Accepted Manuscript

Exergy Analysis of a hydrogen and water production process by a solar-driven transcritical CO$_2$ power cycle with Stirling engine

Ali Naseri, Mokhtar Bidi, Mohammad H. Ahmadi, R. Saidur

PII: S0959-6526(17)30922-8
DOI: 10.1016/j.jclepro.2017.05.005
Reference: JCLP 9540
To appear in: Journal of Cleaner Production

Received Date: 13 September 2016
Revised Date: 29 April 2017
Accepted Date: 01 May 2017

Please cite this article as: Ali Naseri, Mokhtar Bidi, Mohammad H. Ahmadi, R. Saidur, Exergy Analysis of a hydrogen and water production process by a solar-driven transcritical CO$_2$ power cycle with Stirling engine, Journal of Cleaner Production (2017), doi: 10.1016/j.jclepro.2017.05.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
- A novel cogeneration plant including Stirling engine to produce water and hydrogen.
- A dynamic RO model including recovery turbine for different permeate flow rate.
- About 8% reduction in exergy destruction in the system using ideal Stirling engine.
- More electrical power production, higher than both LNG and CO\textsubscript{2} power cycle.
- Electrolyzer-based ZLD approach by employing electrolyzer beside RO desalination.
Exergy Analysis of a hydrogen and water production process by a solar-driven transcritical CO\textsubscript{2} power cycle with Stirling engine

Ali Naseri1, Mokhtar Bidi1*, Mohammad H. Ahmadi2, R. Saidur3,4

1) Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, A.C., Tehran, Iran.
2) Department of Renewable Energies, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
3) Research Centre for Nanomaterials and Energy Technology (RCNMET) School of Science and Technology, Sunway Universiti, No. 5, Jalan University, Bandar Sunway, 47500 Petaling Jaya, Malaysia
4) Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK.

*Corresponding author. Tel.: +98 21 73932656; fax: +98 21 77311446.
E-mail address: m_bidi@sbu.ac.ir (M. Bidi).

Abstract

This study attempts to go beyond the conventional framework of the integrated solar transcritical CO\textsubscript{2} power cycle works, aimed at further utilization of available exergy as much as possible. This paper proposed a novel system for hydrogen and fresh water production in which a Stirling engine used instead of a condenser, for the places with abundant access to solar radiation and sea, and least to freshwater sources. This proposal leads to further utilization of streams’ exergy through the system instead of wasting to the environment, and further power production by the engine followed by the higher products. The electrolyzer employed beside Reverse Osmosis (RO) desalination system, and takes full advantages of highly concentrated brine stream of desalination, eliminating the wastewater rejection through proposed system leading to attaining a near-ZLD approach in fresh water and hydrogen production. This reduces the adverse impacts of desalination’s wastewater on the environment. A thermodynamic and exergy analysis is carried out to compare the superiority of this study and investigate the effect of some key parameters on the overall performance of the system as well. The results showed that replacing the condenser by a Stirling engine reduces the exergy destruction through heat transfer from CO\textsubscript{2} to an LNG unit. Exergy destruction was reduced from 16.7\% to 8.8\% for the above configuration for an ideal Stirling engine that exploits it to produce extra power which its minimum is at least 9 kW and 15 kW higher than CO\textsubscript{2} and LNG power productions. Moreover, Entering RO brine stream, wasting 2.58 kW exergy, to the electrolyzer leads to NaClO and \textit{H}\textsubscript{2} production besides removing brine stream. In a power plant, sodium hypochlorite is used for disinfection of cooling systems and hydrogen can be used as a source of energy in fuel cells. An examination of some thermodynamic factors showed that higher
CO₂ turbine inlet pressure has an optimum value in producing fresh water and hydrogen, while the higher CO₂ turbine inlet temperature slightly reduces the productions rate. The more recovery ratio also causes a sharp reduction in hydrogen production, whereas it has an optimum amount of fresh water production at recovery ratio equals to 0.47.

Keywords: Solar-powered transcritical CO₂; reverse osmosis; electrolyzer; LNG; Stirling engines; Zero Liquid Discharge

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Greek</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area ([m^2])</td>
</tr>
<tr>
<td>(C_b)</td>
<td>Bond conductance ([W/mK])</td>
</tr>
<tr>
<td>(C_p)</td>
<td>Specific heat capacity ([J/kg.K])</td>
</tr>
<tr>
<td>(D_i)</td>
<td>Inner diameter ([1])</td>
</tr>
<tr>
<td>(D_o)</td>
<td>Outer diameter ([1])</td>
</tr>
<tr>
<td>(Ex)</td>
<td>Exergy ([kW])</td>
</tr>
<tr>
<td>(ex)</td>
<td>Specific exergy ([kJ/kg])</td>
</tr>
<tr>
<td>(F_R)</td>
<td>Collector heat removal factor</td>
</tr>
<tr>
<td>(FPC)</td>
<td>Flat Plate Collector</td>
</tr>
<tr>
<td>(h_{fi})</td>
<td>Heat transfer coefficient inside the tubes ([W/m^2K])</td>
</tr>
<tr>
<td>(h)</td>
<td>Specific enthalpy ([kJ/kg]); Convective heat transfer coefficient ([W/m^2K])</td>
</tr>
<tr>
<td>(H)</td>
<td>Height ([1])</td>
</tr>
<tr>
<td>(HT)</td>
<td>Heater</td>
</tr>
<tr>
<td>I</td>
<td>Radiation ([W/m^2]); Exergy destruction ([kW])</td>
</tr>
<tr>
<td>(k)</td>
<td>Thermal conductivity ([W/mK])</td>
</tr>
<tr>
<td>(K_w)</td>
<td>Water permeability coefficient ([m^3])</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>KT</td>
<td>Hourly clearance index</td>
</tr>
<tr>
<td>L</td>
<td>Characteristic length [1]</td>
</tr>
<tr>
<td>m</td>
<td>Mass flow [kg/s]</td>
</tr>
<tr>
<td>M</td>
<td>Mass [kg]</td>
</tr>
<tr>
<td>N</td>
<td>Number of glass cover</td>
</tr>
<tr>
<td>NG</td>
<td>Natural Gas</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>P</td>
<td>Perimeter[l]; Pressure[MPa]; Hydraulic pressure [kPa]</td>
</tr>
<tr>
<td>PH</td>
<td>Preheater</td>
</tr>
<tr>
<td>PR</td>
<td>Power ratio</td>
</tr>
<tr>
<td>Q</td>
<td>Heat [kW]</td>
</tr>
<tr>
<td>r</td>
<td>Radius[m]</td>
</tr>
<tr>
<td>R</td>
<td>Universal gas constant [J mol⁻¹·K⁻¹]</td>
</tr>
<tr>
<td>Rb</td>
<td>Beam radiation tilt factor</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>RR</td>
<td>Recovery Ratio</td>
</tr>
<tr>
<td>S</td>
<td>Specific entropy [kJ/kg]; Total absorbed solar radiation [W/m²]</td>
</tr>
<tr>
<td>T</td>
<td>Temperature [°C; K]</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids [mg/l]</td>
</tr>
<tr>
<td>Tpm</td>
<td>Mean plate temperature [°C;K]</td>
</tr>
<tr>
<td>t</td>
<td>Time [hour]</td>
</tr>
<tr>
<td>Turb</td>
<td>Turbine</td>
</tr>
<tr>
<td>UL</td>
<td>Overall loss coefficient [W/m²·K]</td>
</tr>
</tbody>
</table>
1. Introduction

