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Successful pregnancy requires a tightly-regulated equilibrium of immune cell interactions at the maternal-fetal interface (i.e., the
decidual tissues), which plays a central role in the inflammatory process of labor. Most of the innate immune cells in this
compartment have been well characterized; however, adaptive immune cells are still under investigation. Herein, we performed
immunophenotyping of the decidua basalis and decidua parietalis to determine whether exhausted and senescent T cells are
present at the maternal-fetal interface and whether the presence of pathological (i.e., preterm) or physiological (i.e., term) labor
and/or placental inflammation alter such adaptive immune cells. In addition, decidual exhausted T cells were sorted to test their
functional status. We found that (1) exhausted and senescent T cells were present at the maternal-fetal interface and
predominantly expressed an effector memory phenotype, (2) exhausted CD4+ T cells increased in the decidua parietalis as
gestational age progressed, (3) exhausted CD4+ and CD8+ T cells decreased in the decidua basalis of women who underwent
labor at term compared to those without labor, (4) exhausted CD4+ T cells declined with the presence of placental inflammation
in the decidua basalis of women with preterm labor, (5) exhausted CD8+ T cells decreased with the presence of placental
inflammation in the decidua basalis of women who underwent labor at term, (6) both senescent CD4+ and CD8+ T cells declined
with the presence of placental inflammation in the decidua basalis of women who underwent preterm labor, and (7) decidual
exhausted T cells produced IFNγ and TNFα upon in vitro stimulation. Collectively, these findings indicate that exhausted and
senescent T cells are present at the human maternal-fetal interface and undergo alterations in a subset of women either with
labor at term or preterm labor and placental inflammation. Importantly, decidual T cell function can be restored upon stimulation.

1. Introduction

Successful pregnancy requires that the mother and semiallo-
geneic fetus coexist, which involves systemic and local (i.e.,

maternal-fetal interface) immune interactions [1–9]. The
maternal-fetal interface (i.e., the decidua) is formed after
the endometrium undergoes morphological and functional
changes (“decidualization”), allowing for invasion of fetal
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trophoblast and forming the area of contact between the
endometrium and the placenta (decidua basalis) or chor-
ioamniotic membranes (decidua parietalis) [10, 11]. The
major immune cell types present at the maternal-fetal inter-
face [7, 12] include components of the innate limb such as
natural killer (NK) cells [13–17], macrophages [18–27], neu-
trophils [28, 29], and the recently described innate lymphoid
cells [30–35]. The adaptive immune cells, T cells [36–50] and
B cells [51–54], are also present at the maternal-fetal inter-
face. A tightly-regulated equilibrium between these immune
cells is required for pregnancy maintenance [6, 7], and a dis-
ruption of this balance may lead to pregnancy complications
such as preterm labor and birth [55, 56], the leading cause of
neonatal mortality and morbidity worldwide [57–59]. Specif-
ically, we have recently shown that a pool of effector and acti-
vated decidual T cells leads to pathological inflammation
resulting in spontaneous preterm labor and birth [60, 61].
However, whether decidual T cells undergo a process of
exhaustion (exhausted T cells [62–69]) or senescence (senes-
cent T cells [70–72]), which leads to a loss of function, is
unknown. To date, there is no evidence of exhausted or
senescent T cells at the human maternal-fetal interface.

T cell exhaustion results from continuous exposure to
antigen and occurs as a progressive loss of function, charac-
terized by increased coexpression of multiple inhibitory
receptors (e.g., TIM-3, PD-1, CTLA-4, and LAG-3),
changes in the expression of transcription factors, distinc-
tive patterns of cytokine receptors, loss of effector cytokine
secretion, and metabolic alterations [68, 69, 73]. A key hall-
mark of exhausted T cells is the lack of canonical memory
T cell properties and maintenance [73]. In humans, T cell
exhaustion was described during chronic viral infections
[e.g., human immunodeficiency virus (HIV), hepatitis B
virus (HBV), and hepatitis C virus (HCV)] as well as in
cancer [68, 69, 73, 74]. T cell exhaustion has also been
implicated in the mechanisms of allograft or transplant
tolerance [75–77]. However, whether T cell exhaustion is
implicated in pregnancy complications such as preterm
labor and birth is unknown.

