
      
        

   

    

    

   

   

     

       

    

    

   

  

 

   

   

     

    

   

   

      

 

    

  

    

     

     

   

     

   

     

     

     

       

Exhuming Norwegian Ultrahigh-Pressure Rocks: Overprinting Extensional Structures 
and the Roleof the Nordfjord-Sogn Detachment Zone 

Scott M. Johnston, Bradley R. Hacker, and Torgeir B. Andersen 

[1] The Nordfjord-Sogn Detachment Zone(NSDZ) is widely cited as one of the primary structures 

responsible for the exhumation of Norwegian (ultra)high-pressure (UHP) rocks. Here we review 

data from the considerable volume of research describing this shear zone, and compile a strike-

parallel cross section along the NSDZ from the Solund Basin in the south to the Sørøyane UHP 

domain in the north. This cross section highlights several previously unrecognized patterns, 

revealing a shear zone with top-to-the-west asymmetric fabrics that (1) initiated at amphibolite 

facies, (2) overprints metamorphic breaks and tectono stratigraphic contacts, and (3) has a 

gradational continuum of muscovite cooling ages. These patterns constrain the kinematic evolution 

of the NSDZ and suggest a new three-step model for the exhumation of Norwegian (U)HP rocks. The 

initial stages of exhumation were characterized by the rise of crustal rocks from (U)HP depths to the 

base of the crust by buoyancy-driven mechanisms not specified in this paper. Mantle exhumation 

was followed by top-to-the-west, normal-sense displacement within a broad noncoaxial ductile 

shear zone near the base of the crust that overprinted tectonostratigraphic contacts formed 

previously during mantle exhumation. In the final stages of crustal exhumation, top-W brittle-ductile 

detachments soled into and partially excised this ductile shear zone,dropping the Devonian basins 

into contact with rocks of varying tectonostratigraphic levels. This new interpretation of the NSDZ is 

significant as it accounts for the extreme crustal excision observed in western Norway using three 

sequentially overprinting structures active at different stages of UHP rock exhumation. 

1. Introduction 

[2] The discovery over the past two decades that ultra-high-pressure (UHP) rocks are 

distributed around the globe is changing fundamental concepts behind our understanding of the 

interaction between the crust and the mantle, and of the kinematics of continental collisions. In 

particular,the mechanisms responsible for exhuming rocks from depths greater than 100 km at 

rates exceeding 20 mm/yr requires high-strain, lithospheric-scale structures. Most models draw 

upon buoyancy-related rebound of low-density crustal rocks through the mantle and into the 

upper crust as the primary driving force behind UHP exhumation, but they vary widely with 

respect to the kinematics of the structures developed along the exhumation path. Whereas some 

models call for diapiric ascent of relatively weak UHP terranes through the mantle followed by a 

second stage of crustal-scale extension [e.g., Walsh and Hacker, 2004], other models argue that 

relatively strong UHP terranes are exhumed in the hanging walls of basal thrusts with passive, 

normal-sense roof faults [e.g., Chemenda et al., 2000] or by corner flow within the subduction 



        

    

     

     

      

   

      

   

 

         

             

          

         

       

   

        

          

         

            

       

          

        

          

         

     

           

      

  

  

   

   

      

     

  

  

       

     

    

channel [e.g., Burov et al., 2001]. Still other models suggest exhumation of UHP terranes by 

combina-tions of vertical coaxial shortening and extension by rota-tional shearing in the footwalls 

of major normal-sense shear zones and faults [Andersen et al., 1994], reversal in plate motion 

[Fossen, 1992; Krabbendam and Dewey, 1998] or subhorizontal extrusion [Hacker et al., 2000]. 

These models have specific, but very different implications for plate tec-tonic processes as far-

reaching as the growth and composi-tion of the continental crust, crustal recycling into the mantle, 

thedriving forces behind changes in plate motion, and the evolution of large mountain ranges. 

Evaluating each of these models and applying them to geologic settings where they may be valid is 

a vital step to understanding plate tectonics. 

[3] The Norwegian Caledonides of western Norway present an excellent opportunity to assess 

the validity of the various models for the exhumation of UHP rocks (Figure 1). Because of a paucity 

of synorogenic magmatism and postorogenic tectonism, tens of thousands of square kilometers of 

Caledonian(U)HP and related lower-pressure terranes are preserved. The preservation of these 

rocks of drastically different metamorphic grade, in addition to the structural relationships that 

link them, provides the data 

[4] necessary for temporal and kinematic reconstructions of the Norwegian Caledonides, 

reconstructions that are difficult or impossible in orogens that experienced subsequent defor-mation 

and/or thermal overprint. The goal of this paper is to consolidate theknown structural, petrologic, 

and geochro-nologic data from within and around the Nordfjord-Sogn Detachment Zone (NSDZ), a 

major normal-sense detach-ment zone thought to be the primary structure responsible for the 

exhumation of Norwegian (U)HP rocks, and to evaluate the different models for the exhumation of 

UHP rocks. The data support a three-stage exhumation model for western Norway: rapid exhumation 

of a (U)HP body through the mantle, followed by exhumation from the lower andmiddle crust along 

an initially broad ductile shear zone, and ultimately, more discrete brittle-ductile detachment faults. 

The fabrics and lithologic relationships developed within the NSDZ are the cumulative result of these 

three overprinting stages of exhumation. Because timing is critical in this study, all40 Ar/39Ar ages 

have beenrecalculated using fluence monitor ages recommended by Renne et al. [1998]. 

