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Abstract Abstract 
It is a significant challenge to develop a high-efficiency synthetic methodology to access fully conjugated 
2D conjugated polymer (CP)/covalent organic framework (COF) nanosheets (NSs) that have great 
application potential for electronics and energy. Herein, we report the exfoliation of a series of amorphous 
ethynyl-linked phthalocyanine (Pc) CPs (MPc-CPs, M = Fe, Co, Fe0.5Co0.5) into ultrathin MPc-CP NSs. 
Random coupling between the four regioisomers (with D4h, D2h, C2v and Cs symmetry) of the two tetra-
β-substituted phthalocyanine precursors endows the resulting phthalocyanine conjugated polymers MPc-
CPs with intrinsic structural defects and a disordered framework on individual layers. This in turn induces 
a diminished interlayer overlapping and a weakened interlayer π–π stacking interaction, facilitating the 
possible exfoliation of MPc-CPs into ultrathin 2D NSs with a yield of over 50%. The direction observation 
by transmission electron microscopy (TEM) and atomic force microscopy (AFM) demonstrates that the 
ultrathin MPc-CP NSs possess a smooth surface with a uniform thickness of 1–3 nm and a lateral size of 
hundreds of nanometers. The as-prepared bimetallic Fe0.5Co0.5Pc-CP NSs were further used to fabricate 
a heterostructure Fe0.5Co0.5Pc-CP NS@G with graphene NSs as an oxygen reduction reaction (ORR) 
catalyst, which exhibits an onset potential of 1006 mV and a half-wave potential of 927 mV in 0.1 M KOH, 
representing one of the best values in an alkaline medium. Moreover, the excellent ORR activity of the 
exfoliated tetrapyrrole-based conjugated NSs hybridized with graphene has also been demonstrated by a 
Zn–air battery device, showing an open circuit voltage of 1.34 V and a peak power density of ca. 180 mW 
cm−2. 
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Dongjiang Yang,  d Yanjuan Xiang,e Kang Wang,*ab  Jianzhuang Jiang  *a
 

and Xiangdong Yao  *b
 

 
It is a significant challenge to develop a high-efficiency synthetic methodology to access fully conjugated 

2D conjugated polymer (CP)/covalent organic framework (COF) nanosheets (NSs) that have great 

application potential for electronics and energy. Herein, we report the exfoliation of a series of 

amorphous ethynyl-linked phthalocyanine (Pc) CPs (MPc-CPs, M ¼ Fe, Co, Fe0.5Co0.5) into ultrathin 

MPc-CP NSs. Random coupling between the four regioisomers (with D4h, D2h, C2v and Cs symmetry) of 

the two tetra-b-substituted phthalocyanine precursors endows the resulting phthalocyanine conjugated 

polymers MPc-CPs with intrinsic structural defects and a disordered framework on individual layers. This 

in turn induces a diminished interlayer overlapping and a weakened interlayer p–p stacking interaction, 

facilitating the possible exfoliation of MPc-CPs into ultrathin 2D NSs with a yield of over 50%. The 

direction observation by transmission electron microscopy (TEM) and atomic force microscopy (AFM) 

demonstrates that the ultrathin MPc-CP NSs possess a smooth surface with a uniform thickness of 1–
3 nm and a lateral size of hundreds of nanometers. The as-prepared bimetallic Fe0.5Co0.5Pc-CP NSs 

were further used to fabricate a heterostructure Fe0.5Co0.5Pc-CP NS@G with graphene NSs as an oxygen 

reduction reaction (ORR) catalyst, which exhibits an onset potential of 1006 mV and a half-wave 

potential of 927 mV in 0.1 M KOH, representing one of the best values in an alkaline medium. Moreover, 

the excellent ORR activity of the exfoliated tetrapyrrole-based conjugated NSs hybridized with graphene 

has also been demonstrated by a Zn–air battery device, showing an open circuit voltage of 1.34 V and 

a peak power density of ca. 180 mW cm-2. 

 

Introduction 

Inspired by the discovery and prosperity of graphene, arti cial 

two-dimensional (2D) organic conjugated layered materials 

with an extended p system, such as graphdiyne, 2D organic 

conjugated polymers (CPs), and 2D covalent organic 

frameworks (COFs),1–10 have received great research interest. 

