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Abstract. We establish local and global existence results for Boussinesq
type equations on a circle, employing Fourier series and a fixed point argu-
ment.

0. Introduction and Main Results.

In the present work, we want to consider the question of existence and

uniqueness of solutions for Boussinesq type equations

(0.1) utt − uxx + uxxxx + ∂2
xf(u) = 0, x ∈ T, t ∈ R,

where T is the unit circle and f(u) is a polynomial of u and |u|, under minimal

regularity assumptions on the initial data prescribed at time t = 0,

(0.2) u(0, x) = u0(x), ut(0, x) = u1(x).

Equations of this type, but with the opposite sign in the fourth derivative,

were originally derived by Boussinesq [Bo] in the context of water waves.

Zakharov [Z] proposed equation (0.1) as a model of a nonlinear string. Falk

et al derived an equation which is equivalent to (0.1) in their study of shape-

memory alloys, see [FLS]. In fact, the equation studied in [FLS] is of the

following type

(0.3) ett − gexx + exxxx + ∂2
xf(e) = 0,
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where g is a constant, e = ux is the strain and f(e) = 4e3 − 6e5. In general

however f(e) contains a term of the form exp(γe2). McKean studied the

complete integrability of the good Boussinesq equation on a circle, see [M].

An interesting observation connecting the Kadomstev-Petviashvili equation

with the Boussinesq equation is the following. For the KP equation

(0.4) (ut + uxxx + uux)x + uyy = 0,

consider waves that move in the x direction, i.e. u(t, x, y) = v(x− ct, y) and

denote ξ = x− ct, thus the KP equation is reduced to

(0.5) vyy − cvξξ + vξξξξ + ∂2
ξ (u2/2) = 0,

which is (0.1) with f(u) = u2/2, and the time variable is now played by the

y direction, see [HP].

Equation (0.1) has certain features that are interesting, the linear equation

(0.6) utt − uxx + uxxxx = 0

has solutions that are periodic in space but only aperiodic in time. By this

we mean that the function is a linear combination of functions with different

non integer periods. Also in contrast to the equation on the real line, i.e.

x ∈ R, there is no dispersion and no decay in the time variable.

On the other hand, equation (0.1) can be written as a Hamiltonian system

as follows

(0.7)
{

ut = vx,

vt = ux − uxxx − ∂xf(u).

The above equation conserves the energy, namely the integral

(0.8) E =
1
2

∫

T
[v2 + u2 + u2

x − 2F (u)]dx,

where F ′ = f and F (0) = 0, does not depend on the time t. Another

conserved quantity is the momentum

(0.9) I =
∫

T
uvdx
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which turns out to be a relevant quantity in the investigation of stability

properties of traveling waves. The conservation of energy can lead to global

existence if it is positive definite. However if it is not positive definite, then

it is possible to show blow-up in finite time, see [S] and [KL].

Sachs in [S] proved that the “good” Boussinesq equation, which is the

equation (0.1) with f(u) = u2, ( the energy E is indefinite in this case ),

has solutions that can only exist for finite time for certain initial data ( also

see [KL]). The same method applies to equation (0.1) to show that solutions

blow-up if the energy is indefinite. Liu extended and refined the blow-up

results in [S], see [L]. Some local and global results of the Boussinesq type

equation on the real line were shown by F. Linares [Ln].

It was shown by Zakharov, [Z], that the Boussinesq equation, which agrees

with (0.1) for f(u) = u2 and with the opposite sign in the fourth derivative

term has infinitely many conservation laws and is formally completely in-

tegrable. Using the same method, one can show that equation (0.1) is also

formally completely integrable. McKean developed a rigorous theory of com-

plete integrability for the good Boussinesq equation on a circle.

The fact that Boussinesq type equations have solitary wave solutions has

been studied by many authors, see Bona & Sachs [BS], Alexander & Sachs

[AS] and Liu [L]. Solitary waves of (0.1) are traveling wave solutions of the

form

(0.10) u(x, t) = ϕ(ξ) = ϕ(x− ct),

where c is the speed of the wave and satisfy the ordinary differential equation

(0.11) ϕ′′ = (1− c2)ϕ− f(ϕ); ′ =
d

dξ
,

with appropriate boundary conditions. The quantity

(0.12) (ϕ′)2 − (1− c2)ϕ2 + 2F (ϕ)

is a quadrature and enables us to determine the conditions on F (·) so that

equation (0.1) possesses solitary waves, e.g. f(u) = ±u2, f(u) = |u|p−1u if
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|c| < 1 and p > 1, f(u) = λ|u|q−1u − |u|p−1u for certain values of λ ∈ R+

and 1 < q < p, . . . etc.