2. Regional Geology 

[4] Subduction of Baltica beneath the leading edge of Laurentia during the Caledonian Orogeny has 

long been recognized as the primary event responsible for the forma-tion of Norwegian (U)HP rocks 

[Cuthbert et al., 1983]. Spanning the Early Ordovician through the Late Devonian, the Caledonian 

Orogeny was characterized by intraoceanic subduction within theÆgir and Iapetus oceans, early 

Caledonian events affecting distal parts of the Caledonian margin of Baltica during its northwarddrift 

and anticlock-wise rotation, and finally east directed stacking of allochth-onous and para-

autochthonous thrust sheets onto the Baltica margin during the main Scandian continental collision 

[Brueckner and van Roermund, 2004; Torsvik and Cocks, 2004]. The final pulse of contraction was 

initiated after the Wenlockian [Andersen et al., 1998] and culminated in the burial of the Baltica 

autochthon and associated slivers from the accreted allochthons to(U)HP depths in western Norway 



    

   

       

      

      

    

 

 

 

  

  

 

 

        

      

         

       

      

      

 

      

         

         

         

     

      

             

           

  

          

        

        

     

         

           

      

          

by 410–400 Ma [Hacker and Gans, 2005]. 

[5] The extent of this contraction and extreme crustal shortening is best seen in the individual,far

traveled thrust sheets of the foreland [Gee et al., 1985; Robinson, 1995]. The Baltica Autochthon, the 

structurally lowest unit, con-sists of Proterozoic crystalline basement gneisses with local sedimentary 

cover [Gee et al., 1985; Tucker et al., 2004]. The Lower and Middle Allochthons are composed of 

crystalline basement gneisses overlain by paragneisses and are thought to represent outboard 

regions of the Baltica Autochthon that were thrust eastward over the autochthon. Lower Allochthon 

crystalline gneisses are similar in com- position to the Baltica Autochthon, but Middle Allochthon 

orthogneisses include a more variable suite of distinctive K-rich granulites, gabbro-anorthosite and 

megacrystic augen gneisses that locally occur within the Western Gneiss Complex (WGC) and in the 

Fennoscandian base- ment of S. Norway [Krabbendam et al., 2000; Austrheim et al., 2003; Bingen et 

al., 2004]. The Upper Allochthon consists of a mixed group of crystalline continental and mostly 

ophiolitic rocks. The uppermost Allochthon has distinct lithologic and isotopic characteristics that 

suggest it represents a fragment of Laurentia [e.g., Roberts et al., 2002]. 

[6] This tectonostratigraphy recognized in the foreland can be traced westward into the high-grade 

metamorphic rocks of western Norway (Figure 1) [Bryhni and Andre´asson, 1985; Robinson, 1995; 

Root et al., 2005]. In western Norway, the WGC is correlated with the Baltica Autochthon, and is 

exposed in a gently arching tectonic window through the structurally higher allochthons. The felsic 

host gneisses of the WGC contain extensive provinces where older meta- morphic or magmatic 

textures are preserved [Krabbendam et al., 2000], as well as meter- to kilometer-scale lenses of 

Caledonian eclogites that increase in metamorphic grade to the north and west [Krogh, 1977]. 

[7] There are important differences between the northern WGC (i.e., north of Nordfjord) and the 

southern WGC. The northern WGC is overlain by widespread folded slivers of exotic gneisses that 

have been correlated with the alloch- thons [Robinson, 1995; Walsh and Hacker, 2004], whereas the 

southern WGC is overlain by a thin veneer of variably attenuated gneisses and schists that lie 

depositionally beneath low greenschist-facies Devonian-Carboniferous sedimentary basins. In the 

northern WGC, the gneiss and allochthons contain eclogites that record HP and UHP conditions up to 

3.4 GPa and 800~C [Terry et al., 2000]; eclogites in the southern WGC are found chiefly within the 

basement and reached only HP metamorphic conditions of 2.1–2.5 GPa and 700~C [Krogh, 1982; 

Chauvet and Dallmeyer, 1992; Labrousse et al., 2002]. 

[8] Caledonian contraction during the Early Devonian was immediately followed by, or 

synchronous with, exten- sion and the rapid exhumation of the WGC from (U)HP depths to the middle 

and upper crust. Most of this exhumation is thought to have occurred through a combination of 

coaxial vertical thinning and noncoaxial shearing along reactivated contractional detachments, the 

result of buoyancy-driven collapse of an overthickened continental crust [Wilks and Cuthbert, 1994; 

Andersen, 1998; Fossen and Dunlap, 1998; Young et al., 2007]. The most impressive of these 

structures is the Nordfjord-Sogn Detachment Zone (NSDZ), which extends along strike for several 

hundred km (Figure 1) [Andersen et al., 1994]. The NSDZ consists of a 2–6 km thick shear zone that 



   

       

     

       

    

          

         

       

  

 

         

     

      

 

        

     

       

    

      

       

           

      

 

     

        

       

      

         

        

    

        

   

           

     

           

    

       

          

juxtaposes greenschist-grade Upper Allochthon and Devonian-Carboniferous sedimentary rocks in its 

hanging wall with the eclogite-bearing southern WGC in its footwall [Wilks and Cuthbert, 1994]. In 

the final stages of extension, semiductile to brittle normal-sense detachments soled into the NSDZ, 

opening the Devonian-Carboniferous basins [Andersen et al., 1998; Eide et al., 2005]. Although the 

greenschist-facies allochthons, Devonian-Carboniferous sediments, and extensional structures related 

to the NSDZ disappear north of Nordfjord, they reappear along Trond- heimsleden and in the Fosen 

Peninsula north of Figure 1, and it is thought that similar extensional structures were at least partially 

responsible for the exhumation of the northern WGC and the Central Norway Basement Window even 

farther north [Braathen et al., 2000; Eide et al., 2005; Osmundsen et al., 2006]. 