T cell exhaustion has been related to T cell senescence as
both processes involve cell dysfunction [78]. However, it is
now clear that these cell fates are distinct and regulated inde-
pendently of each other [78]. Senescent T cells lose their
proliferative capacity while maintaining effector functions
(i.e., cytokine production and cytotoxicity) [78], whereas
exhausted T cells have typically lost both proliferative capac-
ity and the majority of their functions [65]. In addition,
senescent T cells express high levels of CD57 and KLRG-1
[79, 80], while expression of these markers is low on
exhausted T cells [65, 68]. Moreover, exhausted T cells have
high expression of inhibitory receptors, whereas senescent
cells do not [73]. Given that T cell exhaustion is being inves-
tigated herein, we also determined whether senescent T cells
are present at the maternal-fetal interface and whether such
cells are associated with preterm labor and birth.

In the current study, we performed immunophenotyping
of the maternal-fetal interface (i.e., the decidua basalis and
decidua parietalis; Figure 1(a)) to determine whether
exhausted and senescent T cells are present in preterm and

term gestations. In addition, we investigated whether the
presence of pathological (i.e., preterm) or physiological (i.e.,
term) labor and/or placental inflammation alter exhausted
and senescent T cells at the maternal-fetal interface. Lastly,
decidual exhausted T cells were sorted and their functionality
was tested in vitro.

2. Materials and Methods

2.1. Human Subjects, Clinical Specimens, and Definitions.
Human placental basal plate (decidua basalis) and chorioam-
niotic membrane (amnion, chorion, and decidua parietalis)
samples were collected from patients within 30min after
delivery at Hutzel Women’s Hospital in the Detroit Med-
ical Center, Detroit, MI, USA, in partnership with Wayne
State University School of Medicine and the Perinatology
Research Branch, an intramural program of the Eunice
Kennedy Shriver National Institute of Child Health and
Human Development, National Institutes of Health, US
Department of Health and Human Services (NICHD/-
NIH/DHHS), Detroit, MI, USA. The collection and utiliza-
tion of biological materials for research purposes were
approved by the Institutional Review Boards of Wayne State
University and NICHD. All participating women provided
written informed consent prior to sample collection. The
study groups included women who delivered at term with
(TIL) or without (TNL) labor and women who delivered
preterm with (PTL) or without (PTNL) labor. Preterm
birth was defined as delivery before 37 weeks of gestation,
and term birth was defined as delivery after 37 weeks of ges-
tation. Labor was defined by the presence of regular uterine
contractions at a frequency of at least 2 contractions every
10min with cervical changes resulting in delivery. The TIL
and PTL study groups were subdivided based on the presence
of placental inflammation (PI) in the chorioamniotic mem-
branes (see Placental Histopathological Examination for
diagnostic criteria). The clinical and demographic character-
istics of the study population are shown in Tables 1 and 2.

2.2. Placental Histopathological Examination. Placentas were
examined histologically by a perinatal pathologist blinded to
clinical diagnoses and obstetrical outcomes according to
standardized Perinatology Research Branch protocols [81].
Briefly, three to nine sections of the placenta were examined,
and at least one full-thickness section was taken from the
center of the placenta; others were taken randomly from
the placental disc. Inflammatory lesions of the placenta were
diagnosed according to established criteria [82–84]. Placental
inflammation was defined by the infiltration of neutrophils
into the chorion and amnion [83].