Owing to bottom-up approaches, the structures and compo- 

nents of such 2D polymers could be rationally designed and 

modulated at the atomic or molecular level, which will offer 

the desirable properties and functions with a wide range of 

applications in gas storage and separation,11,12 catalysis,13–16 

sensors,17,18 and electronic devices.19–21 Recently, 2D conju- 

   gated CP/COF nanosheets (NSs) with a few atomic layers have 
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10.1039/c8ta11044a 

emerged as a new member in the 2D nanomaterial family and 

attracted increasing attention.22–26 Compared to bulk CP/COF 

materials, 2D CP/COF nanosheets have unique superiorities. 

For instance, their larger surface area and more accessible 

active sites on the surfaces facilitate the contact with 

substrate molecules under a lower diffusion barrier, and thus 

enhance the performance of 2D CP/COF nanosheets in 

catalysis and sensing applications.27–30 Additionally, the 

ultrathin structure would enable the formation of stable 

dispersions of the 2D CP/COF nanosheets, and thus would 

enable large-area and low-cost liquid-deposition techniques, 

such as the quasi-Langmuir–Shäfe method, spin coating, or 

inkjet printing.31–34
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Generally, 2D CP/COF NSs are prepared by exfoliating their 

bulk counterparts by solvent-assisted liquid sonication,35,36 

mechanical delamination,37 self-exfoliation,38 or sequential 

post-synthetic modi cation.39 However, because of the strong 

interlayer p–p interactions, the exfoliation yield of most ob- 

tained 2D CP/COF NSs is usually quite low. Recently, it has been 

reported that introduction of a cycloaddition reaction, twist, or 

exible building units within the COF backbone is able to 

destroy/weaken the interlayer p–p interaction, leading to easier 

exfoliation of the bulk COF precursors into ultrathin NSs.30,40,41 

However, the desired extended p conjugated structure was 

simultaneously destroyed/weakened by the aforementioned 

strategies, which may result in low electron transfer capability 

and thus limit their applications in electronics and energy- 

related elds. Therefore, a new methodology still needs to be 

established to develop a high-efficiency synthetic methodology 

to access 2D CP/COF NSs. 

Herein, we report a general approach to fabricate a series of 

ultrathin 2D CP NSs (MPc-CP NSs, M ¼ Fe0.5Co0.5, Fe, and Co) 

with a fully conjugated electronic structure, which was exfoli- 

ated from ethynyl-linked phthalocyanine (Pc) CPs prepared 

from phthalocyanine monomers, M[Pc(I)4] and M[Pc(ethynyl)4], 

through a Sonogashira–Hagihara coupling reaction.42 Owing to 

the fact that both the two tetra-b-substituted phthalocyanine 
precursors, M[Pc(I) ] and M[Pc(ethynyl) ], are composed of four 

 

 

Scheme 1 (a) Synthesis of the phthalocyanine based CP NSs, MPc-CP 

NSs (M ¼ Fe, Co, and Fe0.5Co0.5). (b) The four kinds of isomers (with 

D4h, D2h, C2v and Cs symmetry) for tetra-b-substituted phthalocya- nines. 

(c) Nine quadrilateral structure models fabricated from four 

phthalocyanine molecules with D4h or D2h symmetry. 
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regioisomers (with D4h, D2h, C2v and Cs symmetry),43 the as- 

synthesized CPs have a layered structure in which the layers 

are abundant with intrinsic structural defects and highly 

disordered framework nature. Such an amorphous structure of 

the individual layer with defects enables a diminished interlayer 

overlapping area and weakened interlayer p–p stacking inter- 

actions,44,45 facilitating an easier and successful exfoliation of 

the bulk CP materials into ultrathin NSs with a high yield of 

over 50%. Meanwhile, hetero-assemblies of 2D nanolayers such 

as transition metal dichalcogenides/diseleniums,46 layered 

double hydroxides,47 and metal–organic frameworks48 with 

various graphene NSs (including graphene, nitrogen doped 

graphene, and defective graphene) have been recently received 

increasing interest in fabricating versatile high performance 

electrocatalysts including oxygen reduction reaction (ORR), 

oxygen evolution reaction (OER), and hydrogen evolution reac- 

tion (HER) catalysts. The high activity is due to the combination 

of the highly exposed active centers presented on 2D nano- 

layers27–30 and high electron transfer capability of graphene 

NSs49–52 together with strong interaction between these 

components to reform the electronic distribution. Thanks to 

the ultrathin nature, the as-prepared bimetallic Fe0.5Co0.5Pc-CP 

NSs were used to fabricate a heterostructure Fe0.5Co0.5Pc-CP 

NS@G with graphene NSs, which exhibits high ORR catalytic 

activity in an alkaline medium. 