3. Recent Exhumation Models 

[9] A wide variety of models for the exhumation of Norwegian (U)HP rocks and the evolution of the 

NSDZ have been proposed. While all of these models recognize the NSDZ as a major exhumational 

structure, they differ on the depth at which the NSDZ formed and on its role with respect to 

exhumation of rocks through the mantle and crust. Single-stage exhumation models [e.g., Hacker et al., 

2003; Hacker, 2007] suggest that the NSDZ was the primary structure responsible for the rapid 

exhumation of (U)HP crustal rocks from mantle depths to the upper crust. These models imply that 

the NSDZ formed at (U)HP depths (60–135 km) by reactivation of the original subduction thrust 

geometry as a lithospheric-scale normal-sense detach- ment zone. Two-stage exhumation models call 

upon sepa- rate mantle and crustal exhumation structures, with mantle exhumation occurring via 

pure shear thinning during grav- itational collapse and orogenic extension [e.g., Andersen et al., 1994; 

Milnes et al., 1997], or imbricate thrusting and subduction channel flow [e.g., Terry and Robinson, 

2003]. Mantle exhumation was then followed by displacement along the NSDZ through crustal depths 

only. 

[10] The various models also differ on precisely what structure(s) define the NSDZ, and the extent 

to which localized deformation and excision occurred during mylo- nitization and top-to-the-west 

(top-W) transport. Local large metamorphic breaks between the WGC and overlying allochthons have 

led many researchers to define the alloch- thon-WGC contact as the primary detachment surface 

[Andersen and Jamtveit, 1990; Krabbendam and Dewey, 1998]. Models developed from this 

interpretation place the allochthons in the upper or middle plate of the NSDZ, and imply that 

significant crustal excision occurred across discrete high-strain shear zones within the NSDZ that are 

responsible for the juxtaposition of the different tectonos- tratigraphic units. In contrast, other 

researchers cite the uniformity of amphibolite-grade mylonites that cross tecto- nostratigraphic 

contacts, and suggest that the NSDZ repre- sents a near-homogeneous, top-W, ~6 km thick 

detachment zone between a brittle upper plate and a ductile lower plate [Swensson and Andersen, 

1991; Fossen and Rykkelid, 1992; Wilks and Cuthbert, 1994; Milnes et al., 1997]. This interpretation 

places mylonitic allochthons in the lower plate and supports models that call for the juxtaposition of 

the allochthons and the WGC in the lower crust prior to the onset of noncoaxial shear along the NSDZ. 

In these distributed-shear models, crustal excision did not take place between tectonostratigraphic 



         

  

         

          

           

    

  

         

           

       

       

           

           

    

  

         

         

          

        

            

          

       

        

           

          

      

        

         

          

           

     

          

   

       

       

            

             

units, but instead, across a broad shear zone that brought lower crustal allochthons and WGC into 

contact with upper crustal allochthons and Devonian sedimentary rocks. 

[11] The spectrum of end-member models used to de-scribe the exhumation of Norwegian (U)HP 

rocks attests to the variety of exhumation structures observed in western Norway. The purpose of 

this paper is to review the simi-larities and differences among the various models and build a unifying 

model that can account for the multiple structural styles of Caledonian exhumation. 

4. Cross Section: Detailed Study Areas 

[12] Inaneffort to characterize the kinematic evolution of Caledonian exhumation, detailed studies 

have been com-pleted from field areas that span the length of the NSDZ. In aggregate, these studies 

document the entire range of extensional styles and place limits on the mechanisms responsible for 

the exhumation of Norwegian (U)HP rocks. In the following paragraphs, we brieflydiscuss the key 

field areas along the NSDZ in a cross section from the Solund Basin in the south to the Sørøyane UHP 

domain in the north; the section parallels the strike of the NSDZ and is perpendicular to the 

elongation direction of the primary exhumation-related structures in western Norway(Figure 1). 

4.1. Solund Basin Region 

[13] The Solund Basin, the southernmost of the major Lower Devonian to Lower Carboniferous 

basins along the cross section, formed in the hanging wall of the southern segment of the NSDZ 

[Osmundsen and Andersen, 2001], and is exposed within a broad E-W trending syncline that 

preserves much of the Caledonian nappe stack(Figure 2). The southern WGC is the structurally lowest 

unit and contains eclogites that equilibrated at~ 2.3 GPa and ~700oC [Hacker et al., 2003]. It is 

overlain by mafic schists, pelites, and metapsammites of the Hyllestad Com-plex that have been 

correlated with the Lower [Chauvet and Dallmeyer, 1992] or Middle[Tillung, 1999] Allochthon. 

Aluminous schists within the Hyllestad Complex indicate peak metamorphic conditions of 1.4–1.6 GPa 

and 575– 600oC [Hacker et al., 2003]. Although the contact between the southern WGC and the 

Hyllestad Complex represents an abrupt, >0.6 GPa break in peak metamorphic pressure, retrograde 

metamorphic conditions in the two units are similar, 0.6–1.0 GPa and 450–600oC [Hacker et al., 2003]. 