2.3. Isolation of Decidual Leukocytes. Decidual leukocytes
were isolated from the decidua basalis and decidua parietalis
as previously described [85]. Briefly, the decidua basalis was
collected from the basal plate of the placenta and the decidua
parietalis was separated from the chorioamniotic membranes
(Figure 1(a)). The decidual tissues were homogenized using
a gentleMACS Dissociator (Miltenyi Biotec, San Diego,
CA, USA) in StemPro Accutase Cell Dissociation Reagent
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Figure 1: Continued.
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(Life Technologies, Grand Island, NY, USA). Homoge-
nized tissues were incubated for 45min at 37°C with gentle
agitation. After incubation, tissues were washed in sterile

1X phosphate-buffered saline (PBS) (Life Technologies)
and filtered through a 100μm cell strainer (Falcon, Corning
Life Sciences Inc., Durham, NC, USA). The resulting cell
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Figure 1: Immunophenotyping of exhausted and senescent T cells in the decidua basalis and decidua parietalis. (a) Representation of the
spatial localization of the decidua basalis and decidua parietalis. (b) Schematic representation of select markers expressed by exhausted
and senescent T cells. (c) Flow cytometry gating strategy used to identify exhausted and senescent T cells in the decidual tissues. T cells
were gated as CD3+CD56- cells within the viability and lymphocytic gates, followed by gating for the CD4+ and CD8+ subsets. Exhausted
T cells were gated for expression of PD-1, TIM-3, CTLA-4, and LAG-3. Since expression of CTLA-4 and LAG-3 was low, exhausted T
cells were defined as PD-1+TIM-3+ cells within the CD4+ or CD8+ gates. Senescent T cells were gated as KLRG-1+CD57+ cells within the
CD4+ or CD8+ gates. (d) A representative t-distributed stochastic neighbor embedding (t-SNE) dot plot visualizing exhausted and
senescent CD4+ and CD8+ T cells among decidual T cells. Blue—CD4+ exhausted T cells, red—CD4+ senescent T cells, turquoise—CD8+

exhausted T cells, pink—CD8+ senescent T cells, and grey—other T cells.

Table 1: Clinical and demographic characteristics of the patient population used to perform immunophenotyping of exhausted and senescent
T cells in the decidua basalis.

Term without labor
(n = 17)

Term with labor
(n = 20)

Preterm without labor
(n = 8)

Preterm with labor
(n = 10)

p value

Maternal age (years; median (IQR))a 26 (25-32) 23.5 (21-26.3) 28 (25.3-30.8) 22.5 (21-31.8) 0.04

Body mass index
(kg/m2; median (IQR))a

30.1 (26-36.1)c 24.7 (23.1-33.5) 32.9 (22.7-42.9) 25.7 (20.5-27.4)c 0.3

Primiparityb 11.8% (2/17) 35% (7/20) 12.5% (1/8) 20% (2/10) 0.3

Raceb 0.1

African-American 68.8% (11/16)c 90% (18/20) 75% (6/8) 90% (9/10)

Caucasian 18.8% (3/16)c 0% (0/20) 12.5%(1/8) 0% (0/10)

Asian 12.5% (2/16)c 0% (0/20) 0% (0/8) 0% (0/10)

Other 0% (0/16)c 10% (2/20) 12.5% (1/8) 10% (1/10)

Gestational age at delivery
(weeks; median (IQR))a

39.1 (39-39.3) 39.2 (38.5-40) 27.6 (26.1-34.5) 35.5 (32.1-36.2) <0.001

Birthweight (g)a 2960 (2775-3285) 3195 (2925-3693.8) 728.5 (595-2078.8) 2305 (1656.3-2446.3) <0.001

Cesarean sectionb 100% (17/17) 35% (7/20) 100% (8/8) 40% (4/10) <0.001

Data are given as the median (interquartile range) and percentage (n/N). aKruskal-Wallis test. bFisher’s exact test. cOne missing data.
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suspension was centrifuged at 300 x g for 10min at 4°C.
Decidual leukocytes were then separated using a density
gradient (Ficoll-Paque Plus; GE Healthcare Biosciences,
Uppsala, Sweden), following the manufacturer’s instructions.
The cells collected from the mononuclear layer of the density
gradient were washed with 1X PBS and immediately used
for immunophenotyping.