 

Results and discussion 
Synthesis and characterization of MPc-CP NSs 

Scheme 1a schematically illustrates the approach to fabricate 

ultrathin MPc-CP NSs. The bulk MPc-CP materials were 

prepared from corresponding M[Pc(I)4] and M[Pc(ethynyl)4] via 

 
a Sonogashira–Hagihara coupling reaction according to  a 

previously reported procedure.42 It is worth noting that both M 

[Pc(I)4] and M[Pc(ethynyl)4] are tetra-b-substituted phthalocya- 

nines, which are actually a mixture of four constitutional 

isomers (with D4h, D2h, C2v and Cs symmetry) (Scheme 1b). 

Random coupling between the four M[Pc(I)4] and M 

[Pc(ethynyl)4] isomers leads to the formation of MPc-CPs with 

a highly disordered individual layer. Scheme 1c shows a quad- 

rilateral structure fabricated from four phthalocyanine mole- 

cules with D4h or D2h symmetry as an example to illustrate the 

disordered individual layer of MPc-CPs. As can be seen, nine 

structural models could be formed by a random combination of 

four phthalocyanine molecules with D4h or D2h symmetry. The 

p–p interactions between the 4D4h model and the nine struc- 

tural models were also investigated by DFT calculations. As can 

be seen in Fig. S1 in the ESI,† the binding energy per phthalo- 

cyanine molecule between two different models is 27–81% 

lower than that between two 4D4h models, owing to the reduced 

overlapping area. These results suggest that the MPc-CP indi- 

vidual layers fabricated from more phthalocyanine molecules 

with four kinds of symmetry are completely disordered and 

amorphous. As a result, the interlayer overlapping area would 

be further diminished, which weakens the interlayer p–p 

stacking in the CPs, and in turn facilitates the possible exfoli- 

ation of the bulk MPc-CP materials into ultrathin 2D nano- 

sheets by the subsequent solvent-assisted liquid sonication. 

With the bimetal counterparts Fe0.5Co0.5Pc-CP NSs as repre- 

sentative, the yield of Fe0.5Co0.5Pc-CP NSs could be ca. 36% a er 

ultrasonic exfoliation for only 2 h in ethanol, with a maximum 

yield of ca. 51% achieved a er 8 h (Fig. S2 in the ESI†). The 
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liquid sonication in other organic solvents such as acetone, 

tetrahydrofuran, and N,N-dimethylformamide also gave quite 

a high yield of Fe0.5Co0.5Pc-CP NSs (Fig. S2 in the ESI†), sug- 

gesting the generality of the fabrication strategy. 