The structurally higher Lifjorden Complex includes metagraywacke, greenschist, metagabbro and 

serpentinite inferred to be part of the Upper Allochthon. Lower levels of the Lifjorden Complex are 

intruded by the~ 434 Ma Sogneskollen Granodiorite [Hacker et al., 2003]. Above the Sogneskollen 

Granodiorite, the Lifjorden Complex is exclusively greenschist facies, but below, all rocks show a late 

amphibolite-facies metamorphism at~ 0.8 GPa and 580oC [Hacker et al., 2003]. The Lifjorden Complex 

is truncated upward by the brittle-ductile Solund Fault that dropped the lowgreenschist-grade Solund 

Basin conglom-erates down on top of the Lifjorden Complex. 

[14]The structure of the Solund Basin region is strongly affectedbythe extensional fabrics and 

detachments that brought the HP rocks of the southern WGC into close proximity with the Devonian 

sedimentary rocks. East of the area, the southern WGC is characterized by gently west dipping 

foliations, E-W stretching lineations, and generally symmetric fabrics [Milnes et al., 1988, 1997]. 



     

        

         

      

           

         

        

       

         

              

    

  

       

         

        

      

         

          

      

            

   

  

        

        

          

              

          

          

       

          

           

 

   

       

          

        

         

           

Structurally up section within the WGC these fabrics become progres-sively more asymmetric; the 

upper~ 1.5 km of the WGC contains a penetrative top-W fabric characterized by S-C mylonitic 

gneisses with abundant asymmetric boudins, s and S clasts, and shear bands [Hacker et al., 2003]. 

These amphibolite-facies asymmetric fabrics are also strongly developed in the overlying Hyllestad 

Complex and reach their peak in the base of the Lifjorden Complex, whereas structurally above the 

Sogneskollen Granodiorite, the extensional fabrics are only locally developed at greenschist facies. 

This >2 km thick zone of mylonitic rocks with penetratively developed top-W structures represents 

the NSDZ in the Solund Basin region. Although the contacts between the different tectonostratigraphic 

units are signifi-cant breaks in peak metamorphic grade, muscovite cooling ages from the WGC and 

the Hyllestad Complex fall in a relatively narrow range from 403 to 394 Ma [Chauvet et al., 1992]. No 

discrete zones of higher strain within the NSDZ have been identified along tectonostratigraphic 

contacts, and the lack of a discontinuity in muscovite ages across the NSDZ indicates that the WGC and 

Hyllestad Complex were juxtaposed at temperatures above muscovite closure. Structurally above the 

base of the Sogneskollen Granodio-rite, the Lifjorden Complex preserves Caledonian contrac-tional 

fabrics and is affected by penetrative extension only in outcrops immediately beneath the Solund 

Fault. There, mylonites with NW-SE stretching lineations grade into a discrete detachment zone with 

cataclasites, ultramylonites and pseudotachylites in the footwall [Norton, 1987] and flattened and 

rotated clasts in the hanging wall conglom-erates of the Solund Basin [Se´ranne and Se´guret, 1987]. 

The brittle-ductile Solund Fault cuts the Devonian basin, has a significantly different transport 

direction than the NSDZ, was active at much higher crustal levels than the NSDZ, and represents a 

later stage of Caledonian to entirely post-Caledonian exhumation [Hacker et al., 2003]. 

4.2. Kvamshesten Region 

[15] The Kvamshesten Basin and associated extensional structures are located in the next broad 

syncline north of the Solund region(Figure 3). The tectonostratigraphyof this region is divided into 

an upper and lower plate by the Dalsfjord Fault, a top-W, reactivated, low-angle extensional fault 

[Torsvik et al., 1992; Andersen et al., 1994; Braathen et al., 2004]. The southern WGC is the 

lowermost unit within the lower plate of the Dalsfjord Fault and includes eclogites that record peak 

metamorphic conditions of 2.1 GPa and 580oC [Cuthbert et al., 2000] overprinted by an amphibolite-

facies retrograde fabric [Andersen et al., 1994]. It is overlain byamphibolite- togreenschist-facies 

schists and phyllonites informally referred to as the “Ask-voll group” that formed from interlayered 

paragneisses and orthogneisses of the Lower Allochthon, Middle Allochthon, or WGC [Swensson and 

Andersen, 1991]. 

[16]Consistent E-W stretching lineations are observed throughout the Kvamshesten area. 

Amphibolite-facies, and locally eclogitic-facies, symmetric shear fabrics dominate lower structural 

levels within the southern WGC [Engvik and Andersen, 2000; Foreman et al., 2005], whereas 

amphibolite-facies asymmetric top-W shear fabrics, includ-ing S-C foliations and shear bands, 

increase in intensity up section. Within the uppermost levels of the WGC and throughout the Askvoll 

mylonites, these asymmetric shear fabrics are pervasively developed in a broad detachment zone, 



         

        

          

     

      

            

       

         

  

     

             

             

              

         

         

        

     

         

       

       

         

       

       

           

    

       

       

       

       

  

  

    

     

      

     

     

  

 

and represent the Kvamshesten segment of the NSDZ [Swensson and Andersen, 1991]. These 

extensional fabrics developed at amphibolite-facies conditions within both the WGC and the Askvoll 

mylonites, indicating that at the initiation of mylonitization, there was no significant break in 

metamorphic grade between these two tectonostrati-graphic units [Swensson and Andersen, 1991]. 

Muscovite cooling ages from the detachment mylonites and the foot-wall range from 399 to 395 Ma 

[Andersen, 1998]. The top of the lower plate is defined by the brittle Dalsfjord Fault, which soles into 

and truncates the underlying mylonites of the NSDZ, placing the upper plate down against the 

Askvoll mylonites along the southern margin of the basin, and against the southern WGC along the 

northern margin of the basin. 