2.4. Immunophenotyping of Decidual T Cells. Isolated
decidual mononuclear cells were incubated with BD Fixable
Viability Stain 575V (Cat#565694; BD Biosciences, San Jose,
CA, USA) for 30min at 4°C, then washed with 1X PBS. Next,
the cells were resuspended in 50μL of stain buffer (BD
Biosciences) and incubated with fluorochrome-conjugated
anti-human monoclonal antibodies (Supplementary Table 1)
for 30min at 4°C in the dark. After extracellular staining, the
cells were washed with 1X PBS to remove excess antibody,
resuspended in 0.5mL of stain buffer, and acquired using
the BD LSRFortessa Flow Cytometer (BD Biosciences) and
BD FACSDiva 6.0 software (BD Biosciences). The analysis
and figures were performed using FlowJo software version
10 (FlowJo, LLC, Ashland, OR, USA). The cell surface
markers used to identify exhausted and senescent T cells
were selected based on a literature review (Supplementary
Table 2). The effector memory status of exhausted and
senescent T cells was determined by the expression of
CD45RA and CCR7.

2.5. Cytokine Production by Decidual Exhausted T Cells.
Decidual mononuclear cells were isolated as described above
and incubated with BD Fixable Viability Stain 510
(Cat#564406; BD Biosciences) for 30min at 4°C, then washed
with 1X PBS. The cellswere then resuspended in50μLof stain
buffer and incubated with fluorochrome-conjugatedanti-
human monoclonal antibodies (Supplementary Table 1) for
30min at 4°C in the dark. After extracellular staining, the
cells were washed with 1X PBS to remove excess antibody,
resuspended in 0.5mL of presort buffer (Cat#563503;

BD Biosciences), and exhausted CD4+ (CD45+CD3+CD4+

Tim-3+PD-1+ cells) and CD8+ (CD45+CD3+CD8+Tim-3+

PD-1+ cells) T cells were sorted using the BD FACSMelody
cell sorter (BD Biosciences) and BD FACSChorus version
1.3 software (BD Biosciences). For the determination of T
cell function, sorted exhausted T cells were stimulated for
4 h with 2μL/mL of Cell Stimulation Cocktail [phorbol 12-
myristate 13-acetate (PMA), ionomycin, brefeldin A, and
monensin (Cat#00-4975; Life Technologies)]. Stimulated
exhausted T cells were then collected, fixed, and
permeabilized using the BD Cytofix/Cytoperm Fixation and
Permeabilization Solution (BD Biosciences) and incubated
with specific monoclonal antibodies against IFNγ and
TNFα (Supplementary Table 1). Nonstimulated sorted
exhausted T cells were used as controls. Stained exhausted
T cells were acquired using the BD LSRFortessa Flow
Cytometer and BD FACSDiva 6.0 software. The analysis
and figures were performed using FlowJo version 10
software (FlowJo).

2.6. Statistical Analysis. Data were analyzed using IBM
SPSS version 19.0 (IBM Corporation; Armonk, NY,
USA). For patient demographics, the Fisher’s exact test
was used to compare proportions among groups and the
Kruskal-Wallis test was used to compare continuous vari-
ables among groups. Experimental data were compared
between study groups using the Mann-Whitney U-test.
Two-tailed (p values without an asterisk) and one-tailed
(p values with an asterisk) p values were reported. The t

-distributed stochastic neighbor embedding (t-SNE) plot
was generated using FlowJo version 10 software. The asso-
ciation between exhausted and senescent T cells and gesta-
tional age was assessed using a Spearman’s correlation test.
p values were adjusted across the T cell subsets using the
false discovery rate method [86]. Nonparametric local
weighted regression (LOESS) [87] was used to estimate the
average percentage of each T cell subset as a function of

Table 2: Clinical and demographic characteristics of the patient population used to perform immunophenotyping of exhausted and senescent
T cells in the decidua parietalis.