The successful exfoliation of the bulk Fe0.5Co0.5Pc-CP mate- 

rial into ultrathin Fe0.5Co0.5Pc-CP NSs is rstly evidenced by the 

observation of a clear Tyndall effect when a green laser went 

through the suspension obtained a er the ultrasonic exfolia- 

tion process (inset in Fig. 1a). The transmission electron 

microscopy (TEM) image reveals a graphene-like structure of 

transparent Fe0.5Co0.5Pc-CP NSs with a lateral size of several 

hundred nanometers (Fig. 1a), further con rming the forma- 

tion of ultrathin Fe0.5Co0.5Pc-CP NSs. The thickness of the 

Fe0.5Co0.5Pc-CP NSs was measured by atomic force microscopy 

(AFM). It can be seen in Fig. 1b and c that the Fe0.5Co0.5Pc-CP 

NSs possess a smooth surface with a uniform thickness of 

1.05 ± 0.05 nm, corresponding to three layers. Nevertheless, no 

obvious lattice fringes are observed in aberration-corrected 

scanning transmission electron microscopy (AC STEM) images 

(Fig. 1d), which indicates that the amorphous nature of the CP 

individual layers originated from the less symmetrical isomers 

in Fe[Pc(I)4] and Co[Pc(ethynyl)4]. This is also supported by the 

fact that the selected area electron diffraction (SAED) pattern of 

the Fe0.5Co0.5Pc-CP NSs shows broad halo rings (Fig. S3 in the 

ESI†). Moreover, from aberration-corrected high-angle annular 

dark- eld STEM (AC HAADF-STEM) presented in Fig. 1e, bright 

dots (highlighted by red circles) are observed, which correspond 

to single Fe/Co atoms located in N4-coordination sites of 

phthalocyanine ligands. In particular, the random dispersion of 

these Fe/Co atoms also suggests the disordered framework of 

the Fe0.5Co0.5Pc-CP NSs. Energy dispersive spectroscopy (EDS) 

and X-ray photoelectron spectroscopy (XPS) results indicate that 

the Fe0.5Co0.5Pc-CP NSs are composed of C, N, O, I, Fe and Co, in 

accordance with the composition of the bulk Fe0.5Co0.5Pc-CP 

material (Fig. S4 in the ESI†).49 The elemental mapping 

veri es the homogenous surface distribution of Co, Fe, C, and N 

throughout the whole Fe0.5Co0.5Pc-CP NSs (Fig. 1f). These 

analysis results, together with almost the same Fourier trans- 

form infrared, XPS, and solid-state UV-vis diffuse re ectance 

spectra between bulk Fe0.5Co0.5Pc-CP and Fe0.5Co0.5Pc-CP NSs, 

demonstrate that the chemical composition and bonding 

modes remain intact a er the ultrasonic exfoliation (Fig. S5 in 

the ESI†). In addition, the Brunauer–Emmett–Teller (BET) 

surface area of Fe0.5Co0.5Pc-CP NSs is 80 m2 g-1 calculated from 

the N2 sorption isotherm at 77 K, attributed to the mesopores 

formed by aggregation of nanosheets (Fig. S5 in the ESI†). This 

is signi cantly larger than that of the bulk Fe0.5Co0.5Pc-CP (17 

m2 g-1), suggesting that more active metal centers are exposed 

on the ultrathin nanosheets. The individual metal counterparts, 

FePc-CP NSs and CoPc-CP NSs, were also prepared under the 

same conditions with a yield of 42 and 60%, respectively 

(Fig. S6–S9 in the ESI†), which show a similar shape, thickness 

(1.0 nm for CoPc-CP NSs and 3.2 nm for FePc-CP NSs), and 

surface area to the Fe0.5Co0.5Pc-CP NSs. Additionally, the diyne 

linked Pc conjugated polymer CoPc-CP-2 fabricated through the 

alkyne–alkyne homocoupling reaction of Co[Pc(ethynyl)4] could 

also be exfoliated into ultrathin NSs with a yield ca. 40% 

(Fig. S10 in the ESI†). All the above facts also demonstrate the 

generality of the present fabrication strategy to exfoliate CPs to 

ultrathin conjugated polymer NSs. 

It is worth noting again that the successful exfoliation of these 

Pc-based CP materials into 2D ultrathin NSs by liquid sonication 

is due to the weak interlayer interactions in bulk Pc-based CP 

materials, due to their intrinsic defected and highly disordered 

2D networks. On the other hand, if the CPs have an order stacking 

structure and fewer defects, it is very hard to exfoliate them into 

 
 

 

Fig. 1 (a) TEM image of Fe0.5Co0.5Pc-CP NSs. Inset: Photograph of the Tyndall effect of the Fe0.5Co0.5Pc-CP NS suspension. (b) AFM image and 

(c) the corresponding height profiles of Fe0.5Co0.5Pc-CP NSs. (d) AC STEM image and (e) enlarged image of the Fe0.5Co0.5Pc-CP NSs (single Fe/ 

Co atoms are highlighted by red circles). (f) HAADF-STEM image and elemental mapping of C, N, Co, and Fe of the Fe0.5Co0.5Pc-CP NSs. 
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ultrathin NSs. For example, a 2D layered Pc-based CP, denoted as 

FePc-CP-3, is synthesized from the reaction between 1,2,4,5-ben- 

zenetetranitrile and FeCl2 (see the ESI† for details).53,54 The 

ordered AA stacking crystal structure of FePc-CP-3 was con rmed 

by powder X-ray diffraction (PXRD) and HRTEM (Fig. S11b and c 

in the ESI†). In contrast to MPc-CPs and CoPc-CP-2, only a small 

amount of bulk FePc-CP-3 material (<5%) was exfoliated into NSs 

with the thickness in a wide range a er ultrasonic exfoliation for 8 

h in ethanol (Fig. S11d in the ESI†), because of the intense 

interlayer p–p interaction. 

