiogenic response. Infiltrated inflammatory/

progenitor cells are sources of cytokines/growth factors and proteolytic enzymes.
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Macrophage production of VEGF is stimulated by nitric oxide or hypoxia (741), and also by

activation of Toll Like receptors or the adenosine A2A receptor (653). Infiltrated neutrophils

produce substantial amounts of MMPs, which modulate various aspects of the angiogenic

process (as described in Section 8.12.4).

Acutely hypoxic cells within the ischemic region produce multiple immune cell chemo-

attractants, including VEGFA and SDF-1. VEGFA is chemotactic for circulating monocytes

and EPCs (34, 473). SDF-1 is a chemo-attractant for CXCR4 positive circulating cells (137).

Ischemia also promotes rapid increases in expression of monocyte chemotactic peptide

(MCP)1, E-selectin and ICAM-1 (675), each of which play roles in augmenting infiltration

of circulating cells. Ischemia upregulates TNFαR2 on circulating cells (560), which

promotes homing of these cells to the ischemic regions. TNFαR2 signaling, through

activation of NFkB, results in pro-angiogenic gene expression. For example, knock out of

TNFR2 reduces the ischemia-induced increase in VEGFA mRNA, due to lack of TNFR2-

dependent transcription of VEGF. These mice have a greatly reduced angiogenic response to

ischemia and an increased frequency of tissue necrosis and limb auto-amputation, which

could be restored by bone marrow transplant from wildtype mice, providing evidence that

this role for TNFR2 resides with the circulating cells (313). Endothelial expression of E-

selectin and ICAM1 also are important for homing of EPCs to the ischemia tissue, as there is

reduced EPC infiltration in E-selectin−/− mice (675). E-selectin-stimulated EPCs produce

IL8, which stimulates endothelial cell tube formation (675). These studies provide evidence

that the secretion of angiogenic molecules is an important functional consequence of EPC

recruitment. There is an age dependent decline in the capacity for blood flow recovery

following acute ligation, which appears to correlate with reduced EPC mobilization (146).

8.18. Balance between angiogenic and angiostatic factors in ischemia

The magnitude of angiogenic response that occurs within the ischemic environment may be

considered to be a result of the balance between angiogenic and angiostatic factors. While

angiogenesis may occur within ischemic muscle, it is clear that there are many scenarios,

particularly in the human population with critical limb ischemia, in which the angiogenic

response is inadequate. This failure in responsiveness could result from insufficient stimulus

to produce angiogenic factors, inefficient signalling of these factors, or the presence of

conflicting inhibitory signals.

8.18.1. Growth factors—VEGFA mRNA and protein are elevated in skeletal myocytes,

endothelial cells, and infiltrating inflammatory cells within the ischemic region (149, 177,

351, 374, 559, 621, 759, 941, 963). The increase in VEGFA appears to be essential for

angiogenesis, as administration of a VEGFA neutralizing antibody substantially impairs the

increase in capillarity post-ligation (177). While there is a modest increase in HIF1α in

response to femoral artery ligation, this can be augmented by treating animals with DMOG,

which inhibits PHD and FIH, resulting in HIF1α stabilization. DMOG treatment results in

enhanced levels of VEGFR2 and increased capillary to fiber ratio (628). HIF1α is not co-

localized with VEGFA and VEGFR2 in regenerating myofibers, leading researchers to

conclude that VEGFA expression in the regenerating myofibers is driven by alternate

mechanisms. The expression of VEGFA in regenerating fibers is strikingly similar to the

pattern of expression of HGF, which may imply a common regulatory mechanism (461).

While hypoxia typically results in suppression of gene expression, VEGF internal ribosome

entry site (IRES) activity is enhanced during ischemia, enabling enhanced cap-independent

translation of VEGFA (87).

Production of the VEGF120 isoform predominates within the ischemic tissue, whereas

isoforms 164 and 188 increase in the region of collateral artery development (162). This
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suggests that environmental cues can act to regulate VEGF A splicing. Production of the

soluble form is induced by the ischemic environment, while heparin binding, matrix

immobilized forms are stimulated by the high flow environment in the collaterals (162) and

may contribute to formation and remodeling of collaterals. VEGF expression patterns also

differ depending on the muscle type examined. Modest and short term increases in

VEGFA121 and 165 are detectable in the predominantly glycolytic rabbit tibia is anterior

muscle after 1 or 5 days of ligation, but levels return to control by 21 days. Interestingly,

VEGF165 levels decrease in the oxidative soleus muscle after 1 day of ligation, but increase

substantially by 5 days post-ligation. In both muscles, VEGFA protein primarily is localized

to the periphery of fibers and to interstitial cells (149). Despite these increases in VEGFA,

there was no improvement in capillary to fiber ratio or muscle oxygenation after 21 days,

consistent with the concept that increasing VEGFA expression on its own may be

insufficient to drive angiogenesis within the ischemic environment.

PlGF levels do not increase with ischemia. Knockdown of PlGF (Plgf–/–)) does not impact

recovery from ischemia. However, combined Plgf−/−/eNos−/− mice show defective

angiogenesis associated with increased oxidative stress in response to tissue ischemia (302).

FGF2 does not increase over 21 days following femoral artery ligation (149). While this

suggests that FGF2 does not play a role in post-ischemic angiogenic adaptation, it is possible

that pre-existing matrix-sequestered FGF2 may be released via proteolytic cleavage, which

would enable it to activate cell surface receptors and exert cellular effects. Not surprisingly,

targeted disruption of FGF2 does not impact the recovery of blood flow in response to

hindlimb ischemia, and capillary density is not different from wildtype mice (894). It thus

appears unlikely that FGF2 contributes substantially to the ischemic response.

HGF mRNA is not detectable in adult skeletal muscle, but it increases in response to

ischemic stress, and during the subsequent muscle regeneration. In contrast to acute-onset

ischemia, chronic hypoxia down-regulates production of many growth factors. HGF mRNA

and protein levels are down-regulated by exposure of endothelial or smooth muscle cells to

prolonged hypoxia, which correlates with reduced cell survival (350).

Dll4 expression is enhanced post-femoral artery ligation, and is associated with increased

capillary sprouting. Inhibition of Dll4 function through overexpression of soluble Dll4

results in impaired recovery from ischemia (14). This study showed evidence that sprouting

endothelial cells formed inappropriate (arteriole-arteriole) and non-functional vascular

connections, indicating the requirement of Dll4 signalling for appropriate integration of neo-

capillaries into the microvascular network. Interestingly, Dll4 inhibition also increased

leukocyte accumulation, which may be due to relieving Dll4-mediated repression of CXCL1

(IL-8) expression (14).

8.18.2. Growth factor receptors—Levels of cell surface receptors are affected by

modulation in transcription and translation, as well as by internalization and proteolysis.

Despite increases in Tie2 mRNA, decreased levels of full length Tie2 receptor are detectable

in mouse hindlimb muscle 1 day following induction of ischemia (684). The decline in full

length Tie2 correlates with the increased production of MT1-MMPMT1MMP, which is

capable of clipping Tie2 to release the extracellular domain of the receptor. In cultured

endothelial cells, this leads to impaired responsiveness of cells to Ang1, and reduces cell

viability (684).

Plasma levels of VEGFA and sTie2 are strong predictors of ischemia severity, with higher

levels of both proteins detected in patients with critical limb ischemia compared to those

with intermittent claudication. Interestingly, treatment of cultured endothelial cells with
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VEGFA results in increased levels of sTie2 (258), implying that the elevated levels of

VEGFA may play a role in the pathogenesis of the ischemic condition. VEGFA treatment of

endothelial cells is known to enhance production of MMP-2 and MT1-MMP (453), which

may then contribute to clipping of Tie2 and other cell surface receptors.

Mouse studies also suggest that pathological generation of soluble VEGFR1 (sFlt1) may

contribute to the reduced angiogenic response to ischemia (351). Increased Flt1 and sFlt1

may act as a “sink” for VEGFA, reducing positive signalling through the VEGFR2.

Conversely, computational modeling of the relationship between VEGF and VEGFR1 in

peripheral arterial disease, based on available clinical data, and extrapolations from animal

studies, suggests that sufficient “free” VEGF exists to create a favourable angiogenic

environment in the ischemic limb and that increases in sVEGFR1 are not likely to impair

this signaling (1010). In fact, a reduced level of VEGFR1 protein was detected in skeletal

muscle of PAD patients with IC, compared to age-matched controls, while VEGFA levels

were similar between groups (467). Considering that the extent of free VEGF does not

correlate well with the clinically described outcomes (i.e. poor angiogenic responsiveness),

it may be concluded that disruptions in signaling downstream of VEGFR2 or additional

angiostatic factors modify the capacity of the endothelial cells to respond to the ischemic

environment.

The angiogenic response to ischemia is significantly impaired in mice deficient in EPOR in

all cells except the erythroid cells (650). The angiogenic response cannot be restored by

bone marrow transplant from wildtype mice, providing strong evidence that the phenotype is

associated with the impaired vascular cell expression of EPOR. Reduced levels of VEGFA

and VEGFR2 in these mice led authors to conclude that EPOR plays a significant role in

promoting activation of the VEGFA/VEGFR2 signal axis in response to ischemia (650).

These growth factor receptors generally involve Akt activation as a potential component of

the downstream signal pathways. Thus, deficiencies in the activation of these receptors will

result in reduced Akt activation, which may exert negative effects on cell survival signalling

as well as nitric oxide synthase activity. Not surprisingly, targeted deletion of Akt1 results in

reduced post-ischemia angiogenesis, and impaired recruitment of EPCs to the ischemic site

(5). Reduced phosphorylation of endogenous Akt has been reported in response to iliac

artery ligation, correlating with increased levels of cytostatic/pro-apopotic transcription

factor FoxO1 (629). Conversely, enhanced expression of Akt promotes enhanced

angiogenesis and recovery from ischemia (901), indicating that direct Akt activation can by-

pass potential deficiencies in upstream signaling events.

8.18.3. MMPs—MMP-2 and 9 levels within the ischemic muscle increase as early as 1 day

post-ligation, peaking at day 3, and remaining elevated for up to 14 days. This is associated

with increased infiltration of neutrophils, which are the major cellular sources of MMP-9

(643). Depletion of neutrophils significantly reduces both MMP-9 and active levels of

MMP-2 in the ischemic muscle (642).

Some functions of MMPs may promote angiogenesis within the ischemic muscle. For

example, the increase in MMP-9 correlates temporally with exposure of a cryptic site from

collagen IV (recognized by mAb HU177)(276). This site is associated with stimulation of

angiogenesis through promoting endothelial cell adhesion, migration and proliferation (179).

Reduced exposure of this site is seen in MMP-9−/− mice, corresponding with reduced

recovery post-ischemia (276). MMP-9−/− also have reduced collateral artery formation and

capillary growth in response to hind limb ischemia, which appears to be the result of

reduced proliferation and invasion of both endothelial cells and EPCs (147). Notably

exercise training could rescue the effect of hindlimb ischemia in wildtype, but not in
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MPP-2−/− mice, leading authors to suggest that MMP-2 production/activation is an

important component in the exercise-induced adaptations to ischemia (146). Conversely,

MMPs may exert a negative influence on angiogenesis through shedding of the extracellular

domains of growth factor receptors (684), as mentioned previously. MMP-9 also may exert a

negative role on angiogenesis through enhanced production of angiostatic cleavage products

such as angiostatin (727), although this has not been observed within the ischemic

environment.

8.18.4. Nitric oxide—eNOS plays critical role in promoting angiogenesis within the

ischemic environment. Mice deficient in eNOS have an impaired angiogenic response (698)

and reduced recruitment of pericytes, an indicator of stabilized capillaries (1029). A reduced

expression of PDGFRβ may underlie the reduced recruitment of pericytes. These mice also

have lower expression of VEGFA,B and C in response to ischemia, with an increased ratio

of Flt1 to Flk1 compared to wildtype mice (1029). Conversely, eNOS−/− mice do not exhibit

impairment in the mobilization of EPCs in response to ischemia (1029).

Consistent with the pro-angiogenic role of NO, dietary supplementation with L-arginine

enhances the capillary density in ischemic skeletal muscle of rabbits (645), while LNAME

treatment reduces the recovery of blood flow and capillary growth post-ischemia (645, 698).

Nitrite therapy also enhances angiogenesis and blood flow recovery following induction of

hindlimb ischemia (507). It has been reported that eNOS protein level does not decrease in

ischemia (622), which suggests that eNOS activity and/or NO bioavailability are altered in

the ischemic state. This may be attributed to reduced Akt activity as well as increased levels

of ROS, which would scavenge NO. Oxidative stress is enhanced within ischemic skeletal

muscle of PAD patients (719). ROS can contribute to cellular senescence, decreased

responsiveness of growth factor pathways, and increased senescence and/or apoptosis of

ischemic endothelial cells (953).

8.18.5. Angiostatic factors—Elevated levels of TSP1 mRNA and protein (CD47) are

detectable in the distal ischemic (amputated) muscle of patients with CLI, which correlates

with lower capillary density (253). The level of Tsp1 is increased in aged animals, which has

been associated with limited recovery post-ischemia (448, 449).

Endothelin levels are elevated in patients with CLI (188). Endothelin receptor antagonism

(at subpressor levels) in rat femoral artery ligation is associated with enhanced capillary

growth within the ischemic limb (436). These positive effects are prevented in animals co-

treated with anti-VEGFA antibodies or with L-NAME. Endothelin receptor blockade results

in enhanced production of VEGFA and eNOS, suggesting that endothelin signalling

represses NO-VEGF pathways.

While low levels of AngII have been associated with capillary growth (19), high levels of

AngII impart negative consequences to the microvasculature. Angiotensin converting

enzyme (ACE) inhibition using quinaprilat improves capillary density in ischemic tissue,

equivalent to treatment with recombinant VEGFA (252). Authors propose that tissue levels

of ACE activity, rather than plasma levels, are the key negative factor, as the ACE inhibitor

captopril (which has limited access to extra-vascular compartments) does not induce a

significant improvement in angiogenesis within the ischemic limb, and did not control ACE

tissue levels (252). This also suggests that the improvements seen with ACE inhibition are

not simply a result of increased vasodilatation and limb blood flow, as these systemic effects

are similar with both inhibitors.

Post-transcriptional production of the anti-inflammatory cytokine IL-10 is increased by

elevated adenosine levels (653), which may serve to limit angiogenesis. Correspondingly,

Haas et al. Page 46

Compr Physiol. Author manuscript; available in PMC 2013 October 01.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



mice deficient for IL-10 have enhanced levels of tissue VEGFA and increased capillary

density, while mice with elevated IL-10 levels have an impaired response to femoral artery

ligation (855).

8.19. Diabetes and Peripheral Artery Disease

The microcirculation is impaired in type 2 diabetes. Capillary rarefaction is associated with

diabetes and metabolic syndrome (70, 269). Goto rats, a model of type II diabetes, have

reduced perfusion of capillaries within the skeletal muscle under resting conditions (66%

compared to 93% in non-diabetic controls) (690). Thus, if combined with arteriosclerosis of

the iliac or femoral arteries, ischemia may be more severe in these individuals. Hematocrit

and red blood cell velocities also are lower, resulting in substantively reduced oxygen

delivery capacity to the muscle in these animals. This enhances the likeliness of ischemia,

and also generates a local environment that disadvantages the appropriate cellular responses

to ischemia. Endothelial cell apoptosis is increased, and capillary density reduced, in 3

month old leptin receptor deficient mice (db/db) compared to WT controls (243). Diabetic

mice subjected to 1 hr of running exercise have a reduced response of VEGFA mRNA, and

a reduction in VEGFR2 mRNA. Conversely, thrombospondin1 is significantly increases in

these mice, independent of exercise (491).

Patients with type II diabetes have elevated plasma levels of VEGFA (82). Conversely,

tissue levels of VEGFA are reduced (157), which may suggest reduced production of

heparin binding isoforms of VEGFA.

Db/db mice display significantly reduced angiogenesis and blood flow recovery following

ischemia induced by femoral artery ligation (243). Diet-induced type II diabetic mice have

an elevated level of VEGFA mRNA and protein in ischemic muscle (351). Elevated levels

of full length and soluble VEGFR1 are detected in these mice (351), leading researchers to

postulate that VEGFR1 interferes with appropriate VEGFA signaling. Alternatively,

decreased cellular responsiveness to VEGF (particularly Akt-dependent signals) may be a

result of enhanced intracellular phospatase signaling (PTP-1B, PTEN, SHIP2), in line with

the mechanisms responsible for insulin insensitivity (351). Increased angiostatin levels also

exist within vessels from type II diabetic patients (correlating with elevated activity of

matrix metalloproteinases 2 and 9), which may inhibit angiogenesis signaling. MicroRNA

503 is enhanced in endothelial cells under conditions mimicking diabetes. It also is elevated

in ischemic muscle from streptozotocin -diabetic mice and in the muscle and plasma from

patients with peripheral artery disease (126). miR503 is associated with inhibition of

endothelial cell proliferation. Blocking miR503 by injection of a decoy results in enhanced

angiogenesis and blood flow recovery in response to femoral artery ligation (126).