Utilization of low-grade thermal energy from solar radiation will be beneficial to reduce environmental impact due to burning of fossil fuels. This clean energy will also solve future energy problem. To take full advantage of this solar potential, organic and natural fluids have been used in power cycles to produce desire outputs. It is interesting to note that some of these working fluids are eco-friendly, and Carbon-dioxide is one such fluid that has promising features such as non-toxic, non-flammable, non-corrosive, the ability to reach its supercritical state at 7.38 Mpa and 31.1°C. Moreover, it has low Global Warming Potential (GWP) which is good from ecological point of view. Though utilization of transcritical carbon-dioxide power cycle empowers us to further employing low-grade heat sources, it has some limitation with its condensation temperature. Condensation process within the system just below the working fluid’s critical temperature, of particular note is employing other fluids in much lower temperature to condense carbon-dioxide into its desire state and exploiting liquefied natural gas (LNG) have mostly been studied to extract the energy from power cycles [1, 2]. For further information, there have been some studies used solar units as the sources of power. Kane et al. [3] introduced a novel mini-hybrid solar power plant with integration of solar concentrators, superimposed with Organic Rankine Cycles and a bio-diesel engine which guaranteed a minimum level of heat and power production during the night and a few on-site tests were carried. Boroogeni et al. [4] proposed a bi-level control framework in order to attain a smart distribution network which uses solar panels as source of energy encompassing several residential and commercial communities with high reliability. It also dispatches the available non-renewable power plants to enhance the reliability of the communities. The results showed a theoretical low-threshold for the demand satisfaction certainty through the smart power distribution network. Moreover, there have been studies used power cycles to exploit low-grade thermal energies. Song et al. [5] proposed a solar-driven supercritical CO$_2$ power cycle with liquefied natural gas as its heat sink. In order to have a stable system output a thermal storage
tank was added and thermodynamic analysis concentrating on some key parameters in this study showed that solar radiation and condensation temperature opposite to turbine inlet temperature are the most important factors affecting net power output. Sun et al. [2] studied the utilization of the same transcritical power system to produce hydrogen in electrolyzer and thermodynamic and exergy analysis were carried out. Moreover, particle swarm optimization technique was used to find out the maximum exergy efficiency of hydrogen production within the system. Xia et al. [6] performed a thermodynamic analysis and optimization on a solar-powered transcritical power cycle with liquefied natural gas heat sink for reverse osmosis desalination and the results showed that one of the most exergy losses take places in the condenser. Cayer et al. [7] applied four methodologies on a carbon-dioxide power cycle with a low-grade energy of process gases as heat source. Furthermore, authors [8] performed a parametric optimization by taking some parameters including the relative cost of the system as performance pointers. Li et al. [9] theoretically compared and studied CO₂ transcritical power cycle and R245fa Organic Rankine cycle both with low grade heat sources. They proposed that using a recuperator in both systems would improve their exergy efficiency. A thermodynamic, exergoeconomic analysis and multi objective optimization were carried out by Ahmadi et al. [10, 11] on a carbon-dioxide power cycle with geothermal heat source and liquefied natural gas as heat sink. It is worthwhile to note that during recent years, some researches have been performed to use nano-fluids in power cycles. Saadatfar et al. [12] proposed a model of solar thermal power production system in which nano-fluids are used as working fluids in organic Rankine cycles. Moreover, some different types of nano-fluids were utilized by Toghyani et al. [13] in solar-powered integrated Rankine power cycle and it was revealed that any rises in volume fraction of nano-fluids leads to higher exergy efficiency. Lin et al. [14] proposed a novel transcritical Rankine cycle which works between exhaust from a gas turbine and liquefied natural gas as its heat source and sink. Angelino and Invernizzi [15] suggested several new schemes for the CO₂ power cycle with LNG as heat sink to utilize the cryogenic exergy of LNG and enhance the overall performance of the system. Mehrpooya et al. [16] proposed a hybrid system including transcritical CO₂ power cycle in a novel air separator process.

Lack of available freshwater resources to meet the demand of potable water has been one of the humans’ concerns in many parts of the world, more specifically in hot and dry areas or islands in which there is a large amount of underground water or large accessibility to high seas. Moreover, abundance of renewable energy sources such as solar radiation has led to take advantage of these potentials to produce fresh water. Thus, the desalination technologies have
been developed to supply the potable water demand, Reverse Osmosis (RO) system is one of the water purification technologies that removes the large particles, ions and molecules from water by Semipermeable membranes. For further research, an onsite experimental test rig with RO desalination powered by low temperature solar organic Rankine cycle was developed by Manolakos et al. [17] to evaluate its performance. Experiments were conducted on Organic Rankine cycle and the small RO units to investigate their performances [18, 19]. Since employing reverse osmosis unit is the most cost-effective among the other desalination technologies, Delgado and Rodriguez [20] explored solar thermal-driven reverse osmosis desalination. Authors found it promising due to lower energy requirement to purify saline water compared to the other desalination processes driven by solar energy. Nafey et al. [21] studied different recovery units of a solar thermal-powered for reverse osmosis desalination system. Their thermo-economic analysis revealed that the most economic configuration in recovery of brine water stream is utilization of recovery turbine on its path. Furthermore, Malek A. et al. [22] studied the design and economic of RO desalinations.

When hydrogen burns, the only by-product is water and there is no harmful products entering its immediate surroundings. On the other hand, it is capable to be artificially created from sources such as methane, coal, water, gasoline, and biomass which are locally produced. Thus, these are the things that make this practical matter a clean fuel. Electrolysis, the technologies for hydrogen production which rapidly developed is the process of breaking water molecules into hydrogen and oxygen molecules in which its motive force would produce electricity in some other systems which are converted to desire direct current to drive this electrochemical process [2]. There are three types of electrolyzer, namely Polymer electrolyte membrane (PEM), alkaline water and solid oxide electrolyzer. For further research, a solar-driven transcritical CO₂ power cycle is studied by Sun et al. [2] to produce the hydrogen. Dincer [23] studied methods of hydrogen production and categorize them based on the driving sources and applications and presented various case studies to highlight the importance of green hydrogen production. Ahmadi et al. [24] performed energy and exergy analysis of hydrogen production by an ocean thermal energy conversion (OTEC) cycle that is coupled by a solar-enhanced PEM electrolyzer. The modeled PEM electrolyzer in this study is validated by experimental data and the parametric analysis is carried out to investigate the effect of some parameters on the system. In addition to transcritical Rankine power cycles or Organic ones, it has been more interesting to utilize different power cycles with higher thermal efficiency and higher net power output. It is important to note that the Stirling engines not only generate higher work, but also operate
with low noise. They also produce constant power output leading to wide potential applications [25] from producing electricity with wide variety of system configurations to utilizing in regasification of liquefied natural gas. Since they produce more electricity using cold energy than using waste heat potentials at the same temperature difference for the system, Dong et al. [25] studied liquefied natural gas cryogenic generation with the Stirling cycle method with the seawater and LNG as its heat source. It was observed that the sink to not only gasify LNG, but also produce electrical power using Stirling cycle. Szczygiel et al., and Szargut and Szczygiel [26, 27] also employed LNG cryogenic exergy-driven Stirling engine for the production of electricity without any combustion. An exergy analysis and the effect of some parameter to investigate their impacts on exergy losses also were performed. Furthermore, for high temperature heat source uses, Ahmadi et al. [28] used NSGA II optimization method to optimize a solar-powered high temperature differential Stirling engines using multiple criteria by developing a thermal model. The same author also performed a finite time thermo economic multi objective optimization on a solar-dish Stirling engine using the same evolutionary algorithm [29] and maximized the thermal efficiency and entransy loss rate, while the entropy generation rate was minimized both using NSGA II algorithm [30]. Moreover, finite speed thermodynamics approach [31] and non-ideal adiabatic method was used to optimize a Stirling engine. Authors also used multi objective optimization approach to design a combined Otto and Stirling cycle power plant [32].