 

Preparation of the Fe0.5Co0.5Pc-CP NS@G heterostructure 

It has previously been reported that the bulk Fe0.5Co0.5Pc-CP 

material exhibits good ORR activity owing to the synergetic 

effect between the proximate Fe and Co ions in the conjugated 

polymer.42 Normally, the ultrathin NSs are more active than the 

bulk counterpart attributed to the more exposed catalytic sites 

and easier mass transportation. Accordingly, it is reasonable to 

hypothesize that the ORR activity can be signi cantly improved 

when coupling the ultrathin Fe0.5Co0.5Pc-CP NSs and graphene to 

fabricate the heterostructure Fe0.5Co0.5Pc-CP NS@G. The 

synthesis strategy of Fe0.5Co0.5Pc-CP NS@G is shown in Fig. 2a. 

Owing to the conjugated structure of both components, Fe0.5- 

Co0.5Pc-CP NSs and graphene NSs were easily hybridized together 

depending on effective interlayer p–p interactions. It is directly 

observed by TEM (Fig. 2b) that the Fe0.5Co0.5Pc-CP NSs were 

assembled on the surface of graphene NSs. EDS mapping analysis 

indicates a coincident distribution of Fe, Co, and N throughout 

the exfoliated Fe0.5Co0.5Pc-CP NSs on graphene NSs (Fig. 2b). 

Furthermore, XPS was also conducted to investigate the as- 

prepared heterostructure. As can be seen in Fig. S12,† the XPS 

full survey of Fe0.5Co0.5Pc-CP NS@G reveals the presence of C, N, 

O, I, Fe, and Co elements, well consistent with the EDS results 

(Fig. S13 in the ESI†). In the Fe 2p spectrum, two peaks of Fe 2p3/2 

and Fe 2p1/2 were observed at 709.0 and 722.9 eV of Fe0.5Co0.5Pc- 

CP NS@G (Fig. 2d), while the Co 2p spectrum displayed the two 

peaks of Co 2p3/2 and Co 2p1/2 at 779.7 and 794.5 eV (Fig. 2e), 

respectively. Interestingly, compared to the Fe0.5Co0.5Pc-CP NSs, 

the peaks of Fe 2p and Co 2p of Fe0.5Co0.5Pc-CP NS@G shi  to 

lower energy, indicating a strong interaction between Fe0.5Co0.5- 

Pc-CP NSs and graphene NSs in the as-prepared heterostructure. 

Generally, the decrease in binding energy reveals an enhanced 

electron screening effect because of the increase in electron 

density. These results suggest the charge transfer between the two 

components at the interface of Fe0.5Co0.5Pc-CP NS@G, resulting 

in electron accumulation at the metal sites in Fe0.5Co0.5Pc-CP NSs. 

To further demonstrate this point, density functional theory 

(DFT) calculations were carried out at the level of PBE/Lanl2DZ/3- 

21G (for C, H, and N atoms) using Gaussian 09 D.01.55–58 Fig. 2f 

shows the geometry of the fully relaxed Fe0.5Co0.5Pc-CP NS@G 

composite as well as the charge density differences. As shown, the 

electrons tended to redistribute around the metal sites a er 

assembling the Fe0.5Co0.5Pc-CP NSs and graphene NSs together, 

which favors to bind O2 molecules. This, in combination with the 

highly exposed active centers, suggests the optimized ORR 

performance of Fe0.5Co0.5Pc-CP NS@G. 

 

ORR electrocatalytic activity 

The ORR properties of Fe0.5Co0.5Pc-CP NS@G were evaluated by 

steady-state linear sweep voltammetry (LSV) on a rotating disk 

 
 

 

Fig. 2 (a) Schematic illustration of synthetic Fe0.5Co0.5Pc-CP NS@G. (b) TEM image of Fe0.5Co0.5Pc-CP NS@G. (c) HAADF-STEM image and 

corresponding elemental mapping of C, N, Co, and Fe. (d, e) XPS spectra of Fe 2p and Co 2p of Fe0.5Co0.5Pc-CP NSs and Fe0.5Co0.5Pc-CP NS@G. 