8.20. Pharmacological Treatments for PAD: A Role for Angiogenesis?

Of the two drugs approved for use to treat PAD, cilostazol (phosphodiesterase 3 inhibitor)

and pentoxifylline (phosphodiesterase 1–5 inhibitor), only cilostazol consistently improves

maximal walking distance of patients (782). However, some studies find evidence for

improved ankle-brachial index with cilostazol treatment, while others do not (192). These

results suggest that the major effect of cilostazol is not at the level of collateral

arterialization. Similarly, it is known that pentoxifylline increases exercise performance in

rats with femoral artery stenosis, but does not enhance maximual blood flow to the working

muscles, leading authors to suggest that pentoxifylline may enhance oxygen extraction by

improving flow distribution within the muscle (211). While little is known about the cellular

effects of these drugs, it is possible that they may enhance angiogenesis within the ischemic

muscle. Cilostazol treatment is associated with an increase in circulating VEGFA

(particularly in non-diabetic patients), and the extent of VEGFA production correlates well
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with the percent change in patient mean walking distance (524). This may be consistent with

enhanced angiogenesis within the ischemic muscle. However, VEGFA levels alone do not

indicate increased angiogenesis (as discussed earlier). Interestingly, significant increases in

circulating VEGFA were not observed with pentoxifylline treatment in the same study,

despite the drug resulting in increased in maximum walking distance (524). Cilostazol has

been reported to enhance NO production (346, 438). Recently, cilostazol was reported to

enhance the phosphorylation of eNOS in a mouse model of limb ischemia. Further, the

improved blood flow recovery post-ischemia seen with cilostazol treatment was prevented

by treatment with LNAME (414). Thus, through activation of the eNOS/NO pathway,

cilostazol may improve vasodilation and contribute to local increases in VEGFA production,

as well as promote anti-thrombosis, and protect against endothelial cell senescence (688).

8.21. Exercise Training, Angiogenesis and Peripheral Artery Disease

Exercise training is associated with enhanced recovery of muscle blood flow, improving

exercise tolerance and muscle performance following arterial ligation in animal models

(585). Even modest exercise such as treadmill walking is able to facilitate improved muscle

function in rats (1023). The majority of animal studies indicate that exercise training

increases capillary to fiber ratio in ischemic muscle. In rats subjected to bilateral femoral

artery ligation followed by progressive exercise training, endothelial cell proliferation is

observed in the ischemic muscle after 3–7 days of exercise, followed by significant

increases in capillary contacts per fiber compared to sedentary ligated after 12 days of

exercise. Over the same time period, there is no evidence of endothelial cell proliferation

and capillary contacts per fiber remains constant within the hindlimb muscles of sedentary

ligated rats (205). However, in models in which femoral artery ligation itself induces a

compensatory increase in capillary to fiber ratio, exercise training may not generate further

improvements. For example, exercise training (7–9 weeks of progressively moderate to high

intensity treadmill running) did not stimulate further enhancement of capillary growth in

plantaris muscle (despite increasing the oxidative capacity of the muscle)(766).

Exercise induces responses within the ischemic limb that parallel those observed in healthy

exercised muscle. Within 4–8 days of exercise, increased levels of VEGFA, VEGFR2 and

eNOS mRNA are detectable (545). Muscle activity induced by electrical stimulation reduces

expression of VEGFR1 and increases expression of VEGFR2, suggesting enhanced

responsiveness to VEGFA (622). Interestingly, VEGFR2 antagonism only partially prevents

the exercise-training induced angiogenesis post-femoral artery ligation in rats, despite

complete abrogation of improvements in muscle blood flow (544). This finding points to

redundancy of mechanisms capable of inducing angiogenesis, as well as providing support

for the diversity in function of VEGFA across multiple cell types. Exercise training also is

well established to improve NO bioavailability. However, treatment of rats with LNAME

does not affect the exercise-induced increase in capillary contacts per fiber within ischemic

muscle (546), indicating NO-independent mechanisms of capillary growth. Tie2 and Ang2

levels also are upregulated within 4–8 days of exercise post-ligation while Ang1 tends to

decrease at the same time (545). This results in a higher Ang2 to Ang1 ratio, which is

indicative of an angiogenic phenotype.

In contrast, there is no change in FGF2 mRNA levels in ischemic muscle following arterial

ligation (149), or in response to exercise training or electrical stimulation of the ischemic

muscle (205, 840). While this suggests that FGF2 does not play a role in post-ischemic

angiogenic adaptation, it is possible that pre-existing matrix-sequestered FGF2 may be

released via proteolytic cleavage, which would enable it to activate cell surface receptors

and exert cellular effects.
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There is evidence that an exercise training program can augment levels of circulating EPCs

in patients with ischemic syndromes or PAD (800, 821). Increased circulating EPCs may

participate in the process of capillary growth, or may promote enhanced endothelial cell

function, thus contributing to the observed improvements in ABI and maximal walking

distance for these patients.

Exercise training of mice has been shown to reduce levels of prolyl hydroxylase-3 (PHD3)

and factor inhibiting HIF (FIH), which would result in the enhanced the stabilization of

HIF1α and greater production of VEGFA (146). While training improves blood flow

recovery of wildtype mice, it does not rescue the effect of ischemia on MMP-2−/− mice,

leading authors to suggest that MMP--2MMP2 production and/or activation is an important

downstream consequence of VEGFA signaling (146).

Low intensity chronic electrical stimulation also has been used successfully to enhance the

angiogenic response within an ischemic limb. Intermittent electrical stimulation of lower

limb muscles in humans with peripheral artery disease over a period of 4 weeks results in a

significant increase in pain free walking distance and maximum walking distance, combined

with a reduced fatigue index within the muscle (drop in muscle tension over time (935).

Investigators hypothesize that capillary growth contributes to this increase in muscle

performance. Intermittent electrical stimulation (5 minutes stimulation, followed by 5

minutes rest, repeated 8 times daily) over 4 weeks does result in an increase in capillary

density in ischemic rabbit skeletal muscle, with corresponding increases in VEGFA and

VEGFR2 mRNA (840). The stimulation frequency is important, as 10 and 40, but not 1, Hz

stimulation resulted in improved capillary density. However, as discussed earlier (Section

8.16.2), increased muscle activity leads to a greater incidence of capillary swelling and

leukocyte adherence to venules (381, 382, 427), and thus strenuous activity may induce

muscle damage and interfere with blood flow recovery (424).

Another interesting avenue for future development is the concept of remote conditioning to

enhance angiogenesis within ischemic muscle. One research group has shown that high

intensity electrical stimulation of a non-ischemic limb over a period of 4 weeks promotes

increased VEGFA levels and angiogenesis within the contralateral ischemic limb. This

suggests that exercise-induced release of angiogenic factors (such as IL-6, VEGFA) into the

circulation can promote angiogenesis at distant sites (841).

9. Training Adaptations Within the Active Muscle: Redistribution of Blood

Flow

A training-induced redistribution of blood flow within the limb affected by PAD has the

potential of improving oxygen delivery to the active muscle without an overall increase in

blood flow to the entire limb. This could occur by one or both of two processes: 1) there

could be a redistribution of blood flow from the upper, less affected region of the limb, to

the lower limb muscles; and 2) there could be a redistribution of blood flow within the distal

muscles to better perfuse the regions of active muscle fiber recruitment.

A redistribution of blood flow from the upper to the lower limb regions is possible in

conditions with more proximal obstructions. Collateral vessels that develop in this condition

arise from non-obstructed vessels that are normally designed to perfuse the proximal

muscles of the upper thigh. While these collateral vessels circumvent the obstruction, they

derive blood flow from circuits not originally intended for the distal muscles. Thus, any flow

that proceeds distally has the potential to ‘steal’ flow from the intended proximal region of

the vascular circuit. Alternatively, any increase in flow to the intended proximal muscles

would lessen the potential for collateral flow distally. This potential ‘competition’ for the
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upstream perfusion pressure is established by the relative resistances of these vascular

circuits that are effectively in parallel with each other. If exercise training were to make a

more efficient motor unit recruitment, combined with a more responsive and selective

vascular distribution of flow during a given modest intensity activity such as walking, then

the upper limb muscles may be better able to function with a relatively reduced blood flow.

The required oxygen demand could be met by an expanded oxygen extraction, a response

quite capable of trained muscle (767, 769, 1023). The net result is that a greater blood flow

would be available to be perfuse distally. Evidence for this prediction has been observed in a

pre-clinical model of PAD where the vascular obstruction was introduced in the femoral

artery. The relative fraction of total limb blood flow that went to the distal limb muscles

became greater in trained rats (584). Whether this occurs in patients that are trained and

contributed to their increased exercise tolerance is not possible to determine. Appropriate

blood flow measurements cannot be made. However, if this happened there would be a

greater oxygen extraction across the entire limb of patients who were trained, an observation

made some 30–40 yrs ago ({Zetterquist, 878, 1037).

A redistribution of blood flow within an active muscle could occur after training to better

support an improved exercise tolerance. Even with a limited oxygen delivery to the calf

muscle in patients with PAD, a better utilization of this oxygen delivery could be optimized

to effect a benefit. We have seen that patients with PAD can exhibit an altered gait while

walking, a response that would alter motor unit recruitment. A potentially inefficient

recruitment of muscle fibers would lead to a broad requirement of the limited flow to the

muscle. This could lead to undue fatigue of some motor units and an inefficient use of the

flow that remains to the affected fiber regions (565). If exercise training helped normalize

gait and motor unit recruitment, there is the potential to better perfuse the lesser number of

motor units that are now needed for the locomotion. Exercise tolerance would be improved

with this optimal use of the oxygen delivered. Further, training-induced adaptations of an

increased mitochondrial content and an increase capillarity should also optimize oxygen

utilization and enhance the performance of individual motor units that are recruited, as

observed in rats with stenosis of the femoral artery that were trained by treadmill running

(585). If this occurred in patients with PAD, there would be a greater oxygen extraction

across the limb, as observed previously (877, 1036).

10. Training Adaptations Within the Active Muscle: Increased Mitochondrial

Content

Another hallmark adaptation induced, within active skeletal muscle by endurance-type

exercise training, is an increase in mitochondrial content (401). Each of the different skeletal

muscle fiber types will increase their mitochondrial density as long as they are recruited (49)

in a manner related to the intensity of the training program (217). This increase in

mitochondrial content is thought to underpin significant increases in endurance performance

through metabolic changes in fatty acid oxidation and reduced glycogen utilization (404). In

deed, cellular signals that influence substrate selection are meaningfully altered in trained

muscle (218, 401) to favor a beneficial selection of substrate source to fatty acids during

prolonged sub maximal exercise. As described above, in addition to these biochemical

changes, individual muscle fibers within the trained muscles are surrounded by more

capillaries (21, 100, 441). Further, muscle fibers regions that contain high-mitochondrial,

high-capillarity fibers also receive high blood flows (33, 517, 565). Thus, there appears to be

an important coordination in the design of muscle for the convective delivery of oxygen, for

the diffusive capacity for oxygen exchange, and for the biochemical capacity to utilize

oxygen, thereby establishing a variety of oxidative capacities among the different muscle

fiber types and the influence of exercise training.
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10.1. Training adaptations in muscle of patients with PAD

Interestingly, the adaptations of an increased capillarity and increased mitochondrial content

can be found in patients with intermittent claudication. An increase in mitochondrial enzyme

activity (116, 405, 407) and an increase in capillary density (164, 337, 573, 606, 921) have

been found in patients, even without participation in an exercise program. The appearance of

these changes has not always been found (163), possibly due to reductions in the high-

oxidative, high-capillary type I fiber number and area (38, 164). Further, their appearance is

likely dependent upon the severity of the occlusive disease, since below normal

mitochondrial contents are found in advanced stages of PAD (116, 405, 407), possibly

indicative of muscle disuse atrophy and/or tissue pathology. In cases of successful vascular

surgery that improved blood flow, the initially elevated muscle mitochondrial content

reverted back to normal (407). Whereas, those patients whose surgery was unsuccessful with

no improvement in blood flow, did not demonstrate a change in mitochondrial content (407).

Thus, the stimulus for enhanced mitochondrial content appears related to ischemia. Since

blood flow, and thereby oxygen delivery, had been improved by surgery, it has been

suggested that hypoxia is an important stimulus (235, 406) that serves to ameliorate the

tissue insult caused by peripheral arterial insufficiency. If this is the case, then it would be

expected that any involvement in an exercise program that fosters continued muscle

ischemia would further enhance angiogenesis. Indeed, patients with intermittent claudication

who participate in an exercise program demonstrate a significant increase in mitochondrial

content, above that of inactive control claudicates (235, 406, 557, 558), although this has not

always been found (379). However, as developed in the section on Angiogenesis, hypoxia is

not the sole, nor possibly even the most important, factor stimulating angiogenesis in the

active muscle.

11. Coordination in Mitochondrial Biogenesis and Angiogenesis in Muscle

by Exercise Training

11.1. Control of mitochondrial biogenesis

The control of mitochondrial content within muscle is subject to a complex set of variables

including, muscle fiber type composition (797), aging (513), inactivity (384), training status

(49, 402), and factors that alter muscle fiber composition (e.g., nerve firing pattern (715),

thyroid status (433, 999)). Yet to be fully understood, there are keen differences in

mitochondrial contents among adult skeletal muscle fiber types that occur during

development. The greatest contrast in muscle fiber mitochondrial content is observed in non-

primate mammals between the low-oxidative white fibers (fast-twitch, type IIb) and the

high-oxidative red fibers (slow-twitch and fast-twitch, type I, IIa and IIx) which can be as

much as a 4-fold difference. While individual fibers of human muscle can exhibit large

variations in some enzyme activities (551), there is generally a much smaller difference in

mitochondrial enzyme activity between low-oxidative and high-oxidative muscle fibers

(248, 797). Thus, in the absence of other influences the mitochondrial content of a whole

muscle will be determined by its muscle fiber composition. The metabolic and functional

implications of differences in muscle fiber mitochondrial contents are generally the same

across species, when quantitative variations are taken into consideration. For example, in

contrast to the low-oxidative white fibers, muscle fibers that have the greatest mitochondrial

content, within a species, exhibit the greatest relative capacity for aerobic metabolism and

are highly fatigue resistant during prolonged submaximal contractions. Further, there is an

impressive design in skeletal muscle, as a tissue, to coordinate aspects of vascular support to

match the oxygen demand of each mitochondrial content. In addition to the variation in

capillary densities among muscle fiber types, there is a corresponding variation in blood

flow to these muscle fiber areas (517, 565). Thus, there is a coordinated relationship among

mitochondrial content (biochemical capacity for oxygen consumption), blood flow (absolute
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oxygen delivery), and capillarity (oxygen diffusion capacity) for the different skeletal

muscle fiber types. We will now consider how this coordination in the design of

mitochondrial content and vascular capacity is controlled, particularly from the perspective

of muscle use and the adaptations that it establishes.

There are many excellent reviews covering mitochondrial biosynthesis that provide details

beyond the scope of this article (30, 402, 403, 412, 413, 466, 513, 539, 605, 676, 772, 806,

807, 1017). Thus, only a general overview will be provided and that in the context of

exercise responses in muscle. A major break through in our understanding of the control of

mitochondrial biosynthesis came by the discovery of peroxisome proliferative-activated

receptor-γ coactivator1α (PGC-1α)(736), which binds to transcriptional factors that modify

gene expression. Indeed, over expression of PGC-1α leads to a striking increase in red, high

mitochondrial content muscle within the transgenic mouse (537) and an improvement in

exercise performance and increased oxygen uptake (121). While PGC-1 was first recognized

to be important in transcriptional regulation of mitochondria, it has been viewed as a

‘master’ regulator, since it has wide-spread effects on numerous processes important within

cells (338, 339, 536).

The activity of PGC-1α can increase by a dual process. Phosphorylations, along with other

post-translational modifications, of PGC-1α enhance activity and thereby nuclear gene

transcription. In addition, there can be an increased in PGC-1α expression, thereby

increasing its abundance within the cell making more for available for activation. In

particular, enhancing PGC1α activity increases the expression of two nuclear regulatory

factors (NRF-1 and NRF-2) (806), which are imported into the nucleus to increase

transcription of nuclear-derived mitochondrial proteins (251). In addition, NRF-1 and

NRF-2 promote gene transcription of transcription factor A mitochondrial (TFAM) (969),

which promotes mitochondrial gene transcription. Thus, activation of PGC-1α by

phosphorylation has downstream effects to promote the coordinated production of both

mitochondrial-and nuclear-coded proteins needed for mitochondrial biosynthesis. It then

remains for the nuclear coded proteins to be imported into the mitochondria and assembled

with relevant mitochondrial protein components into mature, functioning mitochondrial

elements (412, 413). PGC-1α is significantly elevated in muscle by individual exercise

bouts (27, 43, 312, 443, 717, 789, 899, 920). Thus, the actions of PGC-1α are thought to be

an important, but likely not the only (299, 437, 945, 1017) feature that leads to the greater

mitochondrial content in muscle after exercise training. We now turn our attention to what is

thought to control PGC-1 expression in active skeletal muscle.