Having highly efficient systems, more specifically in hybrid systems have captured the attentions of more scholars and there have been myriad studies aimed at further utilization of available exergy flows as much as possible. The integrated solar transcritical CO$_2$ power cycles also have not been exempted from this fact. However, this study attempts to go beyond the conventional framework of the transcritical power cycles by proposing a novel system using a Stirling engine instead of a condenser which is among units with highly exergy destruction within CO$_2$ transcritical power cycle. But, reducing exergy destruction is not the only superiority of this proposed system. Producing more power through the system from reduced destruction, comparable with summation of the total power produced throughout LNG and CO$_2$ power cycles, is the other merits of using Stirling engine. Moreover, having further utilization of liquid streams through the systems and reduce the liquid discharges wherever possible is one of the novel ideal notions recognized by Zero Liquid Discharge (ZLD). Employing desalination systems for producing permeate water is always accompanied by high pressure brine output with highly concentration. As it is felt a gap in applying ZLD idea to solar-driven
CO\textsubscript{2} transcritical power cycles, this study also attempts to approach ZLD idea in this system for producing fresh water and hydrogen by the elimination of brine output using electrolyzer. This not only reduce wastewater rejections leading to sustainable water use, but it also contributes toward taking whole advantages of water streams’ exergy by generating beneficial by-products such as Hydrogen, and sodium hypochlorite.

This paper is followed by methodology of this study encompassing system description, thermodynamic model developed based on the proposed equations, the exergy analysis and the simulation conditions for the system. The third section illustrates the results of exergy and energy analysis and sensitivity analysis of some key thermodynamic parameters and the contribution of this study toward ZLD approach, and these will eventually be concluded in the last section.

2. Materials and methods

Having a general overview of this study, the following section is devoted to describe the proposed system followed by development of thermodynamic model based on some assumptions. Moreover, an exergy analysis is employed to specify destructions through the equipment due to irreversibility of systems. Finally, the simulation conditions for the system is presented to analyse the performance of the system.

2.1. System description

Figure 1 illustrates the schematic of a novel solar-driven transcritical CO\textsubscript{2} power cycle with recovery of cryogenic LNG using a Stirling engine. In order to model proposed novel system, the following assumptions are employed:

1. Pressure drop in all the heat exchangers within the system are 2%.
2. The Kinetic and Potential energies are neglected and all the processes are steady state.
3. The CO\textsubscript{2} and the LNG enter the pumps in saturated liquid state.
4. The salinity of water in electrolysis process is constant.
5. Efficiency for water electrolysis is equal to 100%.
6. Ideal conditions for Stirling engine are considered.
Figure 1- The schematic of proposed novel system

The model consists of solar collector field, power generation, fresh water production and hydrogen production sub-systems. The solar collector field includes two glass cover flat plate collectors to absorb solar radiation, thermal storage tank to provide stable heat and avoid any fluctuations due to sudden changes in solar radiation over the day. An auxiliary heater is used to help thermal storage tank to satisfy its minimum temperature, even at the times without sufficient irradiation [7]. Within transcritical power cycle, the temperature of CO$_2$ climbs in a vapor generator, and then turns into subcritical state after producing mechanical power as it goes through the turbine. At the following stage, it is condensed within a heat exchanger providing heat source for the Stirling engine. CO$_2$ enters into the pump in saturated liquid state and passes through a preheater to get more heat before entering the vapor generator. The Stirling engine works between two hot and cold sources that the cold one is provided by regasification of liquefied natural gas system. After pressurized in a booster pump, LNG gets heat rejected by the Stirling engine and acts as a heat sink for the engine to complete electrical power production process within the Stirling system. The heated LNG, then, enters another heater to its temperature be risen insofar as to satisfy the required temperature of the natural gas turbine. Eventually, it loses its pressure and temperature within the turbine and produces extra power for the system. The T-S diagram of the process shown in Figure 2. All the mechanical works is converted to electrical power through generators, and then it is distributed to electrolyzer and reverse osmosis sub-system with a certain ratio called “Power Ratio (PR)” that specifies the proportion of total electrical power entering the high pressure pumps of dynamic RO unit in which specified number of pressure vessels (PVs) work during the process.
based on amount of electricity required to run each one. Since the brine disposal is a high pressure stream, a recovery turbine is utilized to take advantage of this beneficial stream and produce more electricity within the system. This electrical power and the amount flowing toward electrolyzer by the distribution system runs the electrolysis process through an alkaline electrolyzer with lowest cost and efficiency of about 77%. In an ideal electrolysis process without any waste heat form the reaction, the voltage equals to 1.48 V corresponding to Higher Heating Value (HHV) of reaction is needed to produce hydrogen. This voltage represents the thermo-neutral voltage of this process under the described assumption. In this paper, HHV is applied to the hydrogen production calculation. Splitting one mole of water into one mole of product needs 286 kJ of energy. Thus, one kilogram of hydrogen is produced by supplying a voltage of 1.48 V and 141.8 MJ of electricity in an alkaline electrolyzer with 100% efficiency [2].

![T-S diagram of system](image)

Figure 2- T-S diagram of system

2.2. System modelling

A mathematical model is developed to simulate the system at the following section and Matlab with Refprop 8.0 was used to determine fluid properties employed for this purpose [33].

2.2.1 Solar flat plate collector

Figure 3 illustrates a liquid flat plate collector with two glass covers that absorbed solar irradiation passes within these transparent covers and is absorbed by absorber plate. Then, it increases the temperature of water passing through tubes by transferring the absorbed energy
throughout tubes walls. Well insulated bottom and two sides of the solar collector prevent heat transfer to the ambient and wasting heat [35].

Figure 3- Liquid flat plate solar collector

The total flux absorbed by the FPC is calculated by [34]

\[S = I_b R_b (\tau_\alpha)_b + I_d (\tau_\alpha)_d \left(\frac{1 + \cos \beta}{2} \right) + \rho_s I (\tau_\alpha)_s \left(\frac{1 - \cos \beta}{2} \right) \] (1)

Where \(I_b \) and \(I_d \) are beam radiation and diffuse radiation, respectively. The ratio of beam radiation on a declined surface to a horizontal surface is given by,

\[R_b = \frac{\cos \theta}{\cos \theta_z} = \frac{\sin \delta \sin (\phi - \beta) + \cos \delta \cos \phi \cos (\phi - \beta)}{\sin \phi \sin \delta + \cos \phi \cos \delta \cos \theta} \] (2)

In order to calculate hourly clearness index, the following equation is used.

\[K_I = \frac{I}{I_o} \] (3)

The diffuse part of radiation is calculated by,

\[\frac{I_d}{I} = \begin{cases} 1.0 - 0.09 K_I (K_I \leq 0.22) \\ 0.9511 - 0.1604 K_I + 4.388 K_I^2 (0.22 \leq K_I \leq 0.80) \\ 0.165 (0.8 \leq K_I) \end{cases} \] (4)

The useful heat rate gained can be calculated by,

\[Q_u = A_{CLT} F_R \left[S - U_L (T_i - T_{amb}) \right] \] (5)

In this equation, \(F_R \) and \(U_L \) are the heat removal factor and the overall loss coefficient. \(U_L \) includes the summation of three components as below in which \(U_b \) is the backside loss
coefficient and calculated by dividing the thermal conductivity of the insulation \((k_i) \) to the insulation thickness \((\delta_i) \) as equation (7):

\[
U_L = U_b + U_s + U_t
\]

\[
U_b = \frac{k_i}{\delta_i}
\]

And the sides’ loss coefficient is given by,

\[
U_s = \frac{2k_i(a+b)c}{\delta_i ab}
\]

Where \(a, b \) and \(c \) are the plate dimensions and \(\delta_i \) is the thickness of sides collector insulation.