(f) The top and side views of the charge density difference plot for the interfaces between Fe0.5Co0.5Pc-CP NSs and graphene. Yellow and red 

isosurfaces indicate charge accumulation and depletion, respectively, with an isosurface value of 0.002 e Å-3. For clarity, the graphene and 

Fe0.5Co0.5Pc-CP NSs are shown in stick and ball-and-stick models, respectively. Gray, blue, ice blue, and light green balls represent C, N, Fe, and 

Co atoms in Fe0.5Co0.5Pc-CP NSs, respectively. 
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electrode (RDE) with a rotation speed of 1600 rpm in O2-satu- 

rated 0.1 M KOH solution. For the purpose of illustrating the 

key factors that contributed to the ORR performance of 

Fe0.5Co0.5Pc-CP NS@G, the electrocatalytic properties of het- 

erostructures with different contents were measured (Fig. S14 

in the ESI†). As can be seen, Fe0.5Co0.5Pc-CP@G with a ratio 

between Fe0.5Co0.5Pc-CP NSs and G of 2 : 1 exhibits the best 

catalytic activity. For comparison, the LSV curves of the 

composite of bulk Fe0.5Co0.5Pc-CP and graphene (2 : 1) 

(denoted as Fe0.5Co0.5Pc-CP&G) as well as commercial Pt/C 

(20 wt%) were also recorded. As shown in Fig. 3a, Fe0.5Co0.5- 

Pc-CP NS@G (the ratio between Fe0.5Co0.5Pc-CP NSs and G is 

2 :  1) exhibited an Eonset of 1006 mV vs. RHE and an E1/2 of 

927 mV vs. RHE, obviously superior to Fe0.5Co0.5Pc-CP&G 

(Eonset ¼ 954 mV vs. RHE and E1/2 ¼ 855 mV vs. RHE). 

Remarkably, with a similar onset potential, the E1/2 of Fe0.5- 

Co0.5Pc-CP NS@G is 83 mV more positive than that of 

commercial Pt/C (20 wt%) (E1/2 ¼ 844 mV vs. RHE), out- 

performing most of the state-of-the-art ORR catalysts reported 

to date in an alkaline medium (see Table S1 in the ESI†). The 

electrochemically active surface areas (ECSAs) and mass 

activity of Fe0.5Co0.5Pc-CP NS@G and Fe0.5Co0.5Pc-CP@G were 

also determined to further evaluate their performance. Fe0.5- 

Co0.5Pc-CP NS@G shows an ECSA of 159 cm2, signi cantly 

 
 

 

higher than that of Fe0.5Co0.5Pc-CP&G, 90 cm2 (Fig. S15 in the 

ESI†). The mass activity and turnover frequency of Fe0.5- 

Co0.5Pc-CP NS@G are determined to be 18.9 A g-1 and 42.5 s-1 

at 0.9 V vs. RHE (Fig. 3b), respectively, which are signi cantly 

higher than those of Fe0.5Co0.5Pc-CP&G (11.1 A g-1 and 28.7 

s-1) and Pt/C (20 wt%) (7.5 A g-1 and 1.2 s-1), and comparable 

with the best values of Pt-free catalysts reported so far.42,59–66 

These results coincide well with our expectation that Fe0.5- 

Co0.5Pc-CP NS@G would show an enhanced ORR perfor- 

mance. The high ORR catalytic activity of Fe0.5Co0.5Pc-CP 

NS@G was further revealed by the catalytic selectivity. The 

electron transfer number n of Fe0.5Co0.5Pc-CP NS@G, ana- 

lysed based on the RDE measurements at different rotating 

speeds according to the Koutecky–Levich (K–L) equation, was 

ca. 4 at 0.4–0.7 V vs. RHE (Fig. 3c), indicating that the ORR at 

the  Fe0.5Co0.5Pc-CP  NS@G  electrode  proceeds  via   a  4e- 

reduction pathway. Rotation ring-disk electrode (RRDE) 