11.2. Factors initiating muscle adaptations

Factors that could serve as initiators of muscle adaptations are expansive, since muscle

contractions instigate a multitude of changes that modify the quiescent condition within

resting muscle, including: altered tension (radial, longitudinal), myocyte shorting

(lengthening), membrane events, ion redistribution, energy expenditure, heat production,

signaling pathway activation/inhibition, a myriad of metabolic processes, vascular

responses, cytokine influences, etc. However, among these, increases in cytoplasmic [Ca2+]

and responses to the ‘energy state’ of the fiber have been the two features that have gained

the most attention with extensive evidence for their importance (30, 402, 412, 413, 466, 539,

605, 676, 772, 1017). Increases in [Ca2+] is a logical candidate since it is essential for

muscle contraction, varies over time as a function of contraction intensity, and has such a

potent influence in activating signaling pathways. Thus, increases in [Ca2+] over time within

the muscle fiber has the expectation of satisfying the known influence of exercise intensity

and duration on the magnitude of mitochondrial increases with training (217). An increase in

[Ca2+] within the myocyte activates calcium/calmodulin dependent protein kinase (e.g.,

CAMKII)(774), which sets into motion the p38 mitagen-activated protein kinase
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(p38MAPK) pathway (1008, 1009) and subsequent activation of transcription factors,

activating transcription factor 2 (ATF2)(12) and myocyte enhancing factor 2 (MEF2)(1041)

which promote PGC-1α transcription. This, in turn, leads to enhanced protein accumulation

of PGC-1α, increasing the availability of PGC-1α to effect promotion of mitochondrial

biogenesis following exercise (cf., Figure 8). In addition to this important calcium-

dependent signaling pathway, muscle contractions stimulate mitochondrial biogenesis via a

pathway that is sensitive to the energy demands within the myocyte. An increase in the

freely available adenosine monophosphate concentration [AMPfree] within the fiber

activates a protein kinase (AMP-activated protein kinase (AMPK))(1000) which

phosphorylates PGC-1α (458) to effect the sequelae of events in mitochondrial biogenesis

(402, 794, 1000). AMP activation of AMPK is two fold, first by a concentration-dependent

allosteric effect and second, by activation of an upstream AMPK kinase (LBK1(431)). This

influence of AMP is exquisitely sensitive, since the [AMPfree] is extremely low within the

cymosely and subject to significant increases as a function of the rate of energy expenditure

(218) due to the equilibrium reactions exchanging ATP, ADP and AMP (cf., (612)). Thus,

the [AMPfree]-dependent pathway also fulfills the expectation of a driving stimulus for

mitochondrial production that is influenced by both the intensity and duration of exercise

(217). Further, it also fulfills the requirement that the stimulus for mitochondrial biogenesis

be self-limiting, since as the mitochondrial content within a fiber increases to its asymptotic

value for a training program, the increase in [AMPfree] within the fiber during the training

bout is expected to progressively decrease (218, 403). A number of other factors that change

with exercise have been shown to influence PGC-1α activity (e.g., nitric oxide (540)), but

are less well studied compared to the p38MAPK and AMPK pathways. Interestingly,

changes in some microns within active muscle (27, 793) may contribute to the increase in

PGC-1α with exercise. However, at this time, the Ca2+-and AMP-dependent pathways

stimulating PGC-1α activity within the active muscle are likely the primary factors causing

the increase in mitochondrial content within active muscle after exercise training.

11.3. Role of PGC-1 in coordinating mitochondrial biogenesis and angiogenesis

We have seen from the section on angiogenesis, the process enhancing capillary density in

active muscle is rather complex to orchestrate, but likely involves the influence of powerful

cytokines like vascular endothelial growth factor (VEGF). VEGF is highly up regulated in

active muscle by exercise by a process that includes regulatory control by the hypoxia

inducible factor (HIF-1α). In addition and as illustrated in Figure 8, there is transcriptional

regulation of VEGF by an HIF-1α independent process, that of control by PGC-1α (31,

151). Thus, coactivation of transcription factors by PGC-1 serve as a common feature in the

signaling of both mitochondrial biogenesis and capillary expansion by angiogenesis (299,

847, 1017). This action of PGC-1α to up regulate VEGF expression occurs by co activating

the gene expression of the estrogen related receptor alpha (ERRα) which in turn is thought

to activate a promoter region on the VEGF gene (31, 151, 1038). A reduced increase in

VEGF expression, in PGC-1 knockout mice following exercise, demonstrates the functional

relevance of this non-HIF-1 pathway (151, 299, 526) in coordinating the mitochondrial and

angiogenic processes to exercise. As apparent in Figure 8, VEGF is common to both

upstream signals of HIF-1α and ERRα and appears to be essential for the training-induced

increase in capillarity. Thus, in myocyte-specific VEGF gene-deleted mice, exercise training

increased mitochondrial enzymes but did not change capillary density (679). These recent

findings have meaningfully advanced our understanding of how signals prompted by

exercise effect adaptations which enhance the functioning of muscle. Such adaptations could

impact patients with PAD, even if the limited blood flow to the ischemic muscles is not

increased, since there could be a more effective use of the oxygen that is delivered to the

active muscles (877, 1023, 1036).
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12. Improved Muscle Metabolism with Exercise Training

An inadequate blood flow to the limbs of patients with PAD can cause greater consequences

than the obvious rapid onset of fatigue during activity. As the severity of PAD increases

there is a great potential for pathological changes to develop. This is most apparent in

conditions of rest ischemia where tissue necrosis, muscle fiber pathology, ulceration, and

gangrene can be found (661). However, even when the flow capacity to the muscle is

sufficient for rest, there can be a challenge to the muscle as ischemia occurs during physical

activity, such as extended walking or climbing up flights of stairs. For example, there is the

potential for ischemia-reperfusion injury of muscle following such a bout of severe exercise.

As described above in Section 5, this challenge of free radical production and an acute phase

inflammatory response can be viewed as detrimental (930). However, it is apparent from

numerous studies that repeated bouts of exercise, that lead to a trained condition, temper this

inflammatory response to exercise, resulting in a lessened inflammatory state (929, 930).

Further, PAD patients, who participated in an exercise-training program, exhibited a reversal

of the abnormal metabolic response initially observed following exercise to maximal

claudication pain (379).

Nonetheless, challenges to effective utilization of muscle can be found in patients with PAD

(718, 719). During muscle contractions the rate of energy expenditure must be matched by

an adequate rate of ATP provision in order to avoid fatigue. This is established through

mitochondrial respiration, in the steady-state, and by the addition of glycogenolysis, in the

transition from rest to exercise and with relatively intense or during ischemic exercise.

While the ischemic contractions of patients exercising to point of maximum pain tolerance is

expected to prompt a high rates of lactate production, increases in circulating levels of

lactate are relative modest (887), probably owing to the relatively small muscle mass that

precipitates the cessation of activity. A metabolic consequence of insufficient oxygen

limiting mitochondrial respiration is a build up of reducing equivalents and carbon sources

that would normally be better oxidized by mitochondria to synthesize ATP (e.g., short-chain

acylcarnitine). This was recognized by Hiatt and coworkers (376, 378, 379) who observed

excessive alterations in muscle carnitine metabolism when patients exercised to maximal

claudication pain. A potential contributor to this inadequate energy supply could be

dysfunctional mitochondrial (718), owing to morphological evidence and where substrate

oxidation and electron flux capacity was reduced in PAD patients (720, 721). Such

mitochondrial dysfunction could contribute to several findings observed in PAD patients in

the response to exercise. For example, muscle oxygen desaturation kinetics were slowed

during easy, but not more intense, exercise (58), as was its recovery following exercise

(289). Similarly, the time-constants for PCr change at the onset of exercise and during

recovery, reflecting the transitions in energy expenditure (611, 612), were delayed in

patients with PAD (317, 446, 446). While these changes are consistent with a mitochondrial

dysfunction, and the metabolic inertia that would result (1050), there are also a number of

other factors that should be considered.

The incidence of PAD markedly increases with age. Further, for understandable reasons,

patients with PAD tend to be relatively inactive. Besides the profound effect that inactivity

and aging has on muscle morphology and function (fiber type, mitochondrial content,

muscle capillarity)(122, 925), there are significant repercussions in the vasoresponsiveness

of the vasculature leading to a dulled vasodilatation of conduit and small resistance vessels

(518, 644) involving endothelial dysfunction and nitric oxide bioavailability. Indeed, nitric

oxide bioavailability significantly impacts the oxygen exchange transition at the onset of

muscle contractions (174, 385). Thus, such an impaired vasodilatory response could have

contributed to the slower rate of perfusion at the onset of contractions measured in patients

with PAD (447), as well as the delayed PCr kinetics (317, 446, 446). Interestingly, the
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vascular/tissue oxygen exchange transition is also influence by alpha sympathetic activity

(439), owing to the elevated sympathetic outflow that can be dominant during contractions.

As described in Section 15.5, there is a hypersympathetic response to exercise in patients

with PAD. This could profoundly impede the vascular response to contractions in these

patients. Fortunately, exercise training has been shown to improve mitochondrial

dysfunction (172), reverse the decrease in aerobic function of aging (922), improve vascular/

muscle oxygen exchange (769, 1023), and is expected to improve the reduced PCr transition

observed in inactivity patients with PAD (249). Thus, it is likely that the muscle-specific

adaptations of an improved mitochondrial function and an enhanced capillarity, and

improved vasoresponsiveness are features that underpin the uniform improvement in

exercise tolerance experienced by patients with PAD that are more physically active.

13. Training Adaptations Within the Active Muscle: Increased collateral

blood flow

Collateral arteries are small arterial vessels that connect the perfusion territory of one supply

artery with the perfusion territory of another supply artery. Under normal conditions, little

flow passes through these vessels, due to their narrow diameter and correspondingly high

resistance. However, in response to occlusion of one of the upstream supply arteries,

collaterals can enlarge and accommodate a significant level of blood flow. This process is

known as arteriogenesis, to distinguish it from the related process of capillary proliferation

(angiogenesis). Arteriogenesis can preserve tissue distal to an arterial occlusion by providing

an alternate route for blood flow. Thus, stimulation of this process is an attractive potential

treatment for the complications of ischemic cardiovascular diseases such as peripheral artery

disease. The reader is directed to a number of excellent reviews (112, 115, 118, 125, 193,

352, 353, 353, 354, 357, 785, 808, 810, 822, 830, 923, 961, 964) and an entire monograph

(810) on arteriogenesis. It is well established that exercise training serves as a physiological

stimulus for arteriogenesis in the peripheral circulation. An overview of the arteriogenic

process in the peripheral vasculature and its functional consequences for blood flow to the

distal skeletal muscle tissue is shown in Figure 9.

13.1. Key early studies on the collateral circulation

The collateral circulation and its ability to remodel have been the object of study for many

decades. An early question asked by investigators was whether collateral arteries were

present in normal human tissues. Matas studied collateral-dependent limb blood flow in

human subjects by occluding main supply arteries (brachial and femoral) with a tourniquet.

This sudden obstruction of the blood supply to the limb caused it to turn pale; however,

some faint color eventually returned in some subjects, although the main artery remained

occluded. This observation was interpreted to mean that collateral circulation existed below

the level of the occlusion (583). Prinzmetal and Simkin addressed this question in the

coronary circulation by more quantitative post-mortem studies in which they perfused

human hearts with glass spheres of varying sizes. Based on their studies, they concluded that

collaterals with a diameter of 70–180 m existed in the coronary circulation (729).

Another early observation made in humans was that collateral blood flow can increase over

time. (cf., Figure 10). By using bath calorimeters to calculate blood flow in the hands of

human subjects, Stewart found that blood flow to the hand gradually increased over ~1

month following ligation of major supply arteries during surgery for aneurysms (889). Later

researchers pioneered the use of animal models to explore the mechanisms by which

collateral arteries enlarge. Eckstein demonstrated that experimental stenosis of the left

circumflex coronary artery (LCX) in dogs induced coronary collateral enlargement. A

further key observation was that collateral enlargement was proportional to the degree of
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stenosis (224). Sewell further characterized the relationship between degree of stenosis and

collateral enlargement in the dog heart and concluded that collaterals only enlarge when the

upstream stenosis is severe enough to create a significant pressure gradient between the

stenosed and non-stenosed supply arteries, and that collateral size is proportional to this

pressure gradient (836). These findings were later confirmed in humans in studies showing

low levels of collateral blood flow and high collateral resistance in normal hearts, compared

to hearts of patients with atherosclerosis. This work suggested that collaterals exist but are

not well developed in the normal human heart and that upstream occlusion is a key stimulus

for collateral development (308).

Although studies of the peripheral collateral circulation in human patients were being

published 100 years ago (as discussed above), most of the early mechanistic studies that

were subsequently published focused on the coronary collateral circulation. However,

remodeling of peripheral collaterals appears to occur via similar mechanisms to those

described in the coronary circulation. Similarly to the findings in the coronary collateral

circulation, peripheral collateral-dependent blood flow was demonstrated to be higher in

dogs with a chronic iliac artery ligation than in acutely ligated dogs, showing that peripheral

collaterals also remodel in response to upstream occlusion (166). Matolo et al demonstrated

that peripheral collateralization could be enhanced by creation of an arteriovenous fistula,

suggesting the role of mechanical influences on arteriogenesis (588). Arteriogenesis in the

periphery is locally regulated and occurs independently of arteriogenesis in the coronary

circulation, as shown by studies in which occlusion of the femoral artery induced peripheral

collateralization without any effect on the distant, nonoccluded coronary circulation (368).

Key early methodological developments in the study of arteriogenesis included the use of

radioisotopes and radiolabeled microspheres to quantitatively assess collateral dependent

blood flow (64, 143) and the development of ameroid constrictors to produce more

physiological, gradual arterial occlusions that better mimicked human ischemic

cardiovascular disease (968). These early experiments and techniques laid the groundwork

for the following several decades of study of arteriogenesis.

13.2. Number and size of pre-existing collaterals varies across and within species

Although collateral arteries have been demonstrated in normal human and animal tissue,

they are small and carry very little flow under normal conditions. The majority of pre-

existing collaterals in the dog hindlimb are than 100 μm in diameter, with a total cross-

sectional area equal to 7.5% of the normal arterial supply and calculated conductance of

1.5% of normal arterial conductance (173). Similarly, collateral conductance in the dog heart

following acute occlusion was reported to be only 5% of normal coronary artery

conductance (814).

Considerable variation in the number of pre-existing collaterals has been reported across

species. This variation is reflected by the level of collateral-dependent blood flow following

acute occlusion, and with the functional consequences of acute occlusion. Thus, it was soon

observed that while acute coronary ligation is generally lethal in pigs (553, 554), which have

sparse collaterals, it is somewhat less so in dogs (143), which have abundant collaterals. In a

comparative study of eight species, Maxwell and coworkers found that collateral flow to

acutely ischemic myocardium (as a percentage of normal blood flow) ranged from a high of

15.9% in dogs (excepting guinea pigs, which showed no impairment of flow following acute

occlusion) to a low of 0.6% in pigs (592). Similar findings of greater collateralization in

dogs than other species have been reported in other studies (344).

Recent work has also demonstrated significant variation across strains within a species in

both the flow capacity of the pre-existing collateral vasculature, and the extent of
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remodeling in response to occlusion. Strain differences are particularly noticeable in mice.

In a comparison of three commonly used mouse strains, collateral blood flow to the

hindlimb following acute occlusion of the peripheral arterial supply was found to be highest

in C57BL/6 mice and lowest in BALB/c mice, with intermediate level of flow in 129S2/Sv

mice. Likewise, C57BL/6 mice had a greater number of pre-existing collateral vessels than

129S2/Sv mice (358). These strain differences are reflected by more severe clinical signs of

ischemia in the poorly collateralized strains following acute occlusion (140, 358, 963). In

addition to a better development of pre-existing collaterals, the C57BL/6 strain also exhibits

greater improvement in collateral blood flow in response to occlusion than other strains

examined (273, 358, 825). The genetic basis for this difference has been partially localized

(140, 981). Similar studies in Fischer 344 rats, brown Norway rats, and Fischer 344/brown

Norway crosses showed that brown Norway rats have much greater ability to develop

mesenteric collaterals than either Fisher 344 rats or the crosses (842). Thus, strain

differences should be considered when designing studies on collateral remodeling in

rodents.

These observations suggest that the abundance of pre-existing collaterals has a strong

genetic basis. Few studies to date have investigated the genetic basis for determination of

pre-existing collateral number. However, recent research implicates endothelial nitric oxide

synthase (eNOS) (185) and vascular endothelial growth factor (VEGF) (139, 162, 273) as

determinants of collateral extent and remodeling. Interestingly, the diameter of pre-existing

collaterals also seems to have some genetic basis, and has been linked to expression of

platelet-endothelial cell adhesion molecule (PECAM) (144). Finally, some evidence exists

that variations in collateralization may have an immune component (965).