Term without labor
(n = 16)

Term with labor
(n = 21)

Preterm without labor
(n = 8)

Preterm with labor
(n = 10)

p value

Maternal age (years; median (IQR))a 27 (25-32.3) 24 (21-26) 28 (25.3-30.8) 22.5 (21-31.8) 0.05

Body mass index
(kg/m2; median (IQR))a

30.1 (27-36.9)c 23.5 (23-32.8) 32.9 (22.7-42.9) 25.7 (20.5-27.4)c 0.2

Primiparityb 12.5% (2/16) 38.1% (8/21) 12.5% (1/8) 20% (2/10) 0.3

Raceb 0.09

African-American 66.7% (10/15)c 90.5% (19/21) 75% (6/8) 90% (9/10)

Caucasian 20% (3/15)c 0% (0/21) 12.5% (1/8) 0% (0/10)

Asian 13.3% (2/15)c 0% (0/21) 0% (0/8) 0% (0/10)

Other 0% (0/15)c 9.5% (2/21) 12.5% (1/8) 10% (1/10)

Gestational age at delivery
(weeks; median (IQR))a

39.1 (39-39.3) 39.3 (38.6-40) 27.6 (26.1-34.5) 35.5 (32.1-36.2) <0.001

Birthweight (g)a 2972.5 (2763.8-3290) 3295 (2935-3675) 728.5 (595-2078.8) 2305 (1656.3-2446.3) <0.001

Cesarean sectionb 100% (16/16) 33.3% (7/21) 100% (8/8) 40% (4/10) <0.001

Data are given as the median (interquartile range) and percentage (n/N). aKruskal-Wallis test. bFisher’s exact test. cOne missing data.
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gestational age. The R statistical package was used for anal-
ysis [88]. A p value ≤ 0.05 was considered statistically
significant.

3. Results

3.1. Exhausted and Senescent T Cells Are Present at the
Maternal-Fetal Interface. Figure 1(a) shows the spatial local-
ization of the decidua basalis and decidua parietalis. The
markers for the identification of exhausted and senescent
T cells are shown in Figure 1(b). The gating strategy used

to identify exhausted and senescent CD4+ and CD8+T cells in
the decidua basalis and decidua parietalis is shown in
Figure 1(c). In the decidual tissues, exhausted CD4+ and
CD8+ T cells expressed PD-1 and TIM-3, but lacked expres-
sion of LAG-3 and CTLA-4. We considered exhausted T cells
as those expressing both PD-1 and TIM-3 (Figure 1(c)). In the
decidual tissues, we considered senescent CD4+ and CD8+ T
cells as those expressing both KLRG-1 and CD57
(Figure 1(c)). A t-SNE plot representing the abundance of
exhausted and senescent CD4+ and CD8+ T cells among
decidual T cells is shown in Figure 1(d).
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Figure 2: Proportions of exhausted and senescent CD4+ and CD8+ decidual T cells within the effector memory subsets. (a) Flow cytometry
gating strategy used to identify exhausted and senescent decidual CD4+ and CD8+ T cells within the naïve, central memory (TCM), effector
memory (TEM), and terminally differentiated effector memory (TEMRA) subsets. (b) Proportions of exhausted CD4+ and CD8+ T cells
within the naïve, TCM, TEM, and TEMRA subsets in the decidua basalis and decidua parietalis. (c) Proportions of senescent CD4+ and CD8+

T cells within the naïve, TCM, TEM, and TEMRA subsets in the decidua basalis and decidua parietalis. N = 55. Data are shown as the means
with a standard error of the mean.
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The majority of exhausted CD4+ and CD8+ T cells belong
to the effector memory T cell subset (TEM) in the decidua
basalis and decidua parietalis (Figures 2(a) and 2(b)). Yet,
some of the exhausted CD8+ T cells were also found in the
central memory (TCM) and terminally differentiated effec-
tor memory (TEMRA) subsets (Figure 2(b)). Most of the
senescent CD4+ T cells belonged to the TEMRA subset,
whereas senescent CD8+ T cells were found in both the
TEM and TEMRA subsets in the decidua basalis and decidua
parietalis (Figures 2(a) and 2(c)).