An empirical equation is proposed by Klein [35] as follow to calculate \(U_t \) as the top loss coefficient of the collector,

\[
U_t = \left[\frac{N}{C \left(\frac{T_{pm} - T_{amb}}{(N+f)} \right)^e + \frac{1}{h_w}} \right]^{-1} + \frac{\sigma(T_{pm} + T_{amb})(T_{pm}^2 + T_{amb}^2)}{1 + \frac{2N + f - 1 + 0.133\varepsilon_p}{\varepsilon_p + 0.00591N\varepsilon_w + \varepsilon_g}}
\]

Where \(N \) is the number of glass covers that is equal to 2 in this model and they improve the performance of collector and reduce the heat loss [35]. Also \(f, c \) and \(e \) are defined as:

\[
f = (1 + 0.089h_w - 0.1166h_w\varepsilon_p)(1 + 0.07866N)
\]

\[
C = 520(1 - 0.000051\beta^2)
\]

\[
e = 0.430(1 - 100/T_{pm})
\]

Where \(h_w \) is wind heat transfer coefficient and can be calculated by,

\[
h_w = \frac{KNu}{L}
\]

Where

\[
L = \frac{4A_{CLT}}{P_{CLT}}
\]

In the equation (5), \(F_R \) that stands for the heat removal factor, is given by [34]:

\[
F_R = F^*F^*
\]
Where

\[
F' = \frac{1/U_L}{W \left[\frac{1}{U_L(D + (W - D)F)} + \frac{1}{C_b} + \frac{1}{\pi D h_f} \right]}
\]

\[
F* = \frac{\dot{m} C_p}{A_{CLT} F' U_L} \left[1 - \exp \left(-\frac{A_{CLT} F' U_L}{\dot{m} C_p} \right) \right]
\]

\[(16) \]

\[
F = \frac{\tanh \left(m \left(\frac{W - D}{2} \right) \right)}{m \left(\frac{W - D}{2} \right)}
\]

\[(17) \]

\[(18) \]

\[
m = \frac{U_L}{\sqrt{K_P \delta_P}}
\]

\[(19) \]

In this equation, \(K_P \) and \(\delta_P \) are the thermal conductivity and thickness of absorber plate, respectively.

2.2.2 Thermal storage tank and auxiliary heater

In order to have a stable heat transfer to the cycle in a vapour generator, a well-insulated thermal storage tank is employed (see Figure 4). It is assumed that the water in the tank is well-mixed and its temperature (which is assumed equals to \(T_{10} \)) is changed uniformly throughout the time. Its heat transfer equation is as follow [36]:

\[
\left[(\rho V C_p)_w + (\rho V C_p)_{tank} \right] \frac{dT_{st}}{dt} = Q_a - Q_{load} - Q_i
\]

\[(20) \]
In the equation (20), the useful gain, load of the system and heat loss can be defined as bellow, respectively:

\[Q_u = \dot{m}_{CLT} C_P (T_9 - T_{10}) \]
\[Q_{load} = \dot{m}_{load} C_P (T_8 - T_7) \]
\[Q_L = (UA)_{Tan} (T_{10} - T_{amb}) \]

And overall heat transfer coefficient of storage tank body is calculated by

\[(UA)_{Tan} = \frac{k_{ins}}{r_1, Tan_{k}} / \left(\ln \left(\frac{r_{O,Tan_{k}}}{r_1,Tan_{k}}\right)\right) (2\pi r_{1,Tan_{k}} H_{Tan_{k}}) + \frac{k_{ins}}{\delta_{ins}} (2\pi r_{1,Tan_{k}}^2) \]

Also, an auxiliary heater is used to support the system heat demand throughout the day. As the outlet temperature of vapour generator in power cycle is constant, an auxiliary heater supplies the heat required in the system. This is required in case if temperature is decreases with the changes of solar radiation during the day.

2.2.3 Transcritical CO₂ power cycle

The energy and mass conservation principle is applied to each component of power cycle by considering each one as a control volume and the equations can be expressed as below.

The total heat transferred to CO₂ in vapor generator is calculated by,

\[Q_{VG} = Q_{load} = \dot{m}_{CO_2} (h_4 - h_3) \]

CO₂ enters a preheater before entering vapor generator and is heated by seawater. The heat transferred to the preheater is obtained from:
Mechanical power output of CO$_2$ turbine is calculated by,

$$W_{CO_2,Turb} = \dot{m}_{CO_2} (h_4 - h_5)$$ \hspace{1cm} (27)

The efficiency of turbine is expressed as:

$$\eta_{CO_2,Turb} = \frac{h_4 - h_5}{h_4 - h_{s4}}$$ \hspace{1cm} (28)

The total heat transfer in heat source for Stirling engine is calculated by,

$$Q_{Heat Source} = \dot{m}_{CO_2} (h_5 - h_1)$$ \hspace{1cm} (29)

The CO$_2$ cycle pump consumption can be described as,

$$W_{CO_2,Pump} = \dot{m}_{CO_2} (h_1 - h_2)$$ \hspace{1cm} (30)

And the efficiency of pump described as,

$$\eta_{CO_2,Pump} = \frac{h_2 - h}{h_2 - h_1}$$ \hspace{1cm} (31)

Thus, the total net power output of CO$_2$ cycle is,

$$W_{CO_2,net} = W_{CO_2,Pump} + W_{CO_2,Turb}$$ \hspace{1cm} (32)

2.2.4 Stirling engine

As it shown by T-S diagram in Figure 4, a Stirling engine works between heat source and sink with corresponding temperatures T_h and T_c. In process 1’-2’, fluid compressed by piston at constant temperature and losses its heat to the heat sink and provides required heat for LNG system. In process 2’-3’, fluid’s temperature rises in an isochoric process, and then expands in process 3’-4’ and absorbs required heat from heat source of engine, and losses heat in the isochoric process 4’-1’, eventually. Therefore, for an ideal Stirling engine with an ideal fluid, the following equations are considered.

$$Q_{c,StE} = mRT_c \ln \left(\frac{V_{\min}}{V_{\max}} \right) = \dot{m}_{LNG} (h_{11} - h_{12})$$ \hspace{1cm} (33)

$$Q_{h,StE} = mRT_h \ln \left(\frac{V_{\min}}{V_{\max}} \right) = \dot{m}_{CO_2} (h_5 - h_1)$$ \hspace{1cm} (34)
\[W_{\text{StE, net}} = mR(T_h - T_c) \ln \left(\frac{V_{\text{max}}}{V_{\text{min}}} \right) \]
(35)

\[\eta_{\text{StE}} = \frac{W_{\text{StE, net}}}{Q_{h,\text{StE}}} = \frac{T_h - T_c}{T_h} \cdot \frac{T_c}{T_h} = 1 - \left(\frac{T_c}{T_h} \right) \]
(36)

It is obvious that thermal efficiency of a Stirling engine is exactly equal to its Carnot efficiency [37].

2.2.5 LNG evaporation

The saturated LNG at ambient pressure is pumped by a booster pump to the heat sink of the Stirling engine and turning into a gas mixture by absorbing rejected heat. Thus, by applying the energy and mass conservation principle, the equations can be expressed as below.

The pump’s net power consumption is calculated by

\[W_{\text{LNG, Pump}} = \dot{m}_{\text{LNG}} (h_{11} - h_{12}) \]
(37)

And its efficiency is,

\[\eta_{\text{LNG, Pump}} = \frac{h_{12,s} - h_{11}}{h_{12} - h_{11}} \]
(38)

Ejected natural gas from the Stirling heat sink is more heated by seawater in a heater that its heat transfer equation is,

\[Q_{HT} = \dot{m}_{\text{LNG}} (h_{14} - h_{13}) \]
(39)

Net output power of NG turbine is expressed by

\[W_{\text{NG, Turb}} = \dot{m}_{\text{LNG}} (h_{14} - h_{15}) \]
(40)

And the efficiency of turbine is

\[\eta_{\text{NG, Turb}} = \frac{h_{14,s} - h_{15,s}}{h_{14} - h_{15}} \]
(41)

Thus, the net mechanical power output of LNG sub-system is calculated by

\[W_{\text{LNG, net}} = W_{\text{NG, Turb}} + W_{\text{LNG, Pump}} \]
(42)