The outline of the paper is as follows, we first establish the local existence

of solutions. The main ingredient in the proof is an a priori estimate inspired

by recent work of J. Bourgain, see [B1] and [B2], and it can be understood

as a multiplier estimate on the set R × Z, ( dual variables in the Fourier

transform), where Z is the one dimensional lattice. The proof which we

present in chapter 2 is somewhat different from the one in [B1] and we

believe it is more transparent. The proof relies on an idea of Zygmund [Zy]

and reduces to a counting argument. Related previous arguments in the

continuous case can be found in [Fe] and [CS].

Once the local existence is proved, the time interval of existence and the

size of the initial data are reciprocal, so that the maximal existence time,

Tmax, can be finite. On the other hand, to prove global existence, we can

use the conservation of energy. This is one of the motivations for the local

existence under minimal regularity assumptions on the initial data. The

other motivation is related to the construction of invariant measures in the

space of solutions.

The main theorems proved in this paper are stated below.

Theorem 0.1. (Local Existence and Uniqueness) Assume that the initial

data (0.2) satisfy u0 ∈ Hs, u1 ∈ H−2+s with 0 ≤ s ≤ 1. Assume also that

|f(u)| ≤ C|u|p and the p and the s satisfy

(0.13)

{
p ≤ p(s) = 3−2s

1−2s , if 0 ≤ s < 1
2 ;

p < +∞ if 1
2 ≤ s.

Then equation (0.1) has a local unique solution.

Theorem 0.2. (Global Existence) Assume that the initial data of problem

(0.1) satisfy u(0, x) ∈ H1, ut(0, x) ∈ H−1. Let f(u) = λ|u|q−1u − |u|p−1u

and 1 < q < p, for any λ ∈ R. Then a unique solution of (0.1) exists for all

time. The solution has the same regularity as the local solution and belongs

to L4(Rloc × T).

In general we would like to consider (0.1) with different periods. If u(t, x)
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is periodic in x with period L, then calling µ = 2π/L and rescaling in space-

time, t → µt and x → µx, we obtain the equation

(0.14) utt − uxx + µ2uxxxx + ∂2
xf(u) = 0, (t, x) ∈ R× T.

The methods and the corresponding results for equation (0.14) are of course

completely analogous to those of equation (0.1). It is interesting however

to see how the a priori estimate and the time of existence are influenced by

µ = 2π/L.

1. Local and Global Existence.

Throughout the rest of this paper, we will consider functions of two vari-

ables, g(t, x) with t ∈ R the time variable and x ∈ T the space variable. We

will denote by g̃ the Fourier transform of the function g with respect to the

space variable and by ĝ the Fourier transform of the function g with respect

to both the space variable and the time variable, i.e.

g̃(t, ξ) =
∫

T
e−ixξg(t, x)dx and ĝ(τ, ξ) =

∫

R

∫

T
e−i(xξ+tτ)g(t, x)dxdt.

We will also use the following notation

(1.1)
{

ω(ξ) =
√

ξ2 + ξ4,

S = ||τ | − ω|+ 1

and the negative Sobolev space H−k(T) with norm defined as follows.

Definition. H−k(T) is the space of periodic functions u(x) with norm

‖u‖H−k =


∑

ξ∈Z

|û(ξ)|2
(1 + |ξ|2)k




1
2

.