[17] The Dalsfjord Fault is a discrete brittle-ductile fault characterized by pseudotachylites, 

ultramylonites, catacla-sites and breccias [Braathen et al., 2004] that formed in the Late Devonian 

and was reactivated in the Permian and Jurassic[Torsviket al., 1992; Eide et al., 1997]. From bottom 

to top, the allochthons in the upper plate of the Dalsfjord Fault consist of the Dalsfjord Suite 

orthogneisses and the Høyvik Group paragneisses (correlated with the Middle Allochthon [Corfuet 

al., 2003]), unconformably overlain by the Silurian Herland Group, the Solund-Stavfjord Ophiolite, 

and the Kalva˚gme´lange (all correlated with the Upper Allochthon [Osmundsen and Andersen, 

1994]). These upper plate rocks preserve both Scandian and early Caledonian contractional 

structures, as well as primary depositional contacts; muscovite ages of -450 Ma from theHøyvik 

Group indicate that temperatures in the Kvam-shesten segment of the upper plate never exceeded 

greens-chist-facies conditions during the late Caledonian [Andersen etal., 1998;Eideet al., 1999]. 

There, allochthonous rocks are unconformably overlain by the Middle Devonian sedi-mentary rocks 

of the Kvamshesten Basin. Extensional structures in the upper plate are limited to normal-sense 

reactivation of earlier Caledonian low-angle thrust faults (with associated folding of preexisting 

planar and linear structures) and high-angle brittle normal faults that are truncated by the Dalsfjord 

Fault [Osmundsen and Andersen, 1994]. This upper plate extensional deformation was con-trolled by 

considerable top-W displacement along the Kvamshesten segment of the NSDZ, which opened the 

Kvamshesten Basin [Osmundsen etal., 1998, 2000]. Devo-nian through Carboniferous formation and 

younger reacti-vation of the Dalsfjord Fault ultimately juxtaposed the ductile Caledonian extensional 

fabrics in the lower plate with brittlely deformed upper plate rocks and the Devonian basin 

sediments during late Caledonian extension [Torsvik etal., 1986, 1992;Eideet al., 1997]. 

4.3. Hornelen Region 

[18] The Hornelen Region(Figure 4) includes the largest and smallest of the Devonian-

Carboniferous basins, the Hornelen and Ha˚steinen, respectively, and the thickest continuous 

exposures of the Lower and Middle Allochthons and the NSDZ between Sognefjord and Nordfjord. 

Like the Kvamshesten Region, the brittle-ductile Hornelen Fault beneath the Hornelen Basin (and the 

Standal and Sunnarvik faults beneath the Ha˚steinen Basin) divide the Hornelen Region into a lower 

plate with ductile extensional fabrics and an upper plate with ductile-to-brittle extensional fabrics. 

The base of the lower plate is composed of WGC amphibolite-facies granitic gneisses with inclusions 



      

         

    

       

      

     

  

    

  

   

     

      

    

    

      

 

        

         

       

        

        

       

        

             

            

            

             

      

   

        

    

         

          

   

       

      

       

     

       

of eclogite. Across this region, the WGC transitions smoothly from HP metamorphic conditions of 

2.1–2.3 GPa and 600oC [Cuthbert et al., 2000; Labrousse et al., 2004; Johnston, 2006] in the southern 

WGC, to UHP metamorphic conditions up to 2.9 GPa and 750oC [Cuthbert et al., 2000; Labrousse et 

al., 2004; Young et al., 2007] in the northern WGC north of Nordfjord. Whereas (U)HP ages from the 

northern WGC range from 415 to 400 M [Carswell et al., 2003;Krogh et al., 2003; Root et al.,2004], 

eclogites from the southern WGC complex have not been dated. The basement cover sequences of the 

Lower/Middle Allochthon structurally above the WGC display chiefly upper amphibolite facies peak 

metamorphic conditions [Wilksand Cuthbert, 1994; Johnston, 2006]. However,rareeclogite boudins 

within the Lower/Middle Allochthon near Sandane have pressures similar to those in the WGC 

[Young et al., 2007] and indicate a gradual northward increase in metamorphic grade like that 

observed in the WGC. If these eclogites within the Lower/Middle Allochthon are the same age as 

those in the WGC, as suggested by~ 410 Ma peak metamorphic ages in Lower/ Middle Allochthon 

amphibolite-facies pelites [Johnston, 2006], these two units must have been juxtaposed prior to or 

during subduction [Young et al., 2007]. Alternatively, these eclogites may be older,for example, 

similar to the eclogites in the Bergen Arc region just south of Figure 1 (~423±4 Ma[Bingen et al., 

2004]). 

[19] Above the brittle-ductile detachments, the base of the upper plate tectonostratigraphy is 

composed of greenschistfacies, and local amphibolite-facies, metasandstones and ophiolitic rocks 

correlated with the Upper Allochthon (Figure 4). Top-W extensional structures within these rocks 

are limited to relatively minor brittle faults; penetrative ductile extensional fabrics are not present. 

The Devonian sedimentary rocks of the Ha˚steinen and Hornelen basins unconformably overlie 

Middle and Upper Allochthon rocks. Provenance work from these basins suggests an Upper and 

Lower/Middle Allochthon source, and the conspicuous lack of (U)HP clasts implies that the WGC had 

not been exhumed to the surface at the time of deposition [Steel et al., 1985; Cuthbert, 1991]. The 

Hornelen Basin’s asymmet-ric scoop shape, and stratigraphy defined by coarsening to fining upward 

sequences, suggests that these basins were opened and tectonically controlled by strike-slip faulting 

[Steel and Gloppen, 1980; Steel et al., 1985] or a combi-nation of an oblique- to strike-slip faulting on 

the north margin with low-angle detachment faulting to the south and east [Norton, 1987; 

Osmundsen and Andersen, 2001]. 