2.2.6 Reverse osmosis desalination and recovery configuration

The RO unit consists of pressure vessels (PVs) that are fed by high pressure pumps. Each PV includes some semipermeable membranes preventing the large particles, ions and molecules to
pass through them. The number of pressure vessels operating in RO unit could vary proportion to the power entering the RO high pressure pumps and consequently the fresh water production could be changed. Due to the high impurity of seawater, one stage of PVs is used usually and the number of passes could vary by Total Dissolved Solids (TDS) that is expected in permeate water. One of the main parameter in RO unit is Recovery Ratio (RR) that presents the percentage of the feed water which becomes product water. Thus, a RO unit with Recovery Ratio (RR) of 0.3, one pass and one stage with constant temperature of water equal to inlet feed water and specified membrane type is considered in this model and the mass and salt balance of RO is expressed as below [38]

\[\dot{m}_f = \dot{m}_p + \dot{m}_b \]

\[\dot{m}_f x_f = \dot{m}_p x_p + \dot{m}_b x_b \]

Where \(\dot{m}_f, \dot{m}_p \) and \(\dot{m}_b \) are the feed water, permeate water and brine water flow rate respectively. Also, \(x_f, x_p \) and \(x_b \) are the salinity of feed water, permeate water and brine water. Then, the mass flow rate of feed water is calculated by,

\[\dot{m}_f = \frac{\dot{m}_p}{RR} \]

Osmotic pressure of flows can be expressed by

\[\pi_f = RTx_f \]

\[\pi_p = RTx_p \]

\[\pi_b = RTx_b \]

Where \(R \) is universal constant of gases and \(T \) is the temperature of the flows. So, the total osmotic pressure of system can be obtained from:

\[\Delta \pi = \left(\frac{\pi_f + \pi_b}{2} \right) - \pi_p \]

By knowing the salinity and temperature of brine water, the water permeability coefficient can be calculated by

\[K_w = \frac{6.84 \times 10^{-8} \times [18.68 - (0.177 \times x_b)]}{T_f} \]

And permeate hydraulic pressure is obtained from
\[
\Delta P = \frac{\dot{m}_p}{K_n A_n} + \Delta \pi
\]
(51)

Totally, net power consumption of high pressure pumps can be calculated by

\[
W_{RO,\text{net}} = \frac{\Delta P_{\text{net}} \dot{m}_f}{\rho_f \eta_{\text{RO, pump}}} = PR(W_{\text{LNG,net}} + W_{\text{CO}_2,\text{net}})
\]
(52)

Where, \(\rho_f\), \(\eta_{\text{RO, pump}}\) and \(\Delta P_{\text{net}}\) are the feed flow density, the mechanical efficiency of RO pumps and the net pressure difference across the pumping process. There are different configurations to recover the energy of high pressure brine water. The considered configuration in this paper is using a Pelton wheel turbine in the brine water outlet of RO system. Thus, mechanical work will be produced by decreasing the pressure of brine water [21]. In other word, the power consumed in RO high pressure pumps to rise up pressure of feed water, could be recovered by this recovery turbine. The net output power of the recovery turbine is calculated by,

\[
W_{R,\text{Turb}} = \dot{m}_b (h_{21} - h_{22})
\]
(53)

2.3. Exergy analysis of streams

Exergy is the maximum theoretical useful work obtained when a system only interacts with the reference environment to bring it into thermodynamic equilibrium state. One of the applications of exergy is to specify the exergy destruction in the equipment due to irreversibility of systems. The physical exergy of each stream can be calculated by [39]:

\[
ex_i = (h_i - h_0) - T_0 (s_i - s_0)
\]
(54)

Exergy balance should be written to compute exergy destruction (I) in each component and by applying the first and second laws of thermodynamics, it can be written as follows [39]:

\[
\sum_i \dot{m}_i ex_i + Ex_{Q_e} = \sum_e \dot{m}_e ex_e + Ex_{Q_e} + Ex_w + I
\]
(55)

In this equation, the subscripts \(i\) and \(e\) stand for the inlet and outlet of the control volume. In order to calculate chemical exergy of the fuel which is burnt in the auxiliary heater, the following equation can be used [41]:

\[
\xi = \frac{ex_{\text{Chem, f}}}{LHV_{f}}
\]
(56)
The ratio of chemical exergy of fuel to lower heating value of the fuel for Methane (CH₄) and hydrogen (H₂) are equal to 1.06 and 0.985[39]. The exergy destruction equations for system components are shown in Table 1, while \(W_{electrical\,net\,cycles} \) is calculates by equation (58). Also, the solar radiation exergy absorbs by the collector is calculated by [41]:

\[
Ex_{solar} = Q_{Solar} \left[1+ \frac{1}{3} \left(\frac{T_0}{T_s} \right)^4 - \frac{4}{3} \frac{T_0}{T_s} \right]
\]

(57)

\[
W_{electrical\,net\,cycles} = \eta_{gen} \times W_{net,CO_2} + \eta_{gen} \times W_{net,LNG}
\]

(58)

Where \(Q_{Solar} \) is heat absorbed by the collector and \(T_s \) is the temperature of solar radiation.

| Table 1- Expression for exergy destruction of the novel co-generation modeled system. |
|---------------------------------|---------------------------------|
| \(I_{CLT} \) = \(Ex_{solar} - (Ex_y - Ex_{10}) \) | \(I_{NG,Turb} \) = \((Ex_{14} - Ex_{15}) - W_{NG,Turb} \) |
| \(I_{Aux} \) = \(Ex_{Chem} - (Ex_b - Ex_k) \) | \(I_{LNG,Pump} \) = \(W_{LNG,Pump} - (Ex_{12} - Ex_{11}) \) |
| \(I_{st} \) = \((Ex_y - Ex_{10}) - (Ex_k - Ex_7) \) | \(I_{LNG,HT} \) = \((Ex_{16} - Ex_{17}) - (Ex_{14} - Ex_{13}) \) |
| \(\Delta Ex_{st} - Ex_{Store} \) | \(I_{CO_2,VG} \) = \((Ex_6 - Ex_b) - (Ex_4 - Ex_3) \) |
| \(I_{CO_2,Turb} \) = \((Ex_4 - Ex_3) - W_{CO_2,Turb} \) | \(I_{PR} \) = \((1 - PR)(W_{electrical\,net\,cycles} + W_{STE}) + W_{R,Turb} - Ex_{H_Z} \) |
| \(I_{CO_2,Pump} \) = \(W_{CO_2,Pump} - (Ex_2 - Ex_1) \) | \(I_{R,Turb} \) = \((Ex_{21} - Ex_{22}) - W_{R,Turb} \) |
| \(I_{CO_2,PH} \) = \((Ex_{18} - Ex_{19}) - (Ex_3 - Ex_2) \) | \(I_{Gen} \) = \(W_{inlet} - W_{electrical\,outlet} \) |
| \(I_{StE} \) = \((Ex_5 - Ex_1) - (Ex_{13} - Ex_{12}) \) - \(W_{StE} \) | | |

2.4. Simulation conditions for the system

In order to analyse the performance of the model, a numerical simulation is carried out based on the data of Boushehr province in Iran and 15 May [42]. Table 2 shows simulation conditions at a glance.

| Table 2-Simulation condition for the system |
|---------------------------------|---------------------------------|
| Parameter | Unit (SI) | Value |
| Environment pressure | kPa | 101.325 |
| Inner diameter of the absorber tube | mm | 14 |
Specific heat capacity of water $\frac{J}{kg.K}$ 4,195
Total surface of absorber plate m^2 384
Specific heat capacity of steel tank $\frac{J}{kg.K}$ 460
Tube Spacing mm 15
Inner diameter of storage tank m 1.7
Height of storage tank m 4.2
Number of thermal storage tanks - 4
CO_2 turbine inlet pressure MPa 10
CO_2 turbine inlet temperature $^\circ C$ 65
CO_2 turbine isentropic efficiency $\%$ 70
Condensation temperature $^\circ C$ -10
CO_2 Pump isentropic efficiency $\%$ 80
Pinch point temperature difference at vapor generator $^\circ C$ 10
Pinch point temperature difference at Stirling engine heat sink $^\circ C$ 5
Pressure drop in heat exchangers $\%$ 2
LNG tank temperature $^\circ C$ -161.47
LNG tank pressure kPa 101.43
LNG working pressure MPa 6.3175
LNG pump isentropic efficiency $\%$ 70
NG turbine isentropic efficiency $\%$ 80
NG turbine inlet temperature $^\circ C$ 10
NG turbine outlet pressure MPa 4.00
RO feed water TDS mg/l 35,612
Warm sea water temperature $^\circ C$ 298.15
RO feed water temperature $^\circ C$ 25.0
3. Results and discussion