13.3. Collaterals enlarge and become tortuous in response to upstream arterial occlusion

Although native (unstimulated) collaterals have limited blood flow capacity, gradual

occlusion of an upstream supply artery stimulates them to enlarge and results in significant

increases in collateral blood flow. Early studies demonstrated that chronic occlusion resulted

in higher collateral blood flow than acute occlusion in the dog heart (224) and hindlimb

(166).The degree of collateral enlargement is strongly associated with the degree of stenosis

in the upstream artery. Eckstein showed that collateral flow to dog myocardium increased in

proportion to the degree of stenosis of the LCX (224). Sewell found that collaterals did not

enlarge in dog heart unless the diameter of the LAD was reduced by at least 45% (836).

Likewise, in an angiographic study of human patients with single-vessel coronary artery

disease, the presence of collaterals was strongly correlated with the degree of vessel

stenosis. No collaterals seen in patients with <70% stenosis, whereas collaterals were visible

in 97% of patients with 100% stenosis (654). Similarly, another angiographic study in

humans found that collateral filling score during brief balloon occlusion of the coronary

artery during angioplasty was correlated with percent stenosis of the upstream supply artery,

with 86% of patients with 80% stenosis having a collateral score of 0 or 1, and 100% of

patients with 95% stenosis having a collateral score of 2 or higher (167).

In addition to increasing in diameter with increasing time since upstream occlusion,

collaterals increase in tortuosity over time (432). Tortuosity is a hallmark of remodeling

collateral vessels and is easily visualized by angiography. The development of tortuosity is

attributed to the increase in collateral length, which occurs as they remodel. Since the two

ends of the collateral vessel are fixed to the donor and recipient arterial vessels, any increase

in length produces tortuosity.
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13.4. Morphological changes in collaterals during arteriogenesis

Several studies have demonstrated active DNA synthesis in EC and SMC of remodeling

collaterals, especially during the first 2–4 wk post-ameroid placement (701, 809, 990).

Electron and light microscope studies provided further evidence that collateral enlargement

is an active process involving cellular proliferation, rather than a passive vasodilatation. In

general, these changes are most prominent in the collateral midsole. Structural

reorganization of peripheral collaterals begins soon after an upstream occlusion.

Fragmentation of the internal elastic lamina is visible within 2–3 d post-occlusion in rabbit

and mouse hindlimb collaterals (824, 825). This reorganization of the extracellular matrix is

accompanied by evidence of proliferation in endothelial cells and a subpopulation of smooth

muscle cells, and the beginnings of neointima formation (824, 825). Monocyte infiltration is

also an early event, occurring during the first 1–2 wk post-occlusion (722, 824, 825).

Infiltration of monocytes into the adventitial layers is associated with changes in expression

of adhesion molecules within the adventitia, suggesting that the adventitia plays an

important role in collateral remodeling (722). By ~2 wk post-occlusion, a well-developed

neointima is present in rabbit hindlimb collaterals and some SMC have returned to a

contractile phenotype, although the extracellular matrix continues to show signs of active

reorganization and many cells retain a synthetic phenotype (824). At later time points, the

increased number of SMC results in the formation of new SMC layers; SMC regain a

contractile phenotype, and their orientation begins to return to a more typical pattern (812,

824, 1002). When collateral remodeling is complete, the SMC are seen to be arranged in a

fairly normal orientation, although collaterals may still have a somewhat abnormal

appearance 1 yr post-occlusion (812).

Although the time course of early ultrastructural events in peripheral collateral remodeling

appears to be similar between species, the later time course varies. In the mouse ischemic

hindlimb, collaterals can double in diameter within the first week post-occlusion, and the

vessels have a relatively normal appearance by 2 weeks post-occlusion, although some

further increase in size occurs up to 3 wk (825). In contrast, the number of SMC layers in

rabbit peripheral collaterals continues to increase for up to 6 wk post-occlusion, at which

time most cells have regained a contractile phenotype (824). Remodeling in the rabbit

hindlimb appears to be fairly complete at this time, with no further major structural changes

noted 6–8 mo post-occlusion (824).

13.5. Time course of arteriogenesis following occlusion

Enlarged collateral arteries become angiographically visible 7–10 d post-occlusion in the

rabbit hindlimb and continue to enlarge over at least the next 2–3 wk, with corresponding

increases in collateral-dependent blood flow (374, 395, 455, 824). A similar time course has

been reported in rat hindlimb, whereas the process is slightly faster in mice (700, 825).

Some species variation exists in the extent of collateral enlargement in response to an

upstream occlusion. Collaterals in the rabbit ischemic hindlimb have been found to increase

their diameter as much as 4–5 fold over 21 d (824). In the C57BL/6 mouse, hindlimb

collateral diameter increases more than 2 fold over 21 d (825).

A range of values has been reported for the improvement in resting collateral-dependent

blood flow over time in response to occlusion or stenosis. Conrad et al reported that

collateral conductance had reached 59% of normal conductance in the dog hindlimb 11 wk

after femoral artery ligation (173). Although varying numbers have been reported, 40% is a

generally accepted figure for the typical improvement in conductance produced by

arteriogenesis (353). Although the total cross-sectional area of the remodeled collateral

vasculature may be equal to or even larger than the cross-sectional area of the artery it

replaces, there is an increased resistance and tortuosity of the collateral network of
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quadrupeds that results in lower blood flow than that provided by the original arterial supply

(824, 825). As discussed below, an exception can be demonstrated, with a surgical

intervention to elevate and sustain luminal shear stress within the collateral arteries, to

increase collateral vascular conductance equal to or above that of normal blood flow (233,

732).

13.6. Role of shear stress in arteriogenesis

Early studies of arteriogenesis generally assumed that the key signal for collateral artery

enlargement was some signal related to tissue “need” following occlusion of an upstream

supply vessel. This assumption appeared to be strengthened by the discovery of VEGF, a

hypoxia-inducible endothelial cell mitogen that was shown to be present in ischemic regions

of tumors (850). However, some of the observations made in studies of arteriogenesis were

inconsistent with this hypothesis. For instance, Paskins-Hurlburt and Hollenberg studied

collateral growth in relation to indices of blood flow and skeletal muscle function in rat

hindlimb and found that although blood flow and muscle contractile function had returned to

relatively normal levels by 3 wk (indicating that tissue needs were being adequately

supplied), collateral growth continued for up to 3 mo (700). In a landmark editorial, Schaper

made the additional key point that arteriogenesis is separated from ischemia not only by

time, but also by distance, and usually occurs in areas which are not ischemic themselves

(813). Schaper presented the hypothesis that the altered pressure gradient created by an

upstream occlusion increases flow through collaterals, which in turn increases shear stress.

The increased shear stress causes endothelial cell activation and recruitment of monocytes to

the vascular wall, where they release growth factors and other mediators that induce EC and

SMC proliferation. Thus, Schaper envisioned that arteriogenesis is primarily stimulated by

changes in shear stress, not ischemia or hypoxia, and that it has a strong inflammatory

component.

The shear stress hypothesis has been well supported by subsequent studies. Unthank et al

studied collateral remodeling in a rat intestinal model of arterial insufficiency and found that

enlargement occurred only in arteries located between the normal region and the ischemic

region. Induction of arterial insufficiency led to an approximate doubling of wall shear stress

in these vessels. In contrast, arteries within the ischemic region itself did not enlarge,

demonstrating that hypoxia is not a requirement for arteriogenesis (946). Several studies

have used arteriovenous shunts to chronically increase shear stress. These experiments have

shown that collaterals can continue to enlarge beyond the upper limit seen in more

physiological model systems if shear stress remains high (233, 722, 817, 818). Interestingly,

a recent study suggests that shear stress in collaterals may be transiently decreased

immediately following occlusion of an upstream vessel, and that this brief low-shear period

facilitates the adhesion of monocytes to the endothelium (795).

In keeping with a primary role for shear stress in regulation of arteriogenesis, the evidence

for hypoxia as a trigger of collateral growth is weak. Deindl and coauthors found no

elevation in numerous markers of ischemia in quadriceps muscle from rabbit ischemic

hindlimb, although collateral growth was well defined in this region (198). Likewise,

Hershey et al showed that the time course of collateral growth in rabbit ischemic hindlimb

was not associated with tissue ischemia or VEGF expression (374). Studies in mouse strains

with varying degrees of ischemia following femoral artery ligation have also shown that the

extent of collateral artery remodeling does not correlate well with the severity of ischemia

(825).
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13.7. Arteriogenic growth factors

A number of growth factors have been reported to have pro-arteriogenic activity in pre-

clinical and/or clinical models, including (but not limited to) VEGF, PLGF, FGF2, FGF1,

PDGF, MCP-1, and GM-CSF. The results of selected pre-clinical studies of growth factor

administration are summarized in Table 2. Several observations can be made from this

overview. First, most studies of single growth factor administration demonstrate fairly

limited effects of growth factor treatment on indices of arteriogenesis such as collateral-

dependent blood flow, number of visible collaterals, ischemic/normal limb blood flow ratio,

or hindlimb collateral conductance. Of the single factors shown in Table 2, MCP-1 and

FGF-2 show the most marked and consistent effects, whereas VEGF is among the least

consistent and effective agents. Second, combined growth factor administration tends to be

more effective than single factor administration, although the effectiveness of combined

growth factor administration varies widely depending on the factors used. Third, most

studies where the growth factor was administered following a significant delay post-

induction of ischemia demonstrated little or no beneficial effect of treatment. Many studies

also showed that growth factor administration increases the speed of the arteriogenic

remodeling process, rather than the final overall extent of remodeling. Thus, single growth

factor therapy may only be useful at certain times, or may be most useful for accelerating the

arteriogenic process. Finally, it can be appreciated from the table that a variety of routes of

administration, dosing protocols, and assessment methods have been used in preclinical

studies.

We will discuss on VEGF and PLGF in more detail as arteriogenic growth factors, which

have been suggested as potential therapeutic agents, as there are interesting contrasts in the

effects and mechanism of action of these two related proteins. Of the two, VEGF has

received by far the most attention. Leung et al identified VEGF as a secreted factor

mediating endothelial cell proliferation (529). Two major receptors for VEGF with a

distribution largely restricted to endothelium (VEGFR-1, or Flt-1; VEGFR-2, or KDR) were

characterized (197, 737). For a detailed review of VEGF signaling via these receptors in

endothelial cells, see (1034).

The cell biology of VEGF is complex. In addition to the original ligand (VEGF-A, referred

to in this review as VEGF), several other members of the family have now been described:

VEGF-B, VEGF-C, VEGF-D, VEGF-E, and PLGF. Furthermore, some of the family

members (especially VEGF-A) have multiple splice variants with differing ability to bind to

heparin. Additional receptors have been described, including soluble variants that have been

proposed to function as “traps” for circulating VEGF-family ligands. Finally, the VEGF

family ligands and receptors are capable of heterodimerization, further complicating the

signaling pathways. An excellent comprehensive review of the complexity of VEGF family

ligands and receptors was recently published by Mac Gabhann and Popel (563).

Soon after its initial description, VEGF was found to be upregulated in cancer cells from

hypoxic regions of tumors, while VEGF receptor 1 (VEGFR-1, Flt-1) was upregulated in

tumor endothelium (725, 850). Studies showing that VEGF was hypoxia-inducible in

cardiac myocytes in vitro and in vivo suggested that VEGF might play a role in adaptive

vascular growth (53, 530). The ability of VEGF to induce arteriogenesis was immediately

tested in animal models and reported to produce modest improvements in collateral-

dependent blood flow (52, 343) and angiographic score (61, 761, 904). However, study

results were inconsistent, with other researchers finding little or no effect of VEGF to

enhance collateral dependent blood flow (508, 519).

VEGF exerts its effects on arteriogenesis by several different mechanisms. VEGFR-1 is

expressed by monocytes as well as endothelial cells, and VEGF induces monocyte
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chemotaxis by activating this receptor (54, 161). In vitro experiments have demonstrated

that endothelial cells release NO in response to VEGF (958), and that the mitogenic effect of

VEGF on endothelial cells is NO-dependent (696, 697). The arteriogenic effects of VEGF in

vivo require downstream NO production as well (590, 645, 1027). VEGF treatment also

results in NO-dependent vasodilatation (343, 506), which is enhanced in collateral-

dependent regions of the myocardium (828).

Although there was much early optimism about the potential of VEGF as a therapeutic

agent, preclinical studies of VEGF soon revealed the potential for serious side effects. In a

study of VEGF for therapeutic arteriogenesis in pig myocardium, VEGF administration

caused severe hypotension resulting in the deaths of 50% of the treated animals (343). In

keeping with the originally described function of VEGF as a vascular permeability factor

(834), adenoviral over expression of VEGF was also reported to cause peripheral edema in

some studies (954). Finally, there are concerns that VEGF overexpression could promote

diabetic retinopathy or the development of latent tumors.

Despite the incomplete picture of the true role of VEGF in arteriogenesis and the possibility

for side effects, clinical studies of VEGF administration in humans were begun very soon

after the first pre-clinical studies. Isner and colleagues reported an improved angiographic

appearance of the limb of a patient with severe peripheral artery disease following treatment

with a VEGF-encoding plasmid (452). However, the patient developed spider angiomas and

limb edema, and the increased vascularization prompted by VEGF administration failed to

salvage the limb. Further small, uncontrolled studies in humans followed. VEGF therapy

had mixed results in patients with critical limb ischemia (60) and reduced angina and

improved angiographic score in patients with coronary artery disease (370, 898). Despite

these initially encouraging results, subsequent double-blind placebo-controlled trials

demonstrated little or no beneficial effect of VEGF administration in humans. The VIVA

trial of recombinant VEGF in 178 patients with stable exertional angina found a modest

improvement in angina score in patients treated with the higher of 2 doses studied, but only

a very slight improvement in treadmill exercise time at 120 d post--treatment and no

improvement in indices of myocardial function (369). Similarly, the RAVE trial of

adenoviral VEGF gene therapy in 105 patients with peripheral arterial disease failed to show

any improvement in VEGF-treated patients in exercise treadmill test time, ankle/brachial

index, or time to claudication, and a higher incidence of limb edema was reported in treated

patients (739).

There are a variety of possible reasons why the results of VEGF therapy have been

disappointing. In patients with ischemic cardiovascular disease, there may be a window in

which growth factors can enhance arteriogenesis, and this window may have been missed in

clinical trials, which tended to focus on patients with late-stage disease that was untreatable

by other means. A single growth factor may also not adequately reconstitute the complex

physiological signaling that drives arteriogenesis. Indeed, Schierling et al reported that

administration of single growth factors (MCP-1, FGF2, PDGF, or VEGF) did not induce

arteriogenesis as effectively as an artificial increase in shear stress (818). Alternatively,

VEGF may not be well suited for use as an arteriogenic therapy, as it primarily mediates

capillary proliferation (angiogenesis). The difficulties that have been encountered in

translating the results of promising pre-clinical studies of angiogenic/arteriogenic growth

factor treatment have been recently reviewed (820).

Placenta growth factor (PLGF) is a VEGF-family ligand, which preferentially induces

arteriogenesis (as opposed to angiogenesis). PLGF was isolated soon after VEGF (568) and

was shown to bind to VEGFR-1 but not VEGFR-2 (as opposed to VEGF, which binds to

both receptors) (54, 161). Carmeliet and coauthors reported that arteriogenesis in mouse
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ischemic hindlimb, but not embryonic vasculogenesis, was inhibited by PLGF gene

knockout (129). In contrast, PLGF overexpression resulted in a striking increase in the

number and size of blood vessels, although overexpression was also reported to increase

vascular permeability (674). Micro-CT studies of mouse ischemic hindlimb showed that

PLGF selectively increased the volume of 96–136 μm-diameter vessels (532). Luttun and

colleagues compared the efficacy of PLGF and VEGF to induce arteriogenesis in mouse

ischemic hindlimb and found that PLGF treatment had a more pronounced effect on

collateral growth and produced greater functional improvement in the muscle than VEGF

treatment (561).

Studies on the mechanism of PLGF action revealed that the arteriogenic effect of PLGF is

dependent on monocytes (723) and that the inhibition of arteriogenesis produced by PLGF

gene knockout could be rescued by transplant of wild-type bone marrow (823),

demonstrating the role of circulating bone-marrow derived cells in PLGF-mediated

arteriogenesis. Furthermore, although PLGF is non-mitogenic for endothelial cells, it has

been shown to enhance the effect of VEGF (129). Similarly, the presence of PLGF is

required in order for VEGF to induce proliferation of smooth muscle cells (561). The strong

arteriogenic activity of PLGF, its pleiotropic effects, and its apparent specificity for adaptive

remodeling have led to the suggestion that it may represent an arteriogenic “master switch”

(195). To date, however, the potential usefulness of PLGF as a pro-arteriogenic therapy has

not been evaluated in human clinical trials. Additional studies are needed to better define

how PLGF expression is regulated in the vasculature and to characterize its downstream

effects. The experience with VEGF has demonstrated that moving into clinical trials before

the underlying processes are fully understood is likely to produce disappointing results.