[20] Whereas deformation of the upper plate is limited to brittle extensional structures, consistent 

E-W stretching lineations associated with late Caledonian extension char-acterize the ductile lower 

plate. In the several hundred meters below the WGC–Lower/Middle Allochthon contact, symmetric 

stretching fabrics dominant within the bulkof the WGC are gradually replaced upward by phyllonitic, 

amphibolite-facies mylonites associated with top-W noncoaxial shear along the NSDZ [Young, 2005]. 

These asym-metric mylonites characteristic of the NSDZ, including asymmetric boudins, s and S clasts, 

S-C fabrics and shear bands, deformamphibolite-facies phase assemblages associated with prograde 

garnet growth from~ 425 to 410 Ma [Johnston, 2006], cut the WGC–Lower/Middle Allochthon 

contact, and are pervasively developed throughout the Lower/Middle Allochthon [Wilksand 

Cuthbert,1994;Johnston, 2006]. Muscovite ages ranging from 402 to 396 Ma increase gradually 



 

          

       

       

    

      

       

       

        

        

     

          

     

  

        

  

          

       

       

           

           

          

             

           

         

           

            

  

  

     

   

       

    

       

   

       

  

upward through the WGC into the Lower/Middle 

Allochthon [Chauvet and Dallmeyer,1992; Berry et al., 1995]; older 419–417 Ma ages from the 

structurally highest part of the Lower/Middle Allochthon[Berry et al., 1995] suggest either early 

motion along the NSDZ or incomplete resetting of muscovite during late Caledonian extension. The 

Lower/Middle Allochthon mylonites are cut by a series of brittle-ductile detachments characterized 

by greenschist-facies shear fabrics and pseudotachylites. The Hornelen–Sunnarvik–Standal Fault 

system comprises the uppermost of these brittle-ductile detachment structures and displays 

the largest offsets, placing the lower plate extensional mylonites in direct contact with brittlely 

deformed upper plate rocks. These discrete detachment horizons cut Devonian sedimentary rocks, 

and merge downward into discontinuous higher strain zones within the ductile lower plate; they are 

thought to represent reactivation of the NSDZ through the Early Carboniferous and younger [Eide et 

al., 1997]. Younger E-W striking, brittle normal faults and strike-slip faults cut the mylonitic fabrics as 

well as the brittle-ductile detach-ments [Braathen, 1999]. Whereas the brittle-ductile detach-ments 

and younger brittle faults locally juxtapose tectonostratigraphic units along discrete high-strain zones, 

these structures represent the final stages of exhumation and are temporally and kinematically 

different from earlier ductile structures. 

[21] North of Nordfjord, asymmetric mylonites associated with the NSDZ follow outcrops of the 

Lower/Middle Allochthon to the northeast where the asymmetric fabrics and exposures of the 

Lower/Middle Allochthon merge into the Nordfjord Mylonitic Shear Zone [Labrousse et al., 2004; 

Young et al., 2007]. The Nordfjord Mylonitic Shear Zone, exposed along Nordfjord and the northern 

margin of the Hornelen Basin, consists of dextral shear fabrics that are interpreted to represent a 

south dipping segment of the NSDZ that was folded into an anticline up and over the northern 

WGC[Krabbendam and Dewey, 1998; Labrousse et al., 2004]. North of the Nordfjord Mylonitic Shear 

Zone, increasingly younger muscovite ages ranging from 400 to 385 Ma in HP domains and <385 Ma 

in UHP domains reflect the deeper levels of exhumation achieved in the northern WGC created 

through Late Devonian and younger E-W striking regional folds[Root et al., 2005;Hacker, 2007; Walsh 

et al., 2007]. Although the NSDZ of the southern WGC is not exposed in the northern WGC, we assume 

that similar structures existed but have since been eroded. 

5. Summary of Key Patterns 

[22] In spite of the significant along-strike variation in extensional structures and geologic  

interpretations, the cross section of Figure 1 reveals several unifying patterns:  

[23] 1. The NSDZ is a 2–6 km thick ductile shear zone characterizedbyrelatively evenly 

distributed, pervasively developed, top-W, asymmetric extensional shear fabrics within rocks of all 

tectonostratigraphic levels. This shear zone is not localized along tectonostratigraphic contacts, but is 

instead broadly centered within the Lower and Middle Allochthons. It fades out down section over 

several hundred meters to kilometers into the ductile, symmetric extensional fabrics of the WGC, and 

up section into the allochthonous rocks and Devonian-Carboniferous sedimentary rocks. 



    

    

    

    

      

     

     

    

    

    

      

    

    

      

 

 

    

      

        

       

     

             

   

        

           

        

        

       

        

         

      

      

        

             

        

          

        

          

[24]2. Although some tectonostratigraphic contacts with- in the NSDZ correspond to significant 

breaks in peak metamorphic grade, all tectonostratigraphic units affected by the NSDZ share an 

amphibolite-facies extensional fabric developed at 0.6–1.0 GPa. Asymmetric shear fabrics within the 

NSDZ developed after peak metamorphic conditions, during progressive cooling from amphibolite-

through greenschist-facies conditions; although these fabrics locally overprint older eclogite-facies 

tectonites, asymmetric eclo-gite-facies fabrics are not observed at any structural level. 