measurements were further carried out to determine the 

electron transfer number n and monitor the generation of 

peroxide. It can be seen in Fig. 3d that n was calculated to be 

over 3.9 at 0.3–0.9 V vs. RHE with a peroxide yield below 5%, 

con rming the 4e-  reduction pathway over Fe0.5Co0.5Pc-CP 

NS@G. Besides the high ORR activity, the amperometric i–t 

test revealed that the stability of Fe0.5Co0.5Pc-CP NS@G is 

superior to that of Pt/C (20 wt%) (Fig. 3e). Furthermore, the 

XPS spectra of Fe0.5Co0.5Pc-CP NS@G were recorded a er the 

i–t test, which were almost unchanged, con rming its high 

stability (see Fig. S16 in the ESI†). Moreover, Fe0.5Co0.5Pc-CP 

NS@G exhibits more excellent tolerance for methanol 

compared to Pt/C (20 wt%) (Fig. 3f). These results make 

Fe0.5Co0.5Pc-CP NS@G an alternative cathode catalyst in 

methanol fuel cells and metal–air batteries. 

 

Zn–air batteries 

Inspired by the notable half-cell performance of Fe0.5Co0.5Pc- 

CP NS@G in the ORR, this catalyst was further utilized as 

a cathode to evaluate the full-cell application in Zn–air 

batteries under practical conditions (Fig. 4a). For the purpose 

of comparison, Pt/C (20 wt%) was also integrated into a Zn–air 

battery. As shown in Fig. 4b, the discharge polarization and 

power density plots of the Fe0.5Co0.5Pc-CP NS@G Zn–air 

battery show an open circuit voltage of 1.34 V and a maximum 

power density of ca. 180 mW cm-2 at a current density of 283 

mA cm-2, which are better than those of Pt/C (20 wt%) (with 

an open circuit voltage of 1.33 V and a peak power density of 

ca. 152 mW cm-2). In addition, the Fe0.5Co0.5Pc-CP NS@G Zn– 

air battery exhibits stable discharge voltage at a current 
density of 10 mA cm-2, comparable to that of Pt/C (20 wt%) 

Fig. 3   (a) LSV curves of Fe0.5Co0.5Pc-CP NS@G, Fe0.5Co0.5Pc-CP&G, 
and Pt/C (20%) measured in O2-saturated 0.1 M KOH solution. (b) (Fig. 4c). To further broaden the application of Fe 

 
0.5 Co0.5 Pc- 

Onset potential, half-wave potential and mass activity comparisons of 

Fe0.5Co0.5Pc-CP NS@G, Fe0.5Co0.5Pc-CP&G and Pt/C (20%). (c) LSV 

curves at different rotation speeds of Fe0.5Co0.5Pc-CP NS@G. The 

inset shows K–L plots. (d) H2O2 yield and electron transfer number of 

Fe0.5Co0.5Pc-CP&G and Pt/C (20%). (e) Amperometric i–t curves of 

Fe0.5Co0.5Pc-CP NS@G and Pt/C (20%) under a rotation speed of 

1600 rpm. (f) Methanol tolerance test for Fe0.5Co0.5Pc-CP NS@G and 

Pt/C (20%). 

CP NS@G, a rechargeable Zn–air battery was fabricated with 

a mixture of Fe0.5Co0.5Pc-CP NS@G and RuO (a benchmark 

electrocatalyst for the oxygen evolution reaction) (1 : 1) as the 

cathode. This rechargeable Zn–air battery exhibits very 

similar discharge polarization and power density plots to the 

Fe0.5Co0.5Pc-CP NS@G Zn–air battery (Fig. 4b), clearly indi- 

cating the dominant contribution of Fe0.5Co0.5Pc-CP NS@G to 
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Fig. 4 (a) Schematic of the Zn–air battery. (b) The discharge polarization plots and power density curves of the Zn–air batteries. (c) Discharge plots 

of the Zn–air batteries with Fe0.5Co0.5Pc-CP NS@G as well as commercial Pt/C (20%) as cathode catalysts at a current density of 10 mA cm-2. 

(d) The discharge and charge voltage profiles of the Zn–air batteries with a mixture of Fe0.5Co0.5Pc-CP NS@G and RuO (1 : 1) as the cathode at 

current densities of 5 and 10 mA mg-1. (e) Photographs of a LED light (z2 V) powered by two zinc–air batteries with a mixture of Fe0.5Co0.5Pc-

CP NS@G and RuO as the cathode in series. 