Remark. Notice that the space L1(T) is contained in the space H−k(T) for

all k > 0.
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Our first step is to write the solution of equation,

(1.2a) utt − uxx + uxxxx = g(t, x),

in integral form using Fourier series. The solution can be written as follows.

u(t, x) = tû1(0) + û0(0) +
∑

ξ 6=0

eixξ

(
sin tω

ω
û1(ξ) + cos tωû0(ξ)

)

+
∑

ξ 6=0

eixξ

∫ t

0

[ sin(t− s)ω
ω

g̃(s, ξ)
]
ds,

(1.2b)

where g(t, x) = −∂2
xf(u) corresponding to equation (0.1). Observe that

g(t, x) has average zero, i.e. g̃(t, 0) = 0. The solution (1.2) can be split into

the linear and nonlinear parts

(1.3)

{
U(t, x) =

∑
ξ 6=0 eixξ

(
sin tω

ω û1(ξ) + cos tωû0(ξ)
)

+ tû1(0) + û0(0),

V (t, x) =
∑

ξ 6=0 eixξ
∫ t

0

[
sin(t−s)ω

ω g̃(s, ξ)
]
ds.

The idea of the proof of local existence is to consider the nonlinear map

(1.2) and prove that it is a contraction in the appropriate space. The right

space in this case is dictated by the equation and it is expressed in the dual

variables with the norm

(1.4) N(u) = ‖S 1
2 û‖L2(R×Z),

see (1.2). The idea to use the contraction principle with norms like (1.4)

is due to Bourgain. However this is not essential for the construction here,

alternatively one can use the norm ‖u‖L4(Rloc×T), instead of N(u). The

heuristic idea of the norm is that one can formally takes Fourier transform

over the space and time variables on the both sides of (1.2a) to have

(τ2 − ω2)û(τ, ξ) = ĝ(τ, ξ).

Then one can get

(|τ | − ω)
1
2 û(τ, ξ) =

ĝ(τ, ξ)
(|τ | − ω)

1
2 (|τ |+ ω)
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ξ

τ

τ−ω=0

τ+ω=0

qτ+ω=

pτ−ω=

Fig 1. The level curves of |τ | ± ω.

and take the L2 norm on both sides.

Observe that the linear part of the solution, U(t, x), is only aperiodic in

time, for this reason we have to localize it in time using a cutoff function

ψ(t) which is identically one if |t| ≤ 1 and identically zero if |t| > 2. Denote

by ψδ(t) = ψ(t/δ) its dilation.

In order to handle the term V , see (1.3), consider first the linear equation

(1.5)
{

utt − uxx + uxxxx = g,

u(0, x) = 0, ut(0, x) = 0.

Assume that g̃(t, 0) = 0 for all t. The solution of (1.5), compare with the

expression for V (t, x) in (1.3), can be rewritten as follows

−2u(t, x) =
∑

ξ 6=0

(ei(xξ+tω)

ω

∫

R

eit(τ−ω) − 1
τ − ω

ĝ(τ, ξ)dτ

− ei(xξ−tω)

ω

∫

R

eit(τ+ω) − 1
τ + ω

ĝ(τ, ξ)dτ
)
.

(1.6)
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We want to use cutoff functions to decompose the integrals into parts

near and far off the level curves of τ ± ω, see figure 1. For this reason, let

us introduce a smooth function â and denote b̂ = 1− â. Assume that â has

support in |τ | < 2R and is identically 1 for |τ | < R. The solution of (1.5)

can be decomposed in the following manner

(1.7) u(t, x) = Ψ(t, x) + F (t, x),

where

(1.8) F̂ =

(
b̂(τ − ω)
τ − ω

− b̂(τ + ω)
τ + ω

)
ĝ

ω

and

(1.9) Ψ = Ψ1 + Ψ2,

with Ψ1 and Ψ2 given by the expressions

(1.10a)

Ψ̂1(τ, ξ) =
−δ(τ − ω)

ω

∫
b̂(λ− ω)
λ− ω

ĝ(λ, ξ)dλ +
δ(τ + ω)

ω

∫
b̂(λ + ω)
λ + ω

ĝ(λ, ξ)dλ

and

(1.10b) Ψ̂2(τ, ξ) =
∞∑

k=1

[δ(k)(τ − ω)Ĝ−k (ξ) + δ(k)(τ + ω)Ĝ+
k (ξ)].

The quantities Ĝ±k (ξ) are

(1.11) Ĝ±k (ξ) =
ik(2R)k−1

ωk!