[25] 3. Muscovite cooling ages across the Lower/Middle Allochthon–southern WGC contact define 

a continuum, indicating that juxtaposition of the tectonostratigraphic units occurred at temperatures 

above muscovite closure. Abrupt jumps in muscovite cooling ages (identifying a shear zone that 

originally straddled muscovite closure temperatures or signaling upper crustal excision) are found 

only within the upper levels of the asymmetric ductile mylonites of the NSDZ, or are associated with 

discrete brittle-ductile, top-W detachments. These upper crustal detachments cut Devonian 

sedimentary rocks and drop brittlely deformed upper plate rocks of varying tectonostratigraphic 

level down onto top-W ductile fabrics, and represent only relativelyminor, final stages of (U)HP 

exhumation and motion along the NSDZ. 

6. Discussion 

6.1. Problems With Existing Models 

[26]This compilation of structural, thermobarometric and geochronologic data along the 200-km 

strike of the NSDZ reveals previously unrecognized patterns and new structural relationships that 

force a reinterpretation of the exhumation of Norwegian(U)HP rocks and the role of the NSDZ 

therein. In particular,the regional patterns recognized here highlight problems with single-stage 

exhumation models [Hacker et al., 2003; Labrousse et al., 2004; Hacker, 2007] that suggest 

continuous normal-sense shear from mantle through crustal levels along reactivated subduction-

related thrusts. Although asymmetric eclogite-facies fabrics are present locally [Engvik and 

Andersen, 2000; Foreman et al., 2005] and may have been more widespread prior to overprinting 

by amphibolite-facies fabrics, the lack of eclogite-facies top-W fabrics suggests that the NSDZ was 

not involved in exhumation of the (U)HP rocks through the mantle but instead was initiated at 

amphibolite-facies con-ditions near the base of the crust. Further,the single-stage models do not 

provide a mechanism for the regionally consistent 0.6–1.0 GPa metamorphic overprint that 

affected rocks of different tectonostratigraphic levels and temporally different exhumation paths. 

Models that require abrupt breaks in metamorphic grade along tectonostratigraphic contacts as 

detachment horizons within the NSDZ [Andersen and Jamtveit, 1990; Krabbendam andDewey, 

1998] are also problematic. Amphibolite- through greenschist-facies asymmetric shear fabrics, 

which define the bulkof the NSDZ, are not localized along tectonostratigraphic contacts, but occur 

primarily structurally above the largest metamor-phic break,the contact between the WGC and the 

Lower/ Middle Allochthon. In addition, the presence of similar amphibolite-facies mylonites that 

cut across tectonostrati-graphic contacts within the NSDZ, indicates that these different units were 

juxtaposed prior to the onset of dis-placement along the NSDZ. Finally, models that place the NSDZ 



      

           

   

      

         

         

 

    

       

         

      

    

        

          

    

        

       

       

         

        

         

      

          

     

       

       

         

       

             

       

        

      

   

        

        

        

        

           

along brittle-ductile detachments that separate lower plate mylonites from upper plate brittle 

structures [Norton, 1987; Se´ranne and Se´guret, 1987; Fossen and Rykkelid, 1992;Milnes et al., 

1997] are oversimplified. Although discrete detachment horizons throughout the area juxtapose 

brittle upper crustal rocks against mylonites and high-grade metamorphic rocks, these 

detachments are late, brittle-ductile structures that account for relatively minor upper crustal 

excision, and need to be differentiated from earlier, broad ductile shear zones developed under 

amphibolite-facies conditions. 

6.2. A New Model for the Nordfjord-Sogn Detachment Zone 

[27] We propose that the structures that have previously been grouped together as a single top-W 

mylonitic shear zone must be subdivided into multiple, distinct structures active at different depths 

and times(Figure 5). Juxtaposition of the (U)HP rocks with upper crustal metamorphic rocks and 

Devonian-Carboniferous sedimentary rocks across the NSDZ in the southern Western Gneiss Region 

is the result of sequential deformation along these structures. In the first stages of exhumation 

(possibly triggered by break-off of the subducting mantle lithosphere and the end of Caledonian 

contraction) the (U)HP Baltica Autochthon was exhumed through the mantle and juxtaposed with the 

Lower/Middle Allochthon against the Upper Allochthon at the base of the crust by 405–400 Ma 

(Figures 5a and 5b). Other than the sharp tectonostratigraphic contacts and the abrupt metamor-phic 

breaks observed within the NSDZ, the structures responsible for this mantle exhumation are subtle 

and were significantly overprinted during subsequent exhumation through the crust. Possible 

mechanisms for this mantle exhumation include diapiric rise, orogen-wide pure shear extension, slab 

roll-up, or wedge extrusion, buoyancy-driven processes that may have exhumed (U)HP continental 

material through the mantle but that became inactive upon arrival of the deeply subducted 

continental crust at the Moho. Here we follow Walsh and Hacker [2004] and suggest that mantle 

exhumation began when relatively weak subducted continental crust delaminated from the down-

going Baltican mantle lithosphere, and rapidly ascended along the subduction interface before stalling 

at the upper plate Moho(Figure 5b). This model is compatible with analogue models that show that 

failure in subducted conti-nental crust is likely near the base of the crust [Chemendaet al., 1996, 

2000] and with metamorphic petrology from the WGC that indicates that large volumes of subducted 

Baltica margin remained intact during exhumation [Hacker, 2007; Young et al., 2007]. However, the 

structures associated with this first stage of exhumation remain elusive, and the mechanisms 

responsible for mantle exhumation demand further work. It is also probable that some of the breaks 

in metamorphism are the result of early Scandian thrust juxtaposition of different 

tectonostratigraphic units, and disequilibrium during subsequent Caledonian subduction. 