Together, these findings indicate that exhausted and
senescent T cells are found at the maternal-fetal interface,
where most of them express an effector memory phenotype.

3.2. Exhausted CD4+ and CD8+ T Cells Increase in the
Decidua Parietalis as Gestational Age Progresses. Next, we
determined whether the abundance of exhausted or senes-
cent T cells changes as gestational age advances, given that
the T cell repertoire undergoes alterations throughout gesta-
tion [12]. The Spearman correlations between the propor-
tions of exhausted or senescent CD4+ and CD8+ T cells and
gestational age are shown in Figure 3. In the decidua basa-
lis, no significant correlations were observed between
exhausted or senescent CD4+ and CD8+ T cells and gesta-
tional age (Figures 3(a)–3(d)). In the decidua parietalis,
exhausted CD4+ T cells significantly increased from preterm
to term gestation (p < 0 001; Figure 3(e)). The same positive
correlation was observed for exhausted CD8+ T cells, yet this

did not reach a statistical significance (Figure 3(f)). In the
decidua parietalis, senescent CD4+ and CD8+ T cells did
not vary as gestational age progressed (Figures 3(g) and
3(h)). These data show that the abundance of exhausted
CD4+ and CD8+ T cells in the decidua parietalis increases
as gestational age progresses.

3.3. Exhausted CD4+ and CD8+ T Cells Decrease in the
Decidua Basalis of Women with Labor at Term. Our previous
studies have suggested that T cells participate in the physio-
logical [45, 46, 89, 90] and pathological [56, 60, 61, 91, 92]
processes of labor (i.e., labor at term and preterm labor).
Therefore, we investigated whether exhausted and senescent
T cells were altered with the presence of labor at term or
preterm labor. In the decidua basalis, exhausted CD4+ and
CD8+ T cells were reduced in women who underwent labor
at term compared to those who delivered at term without
labor (Figures 4(a) and 4(b)). However, this reduction was
not observed when comparing the preterm labor and pre-
term without labor groups (Figures 4(a) and 4(b)). In the
decidua basalis, senescent CD4+ and CD8+ T cells did not
vary between the labor and nonlabor groups (Figures 4(c)
and 4(d)). In the decidua parietalis, exhausted and senes-
cent CD4+ and CD8+ T cells did not vary between the
labor and nonlabor groups at term and preterm gesta-
tions (Figures 4(e)–4(h)). Consistent with our previous
results, in the absence of labor, exhausted CD4+ T cells were
more abundant in the term than in the preterm groups
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(Figures 4(a) and 4(e)). Similar differences in exhausted and
senescent T cells between the study groups were observed
when such cells were gated within the effector memory sub-
sets (Supplementary Figure 1A–1L). Taken together, these
data indicate that the physiological process of labor at
term, but not the pathological process of preterm labor, is
accompanied by a decline in exhausted CD4+ and CD8+

T cells at the maternal-fetal interface.

3.4. The Impact of Placental Inflammation on Exhausted and
Senescent CD4+ T Cells in the Decidual Tissues. Pathological
inflammation is associated with an imbalance between
immune cells at the maternal-fetal interface [56]. Thus, we
next evaluated whether inflammation in the placenta of
women who underwent preterm labor or labor at term
impacted the abundance of exhausted or senescent T cells
in the decidual tissues.

Exhausted CD4+ T cells, but not exhausted CD8+ T cells,
were reduced in the decidua basalis of women who under-
went preterm labor with placental inflammation compared
to those without this condition (Figures 5(a) and 5(c)). In
contrast, exhausted CD8+ T cells, but not exhausted CD4+

T cells, were decreased in the decidua basalis of women
who underwent labor at term with placental inflammation
compared to those without inflammation (Figures 5(b) and
5(d)). Both senescent CD4+ and CD8+ T cells were reduced
in the decidua basalis of women who underwent preterm
labor with placental inflammation compared to those
without this condition (Figures 5(e) and 5(g)). However,

senescent CD4+ and CD8+ T cells in the decidua basalis
did not vary between term labor women with and without
placental inflammation (Figures 5(f) and 5(h)). Placental
inflammation did not alter the abundance of exhausted
or senescent CD4+ and CD8+ T cells in the decidua parie-
talis (Figures 5(i)–5(p)). These findings show that placental
inflammation can selectively impact the abundance of
exhausted and senescent T cells in the decidua basalis of
women who underwent preterm labor or labor at term.