3.1. Exergy analysis and performance criteria

Figure 5 illustrates overall performance of the system over a period of 24-hour. Generally, it can be seen that the useful heat gain through solar flat plate collectors which is calculated by equation (5) reaches a peak at the middle of the day at 11:00, while its value declines over the off-peak hours up to the minimum value equals to zero due to insufficient sun light. Consequently, the required heat amount entering power cycle (based on equation (22)) would alter during the day and thermal storage tank and auxiliary heater is essentially uses to overcome this variation to have a stable system output. In other words, they provide the minimum requirements for the cycle to run continuously. Moreover, the figure shows changing temperature through thermal storage tank (T_{10}) based on equation (20) and temperature of heat transfer fluid leaving collectors (T_s). Due to not only lack of solar radiation, but also to provide required heat for system, during the first and last 8-hour over a day, thermal storage tank’s temperature falls, while it moderately rises simultaneously as sufficient heat is absorbed by collectors.
It is noteworthy that over the times without any irradiations, the water is stopped circulating within the FPC system. Insofar as the pinch condition within the vapor generator is satisfied, the system works without any extra heat, otherwise, the auxiliary heater should provide the required heat to have a continuous system output. In order to compare the system performance in absence and presence of heater, Figure 5 illustrates the importance of the auxiliary heater attendance in variation of total system output mechanical power. In the absence of the auxiliary heater, the system experiences fluctuation by about 25 kW, while the heater helps the system to meet its minimum heat requirement to satisfy pinch condition in VG.

To perform thermodynamic and exergy analysis, the time corresponding to the maximum load of system based on Figure 5 is chosen (in this study it equals to 15:00). Furthermore, power ratio (PR) corresponding to the amount of permeate water and hydrogen production is arbitrarily chosen as 0.65 just to calculate the production rate for system. As a result, the following Table 3 shows the thermodynamic parameter of system at each node.

<table>
<thead>
<tr>
<th>State</th>
<th>T(°C)</th>
<th>P(MPa)</th>
<th>h(kJ/kg)</th>
<th>s(kJ/kg)</th>
<th>ex(kJ/kg)</th>
<th>m(kg/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-10.000</td>
<td>2.649</td>
<td>176.530</td>
<td>0.916</td>
<td>213.638</td>
<td>0.484</td>
</tr>
<tr>
<td>2</td>
<td>-4.183</td>
<td>10.412</td>
<td>186.403</td>
<td>0.923</td>
<td>221.236</td>
<td>0.484</td>
</tr>
</tbody>
</table>

Figure 5-Overall performance of the system
In the corresponding time of the day, some inputs, consumptions and outputs of system is illustrated by Table 4. It is obvious that a large number of input exergy through LNG tank or collectors destructs through the system (see Table 5), calculated by equations in Table 1. It mostly destructs by solar collectors and then Stirling engine with 173.899 kW and 32.563 kW, respectively.

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar exergy</td>
<td>187.122</td>
<td>kW</td>
</tr>
<tr>
<td>LNG exergy</td>
<td>182.814</td>
<td>kW</td>
</tr>
<tr>
<td>CO₂ Turbine power</td>
<td>14.660</td>
<td>kW</td>
</tr>
<tr>
<td>CO₂ pump power</td>
<td>4.778</td>
<td>kW</td>
</tr>
<tr>
<td>LNG Turbine power</td>
<td>7.464</td>
<td>kW</td>
</tr>
<tr>
<td>LNG Pump power</td>
<td>3.693</td>
<td>kW</td>
</tr>
<tr>
<td>Stirling engine power</td>
<td>21.037</td>
<td>kW</td>
</tr>
<tr>
<td>Recovery turbine power</td>
<td>8.505</td>
<td>kW</td>
</tr>
<tr>
<td>RO pump power consumption</td>
<td>20.421</td>
<td>kW</td>
</tr>
<tr>
<td>Hydrogen production rate</td>
<td>1.309</td>
<td>l/s</td>
</tr>
<tr>
<td>Permeate production rate</td>
<td>0.964</td>
<td>l/s</td>
</tr>
</tbody>
</table>
Table 5- Exergy destruction within the system

<table>
<thead>
<tr>
<th>Units</th>
<th>Exergy destruction (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar collector</td>
<td>173.899</td>
</tr>
<tr>
<td>Thermal Storage tank</td>
<td>2.249</td>
</tr>
<tr>
<td>Vapor Generator</td>
<td>5.721</td>
</tr>
<tr>
<td>CO\textsubscript{2} turbine</td>
<td>7.100</td>
</tr>
<tr>
<td>CO\textsubscript{2} pump</td>
<td>1.101</td>
</tr>
<tr>
<td>Stirling Engine</td>
<td>32.563</td>
</tr>
<tr>
<td>Preheater</td>
<td>0.787</td>
</tr>
<tr>
<td>LNG turbine</td>
<td>2.197</td>
</tr>
<tr>
<td>LNG pump</td>
<td>2.890</td>
</tr>
<tr>
<td>Heater</td>
<td>8.442</td>
</tr>
<tr>
<td>RO desalination unit</td>
<td>8.432</td>
</tr>
<tr>
<td>Recovery turbine</td>
<td>0.894</td>
</tr>
<tr>
<td>Electrolyzer</td>
<td>4.984</td>
</tr>
<tr>
<td>CO\textsubscript{2}/LNG/Recovery Generators</td>
<td>0.494/ 0.188/0.425</td>
</tr>
</tbody>
</table>

3.2. **Exergy flow throughout the system and a comparison**

Consider the conventional system with condenser in which the stream 5-1 condensates in contact with LNG within the condenser as what Xia [6] proposed in his model. So, the exergy destruction equation would be as below:

\[
I_{\text{Condenser}} = (Ex_2 - Ex_4) - (Ex_{13} - Ex_{12})
\]

(59)

The differences between this equation and exergy destruction in a Stirling engine equation is the produced power within the process through the engine and the mass flow rate of LNG unit which measures by equation (33). Thus, the exergy destruction in heat that flows through the condensation process of CO\textsubscript{2} to the heating process of LNG reduces due to employing a Stirling engine. Totally, the exergy destruction of system interestingly decreases.

Table 6 depicts the exergy flow throughout the system either by the condenser and Stirling engine based on equations in Table 1 and streams exergy calculated by equation (54). As it can be seen, the exergy destruction through the Stirling engine is just 8.802% of total input exergy considering ideal conditions for the Stirling engine, while this value for the conventional
condenser system is about 16.712%. It has to be noted that the calculations for conventional system is in the same condition as this novel proposed model. Thus, the exergy destruction through heat transfer from CO$_2$ to an LNG unit decreases by approximately half and this shows the advantage of using Stirling engine instead of condenser. The reduced exergy destruction is also about 36.54 kW which Stirling engine exploits it to produce extra power. Based on Table 4, the ideal Stirling engine provides 21.037 kW electrical power, while there is no output power through the condenser in conventional systems. As a result, it provides more input power for the RO desalination unit and Electrolyzer one and helps the system with more production rate. It is fair to say that the exergy output of stream number 15 corresponding with the natural gas turbine output stream decreases due to a reduction in the LNG mass flow rate of the modelled system leading to lower heat transfer area within the LNG heater. This also causes lower exergy destructions through the equipment in LNG power system.