13.8. Involvement of monocytes in arteriogenesis

The involvement of monocytes in arteriogenesis has been demonstrated in many studies.

Monocyte recruitment to remodeling collaterals is one of the earliest events in

arteriogenesis. In rabbit ischemic hindlimb, monocytes were seen to adhere to collaterals

within 12–48 h of upstream occlusion (34, 824); furthermore, monocyte adherence was seen

only in collaterals, not in nearby vessels or in similarly-sized vessels from distant regions

(34).

The mechanism of monocyte recruitment to growing collaterals has been of much interest.

Many studies have focused on monocyte chemoattractant protein-1 (MCP-1), which has

been reported to be upregulated by both shear in endothelial cells (852) and stretch in

smooth muscle cells (203). MCP-1 binds to CC-chemokine receptor-2 (CCR-2 ) on

monocytes. Administration of exogenous MCP-1 increases monocyte recruitment and

collateral conductance in the rabbit ischemic hindlimb (456, 824), whereas recovery of

blood flow to mouse ischemic hindlimb is moderately reduced by genetic deletion of MCP-1

(970) or by dominant-negative MCP-1 (270). Granulocyte-macrophage colony stimulating

factor (GM-CSF) administered in combination with MCP-1 enhances arteriogenesis more

than MCP-1 alone, perhaps by inhibition of monocyte apoptosis (114). Consistent with these

studies, Heil et al reported that gene knockout of CCR-2 delays arteriogenesis in mouse

models of hindlimb ischemia, although these authors found strain-dependent differences in

the magnitude of inhibition (356). In contrast, Tang and coworkers were not able to show

inhibition of arteriogenesis in the ischemic hindlimb of CCR-2 mice (909). Thus, the

MCP-1/CCR-2 pathway appears to be only one aspect of the mechanism by which

monocytes are recruited to actively remodeling collaterals.

Several adhesion molecules that can also facilitate monocyte recruitment are upregulated in

the setting of arteriogenesis, including the integrin/focal adhesion kinase (FAK) pathway

(120), PECAM-1 (144), ICAM-1 (396, 722), and VCAM-1 (722). Increased ICAM and
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VCAM mRNA levels are detectable in collateral arteries of rabbit ischemic hindlimb at 12 h

post-occlusion, with elevated protein detectable at 12–48 h post-occlusion (824).

Furthermore, gene knockout of either ICAM-1 or its receptor on the monocyte (Mac-1)

inhibits arteriogenesis in mouse ischemic hindlimb (396). Thus, ICAM-1/Mac-1 interaction

may be another important pathway for monocyte recruitment during arteriogenesis.

In addition to the MCP-1/CCR-2 and ICAM-1/Mac-1 pathways, growth factors can also

facilitate recruitment of monocytes to remodeling collaterals. Monocytes express VEGF

receptor 1 (VEGFR-1, Flt-1). Both VEGF-A and placenta growth factor (PLGF) are ligands

for VEGFR-1 and are chemotactic for monocytes (54, 161, 917). Indeed, the arteriogenic

effects of PLGF have been shown to be dependent on monocytes (723).

Monocyte dysfunction or depletion can attenuate arteriogenesis. Mutant mice with a

genetically-based ~87% reduction in circulating monocyte level develop fewer collaterals

and have reduced hindlimb perfusion in response to hindlimb ischemia (75). Conversely, the

number of visible collaterals and collateral conductance in ischemic hindlimb is enhanced

by artificial elevation of monocyte levels in mice and rabbits (355). Further evidence for a

specific role for monocytes in arteriogenesis (as opposed to other leukocyte subtypes) was

presented by Hoefer and colleagues, who studied the effect of chemo attractants for

monocytes, granulocytes, and lymphocytes on arteriogenesis and concluded that only

monocytes enhance collateral remodeling (394). However, studies by other groups have

demonstrated a pro-arteriogenic action of lymphocytes in the mouse ischemic hindlimb

(882, 965) and thus this issue remains open to debate.

13.9. Nitric oxide and arteriogenesis

It is clear that nitric oxide contributes to acute vasodilatation in collateral arteries. The role

of nitric oxide in arteriogenesis, however, has been the subject of much debate. Several

studies have shown that arteriogenesis induced by a variety of stimuli can be blocked by

inhibition of NO production. Matsuyama et al found that L-NAME treatment blocked the

increase in collateral-dependent blood flow that occurred over time in a dog model of

repetitive coronary occlusion (590). Lloyd and coauthors assessed both angiogenesis and

arteriogenesis in rat ischemic hindlimb in response to exercise training and found that L-

NAME blocked the time-dependent increase in collateral-dependent blood flow, but did not

prevent the increase in skeletal muscle capillarity (546). This study clearly demonstrated that

differences exist in the signaling mechanisms regulating angiogenesis and arteriogenesis.

Yang et al showed that VEGF-and FGF2-induced increase in collateral-dependent blood

flow to rat ischemic hindlimb could also be prevented by L-NAME treatment (1027). Yu

and colleagues presented angiographic evidence for decreased arteriogenesis in the ischemic

hindlimb of eNOS−/− mice and demonstrated that impaired arteriogenesis in this model

could be rescued by adenoviral expression of constitutively active eNOS (1029).

Enhancement of NO levels has been shown to have a stimulatory effect on arteriogenesis.

Murohara and colleagues found that L-arginine supplementation improved angiographic

score in rabbit ischemic hindlimb, and that recovery of blood flow in ischemic hindlimb of

eNOS−/− mice was impaired compared to wild type mice (645). Brevetti et al found that

adenoviral overexpression of eNOS in rat ischemic hindlimb increased various indices of

arteriogenesis (97). In agreement with these results, eNOS has been shown to be upregulated

in growing collaterals. Cai et al demonstrated increased eNOS immunofluorescence in the

endothelium of growing canine coronary collateral arteries, compared to unstimulated or

mature collaterals (119), and Prior et al showed that eNOS mRNA is increased in a rat

hindlimb collateral by exercise training throughout the period of remodeling (730). These

findings suggested that eNOS-derived NO was an important mediator of structural

remodeling in collaterals, as well as acute vasodilatation. However, this view was
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challenged by a recent study by Meets et al. These authors found that overexpression of

eNOS enhanced acute vasodilatation, but not arteriogenesis, in mouse ischemic hindlimb.

Furthermore, collaterals were found to enlarge similarly in eNOS−/− mice compared to wild

type mice. Thus, Meets et al concluded that reduced flow recovery in ischemic hindlimb of

eNOS−/− mice is due to impaired vasodilatation, not impaired arteriogenesis (608).However,

in a follow-up study, Troidl and coauthors reported that combining eNOS gene knockout

with iNOS inhibition did block structural remodeling of collaterals, supporting an essential

role for NO in arteriogenesis (933). The authors hypothesized that a significant fraction of

the NO released during arteriogenesis comes not from endothelial NOS, but from iNOS in

monocytes/macrophages. Indeed, earlier studies demonstrated that iNOS is not upregulated

in collaterals themselves during the remodeling process (119).

It is well established that NO regulates a variety of key cellular processes involved in

vascular remodeling, including endothelial cell migration, proliferation, and differentiation.

The signaling mechanisms by which NO regulates these processes during arteriogenesis are

not fully defined. However, it has been demonstrated that NO lies both upstream (294) and

downstream (590, 645, 876, 1027) of key angiogenic growth factors such as VEGF. For a

further review of the role of NO signaling in arteriogenesis, see Prior et al (731).

13.10. Oxidative stress and arteriogenesis

A recent focus of attention has been the role of reactive oxygen species (ROS) in regulation

of arteriogenesis. The ROS of most interest in vascular biology are superoxide (O2−) and

hydrogen peroxide (H2O2). Superoxide can be generated in vascular cells by a variety of

enzymatic and non-enzymatic processes. Major sources of O2− production in vascular cells

include NADPH oxidase, xanthine oxidase, uncoupled nitric oxide synthase, and leakage

from the mitochondrial electron transport chain. Superoxide is short-lived and is converted

to the more stable compound hydrogen peroxide by superoxide dismutase (SOD) and other

mechanisms. For an extensive review on the cell biology of ROS generation and signaling,

see (215).

Overproduction of ROS (“oxidative stress”) causes endothelial dysfunction, in part by

scavenging NO, and has been implicated in the pathogenesis of atherosclerosis,

hypertension, ischemia-reperfusion injury, and heart failure. Several excellent

comprehensive reviews of cardiovascular ROS production and its role in cardiovascular

pathophysiology are available (134, 268, 533).

Although excessive ROS production is damaging to the cardiovascular system, a large body

of evidence now demonstrates that low, physiological levels of ROS are beneficial for

adaptive vascular remodeling processes such as angiogenesis and arteriogenesis. The

antioxidant N-acetylcysteine inhibited time-dependent increases in collateral blood flow in

the dog coronary circulation following repetitive coronary occlusion, and in the ischemic

hindlimb of wild-type mice (223, 324). Similarly, the antioxidants ebselen and Tempol

delayed recovery of blood flow to ischemic hindlimb of wild-type mice (484, 931). Genetic

deletion or insufficiency of gp91phox (which encodes the Nox2 subunit of NADPH oxidase)

also delayed recovery of blood flow in ischemic hindlimbs of mice, relative to wild-type

mice (223, 931). These findings demonstrate that a certain basal level of ROS production is

required in order for arteriogenesis to proceed normally.

Interestingly, ROS appear to be a double-edged sword in terms of their effect on collateral

remodeling; low amounts are required for arteriogenesis, but higher amounts are inhibitory.

Kim et al found that collateral growth and recovery of blood flow were impaired in ischemic

hindlimbs of mice lacking endothelial superoxide dismutase (ecSOD, which converts O2−

into H2O2). The reduced arteriogenesis in this model was associated with elevated O2 levels
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and rescued by the antioxidant Tempol (484). Likewise, Rocic and coworkers found that

both inhibition of NADPH oxidase (to reduce O2− )-) and inhibition of SOD (to increase

O2−) had a similar effect to reduce the development of collateral-dependent blood flow in

rat myocardium in response to repetitive ischemia. Thus, these authors concluded that

arteriogenesis is inhibited when O2− levels are either too low or too high (771). Since

inhibition of SOD causes decreased H2O2 levels in addition to increased O2−, another

interpretation of these results is that H2O2 is the ROS species required for arteriogenesis. In

agreement with this hypothesis, Shaw et al recently demonstrated that the arteriogenic

mediator placenta growth factor (PLGF) is upregulated by H2O2 in vascular smooth muscle

cells (838). The role of H2O2 in vascular physiology has been recently reviewed (32, 783).

13.11. Effect of disease states and aging on arteriogenesis

The primary therapeutic application for pro-arteriogenic therapies would be enhancement of

blood flow in patients with ischemic cardiovascular disease. Since a pharmacological

method of improving blood flow would be much less invasive than current treatments such

as coronary artery bypass grafting, angioplasty, and stent placement, arteriogenesis is a

highly attractive therapeutic target. Mechanistic information regarding arteriogenic signaling

is required in order to develop such treatments. The majority of studies to identify the

signaling pathways involved in arteriogenesis and test the efficacy of growth factors as pro-

arteriogenic agents have been conducted in young, healthy animals. However, the human

patient population for which such treatments would be indicated is older and has pre-

existing disease, which necessitates the treatment. Thus, the patient group to which pro-

arteriogenic treatments would be targeted is not well mimicked in many studies.

Several studies have suggested that the process of arteriogenesis may be impaired by

conditions such as the metabolic syndrome and aging. However, different studies have

reported conflicting results. Abaci and colleagues compared diabetic and non-diabetic

patients with a similar extent of coronary artery disease and concluded that collateral score

was significantly reduced in the diabetic group (1). Similarly, De Vivo and coauthors

studied patients with claudication due to superficial femoral artery occlusion and found that

diabetes was associated with the presence of fewer collaterals in the limb (196). Celik et al

reported that coronary collateralization was poorer in diabetics with proliferative diabetic

retinopathy than diabetics without this microvascular complication, possibly associated with

the presence of more longstanding and severe diabetes in this patient group (135). Yilmaz

and coauthors studied patients with total occlusion of the right coronary artery and found

that diabetes and metabolic syndrome were associated with poorer collateral score in this

group (1028). Likewise, Turhan et al found that patients with metabolic syndrome had lower

collateral scores (942). However, Fujita et al found no association between various factors

including diabetes, age, smoking, hypertension, and hypercholesterolemia with coronary

collateral score in patients presenting with acute MI (272). Zbinden and colleagues

measured collateral flow index in diabetic and nondiabetic patient groups, where the clinical

characteristics of the groups were carefully matched, and found no difference between

diabetics and nondiabetics (1035). Melidonis et al even reported increased collateral score in

patients with diabetes (610). In the latter study, the apparent pro-arteriogenic effect of

diabetes was likely due to the presence of more extensive coronary artery disease (and thus a

greater stimulus for arteriogenesis) in the diabetic group. Thus, although the evidence

generally supports a diabetes-associated inhibition of arteriogenesis in humans, studies in

humans are complicated by a variety of factors including variation in the patient population

(both between and within studies).

Animal studies have been somewhat more consistent in reporting inhibition of arteriogenesis

by diabetes, and have attempted to identify which specific facets of this complex condition

influence collateral growth. Hyperlipidemia and hyperglycemia have been assessed
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separately in several studies. The case for an inhibitory effect of hyperlipidemia on

arteriogenesis appears to be fairly strong. Blood flow recovery and collateral development in

the ischemic hindlimb is impaired in hyperlipidemic mice (176), rats (216), and rabbits

(956). Similarly, blood flow to collateral-dependent myocardium is reduced in

hypercholesterolemic pigs (85). In contrast, no effect of a high fat/cholesterol diet on

collateral conductance was seen in cynomolgus monkeys (550); however, the lack of

apparent inhibitory effect could be due to the time point which was studied (16 mo post-iliac

occlusion). Many studies, which report inhibition of arteriogenesis by hyperlipidemia or

other factors, show that indices of collateral function eventually reach levels similar to that

seen in normal animals, but with a slower time course.

Hyperglycemia has also been shown to inhibit arteriogenesis in animal models. Recovery of

hindlimb blood flow is inhibited in nonobese diabetic mice (NOD), a model for insulin-

dependent or type I diabetes, compared to C57BL/6 mice (760). Collateral arteries are less

numerous and smaller in ischemic hindlimb of rabbits made hyperglycemic with alloxan

than in the hindlimb of normal rabbits (959). Infusion of glucose (to raise blood levels to

350–400 mg/dL, 8 h/d for 21 d) prevented collateral-dependent blood flow from increasing

in response to repetitive coronary occlusion in dog myocardium (987). Angiographic score

and hindlimb blood flow were lower in ischemic hindlimb of mice with streptozotocin-

induced hyperglycemia than in control mice (906). Finally, in a useful direct comparison of

hyperglycemia and hyperlipidemia, van Weel and coauthors studied several mouse strains

and found that both hyperlipidemia and hyperglycemia inhibited recovery of limb perfusion

after induction of ischemia, although hyperlipidemia had a greater effect to reduce

angiographic score than hyperglycemia (962). Thus, the evidence supports a role for both

hyperlipidemia and hyperglycemia in inhibition of arteriogenesis by diabetes. However,

these two factors may act by different underlying mechanisms.

A limited number of studies have addressed the mechanism(s) underlying diabetic inhibition

of arteriogenesis in humans. Monocyte migration in response to chemotactic agents such as

VEGF, PLGF, and MCP-1 has been shown to be reduced in diabetic humans (918, 975) as

well as rabbits (959), suggesting that inhibition of monocyte function could contribute to

reduced collateral growth in diabetes. Both altered gene expression (in response to

stimulation with lipopolysaccharide) (819) and abnormal adhesion to collagen and

fibrinogen (843) have been reported in monocytes from patients with poor collateralization

compared to monocytes of patients with good collateralization, suggesting that monocyte

function may indeed be a key determinant of collateral growth in humans. Altered VEGF

signaling may also contribute to impaired arteriogenesis in human patients with diabetes.

Sasso et al found that although VEGF protein levels are increased in human diabetic

myocardium, both VEGFR-1 and VEGFR-2 protein are decreased, and phosphorylation of

downstream effectors is likewise reduced (803).

Studies in animal models of both hyperlipidemia and hyperglycemia have also implicated

reduced VEGF expression and/or signaling activity in the diabetes-associated inhibition of

arteriogenesis. Rivard and coauthors found that VEGF mRNA and protein levels were

reduced in skeletal muscle of nonobese diabetic mice (760). Similarly, Chou et al found that

VEGF and VEGFR-1 and -2 mRNA was decreased in myocardium of streptozotocin-treated

rats and Zucker fatty rats, although the effect was greater in the hyperglycemic group (155).