3.5. Decidual Exhausted T Cells Are Functional upon In
Vitro Stimulation. Exhausted T cells lose their effector
functions, whereas senescent T cells do not [78]. Therefore,
we sorted exhausted T cells from the decidual tissues and
tested their functionality upon in vitro stimulation. The
purity of sorted exhausted T cells is shown in Figure 6(a).
Functionality was tested by the production of IFNγ and
TNFα (Figure 6(a)). Consistent with our in vivo data (e.g.,
reduction of exhausted T cells in placental inflammation),
exhausted T cells produced inflammatory cytokines upon
in vitro stimulation, suggesting the restoration of an effector
phenotype (Figure 6(b)). These data imply that exhausted T
cells restore their functional-effector phenotype during
inflammatory conditions at the maternal-fetal interface.

4. Discussion

4.1. Principal Findings. The principal findings of this
study are as follows: (1) exhausted and senescent T cells were
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present at the human maternal-fetal interface and pre-
dominantly expressed an effector memory phenotype;
(2) exhausted CD4+ T cells increased in the decidua parieta-
lis as gestational age progressed; (3) exhausted CD4+ and
CD8+ T cells decreased in the decidua basalis of women
who underwent labor at term compared to those without
labor; (4) exhausted CD4+ T cells declined with the presence
of placental inflammation in the decidua basalis of women
with preterm labor; (5) exhausted CD8+ T cells decreased
with the presence of placental inflammation in the decidua
basalis of women who underwent labor at term; (6) both
senescent CD4+ and CD8+ T cells declined with the presence
of placental inflammation in the decidua basalis of women
who underwent preterm labor; and (7) decidual exhausted
T cells produced IFNγ and TNFα upon in vitro stimulation.
Together, these findings indicate that exhausted and senes-
cent T cells are present at the maternal-fetal interface and
undergo alterations in a subset of women either with labor
at term or preterm labor and placental inflammation, yet
can restore their functionality upon stimulation.

4.2. Exhausted T Cells at the Maternal-Fetal Interface in
Term and Preterm Labor. Herein, for the first time, we iden-
tified exhausted CD4+ and CD8+ T cells at the human
maternal-fetal interface. Such cells display an effector mem-
ory phenotype, consistent with that of other tissue-resident
exhausted T cells [93, 94]. Recent studies have identified
decidual T cells expressing PD-1 and TIM-3 during the first
trimester [95, 96] and in term pregnancy [50, 97]. However,
the abovementioned studies did not identify such cells as
exhausted T cells. It is thought that T cells expressing
PD-1 and TIM-3 participate in the mechanisms leading to
immune tolerance [76, 77, 98–100]; therefore, such

molecules have been implicated in the pathophysiology of
pregnancy loss [101–105]. The fact that decidual exhausted
T cells expressing PD-1 and TIM-3 are more abundant in
term than in preterm gestations suggests that T cell dysfunc-
tion represents a regulatory mechanism to prevent exacer-
bated cellular responses toward the end of pregnancy.

We and others have found that the lack of functionality
by decidual T cells can be restored in vitro [50], suggesting
that the inflammatory milieu that accompanies the physio-
logical process of labor at term [106–113] reinvigorates T cell
responses (i.e., reversal of T cell exhaustion [114]) at the
maternal-fetal interface. This concept could explain why
women who underwent labor at term had reduced propor-
tions of exhausted T cells compared to those who delivered
at term without labor.