Table 6-Exergy flow throughout the system

<table>
<thead>
<tr>
<th>Term</th>
<th>Presence of Stirling Engine</th>
<th>Presence of Condenser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value(kW)</td>
<td>Percentage (%)</td>
</tr>
<tr>
<td>Exergy input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>187.122</td>
<td>50.582</td>
</tr>
<tr>
<td>LNG</td>
<td>182.814</td>
<td>49.418</td>
</tr>
<tr>
<td>Exergy losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapor Generator</td>
<td>5.721</td>
<td>1.547</td>
</tr>
<tr>
<td>CO$_2$ turbine</td>
<td>7.100</td>
<td>1.919</td>
</tr>
<tr>
<td>Stirling Engine/</td>
<td>32.563</td>
<td>8.802</td>
</tr>
<tr>
<td>(Condenser)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$ pump</td>
<td>1.101</td>
<td>0.298</td>
</tr>
<tr>
<td>Preheater</td>
<td>0.787</td>
<td>0.213</td>
</tr>
<tr>
<td>Electrolyzer</td>
<td>4.984</td>
<td>1.347</td>
</tr>
<tr>
<td>Solar collector</td>
<td>173.899</td>
<td>47.008</td>
</tr>
<tr>
<td>LNG turbine</td>
<td>2.197</td>
<td>0.594</td>
</tr>
<tr>
<td>LNG pump</td>
<td>2.890</td>
<td>0.781</td>
</tr>
<tr>
<td>Heater</td>
<td>8.442</td>
<td>2.282</td>
</tr>
<tr>
<td>RO desalination</td>
<td>8.432</td>
<td>2.279</td>
</tr>
<tr>
<td>Recovery turbine</td>
<td>0.894</td>
<td>0.242</td>
</tr>
<tr>
<td>Generators</td>
<td>1.108</td>
<td>0.299</td>
</tr>
<tr>
<td>Storage Tank</td>
<td>2.249</td>
<td>0.608</td>
</tr>
<tr>
<td>Exergy output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NG turbine outlet</td>
<td>95.886</td>
<td>25.919</td>
</tr>
<tr>
<td>Permeate water outlet</td>
<td>0.00</td>
<td>0.000</td>
</tr>
<tr>
<td>Brine water outlet</td>
<td>2.590</td>
<td>0.700</td>
</tr>
<tr>
<td>Produced H$_2$</td>
<td>16.682</td>
<td>4.509</td>
</tr>
<tr>
<td>Stream no.19</td>
<td>0.951</td>
<td>0.257</td>
</tr>
<tr>
<td>Stream no.17</td>
<td>1.460</td>
<td>0.395</td>
</tr>
</tbody>
</table>
3.3. Performance analysis of the system

Figure 6 depicts the variation of power generation by Stirling engine, CO\textsubscript{2} and LNG power cycles. It is obvious that the idea Stirling engine produce more power than CO\textsubscript{2} and LNG power cycles so that the minimum power produced by Stirling engine is noticeably at least 9 kW and 15 kW higher than CO\textsubscript{2} and LNG power productions. In other words, it produces more than summation of power cycle’s electricity generation due to

![Figure 6- Power generation within the system](image)

In terms of peaks in this figure it is fair to say that daily solar radiation changes lead to changes in mass flow rate of CO\textsubscript{2} in power cycle. Due to presence of auxiliary heater it remains unchanged during hours without sufficient radiation at which the heater help system with satisfying the minimum temperature requirement in vapour generator by adding extra heat to system. As the hours go on, the collector absorbs sunlight energy and CO\textsubscript{2} mass flow rate reaches a peak. Then, it moderately decreases to it minimum. Figure 7 presents variation of mass flow rate with pressure for the CO\textsubscript{2} power cycle. As the turbine inlet pressure is increased, working fluid’s mass flow rate is increased. This happens as the vapour generator outlet pressure increases, the enthalpy of CO\textsubscript{2} decreases. Therefore, for the same heat transfer through vapour generator, more CO\textsubscript{2} needs to be flowed to carry the same heat. The reason for the fluctuations in this figure is also due to changes in mass flow rate of CO\textsubscript{2} in power cycle as it is discussed above.
As it is mentioned above, the power ratio shows the ratio of total generated power entering the desalination unit to electrolyzer one. Meanwhile, a recovery turbine is utilized in outlet brine stream of desalination system due to its little pressure difference with feed water entering pressure vessels. So, this high pressure stream produces more power for electrolyzer employing a percentage of total power produced by power cycles and Stirling engine. Figure 8 illustrates hydrogen and permeate water mass flow rate on a daily basis. Fresh water and hydrogen productions remains constant in off-peak times, while it reaches a peak at 15:00 due to maximum power generation by cycles and Stirling engine because of high solar radiation and maximum accumulated energy within the thermal storage tank at that time, while in the off-peak times auxiliary heater just provides the required energy for the system as shown in Figure 5.
As a specified number of pressure vessels works based on total power entering RO high pressure pumps in a fixed typical flux of membranes, the active pressure vessels varies through the unit. The range of power entering desalination system in this model is just able to activate one pressure vessel as shown in Figure 8.

3.4. Effect of CO$_2$ turbine inlet pressure

Figure 9 and Figure 10 compare the effect of CO$_2$ turbine inlet pressure on both power cycles’ parameters and permeate water and hydrogen production rate. It can be seen that CO$_2$ cycle’s net output power increases sharply, and falls noticeably after reaching a peak, though CO$_2$ mass flow rate climbs continuously. This is because the pump consumed power outweighs turbine produced power. Hence, either hydrogen and permeate water production rate follow the net power output of CO$_2$ power cycle. As is illustrated by Figure 10, the more inlet pressure through the CO$_2$ turbine brings about less enthalpy difference between inlet and outlet of the Stirling engine heat source, while CO$_2$ mass flow rate increases. Firstly, drop in enthalpy difference outweighs any rises in CO$_2$ mass flow rate and then it happens reversely. So, LNG mass flow rate and LNG net power output witness a fall to reach their minimum and then climb remarkably. It has to be noted that the variation of CO$_2$ net power output prevails the LNG one’s which enforces tracking its trend on production rates. Figure 11 shows the variation of Stirling output power versus the variation of turbine inlet power. As the same reason, the trend is as same as what happens for LNG power cycle.
Figure 9-Effect of CO$_2$ turbine inlet pressure on CO$_2$ net output power and mass flow rate, hydrogen and permeate water production rate

Figure 10- Effect of CO$_2$ turbine inlet pressure on LNG net output power and mass flow rate, hydrogen and permeate water production rate
3.5. **Effect of CO\(_2\) turbine inlet temperature**

One of the main parameters affecting net power output of system is the turbine inlet temperature. As the temperature of point 4 representing the turbine inlet temperature in T-S diagram illustrated in Figure 2 climbs, the enthalpy difference between VG inlet and outlet increases that causes a sharp fall in CO\(_2\) mass flow rate through the system. However, length of stream 4-5 that shows the turbine power output increases and totally CO\(_2\) net power output increases. Figure 12 depicts this variation and its effect on CO\(_2\) and total net output power, CO\(_2\) mass flow rate and the hydrogen and fresh water production rate. The same also holds true for the LNG power cycle. Any reduction in CO\(_2\) power cycle leads to less heat rate transferring by heat source of Stirling engine and not only reduces the Stirling engine power output (see Figure 13), but it also affect the heat rejected to LNG power cycle which cause a noticeably reduction in LNG mass flow rate. Although the reduction of LNG mass flow rate decreases both pump consumption and turbine power production, the mass flow rate reduction rate is descending. It means that as the CO\(_2\) turbine inlet temperature increases, the difference of reduction in each interval of LNG mass flow rate reduces that leads to descending reduction rate in pump and turbine net power. So, the net power output of LNG sub-system increases. Eventually, the total net power output including CO\(_2\) and LNG cycles’ net power output and Stirling engine falls moderately (see Figure 12) and the fresh water and hydrogen production rate decreases.
3.6. Effect of VG inlet temperature

Figure 14 shows the variation of CO₂ and LNG cycles’ net power output, the Stirling engine power production, and RO desalination and electrolyzer productions. The increase in vapour generator inlet temperature in cold side (CO₂ side’s vapour generator temperature) in constant heat transfer from cold side of the vapour generator causes more mass flow rate due to reduction in enthalpy difference between vapour generator’s cold side inlet and outlet that increases total...
net power output of CO₂ power cycle. The higher mass flow rate in CO₂ power cycle means higher heat transfer through heat source and sink of Stirling engines. So, the Stirling and LNG net output power increases and the system’s productions rate rises smoothly.