Interestingly, VEGF expression in aorta did not change, suggesting that VEGF is

differentially regulated in cardiac muscle and vascular smooth muscle. An opposite pattern

of expression was seen in retina and glomerulus, with an increase in VEGF and VEGFR

expression. These data are consistent with the observation that although diabetes appears to

inhibit arteriogenesis in tissues such as myocardium and skeletal muscle, it increases
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angiogenesis in retina (219). Impaired recovery of blood flow in ischemic hindlimb of

ApoE−/− mice has also been associated with reduced VEGF expression (176).

Altered expression of other factors that promote or inhibit arteriogenesis likely also

contributes to the anti-arteriogenic effects of diabetes. For example, an increase in the levels

of anti-angiogenic factors such as endostatin and angiostatin has been associated with

experimental diabetes (85, 987). Dysfunctional extracellular matrix remodeling may also

play a role. Advanced glycation end product (AGE)-mediated inhibition of extracellular

matrix remodeling is associated with inhibition of arteriogenesis by hyperglycemia (906).

Although it may seem reasonable to conclude from these studies that altered VEGF

signaling plays a major role in inhibiting arteriogenesis in diabetes, it is important to

remember that VEGF is primarily an angiogenic factor, which induces capillary

proliferation. As the first hypoxia-inducible, secreted angiogenic factor to be identified,

VEGF was an attractive target for study and thus many early studies examined only VEGF

and its receptors rather than screening a panel of potentially involved factors. Thus, although

the VEGF pathway may play a role, it is likely that hyperlipidemia and hyperglycemia have

additional effects on arteriogenesis, which are yet to be revealed. For a detailed recent

review of the effects of diabetes on arteriogenesis, see Ruiter et al (785).

Aging has also been demonstrated to impair arteriogenesis. As discussed above, most

patients with ischemic cardiovascular disease who would be candidates for a pro-

arteriogenic therapy would be older persons. Thus, it is important to determine how aging

affects arteriogenesis. Indices of arteriogenesis are reduced in aged rabbits and mice, in

association with apparent endothelial dysfunction (761, 845). Interestingly, the effect of age

on arteriogenesis is influenced by genetic factors, as age-related impairment of

arteriogenesis occurs in Wistar rats (944) but not in brown Norway rats (842). Similarly to

diabetes, a recent report suggests that aging may impair arteriogenesis, but not angiogenesis

in ischemic hindlimb (989).

13.12. Stimulation of arteriogenesis by exercise training

Exercise training was recognized early as a key physiological stimulus for collateral

enlargement in the presence of an upstream arterial stenosis or occlusion. Eckstein presented

perhaps the first evidence that exercise training could induce arteriogenesis when he showed

that 7–9 wk of treadmill exercise increased collateral blood flow in hearts of dogs with

experimental stenosis of the LCX (224). Importantly, the presence of a flow-limiting

stenosis seems to be required in order for a training effect on collateral remodeling to be

seen. This requirement is not surprising, since collateral flow would not be expected to

increase greatly during exercise in the absence of a stenosis (due to the higher resistance of

the collateral circuit relative to the normal arterial pathway). Burt and Jackson assessed the

effect of exercise (4–5 wk of running on a track) on coronary collateral blood flow in dogs

with non-occluded coronary arteries and reported that training did not improve collateral

flow in the absence of a stenosis (110). Likewise, no significant effects of training were seen

in subsequent studies of collateral-dependent blood flow in normal pig (798) or dog (168,

816) myocardium. In contrast, Leon et al showed that coronary artery cross-sectional area

increased in rats that were swim-trained daily for 10 wk, but not in rats that trained less

frequently, and that vessel area declined when the animals returned to a sedentary lifestyle

(527). A modest improvement in blood flow to the collateral-dependent region of acutely

ischemic myocardium in response to treadmill training was also shown in the rat heart (497).

Thus, although most studies reported little or no improvement in collateral blood flow in

response to exercise in the absence of an upstream occlusion or stenosis, some species,

training method, or tissue-related differences may exist.
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Studies in animals with experimental coronary or peripheral artery occlusion have

consistently shown enhanced collateral development in response to exercise training. Sanne

and Sivertsson studied hindlimb blood flow in cats with femoral artery ligation following 5

wk of treadmill training and demonstrated that collateral resistance was lower in trained cats

than sedentary cats. They concluded that “physical exercise is a potent additional stimulus

for the development of collateral vessels” (801). Similarly, Scheel and coauthors reported

that 6 wk of treadmill training significantly reduced collateral resistance and increased

collateral conductance in the LCX-occluded dog myocardium (816). These results were in

good agreement with studies showing that 3–5 mo of treadmill training increased collateral-

dependent blood flow in hearts of dogs (169) and pigs (83) with experimental stenosis of the

LCX.

More recently, significantly improved blood flow to the distal hindlimb following 6 wk of

treadmill exercise training was demonstrated in rats with femoral artery stenosis, consistent

with training-induced collateral artery remodeling (584). The hypothesis that exercise

training induces arteriogenesis was subsequently strengthened by further studies in rats with

complete occlusion of the femoral artery (which renders distal hindlimb blood flow

collateral-dependent) which definitively showed that treadmill exercise training increased

collateral dependent blood flow (544, 546, 730, 1020, 1025). Improvement in collateral-

dependent blood flow was associated with functional improvement in the distal skeletal

muscle tissue at risk of ischemia (1025).

The mechanism by which training stimulates arteriogenesis has not yet been fully described,

but certainly involves upregulation of growth factors and other mediators of angiogenesis.

Angiogenic growth factor expression has been shown to be influenced by exercise training

or electrical stimulation of skeletal muscle in numerous studies. Chronic electrical

stimulation of rat skeletal muscle induced an early increase in VEGF mRNA which declined

over the 21 d of study (340). An immediate increase in VEGF mRNA was also seen in rat

skeletal muscle in response to a single exercise bout (91, 294) and in rat (296) and human

(328) skeletal muscle in response to short-term exercise training. TGF-β1 mRNA has also

been reported to be upregulated by a single bout of exercise or by short-term training,

although the upregulation is not as striking as that of VEGF mRNA (91, 294, 296). Lloyd

and colleagues assessed the time course of gene expression of a panel of eight angiogenesis-

associated factors in rat skeletal muscle in response to 1–24 d of exercise training. These

studies demonstrated that a variety of angiogenic growth factors and receptors are affected

by exercise training, and that the temporal pattern of expression varies between factors.

Upregulation of VEGF and monocyte chemoattractant protein1 (MCP-1) were the earliest

events, followed by upregulation of VEGFR-1, VEGFR-2 and eNOS. An increase in the

angiopoietin 2:angiopoietin 1 ratio and upregulation of the angiopoietin receptor Tie-2

followed a similar time course to that of the VEGF receptors (545). A similar study by Prior

et al assessed angiogenic factor gene expression within rat peripheral collateral arteries in

response to 2–25 d of treadmill training. Although alterations in gene expression with

training were less marked in collaterals themselves than in skeletal muscle, this study also

demonstrated an increase in eNOS and VEGFR-1 mRNA (730).

Exercise is a complex stimulus, since it induces changes in numerous parameters in active

skeletal muscle and skeletal muscle vasculature, including increased blood flow, changes in

the levels of metabolic substrates and products, and altered mechanical forces. It is likely

that these various stimuli act on different signaling pathways to induce arteriogenesis. For

instance, Roca and colleagues compared the effects of electrical stimulation and passive

hyperperfusion of skeletal muscle on angiogenic growth factor expression and found no

apparent effect of an acute increase in blood flow to induce VEGF, FGF2, or TGF-β1 gene

expression (770).
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14. Collateral Development and Function in Humans

14.1. Development of a structural collateral circuit

Extensive preclinical studies demonstrate that a significant collateral vessel circuit develops

in the hind limb of animals to circumvent obstructions of the femoral arteries. A modest

change occurs spontaneously with no intervention (730, 733), while more significant

increases in collateral-dependent blood flow are observed following interventions such as

delivery of angiogenic growth factors (808, 1021, 1027) and/or daily physical exercise (730,

733). The improvement in collateral-dependent blood flow is physiologically significant, as

the animals exhibit a marked improvement in exercise tolerance. The uniform nature of

these studies raised keen expectations that similar adaptations would be prolific in patients

with PAD that are involved in exercise training programs. While clinical studies are almost

uniform in demonstrating that exercise training leads to an improvement in exercise

tolerance in these patients, this cannot typically be attributed to an increase in collateral

blood flow (699). First, only a relatively few of these studies have attempted to measure

blood flow to the limb, and many of those do not find any significant change (184, 234, 514,

861, 877). This may not be surprising, since the techniques for measuring blood flow to the

limb in humans are fairly imprecise, regional in nature, and/or not dynamic in real time. The

problem becomes even more difficult in patients with PAD, where minimizing the resistance

of the distal muscle (e.g., typically by contractions), in order to ensure a valid measure of

maximal blood flow, is burdensome and often not possible. There are other, possibly even

more compelling, reasons that make it very difficult for collateral vessel development in

humans to become substantial enough to recover large flow deficits back to normal. A brief

consideration of vascular hemodynamics will suffice. Illustrated in Figure 11 is the decline

in blood flow of a major conduit artery of 5 mm (e.g., femoral artery), as an obstruction

reduces its caliber. Note that resistance to blood flow increases geometrically, based upon

Poiseuille’s relationship where resistance is a function to the fourth power of the radius.

Thus, a reduction in vessel radius to one-half its initial increases resistance by 16-fold,

leading to a reduction in flow capacity to ~6% of initial! It becomes apparent why vascular

obstructions can have such a profound consequence in producing ischemia, especially when

the flow demands of the down stream muscle are elevated. Any such upstream obstruction

that reduces vessel caliber leads to a loss in perfusion pressure down stream, since in a

hydraulic system there is a pressure decline that occurs across any resistance. This is

illustrated in Figure 12 where the decline in distal pressure is plotted against vessel diameter

for flow demands typical for 1 kg of muscle (e.g., calf) at rest (780). Note that a reduction in

diameter to one-half normal leads to an apparently small, but real, reduction in distal

pressure to <90% of normal, the recognized standard used to identify patients with PAD

(213, 257, 600, 661). While this decrease in diameter (to 2.5 mm) presents no risk of

ischemia at rest, it only takes a further reduction in diameter to 1.5 mm to reach the limit of

flow reserve for resting flow needs. At this diameter of 1.5 mm the upstream resistance is so

high that no matter how low the resistance of the distal muscle becomes, flow to the calf

muscle becomes inadequate. Even if the muscle reduced it resistance to its minimum

possible (e.g., where resistance = 0.0417 at a blood flow = 3,000 ml/min/kg (22), the

resistance of the entire circuit would be inadequate to support the 40 ml/min resting needed

for the calf muscle. The resultant condition of ‘ischemia at rest’ has dire consequences for

clinical management and leads to inordinate increases in morbidity risks and premature

death (607). If, on the other hand, the obstruction remained at 2.5 mm, the absence of

problems at rest changes markedly upon walking at a modest rate (e.g., 2.5 mph). Also

shown in Figure 12 is the impact of increasing flow needs to the calf muscle by a very

modest 4-fold. Note that approximately 50% of the arterial pressure is lost across this

upstream resistance. This increased blood flow need (160 ml/min) to the muscle could be

met, since the resistance of the muscle can decrease extensively due it its high conductance.
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However, any significant increase in flow demands by the calf muscle, for example by

walking up 2 flights of stairs, could lead to frank ischemia and potentially cause

claudication. It is easy to see, with this illustration, how restrictions in arterial supply can be

so debilitating in patients with PAD.

A pertinent question can be asked, how easy is it then for patients to develop a collateral

vessel circuit sufficient to compensate for the above-calculated level of conduit vessel

obstruction (i.e., 5.0 mm down to 2.5 mm)? An answer requires two considerations,

knowing: a) the caliber of the collateral vessel(s) and b) the flow demands of the distal limb

muscles. For simplicity, we will consider the same reduction in vessel caliber from 5.0 mm

to 2.5 mm, as well as the two conditions, rest and modest walking at 2.5 mph, as discussed

above. As developed in the section on arteriogenesis, the primary means of collateral vessel

development thus far described is the enlargement of the small, near-resistance size vessels

that are found in the tissues surrounding the arterial obstruction. These 50–100 μ vessels are

expected to enlarge to 250–500 μ conduits that deliver collateral flow circumventing the

obstruction. As illustrated in Figure 12, it would take the formation of 672 collateral vessels

500 μ in diameter in order to take a distal pressure in the PAD range (<0.9 ankle/brachial

index) to above and into the borderline PAD range (ABI between 0.9–1.0) during the resting

condition. In contrast, it would take more than 3,477 collateral vessels 500 μ in diameter to

return the low distal pressure during walking to above 90% of normal. Even if rather larger

2.5 mm diameter collateral vessels developed, it would take more than 5 to recover the flow

potential back to that of a 4.0 mm artery (cf., Figure 12). It is obvious that expansive

collateral development is essential if patients with advanced obstructions are to recover their

capacity for ambulatory activities. Further, these calculations simply take into account

differences in resistance established by changes in vessel caliber and not the added

resistance due to the length of the vessels, the extent of tortuosity, or the presence of

multilevel obstructions. The relatively long distances in patients, that exist between common

sites of vascular obstructions (eg., ilio-femoral/femoral) and the distal limb muscles in need

of oxygen, adds further complexity. Indeed, the relative high flows, due to the mass of the

limbs, and the long distance of the conduits in patients, establish a marked distinction

between humans and animals, where substantial collateral vessels develop over relatively

short distances in the hindquarter vasculature of the quadrupeds. Thus, it is not surprising

that few studies find significant increases in blood flow to the limbs of patients after

participation in an exercise program. On the other hand, it is documented that significant

collateral vessels can develop, even spontaneously as illustrated in Figure 13 (249). Further,

some studies show improvement in limb flow (17, 92, 282–284, 378, 859) and there is even

an anecdotal report of an extensive collateral development in one conscientious patient that

was sufficient to permit him to finish walking a marathon (335). Interestingly, even in the

rodent model of peripheral arterial insufficiency, prolonged daily running markedly

increased, but did not return blood flow capacity to the calf muscle back to normal, as could

be achieved by surgically increasing shear stress within the collateral vessels combined with

concurrent administration of angiogenic growth factor, VEGF (732). It may be likely,

however, that a higher incidence of improved collateral blood flow might be found in

patients, if a more profound arteriogenic stimulus were established, for example by an

extended program of sufficiently intense physical exercise. Additional factors may

intervene, as there is even the potential that limb collateral vessel development could be

genetically determined, if predilection in the limb is similar to that observed in coronary

collateral development (152).

14.2. Functional behavior of vessels distal to an obstruction

While there is relatively little known about the vasoresponsiveness of vessels affected by a

major obstruction of an artery, there is enough information to know that they probably do
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not function normally. For example, the low luminal pressure fostered on the down stream

vasculature, by an upstream obstruction, would reduce radial wall tension of even otherwise

normal vessels. A structural increase in the diameter of conduit vessels (saphenous a, soleus

feed a. and calf muscle feed a.) ensues over time (915), possibly attempting to recover some

of the lost radial wall tension that comes with a reduction in luminal pressure. This reduction

in radial wall tension has the potential to diminish the vasodilator response of the vessel

(914). A dulled flow-mediated dilation of the popliteal artery was observed after ischemic

exercise (leg occlusion), but not following the same exercise without leg occlusion, even in

normal healthy 17 yr old volunteers (73). Further, a dulled vasodilator response was

observed in the small arterioles of a distal limb muscle following upstream occlusion of the

iliac artery (480). This could have contributed to the reduced conductance of the calf

muscles following occlusion of the femoral artery, as compared to that of the normal flow,

contralateral calf muscle (914). Whether an up regulation of alpha-sympathetic receptors

(802) in the distal vessels contributed to this response is not known. Similarly, exaggerated

responses to norepinephrine (165, 459) have been observed in vessels obtained from patients

with critical limb ischemia. However, this potential for an exaggerated vasoconstriction of

the limb vasculature seems inconsistent with the reduced sympathetic orthostatic response

observed in patients with PAD (202). Interestingly, the dulled vasodilator response of the

vasculature was improved by daily contractions of the ischemic muscle, either by muscle

stimulation (480) or by treadmill walking (915). The evidence to date suggests that there is

the potential to exacerbate the blood flow deficits caused by the upstream arterial

obstruction, if these aberrant responses occur in patients with PAD. On the other hand, the

recovery from vasomotor dysfunction with muscle contractions (480, 915) appears to offer

the potential for improvement by participation in an exercise program.