[28] Following mantle exhumation, temporary ponding of the Baltica Autochthon and the 

Lower/Middle Allochthon at the Moho permitted the development of the regional 0.6– 1.0 GPa 

metamorphic overprint [Walsh and Hacker, 2004]. This ponding significantly thickened the crustal 

column through the addition of the hot and radiogenic (U)HP crustal sequence to the base of the 

upper plate, and resulted in a large lateral gravitational potential energy gradient and a low-viscosity 



      

      

    

        

       

       

      

          

           

         

       

    

     

  

    

    

     

    

    

  

    

     

      

       

     

      

   

        

   

 

         

          

        

       

         

      

        

        

crustal section that drove widespread Caledo-nian extension. Noncoaxial shear along the NSDZ was 

initiated during 0.6–1.0 GPaamphibolite-facies metamor- phism as a top-W shear zone broadly 

centered within the Lower/Middle Allochthon, perhaps because their quartzofeldspathic 

sedimentary rocks acted as a weak layer between the cold Upper Allochthon and the massive Baltica 

autochthon (Figures 5b and 5c). Ductile deformation that developed within this top-W shear zone 

completely over printed earlier deformation related to mantle exhumation of these rocks. During 

progressive extension, amphibolitefacies mylonites within the NSDZ were succeeded by greenschist

facies mylonites and rapidly exhumed through muscovite closure by 400–395 Ma. In the final stages 

of top-W shearing and crustal exhumation, after 395 Ma and into the Early Carboniferous, brittle-

ductile detachments that soled into the mylonitic shear zone (the Solund Fault, Dalsfjord Fault and 

the Hornelen Detachment) were reactivated, cutting the Devonian basins and dropping them onto 

top-W mylonitic rocks of varying tectonostratigraphic levels (Figure 5d). 

[29] Application of this model to UHP orogens world- wide highlights significant limitations and 

important differences between syncontractional and late to postcontractional exhumation of UHP 

rocks. In particular,the proposed model does not provide a viable mechanism for multiple UHP 

events[Brueckner and van Roermund, 2004] or syncontractional exhumation of relatively 

thin(<1km) UHP nappe sheets (e.g., Kokchetav[Maruyama and Parkinson, 2000]). During 

syncontractional UHP exhumation, uninterrupted subduction of the mantle lithosphere may 

conductively cool strong ascending UHP slabs, which could then be exhumed into the upper crust via 

a combina-tion of basal thrusting and passive normal-sense roof faults. Continued subduction of 

mantle lithosphere could also drive further shortening, which could ultimately lead to (U)HP 

subduction of progressively inboard continental crust. In contrast, near the end of contraction and 

after break-offof the mantle lithosphere, the driving force behind collision, subduction, and 

conductive cooling is eliminated, and a much hotter and weaker ascending UHP bodymay be trapped 

at the base of the lower crust. This underplating may initiate orogen-wide extension, ultimately 

exhuming an areally extensive and thick UHP bodyinto the upper crust. While the model presented 

here does not apply to syncontractional UHP exhumation, our model for the evolution of the NSDZ 

can be directly applied to large UHP provinces exhumed near the end of the orogenic cycle (e.g., 

Dabie-Sulu [Ratschbacher et al., 2006]). 

7. Conclusion 

[30] The NSDZ is one of the largest extensional detach-ments on Earth. In order to arrive at a 

coherent model of the evolution and effects of this structureon the exhumation of (U)HP rocks in 

western Norway, we have evaluated previ-ous descriptions and interpretations from all parts of the 

NSDZ. The patterns developed along strike beneath the Devonian basins of western Norway suggest 

that the NSDZ can be divided into three types of structures that sequen-tially overprinted and 

excised earlier stages of deformation: (1) early structures not specified in this paper that juxta

posed various tectonostratigraphic units near the base of the crust; (2)amphibolite- through 

greenschist-facies, top-W mylonitic fabrics of the NSDZ developed at crustal depths; and (3) late 



      

     

          

         

     

       

           

        

   

            

           

            

        

    

 

 

          
   

 
         

           
 

 
              

     
 

             
             

  
 

          
           

   

           
            

    
 

             
            

 

brittle-ductile detachment faults that partially excised the higher temperature mylonites and led to 

the final juxtaposition of lower crustal rocks with the base of the Devonian-Carboniferous basins. 

[31] It is probable that the NSDZ originally continued farther north above the UHP domains, and 

has since been removed through erosion. The model proposed here diverges significantly from 

earlier models that suggested continuous normal-sense displacement along the NSDZ from mantle 

through crustal levels, and others that sug-gested crustal-scale displacement along discrete 

detachment horizons within the NSDZ. Here, we infer that the (U)HP rocks were exhumed in three 

structurally unique, overprint-ing stages consistent with the marked differences in styles of 

deformation, cooling ages and metamorphic conditions observed along strike of the NSDZ. 
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Muscovite cooling ages shown in white boxes, given in Ma, are from Chauvet and Dallmeyer [1992];
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Figure 5. Schematic west-east cross sections illustrating three individual structural regimes active
within the NSDZ that cumulatively exhumed the (U)HP provinces of western Norway. (a) Geometry at

the height ofcollision. (b) Mantle exhumation, shown here as a weak (U)HP body delaminating from the

mantle lithosphere near the base of the crust and underplating the overriding plate (contacts shown with

heavy red lines). Early, ductile, top-W displacement along the NSDZ is initiated (shown with wavy fill

pattern). (c) Orogen-wide extension: widespread lower crustal stretching and top-W ductile displacement

within the NSDZ. (d) Brittle-ductile detachment faults (shown with heavy yellow lines) progressively

exhume and excise earlier top-W fabrics developed within the NSDZ.