 

the ORR activity in the cathode of the rechargeable Zn–air 

battery. Moreover, long-term cycling tests at current densities 

of 5 and 10 mA cm-1 reveal the lack of obvious change of 

discharge voltage over 200 cycles (Fig. 4d). Additionally, two 

rechargeable Zn–air batteries in series could provide a high 

enough open circuit voltage to power a light-emitting diode 

(LED) light with a rated voltage of z2 V (Fig. 4e). These results 

disclose the great potential of the Fe0.5Co0.5Pc-CP NS@G 

composite in Zn–air battery applications. 

 

Conclusions 

We report the efficient exfoliation of a series of conjugated 

ultrathin MPc-CP NSs (M ¼ Fe, Co, Fe0.5Co0.5) from their bulk 

counterparts, owing to the introduction of defects and disorders 

into the individual layers, which enable diminished interlayer 

overlapping and weakened interlayer p–p stacking. The ultra- 

thin MPc-CP NSs possess a smooth surface with a uniform 

thickness and a lateral size of several hundred nanometers. The 

as-prepared bimetallic Fe0.5Co0.5Pc-CP NSs can be used to 

fabricate a heterostructure Fe0.5Co0.5Pc-CP NS@G with gra- 

phene NSs as a high-performance ORR catalyst with an onset 

potential of 1006 mV and a half-wave potential of 927 mV in 

0.1 M KOH, outperforming most of the state-of-the-art ORR 

catalysts reported so far in an alkaline medium. Its excellent 

ORR activity has also been demonstrated by the good perfor- 

mance of a Zn–air battery device, with an open circuit voltage of 

1.34 V and a peak power density of z180 mW cm-2. This work 

is surely helpful for further design and synthesis of other 

ultrathin 2D CP/COF NSs with a tunable conjugated electronic 

and geometric structure, which might have various promising 

applications in electronics and energy-related elds. 

 

Experimental section 
General remarks 

All reagents and solvents were of reagent grade and used as 

received. Fe0.5Co0.5Pc-CP, CoPc-CP, FePc-CP, and CoPc-CP-2 

were synthesized by using reported procedures.42
 

 
Preparation of Fe0.5Co0.5Pc-CP NSs, FePc-CP NSs, and CoPc-CP 

NSs 

The NSs were obtained by exfoliation of bulk MPc-CP materials 

via a simple sonication procedure. In a typical experiment, 

Fe0.5Co0.5Pc-CP powder (20 mg) was dispersed in ethanol (60 

mL). The suspension was then sonicated in an ultrasonication 

bath (KQ-500DE, 40 kHz, 500 W) for 8 h under room tempera- 

ture. The resulting suspension was centrifuged at 2000 rpm for 

5 min to remove the unexfoliated bulk Fe0.5Co0.5Pc-CP. The 

yield is calculated by measuring the remaining weight of 

collected unexfoliated bulk Fe0.5Co0.5Pc-CP and comparing it to 

the weight of original crystals before sonication. As a result, the 

measured yield is 51%. FePc-CP NSs, CoPc-CP NSs, and CoPc- 

CP-2 NSs were prepared by the same procedure with a yield of 

42%, 60%, and 40%, respectively. 

 
Preparation of Fe0.5Co0.5Pc-CP NS@G 

Typically, a designed volume (2.0 mg mL-1) of the exfoliated 

Fe0.5Co0.5Pc-CP NSs was added drop by drop into a graphene NS 

suspension  with  a  concentration  of  1.0  mg  mL-1  under 
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continuous stirring for 8 h at 70 oC. The occulated product was 

separated by centrifugation. The weight ratios of Fe0.5Co0.5Pc- 

CP NSs and G were controlled as 1 : 1, 2 : 1, 4 : 1, and 8 : 1. 

 
Preparation of Fe0.5Co0.5Pc-CP&G 

Fe0.5Co0.5Pc-CP&G was prepared by the same procedure as 

Fe0.5Co0.5Pc-CP NS@G with the Fe0.5Co0.5Pc-CP NSs replaced by 

bulk Fe0.5Co0.5Pc-CP. 
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