14.3. Functional behavior of collateral vessels that circumvent an obstruction

The hemodynamic function of collateral vessels becomes unique among the traditional roles

of vessels within the vasculature. For example, large conduit vessels are responsible to

deliver flow downstream at a high rate, without significant resistance, and be responsive to

luminal flow events. Smaller resistance vessels, which are close to the tissue being perfused,

are highly innervated to regulate caliber, thereby exerting a high resistance, to limit flow

until local tissue demands initiate dilatation. Finally, capillaries function to ‘bathe the tissue

in blood’ to optimize diffusion of metabolites and gases between blood and cells. On the

other hand, to be effective collateral vessels must function as ‘low’ resistance conduits,

albeit relatively small ones, but arise from even smaller arteriolar size vessels (113, 118,

811, 1018). This raises the potential that these small vessels, that are the substrate for the

collateral circuit, retain their vasoconstrictor properties as the vessels enlarge. Even the

potential that local tissue conditions exist to foster dilatation of the collateral vessels may

not occur, since the site of collateral circuit is often within tissue that is not collateral-

dependent. This appears to be the case with proximal obstructions of large vessels (e.g.,

femoral artery), where the collateral circuit develops in the thigh region which enjoys a

much higher blood flow than the collateral dependent muscles of the lower limb (455, 1018,

1019). Thus, inordinate vasoconstriction of the collateral circuit could exacerbate the

difficulty in delivering blood flow downstream, well beyond that established by the limited

physical caliber of the collateral vessels themselves.

While very little is known about the vasomotor function of the collateral circuit, there are

animal studies that have evaluated the functional behavior of the collateral circuit in vivo,

and the vasoresponsiveness of individual collateral vessels in vitro. Opening of a nascent

collateral circuit, following acute occlusion of the femoral artery, can occur within minutes

(776, 777) and requires nitric oxide to be present (947–949, 1026), likely related to flow-

mediated dilation that must occur as these vessels begin to function. Further, nitric oxide
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continues to be important during the process of collateral vessel remodeling (947, 949).

Collateral flow increases in response to the dilatory effect of adenosine (577). On the other

hand, serotonin has been shown to cause collateral vasoconstriction (550). Further, a

dominant sympathetic influence remains that tempers flow delivery down stream. Blocking

either alpha1-, alpha2-adrenergic receptors, or in combination, increases the conductance of

the collateral circuit during exercise (914, 915). In addition, inhibition of neuropeptide Y

(NPY)-1 receptors, that would be responsive to the NPY released concurrent with release of

norepinephrine (1054), increases the conductance of the collateral circuit (915). Thus,

sympathetic output, which is expected to be increased in PAD (44, 47) due to the muscle

pressor reflex, likely serves to limit collateral blood flow during activity, by more than that

caused by the small structural diameter of the collateral vessels (e.g., the collateral

plumbing). Interestingly, it may be that exercise training has the potential of ameliorating

this detrimental condition in patients, since the muscle pressor reflex is less robust after

training even in normal healthy subjects (640, 742) and collateral circuit conductance was

improved by exercise training in experimental peripheral arterial insufficiency (915).

Evaluating the vasoresponsiveness of individual collateral vessels in vitro provided

consistent evidence with the in vivo assessment discussed above, in demonstrating that an

exaggerated vasoconstriction to increasing luminal flow was reversed by exercise training

(170). This assessment was performed on the re-entry portion of a collateral vessel, which

delivers collateral blood flow into the distal vasculature to complete the circuit bypassing the

obstruction. Thus, it may not represent the intermediate collateral vessels segments that

connect the entry vessels to these re-entry vessels. It is apparent that this pre-existing vessel,

that was co-opted to serve as a collateral vessel, remodeled following occlusion of the

femoral artery. As illustrated in Figure 14, inhibition of the cyclooxygenase pathway with

indomethacin reversed the inherent flow-mediated vasoconstriction to a modest

vasodilatation, compared to normal vessels perfused at the low luminal pressure common to

this vessel (170). Further, removing the influence of this cyclooxygenase product, putatively

thromboxane A2, in the vessels from trained animals resulted in a robust vasodilatation.

Indeed, this marked flow-mediated vasodilatation was impervious to nitric oxide removal

with L-Name or by loss of both NOS and cyclooxygenase products. This indicates that

exercise training causes a remodeling of the collateral vessel to favor vasodilatation via

enhanced production of the putative endothelium-derived hyperpolarizing factor(s) (170). If

these findings were applicable to patients with PAD, there could be an improved collateral

vessel function and enhanced exercise tolerance following participation in a program of

routine physical activity.

15. Cardiovascular Control in Patients with Peripheral Arterial

Peripheral arterial disease is thought to be caused by a general atherosclerotic condition

exacerbated by a chronic inflammatory state (55, 483, 835). There are a number of expected

health consequences associated with this condition that appear as co-morbidities, including

ischemic heart and cerebral vascular disease (213, 661, 829), hypertension (55),

hyperlipidemia (55), diabetes (745, 837), renal disease (55), and even obesity (724), and

often with attendant elevated biomarkers (e.g., PAI-1, CRP)(483). Thus, it is common that

patients with PAD will exhibit cardiac, vascular, and metabolic dysfunction, and resulting in

a reduced activity level (55, 596). Many of these co-morbidities may be directly related to

cardiovascular dysfunction and thereby contribute to the increased morbidity and shorter life

span of PAD patients. However, PAD patients have an increased risk for cardiovascular

morbidity and mortality that is independent of the typical risk factors for atherosclerosis

(596, 862), implying that features other than generalized atherosclerotic disease are

consequential. Further, there is a subset of PAD patients that do not present with ischemic

heart disease or cerebral vascular disease. Estimates place this population at approximately
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35–50% of all patients with PAD (596, 656). Yet, the risk of premature death and increased

morbidity is just the same as those patients with attendant cardiac and cerebral vascular

disease (180, 862). Thus, the presence of ostensibly ‘pure’ PAD is not without its ominous

risk of premature death. It is presently unclear what factor or factors contribute to this

unfortunate outcome, but some insight can be gained by understanding cardiovascular

dysregulation that is likely promulgated by ischemia to the legs.

There is a reflex neural input from the periphery that contributes to cardiovascular regulation

during exercise, termed the exercise pressor reflex (476, 482, 669, 858, 865). During

aerobic-type, rhythmical exercise afferent nerve traffic, arising from within active muscles,

stimulates the sympathetic centers in the medulla. This neural input serves to activate

sympathetic output contributing to heighten cardiac function and vascular control to support

exercise. This, along with higher center activation, increases cardiac output and the drive for

vasoconstriction throughout the body, especially the skin, kidney and gastrointestinal tract.

While this vasoconstrictor outflow also extends to all muscles, there is lysis of this effect in

the contracting muscles where local vasodilatation greatly enhances blood flow, thereby

decreasing peripheral resistance and tempering any significant increase in blood pressure.

Thus, the importance of the muscle pressor response is to contribute to sympathetic control

during exercise and help redistribute cardiac output to the active muscles (780).

Interestingly, if exercise is static (isometric), with only high force development by the

muscle, there is little to no decrease in vascular resistance, nor elevation in blood flow

through the muscle. As a result, blood pressure increases inordinately--ergo, the term -

ischemic pressor response -is sometime used. Under this condition, the afferent input from

the active muscle is greatly increased resulting in even greater elevation in blood pressure.

An extreme in elevated blood pressure is realized during exceptionally high-load weight

lifting of large muscle groups (564).

15.1. Components of the exercise pressor reflex

There are at least two features established within active muscle that prompt afferent traffic

centrally: mechanoreceptors, driven by tension within the muscle caused by either active

force development or passive stretch, and metaboreceptors, acting as ‘chemical’ sensors that

are responsive to a wide variety of stimuli created within the environment of ischemic

muscle (476, 482, 669, 858, 865). These two sources were originally distinguished in

experiments where a large fraction ( 50%) of the hypertension developed during prolonged

ischemic isometric contractions, continued as long as the tourniquet remained in place even

though the contractions were stopped (15). Mechanosensors within the muscle are

responsive to muscle force, initiating afferent nerve traffic to the brain, predominantly via

group III nerves (477), in a manner proportional to the force developed (864). On the other

hand, metaboreceptors within the muscle initiate afferent input primarily via group IV

nerves and are responsive a wide variety of factors (e.g., lactate, H+, ATP, ROS, bradykinin,

capsaicin) via a variety of receptors and sensitive membrane channels (494, 496, 858, 980).

Interestingly, the intensity of neural activation depends upon the type of muscle fiber

contracting. Force development in the high-oxidative slow-twitch (type I) motor units

prompt a lesser degree of afferent activation than when the low-oxidative fast-twitch (type

IIb) motor units are contracting (38, 1015). Thus, the muscle pressor reflex should become

more exaggerated as the intensity of contraction increases in severity, as the low-oxidative

fast-twitch motor units become more highly recruited. This likely contributed to the

exceptionally high blood pressures, in excess of 300/200 mmHg, observed in experienced

weight lifters who performed near-maximally intense contractions of large muscle groups

(564, 693).
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15.2. Exercise pressor reflex in heart failure

Germane to the present consideration are elements of the exercise pressor reflex that change

in conditions typical of chronic disease, such as heart disease (858, 865) and hypertension

(201, 633). For example, an exaggerated exercise pressor reflex, measured as hypertension

and/or an elevated sympathetic nerve output, is observed in patients with heart failure (716,

848, 853). Studies evaluating the physiological bases for this exaggerated response, in

animal models of heart failure (279, 280, 482, 495, 496, 978, 979, 995), have found that the

mechanically sensitive fibers are overactive (531, 616, 617, 863, 866), whereas the

metabolically sensitive afferents are less responsive to activation (531, 868, 885). The

reasons for the increased responsiveness of the mechanoreflex remains unclear, whereas the

loss in the metaboreflex is due, in part, to less active receptors on group IV afferent neurons,

the transient receptor potential vanilloid 1 (TRPv1) (531, 868) and cannabinoid 1 (CB1)

receptors (995)). It is possible that this exaggerated exercise pressor reflex contributes to the

hyper-sympathetic state that typifies heart failure patients (260). Interestingly, animals with

heart failure that are exercise trained reverse their low metaboreflex and elevated

mechanoreflex back toward normal (979).

15.3. Exercise pressor reflex in hypertension

The exercise pressor reflex is exaggerated in hypertensive patients and animals models of

hypertension. Hypertensive patients exhibit an enhanced elevation in blood pressure (28,

479, 805) and sympathetic nerve output (201) during ischemic handgrip exercise. It is likely

that the metaboreflex contributed to this response in patients, since the blood pressure and

sympathetic nerve activity remain elevated following contractions when the tourniquet cuff

was left intact (201). Smith and co-workers also found that the exercise pressor reflex was

exaggerated in spontaneously hypertensive rats (SHR)(867), due to changes in both the

mechano-and metaboreflexes (520, 633). The exaggerated exercise pressor reflex in the

condition of hypertension, seems rather predictable, since there is already dysregulation in

blood pressure control. On the other hand, as with heart failure, differences arising from the

active muscle are intriguing. While there are many contributors to hypertension, alterations

in the central neural control centers can be important (260, 614). Interestingly, even with

long-term blood pressure correction of hypertension in patients, the exercise pressor reflex

remained somewhat elevated, as compared to normal healthy subjects (479). This raises the

probability that the exaggerated exercise pressor reflex observed in the hypertensive

condition, involves more than just an enhanced afferent neural traffic from the contracting

muscles. Future research will, no doubt, reveal some of the complex interactions among the

mechano-and metaboreflex inputs and alterations among the central cardiovascular control

elements.

15.4 Exercise pressor reflex in peripheral arterial insufficiency

It is likely that the exercise pressor response contributes to hypertension in patients with

PAD. However, it is not possible to make a definitive assignment of the hypertension,

commonly observed is these patients, to muscle afferent traffic, since hypertension is its own

pathology and a common co-morbidity with PAD (55). On the other hand, as illustrated in

Figure 15, the exercise pressor reflex could contribute to the frank hypertension that was

induced during exercise in patients with PAD, as compared to age-matched controls (44,

47). The elevated blood pressure was evident early during the treadmill walk, well before

the time of pain-onset or when the patients had to stop walking (47). As expected the

hypertension in PAD patients is a function of exercise intensity (44). This could invoke

another possible contributor to the elevated exercise pressor reflex. PAD patients often

exhibit a loss of muscle mass, which could foster earlier recruitment of the more reflex-

responsive fast-twitch motor units. Thus, probable activation of these fast-twitch motor

units, to achieve even a modest intensity of locomotion, would exaggerate the afferent nerve
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traffic from the muscle (38, 1015). It is apparent, however, that differences in the muscle

reflex occur, since even young healthy subjects will demonstrate an exercise hypertension

while walking when cuffs occlude limb blood flow (73). Interestingly, the absence of an

exaggerated exercise pressor reflex between PAD patients and healthy control subjects,

when induced by handgrip exercise (48), implies that the changes in the exercise pressor

response with PAD are not generalized, but dependent upon afferent nerve traffic derived

from a diseased ischemic limb. Indeed, animal experiments have shown this specificity,

since the afferent neurons in the dorsal root ganglion remodel only at the cord level

innervating the muscles that are ischemic (541), the elevated exercise pressor reflex was

observed only in the ischemic limb and not the free-flow perfused contralateral limb of the

same animal (936), and the dilatory capacity of ischemic muscle during treadmill exercise

was markedly less than that of the normal flow, non-ischemic muscle (914, 915). Further,

the presence of the exaggerated exercise pressor reflex was dependent upon muscle

contractions, as neuromuscular blockade and denervation of the afferent loop of the reflex

completely eliminated the pressor response.

Recent evidence has provided significant insights on how the exercise pressor response is

exaggerated in experimental animals with peripheral arterial insufficiency caused by femoral

artery occlusion (541, 936–938, 1013, 1014). Femoral artery occlusion induces an increase

in the exercise pressor response prompted by both muscle contractions and passive stretch of

the muscle, implicating both mechano-and metaboreceptors in the response. The time-course

post-occlusion needed to observe this increase is surprising brief, within 24 hr leading to a

near-maximal response in 72 hr (541); yet, the exaggerated exercise pressor reflex is not

observed with acute occlusion (3 min) of the femoral artery (936). Further, the enhanced

exercise pressor reflex is observed without frank ischemia within the limb muscles.

Occlusion of the femoral artery, as done in these studies, removes approximately 75–85% of

the flow reserve to the calf muscle (1026); however, nascent collateral blood capacity to the

limb is sufficient to supply the calf muscle with blood flow (1022, 1026) that is

approximately 3-fold greater than ‘resting’ blood flow observed in muscle of quiescent

anesthetized animals (565, 566). Thus, while the exercise capacity of these animals is

greatly limited, there should be little stress on the muscle during limited cage activity.

Nonetheless, factors must be promulgated within the muscle by femoral artery occlusion that

initiate fairly immediate remodeling of the neuronal sensing and/or propagation processes

responsive to tissue tension and/or metabolites, including: an increased response to acid-

sensing ion channels (e.g., responsive to lactic acid) (541, 939); transient receptor potential

vanilloid type I receptor (nociception) up regulation in the afferent dorsal root neurons

(1013), possibly driven by up regulation of nerve growth factor (542, 1014) although

inhibition of TRPV1 receptors did not lessen the elevated exercise pressor response (936);

inhibition of the exaggerated pressor response by activating micro-opioid receptors, likely

implicating metaboreceptors (937); and sensitivity of the exaggerated exercise pressor reflex

to tetrodotoxin inhibition of sodium channels, but not TTX-resistant sodium channels in

dorsal root ganglia (938); and the action of tempol, but not likely due to its ROS buffering

capacity (594). These important papers demonstrate that critical changes occur in the

afferent arm of the exercise pressor reflex in the condition of peripheral arterial

insufficiency, leading to an enhanced afferent traffic to the central cardiovascular control

centers. Whether there are also adaptive changes induced within the central cardiovascular

control centers, that could ameliorate or exacerbate conditions in PAD patients, is unknown.

Thus, it may be hypothesized that PAD patients are at risk of hypertension during activity

and that this elevated afferent nerve traffic could cause neural adaptations which ‘bias’

central neural cardiovascular control and lead to a hyper sympathetic state even at rest,

which has been observed (419). The added risks of premature death and morbidity, due to a

hypersympathetic condition, have been well recognized (260). Such a causative link could
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help explain the equivalent risks of morbidity and mortality in PAD patients, even in the

absence of cardiac or cerebral vascular disease (180, 862).

15.5. Central cardiovascular control centers influence sympathetic output

Recent research has established that critical areas within the brain contribute to the

hypersympathetic output that appears common to cardiovascular diseases (641). While the

complex interactions among the numerous important loci within the brain are beyond the

scope of this review, a couple of brain areas have received the most attention and merit

comment. The paraventricular nucleus (PVN) in the hypothalamus and the rostral

ventrolateral medulla (RVLM) have become a major focus for evaluating experimental heart

failure (1051, 1053) and hypertension (256). In each case, substantial derangements of these

centers, related to inherent alterations of excitatory/inhibitor input, have been observed. For

example, in experimental heart failure there is a modified behavior of the PVN related to a

reduced bioavailability of nitric oxide (703) and enhanced angiotensin II activation (1042),

possible due to a down regulation of local angiotensin converting enzyme (474), that

contributes to the hypersympathetic state. Similarly, a deficit in nitric oxide bioavailability

in the RVLM contributes to the hypertension characteristic of spontaneous hypertensive rats

(142, 489). Interestingly, exercise training reverses the hypersympathetic state (1052) in

heart failure models, apparently by improving the antioxidant condition (280), nitric oxide

bioavailability (1043), and by reducing the excitatory influence of glutamate in the PVN

(493). Even in the absence of imputed disease conditions, normal animals that are exercise

trained exhibit a smaller response to excitatory stimuli (glutamate) in the RVLM (641).