![Diagram showing the effect of VG inlet temperature on net output power of cycles and production rate of hydrogen and permeate water](image)

3.7. Effect of NG turbine inlet pressure

The other parameter affecting LNG sub-system power output is the LNG pressure at the inlet of the NG turbine. The more pressure cause more enthalpy difference between inlet and outlet of turbine leading to more power output for the system which is illustrated by Figure 15. Thus, the total net output power rises leading to produce more permeate water and hydrogen.

3.8. Effect of recovery ratio

The key factor that affects the fresh water and hydrogen production rate is recovery factor which is the ratio of distilled water produced to feed water flow rate. In other words, a part of feed water flows through RO membranes and is desalinated, while the remaining saline solution is rejected by pressure vessels. Therefore, the higher recovery ratio causes more fresh water production and less brine stream reducing the mass flow rate of stream entering recovery turbine. Thus, the power production of recovery turbine decreases (see Figure 16). Since, the total power entering electrolyzer includes the fraction of system’s net output power and the entire recovery turbine produced power, less hydrogen would produce. Meanwhile, in the
specified design parameters of RO desalination system, a specified maximum amount of feed water would be desalinated. As a result, the permeate water production rate peaks at a specified recovery ratio of 0.47 and then decreases.

Figure 15-Effect of NG turbine inlet pressure on total net output power and production rate of hydrogen and permeate water

Figure 16-Effect of recovery ratio on total net output power, production rate of hydrogen and permeate water, RO pump consumption and recovery turbine power output
3.9. **Electrolyzer based Zero Liquid Discharge (ZLD) approach**

One of the main aims of this study, and cooperation of RO desalination and electrolysis system is approaching the zero liquid discharge (ZLD) idea in which the whole advantages of probable liquid discharges is taken place. Wastewaters produced through some industrial plants might be followed by adverse impacts on humans’ life or flora and fauna. So, treating and recovering these streams are among the ways to not only eliminate these minus effects, but it also contributes to sustainable water use leading to zero liquid discharge. This ideal notion states all the water cycles within the system should be closed so as to remove any discharge from the system to minimize the amount of required water for the system and exploit recycled discharge streams wherever possible [43]. There are different ZLD approaches, the most common method is a combination of evaporator and crystallizer to convert rejected waste waters to demineralized water and solid salt. But, here we are introducing a new approach concerning electrolysis of rejected brines to produce sodium hypochlorite and hydrogen. In a power plant sodium hypochlorite is used for disinfection of cooling systems and hydrogen can be used as a source of energy in fuel cells. In this case, employing electrolyzer beside desalination system in order to use highly concentrated brine stream of RO system would remove the wastewater rejection through this proposed system (as shown in Figure 17).

![Figure 17 – Electrolyzer based ZLD approach applied on water and hydrogen production part of the proposed system.](image)

As it mentioned above, the high pressure brine is passed through recovery turbine to produce extra water, while brine concentration remains constant. So, using an electrolyzer through which this concentrated salt water turns into beneficial products eliminates water rejection in the system and this would be an effective step to achieve a near-ZLD system. One of the well-
known systems is Sodium Hypochlorite Generators (SHG) that produce hydrogen and sodium hypochlorite through the electrolysis process as follow [42]:

\[
NaCl + H_2O + \text{electricity} \rightarrow NaClO + H_2 \tag{60}
\]

Applying the ZLD approach in this study, the brine with about 50000 ppm concentration and 8.6 kg/s mass flow rate rejected from desalination system (at the time corresponding to the maximum load of the system) enters electrolyzer which is supplied by power distribution system. Thus, in the water and hydrogen production part of the system it is witnessed omitting brine stream by which 2.58 kW of inlet exergy is wasted based on Table 6. This means that the system produce permeate water through desalination system and \(NaClO\) and \(H_2\) through electrolysis system without any waste liquid rejection in the system and this leads to attain a near-ZLD approach. In as much as the proposed cycle in Figure 17 shows a specific power division between both sub-systems so that all the produced brine be converted to sodium hypochlorite and hydrogen, Figure 18 shows the balanced proportion of power entered RO system and the mass flow rate of productions during a day. It has to be noted that the amount of power required for one kilogram \(NaClO\) production is about 3.5 kW [44]. It is noteworthy that this notion could be applied to the whole system water rejections which will discussed in the future studies.

![Figure 18 - Balanced power ratio, hydrogen and NaClO production rate.](image-url)
4. Conclusion

In this study, utilization of a Stirling engine instead of a condenser in the solar-powered transcritical power cycle with the recovery of the cryogenic energy of liquefied natural gas is investigated for the hydrogen and permeate water production, simultaneously. A thermodynamic and exergy analysis is carried out to study the effect of employing Stirling engine between CO\textsubscript{2} power cycle and the LNG cycle to produce more electrical power within the system, and the effect of several key parameters on the overall performance of a system including permeate water and hydrogen production. Moreover, the cooperation of desalination and electrolyzer systems contributed to attaining an electrolyzer-based ZLD approach through the system. Several key conclusions of this study are as bellow:

An exergy analysis shows that the exergy mostly destructs in solar collectors and condenser of conventional CO\textsubscript{2} power cycle by about 42% and 16.7%, respectively. In comparison with conventional systems using a condenser, the exergy destruction through heat transfer from CO\textsubscript{2} to an LNG unit decreases by roughly half from 16.7% to 8.8%, for an ideal Stirling engine. So exergy destruction through the system decreased approximately 36.54 kW. The reduced exergy destruction interestingly converted to useful power within the Stirling engine leading to higher permeate and hydrogen production rate. The minimum power produced during the day by the ideal Stirling engine is noticeably at least 9 kW and 15 kW greater than CO\textsubscript{2} and LNG power productions. In other words, ideal Stirling engine produces more power than CO\textsubscript{2} and LNG power cycles. The exergy output of stream number 15 corresponding to the natural gas turbine output stream decreases due to a reduction in LNG mass flow rate of the system leading to lower heat transfer area within the LNG heater. An examination of some thermodynamic factors affecting the overall performance of the system shows that higher CO\textsubscript{2} turbine inlet pressure has an optimum producing fresh water and hydrogen, while the higher CO\textsubscript{2} turbine inlet temperature slightly reduced the productions rate. Furthermore, higher boiler inlet temperature and natural gas turbine inlet pressure provide more system output. The more recovery ratio causes a sharp reduction in hydrogen production. Meanwhile, it has an optimum amount of fresh water production at recovery ratio equals to 0.47. Employing electrolyzer beside desalination system to use highly concentrated brine stream of RO system would eliminate the wastewater rejection through proposed system leading to attaining a near-ZLD approach. Entering brine stream, wasting 2.58 kW of inlet exergy, to the Sodium Hypochlorite Generators leads to NaClO production besides H\textsubscript{2} and removing brine disposal.
There are still further possible studies that could apply to this work in future research. An actual Stirling engine can thoroughly explore in the future works to find out the non-ideality effects on the system. Moreover, the ZLD notion could apply to whole proposed system.

References

energy recovery configurations. *Desalination*, 261(1), pp.138-147. http://dx.doi.org/10.1016/j.desal.2010.05.017