In the current study, no differences in exhausted T
cells were found in the decidual tissues of women who
underwent preterm labor compared to those who delivered
preterm without labor. This finding supports the hypothe-
sis that the pathological process of preterm labor is dis-
tinct from the physiological process of labor at term
[115–119] and that, in most cases, occurs in the absence
of a reduction in T cell exhaustion. However, acute placental
inflammation (the only causal link to spontaneous preterm
labor [120–127] and present in a subset of women who
deliver preterm [128–131]) decreased the abundance of
exhausted T cells at the maternal-fetal interface, suggesting
that T cell exhaustion is reduced solely in some cases of
preterm labor associated with exacerbated placental inflam-
mation. The mechanisms whereby placental inflammation
can reduce T cell exhaustion at the maternal-fetal interface
may involve cytokines, given that such inflammatory medi-
ators can reverse T cell dysfunction [73, 132–135].
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Therefore, we surmise that placental inflammation boosts
effector T cell function by dampening T cell exhaustion at
the maternal-fetal interface in a subset of women who
undergo preterm labor.

A central question that arises from this study is whether
T cell exhaustion at the maternal-fetal interface can be aug-
mented in order to ameliorate effector T cell responses that
lead to pathological inflammation and preterm labor and
birth. T cell exhaustion has been manipulated by targeting
the TCR and inhibitory receptors (e.g., PD-1, TIM-3,
CTLA-4, and LAG-3) as well as by treatment with soluble
mediators (e.g., anti-inflammatory cytokines such as IL-10
and TGFβ) and suppressive cells [67, 68, 135–141]. Further

research is required to investigate which of the abovemen-
tioned strategies could be safely utilized during pregnancy.

4.3. Senescent T Cells at the Maternal-Fetal Interface in
Preterm Labor. To our knowledge, we are the first to identify
senescent T cells at the human maternal-fetal interface.
Decidual senescent T cells express an effector memory phe-
notype consistent with that displayed by these cells in other
tissues [80]. Unlike exhausted T cells, senescent T cells can
release proinflammatory mediators such as IFNγ, TNFα,
granzyme B, and perforin [80, 142, 143]. We and others
have shown that T cells can release such inflammatory
mediators at the maternal-fetal interface [50, 61],
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suggesting that senescent T cells may contribute to the
inflammatory milieu in this microenvironment.

We also found that senescent T cells were reduced in
women who underwent preterm labor associated with pla-
cental inflammation. This finding is in line with the hypoth-
esis that cellular senescence is implicated in the mechanisms
of disease for preterm labor and birth [55, 144, 145].
The mechanisms whereby placental inflammation reduces
senescent T cells at the maternal-fetal interface of women
with preterm labor may involve the p53 pathway, mitogen-
activated protein kinase p38 (MAPKp38), and the cyclin-
dependent kinase inhibitors p16 and p21 [78], all of which
are implicated in the process of parturition [144–150].
Given that T cells can undergo reversible senescence [71,
78, 143, 151–153], additional research is required to inves-
tigate the mechanisms implicated in such a process at the
maternal-fetal interface.

It is worth mentioning that the effect of gestational age
was observed in the decidua parietalis, whereas the impact
of the process of labor and placental inflammation was
mainly observed in the decidua basalis. This finding exem-
plifies the complexity of the maternal-fetal interface and
highlights the importance of considering both the maternal
(i.e., decidua parietalis is in contact with the endometrium)
and fetal (i.e., decidua basalis is attached to the placenta)
sides when studying maternal-fetal interactions.

5. Conclusion

In the current study, exhausted and senescent effector
memory T cells were identified at the human maternal-
fetal interface, where they are more abundant as term
approaches. To our knowledge, this is the first time that
exhausted T cells have been identified at the human
maternal-fetal interface. While the physiological process
of labor at term was associated with a decline in exhausted
T cells, the pathological process of preterm labor with pla-
cental inflammation was linked to a reduction in both
exhausted and senescent T cells. Moreover, we show that
exhausted T cells restore their functionality upon in vitro
stimulation. Collectively, these data suggest that exhausted
and senescent T cells are physiological components of the
maternal-fetal interface and that such cells play a role in
homeostasis and disease during pregnancy.
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