Thus, recent work has developed compelling evidence that central cardiovascular centers are

subject to dysregulation, found to be plastic, and potentially responsive to afferent nerve

traffic to modify their behavior. This raises the potential that significant changes could be

promulgated onto these control centers by a barrage of afferent nerve traffic arising from the

exaggerated exercise pressor reflex observed in the condition of peripheral arterial

insufficiency. Further, the above-mentioned training responses in experimental heart failure

and hypertension raises the potential that exercise training in patients with PAD could

induce beneficial central neural adaptations. However, these hypotheses remain to be tested.

Conclusion

It is apparent that involvement in recommended exercise prescription brings about a

multitude of adaptations that are beneficial to the patient with PAD. While much is known

about these adaptations, the signals that bring them about, and the realized impact of these

changes, there is much to be learned of the impact of exercise in the condition of PAD. New

advances in technology are needed to assist in the management of these patients. For

example, there is difficulty in assessing the extent of blood flow deficit to the diseased limb,

in identifying the sites of vulnerability within the limb, and in evaluating the extent of

therapeutic intervention. Further, while exercise prescription is one of the most effective

means of managing PAD, in the absence of contraindications, achieving compliance is a

significant clinical problem. Thus, there are many avenues for advances in scientific inquiry,

application of technology, clinical management of PAD patients, and in educating the public

of the need for life style changes to enhance the amount of daily physical activity.
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Figure 1.
Prevalence of peripheral arterial disease, and the subset of patients with intermittent

claudication, increases markedly with age. Reproduced from Norgren et al., (661) with

permission.
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Figure 2.
The risk factors for peripheral arterial disease are numerous, as illustrated by these hazard

ratios. Figure adapted from Norgren et al., (661), with permission, and added concept from

Booth et al., (80).
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Figure 3.
The increase in mortality with peripheral arterial disease is related to its severity.

Reproduced from Norgren et al., (661) with permission.
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Figure 4.
The increased mortality of peripheral arterial disease is predicted by the decline in the ankle-

brachial artery pressure ratio. Reproduced from Resnick et al., (749) with permission.
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Figure 5.
Typical increase in exercise tolerance, measured during a defined treadmill protocol and

during free-pace walking, that was observed in patients with peripheral arterial disease who

participated in an exercise program. Data taken from Carter et al., (132).
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Figure 6.
The predominance of angiogenic factors that are induced in response to repeated exercise

(upper panel) and the combination of angiogenic, inflammatory and angiostatic factors that

are prevalent during muscle ischemia (lower panel). Refer to the text for additional details.
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Figure 7.
Activating stimuli and cellular interactions within the skeletal muscle microenvironment.

Arrows denote paracrine signaling crosstalk that ensures co-ordination of the processes of

angiogenesis, satellite cell activation and myocyte metabolic adaptation in response to

physical/mechanical or biochemical stimuli.
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Figure 8.
An overview of signaling pathways that coordination exercise-induced angiogenesis and

mitochondrial biogenesis. Information obtained from (12,31,403, 413, 513, 750, 1009).
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Figure 9.
Summary of some key events in the remodeling of a collateral artery in response to upstream

occlusion. The approximate time course is shown moving from upper left (with events

occurring within hours/days of occlusion) to the bottom right (completion of remodeling

after >1 month). Increased shear stress and vessel stretch following upstream occlusion leads

to endothelial cell activation, adhesion molecule expression, and monocyte infiltration,

followed by reorganization of the extracellular matrix. Phenotypic shift, migration, and

proliferation of vascular smooth muscle cells leads to neointima formation and an increase

in the number of smooth muscle cell layers. The process is complete when vascular smooth

muscle cells have returned to a contractile phenotype and the vessel structure has regained a

relatively normal appearance. (Not all cell types are shown at each time point, and the

number of smooth muscle cell layers is limited for clarity).
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Figure 10.
Diagram of forces acting on peripheral collateral vasculature and the resulting changes in

collateral-dependent blood flow in response to upstream arterial occlusion. Top: simplified

representation of the peripheral vasculature. Collateral vessels are present under normal

conditions (left). However, there is no pressure gradient across the collaterals. Moreover,

collateral resistance is high due to the narrow vessel diameter. Thus, collateral blood flow is

low under normal conditions. Following an acute occlusion (center), a pressure gradient is

created across the collaterals, driving flow through the vessels. Vasodilation produces a

further limited increase in collateral blood flow. Since the vessel diameter remains relatively

small and the pressure gradient for flow is large, shear stress levels in the collaterals are

high. High shear stress initiates structural remodeling, which is evident following chronic

occlusion (right). Smooth muscle cell proliferation occurs, resulting in increased vascular

wall thickness. Since the ends of the vessel are fixed, vascular growth also produces an

increase in tortuosity of the collaterals. Eventually, the diameter of the vessel increases to a

point where shear stress is reduced to non-stimulatory levels, and remodeling ceases.

Middle: the events described above, seen at the level of the individual collateral artery. A

limited number of smooth muscle layers is shown for clarity. Bottom: functional

consequences of arterial occlusion and collateral remodeling in skeletal muscle of the distal
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limb. Vasodilation of collaterals following acute occlusion may provide sufficient flow for

tissue needs under resting conditions depending on the location of the occlusion (center), but

is insufficient for active skeletal muscle demands. Thus, distal skeletal muscle is at risk of

ischemia and may become hypoxic. (The area of collateral remodeling in the proximal limb

is itself well-perfused and non-hypoxic). Reduced tissue pO2 leads to opening of capillaries

within the muscle. After structural remodeling of the collateral vasculature (right), blood

flow capacity to the distal limb is improved and may suffice to support the demands of

active skeletal muscle. In conjunction with arteriogenesis in the proximal limb, capillary

proliferation (angiogenesis) occurs in distal tissue, in response to hypoxia and other factors.
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Figure 11.
Relationships between vessel size and blood flow (right axis) and resistance (left axis) for a

typical femoral artery of 5 mm diameter. Note the precipitous decline in blood flow, and

increase in vascular resistance, as vessel caliber decreases, since these are a 4th-power

function of vessel radius. Thus, blood flow capacity is only ~6% of normal, if the size of the

vessel declines to one-half. The insert is an expanded region of interest.
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Figure 12.
Calculated pressure to the distal calf muscles as a function of the reduction in caliber of the

upstream vessel when blood flow to the distal limb is sufficient for resting tissue needs of 40

ml/min (circles) or during walking at a slow pace where blood flow needs increase to 160

ml/min (squares). Note that a reduction in upstream vessel caliber to one-half initial leads to

a reduction in distal pressure to < 90% normal, a value that defines the presence of PAD. At

the same time, this individual would experience a marked reduction in distal perfusion

pressure to <50% of normal during walking. Note that it would take the development of

~3500 500μ or 5 2.5 mm diameter collateral vessels to recover distal perfusion pressure to

above 90% during the mild walking rate.
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Figure 13.
Magnetic Resonance angiograph illustrating that collateral vessels can develop to

circumvent a short-segment occlusion (right superficial femoral artery) and long-segment

occlusion (left femoral artery) of patients with PAD. Reproduced from Esterhammer et al

with permission from (249).
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Figure 14.
Influence of exercise training on the vasoresponsiveness of a collateral vessel as a function

of shear stress. An initial modest dilatation to low shear stress in control animals (open

circles) reverted to a dominant vasoconstriction at high shear stress. This response was

eliminated in the presence of indomethacin, L-NAME, and in combination, as illustrated

(filled circles), to a modest vasodilatation at very high shear stress. In contrast, collateral

vessels from trained animals exhibited a marked vasodilation in the presence of

indomethacin, L-NAME, and in combination, as illustrated (filled squares). This implies that

exercise training induces a cyclooxygenase- and NOS-independent stimulus for

vasodilatation. Data taken from Colleran et al (170) with permission.
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Figure 15.
Example of hypertension during exercise in a group of patients with PAD who exhibit

claudication. Note that the elevation in blood pressure in the claudicant group is greater than

that of aged-matched control group well prior to the cessation of walking. Figure reproduced

from Baake et al (47) with permission.
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Table 1

Modulation of Angiogenic and Angiostatic Factors with Exercise and in Ischemic Conditions

Exercise Ischemia Ischemia + Exercise

Acute Exercise Repeated Exercise or
Training

Growth factors/receptors

VEGFA

↑ mRNA and
protein (80, 91, 292,
293, 296, 330, 390,
398, 755, 787)
↓ then ↔ protein
(293)
↑ protein in plasma
(292, 503)

↑↑ mRNA and protein
short term to ↔
mRNA long term (26,
328, 332, 340, 398,
755, 756)
↑ protein (muscle
overload) (762)
Deficiency blocks
exercise induced
angiogenesis (679)

↑↑ mRNA(acute ischemia)
(177, 621, 759, 941, 963)
↑ protein (acute ischemia)
(149, 177, 351, 374, 559,
621)
↑ protein in plasma (critical
limb ischemia) (258, 572)
↔ protein (intermittent
claudication) (258)
↔ or ↓ mRNA, protein
(chronic ischemia) (559,
621, 759, 941, 963)
↓ mRNA following chronic
hypoxia (681)

↑↑ mRNA (flow-restriction
of exercising muscle) (331,
332)
↑↑ mRNA (exercise in
hypoxic conditions) (91)
↑ mRNA (exercise
following chronic hypoxia)
(681)
↑ mRNA (ischemia +
training) (545, 840)

VEGFR1
↑ mRNA (80, 293,
331, 332, 678)
↔ mRNA (292)

↔ resting mRNA;
↑ mRNA with
exercise (678)
↔ soluble VEGFR1
protein (398)

↔ full length, ↑ soluble
protein in acute ischemia
(351)
↑ full length, ↑ soluble
protein in acute ischemia +
diabetes (351)
↔ soluble VEGFR1
protein in plasma (258,
572)
↑ full length protein (622)
↓ mRNA (chronic hypoxia)
(681)

↑↑ mRNA (flow-restriction
of exercising muscle) (331)
↑↑ mRNA (exercise of
ischemic muscle) (545)
↓ protein (electrical
stimulation of ischemic
muscle) (622)
↑ mRNA (exercise in
hypoxic conditions) (678)
Loss of exercise-induced ↑
mRNA (chronic hypoxia)
(681)

VEGFR2

↑ mRNA and
protein (292, 293,
332)
↓ mRNA (678)
↔ mRNA (80)

↑ mRNA, protein to
↔ mRNA (332, 626)
↔ resting mRNA;
↓ mRNA with
exercise (678)

↑ mRNA (acute ischemia)
(759, 941)
↑↑ protein (acute ischemia)
(622)
↔ or ↓ mRNA, protein
(chronic ischemia) (622,
759, 941)
↓ mRNA (chronic hypoxia)
(681)

↑ mRNA (exercise of
ischemic muscle) (545, 840)
↓ mRNA (exercise in
hypoxic conditions) (678)
↑ protein (electrical
stimulation of ischemic
muscle) (622)

PlGF
↔ mRNA or
protein (303)

Deletion does not
affect exercise
induced angiogenesis
(303)

↔ mRNA or protein;
deletion does not affect
ischemia-induced
angiogenesis (302)

--

EpoR
↑ mRNA and
receptor activation
(788)

-- --
Required for full activation
of VEGF/VEGFR2 signals
(650)

Ang1,2

↔ mRNA or
protein (292, 332)
↑ Ang2 mRNA
(398)

↑ Ang2:Ang1 protein
(332)

↔ Ang1,2 mRNA (545)
↑ Ang2 mRNA (695)
↑ Ang2 protein in plasma
(critical limb ischemia and
intermittent claudication)
(258)

↑ Ang2:Ang1 mRNA and
protein (flow-restriction of
exercising muscle) (332)
↑ Ang2:Ang1 mRNA
(exercise post-ischemia)
(545)

Tie2
↔ mRNA (332)
↑ mRNA (292, 398)

↔ mRNA (332)
Loss of acute exercise
response with training
(398)

↑ mRNA (acute ischemia)
(941)
↔ mRNA (545)
↑ mRNA but ↓ full
length:soluble protein (684)
↑ sTie2 in plasma (critical
limb ischemia) but ↔
sTie2 (intermittent
claudication) (258)

↑ mRNA (exercise post-
ischemia) (545)
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Exercise Ischemia Ischemia + Exercise

Acute Exercise Repeated Exercise or
Training

FGF2
↔ or small ↑
mRNA (296, 678)

↑ or ↔ mRNA (330,
678, 755)

↔ mRNA (chronic
hypoxia) (681)
↔ protein (ischemia) (149)
Deletion does not affect
ischemia-induced
angiogenesis (894)

Loss of exercise-induced ↑
mRNA with hypoxia (678)
↑ mRNA (chronic hypoxia)
(681)
↔ mRNA or protein
(exercise post-ischemia
(205, 840)

TGFβ1
↑ mRNA (91, 296,
678)

↑ mRNA (296, 678)

↑ mRNA (acute hypoxia), ↓
mRNA (chronic hypoxia)
(91)
↔ mRNA (chronic
hypoxia) (681)

Loss of exercise - induced ↑
mRNA (chronic hypoxia)
(91)
Loss of exercise-induced ↑
mRNA with hypoxia (678)

HGF
↑ by stretch or
muscle injury (349)

--
↑ mRNA (350)
↑ plasma HGF (acute
ischemia) (538)

--

Dll4 -- --
↑ protein (acute ischemia)
(14)

--

SDF1 -- --
↑ mRNA (acute ischemia)
but ↓ mRNA (chronic
ischemia) (963)

--

Transcription factors

HIF1α
↔ mRNA (80, 330)
↑ protein (20)
↑ mRNA (555)

↔ mRNA (328)
↑ mRNA and protein
(muscle overload)
(620, 625)
Loss of exercise
response in mRNA
after 4 weeks (555);
capillary growth is
increased in HIF1
deficient mice (579)

↑ mRNA (acute ischemia)
(941)
↑ protein (acute ischemia)
(628, 629, 963)
↔ mRNA (chronic
ischemia) (941)
↔ protein (chronic
ischemia) (759, 963)

↑ protein (flow restriction of
exercising muscle) (20)
↑ protein (post-ischemia)
(146)

HIF2α ↑ mRNA (555)

↑ mRNA and protein
(muscle overload)
(625)
Loss of acute exercise
response in mRNA
after 4 weeks (555)

↑ mRNA (acute) (941) --

PGC1α ↑ mRNA (662, 663,
717)

↑↑ mRNA (717) --
↑↑ mRNA (flow restriction
of exercising muscle) (662,
663)

Other Pro-Angiogenic factors

NOS
↑ NOS activity
(765)

↑ eNOS protein (626)
↑ NOS activity (895)
↑ nNOS protein (747)

↔ to ↓ protein (chronic
ischemia) (104)
eNOS deletion impairs
post-ischemia angiogenesis
(645, 698)

↑ mRNA (exercise post-
ischemia) (545)
↑ protein (exercise post-
ischemia) (103)

MMP-2 ↔ mRNA (787)

↑ mRNA, protein and
activation (334, 762,
786)
↔ mRNA (398)

↑ protein and activation
(276, 642, 643)
Deficiency impairs
neovascularization post-
ischemia (147)

↑ mRNA and protein (flow-
restriction of exercising
muscle) (786)

MMP-9
↑ mRNA, protein
and activity (786,
787)

↑ mRNA but ↔
activity (786)

↑ mRNA (695)
↑ protein and activity (276,
642, 643)

↑↑ mRNA and protein
(flow-restriction of
exercising muscle) (786)

MT1-MMP
↔ mRNA (786,
787)

↑ mRNA and protein
(334, 762, 786)

↔ protein (643)
↑ mRNA and protein (684)

↑ mRNA (flow-restriction
of exercising muscle) (786)
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Exercise Ischemia Ischemia + Exercise

Acute Exercise Repeated Exercise or
Training

Angiostatic factors/receptors

TSP1 ↑ mRNA (677)
↓ mRNA to ↔
mRNA (492, 677)

↑ mRNA acute ischemia
(253, 695)
↓ mRNA chronic hypoxia
(677)

Loss of exercise response
with chronic hypoxia (677)

Endostatin

↑ protein in plasma
(322, 893)
↔ protein in
muscle or plasma
(787)

↓ protein in trained
muscle (323)
↓ protein in plasma
following training
(99)

-- --

Vasohibin-1 ↑ protein (490) ↓ protein (490) -- --

↑ increased

↓ decreased

↔ no change

-- not reported in literature
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