∫
(
τ ± ω

2R
)k−1â(τ ± ω)ĝ(τ, ξ)dτ,

where the expressions Ĝ±k (ξ) are obtained by expanding in power series the

expression ei(τ±ω)t − 1, see (1.6). Call

(1.12) uδ(t, x) = ψδ(t)Ψ(t, x) + F (t, x)

and we have the following theorem.
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Theorem 1.1. For uδ given in (1.12) and for 0 < ε < 1, the following

estimate holds

(1.13) ‖S 1
2 ûδ‖L2(R×Z) ≤ Cδ

ε
2

∥∥∥∥
ĝ

ωS
1−ε
2

∥∥∥∥
L2(R×Z)

.

Proof . Straightforward calculations and Hölder’s inequality give the follow-

ing bound for the term F

(1.14) ‖S 1
2 F̂‖L2(R×Z) ≤

C

R
ε
2

∥∥∥ ĝ

ωS
1−ε
2

∥∥∥
L2(R×Z)

.

Since Ψ1,2 consists of the delta function and its derivatives, we need to lo-

calize them in the t variable. Thus consider the convolution of S
1
2 Ψ̂ and the

Fourier transform of a smooth cutoff function ψδ(t) = ψ(t/δ), and observe

first that

ψ̂δ ∗ (S
1
2 Ψ̂) = ψ̂δ ∗ Ψ̂.

Now for the expression S
1
2 (ψ̂δ ∗ Ψ̂) we have

‖S 1
2 (ψ̂δ ∗ Ψ̂1)‖L2(R×Z) ≤

( ∫
(|τ |+ 1)

∣∣∣ψ̂δ(τ)
∣∣∣
2

dτ
) 1

2 ·
(∥∥∥

∫
b̂(λ− ω)
λ− ω

ĝ

ω
dλ

∥∥∥
L2(Z)

+
∥∥∥

∫
b̂(λ + ω)
λ + ω

ĝ

ω
dλ

∥∥∥
L2(Z)

)

≤ C(ψ)
∥∥∥ b̂(λ)(|λ|+ 1)

1−ε
2

λ

∥∥∥
L2(R)

∥∥∥ ĝ

ωS
1−ε
2

∥∥∥
L2
≤ C(ψ)

R
ε
2

∥∥∥ ĝ

ωS
1−ε
2

∥∥∥
L2(R×Z)

.

For the term Ψ2, since

‖(|τ |+ 1)
1
2 t̂kψδ‖L2(R) ≤ C(ψ)(2δ)k

and

‖Ĝ±k ‖L2(Z) ≤ C
(2R)k−1

k!
R1− ε

2

∥∥∥ ĝ

ωS
1−ε
2

∥∥∥
L2(R×Z)

,

we get

‖S 1
2 ψ̂δ ∗ Ψ̂2‖L2(R×Z) ≤

∑

k

‖(|τ |+ 1)
1
2 t̂kψδ‖L2(R)(‖Ĝ−k ‖L2(Z) + ‖Ĝ+

k ‖L2(Z))

≤ C(ψ)
e4RδRδ

R
ε
2

∥∥∥ ĝ

ωS
1−ε
2

∥∥∥
L2(R×Z)

.
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Combining the estimates for Ψ1, Ψ2, we have the estimate for Ψ

(1.15) ‖S 1
2 ψ̂δ ∗ Ψ̂‖L2(R×Z) ≤ C

e4Rδ

R
ε
2

∥∥∥ ĝ

ωS
1−ε
2

∥∥∥
L2(R×Z)

.

Now choose δ = 1
R and this completes the proof. ¤

Now we can state the local existence theorem. For simplicity, assume first

that u0 ∈ L2, u1 ∈ H−2 and then we will describe the modification needed

in the proof of Theorem 0.1.

Theorem 1.2. Consider the problem

(1.16)
{

utt − uxx + uxxxx + ∂2
xf(u) = 0,

u(0, x) = u0(x), ut(0, x) = u1(x).

Assume that the initial data u0 and u1 satisfy u0 ∈ L2(T) and u1 ∈ H−2(T).

Let |f(u)| ≤ C(|u|q + |u|p), 1 < q < p ≤ 3. Then equation (1.16) has a

unique weak solution for t ∈ [−δ, δ], where δ depends on the initial data.The

solution for each fixed time t, 0 < t < δ, has same regularity as initial data

and belongs to L4(R(0,δ) × T).

The proof consists of a fixed point argument and an a priori estimate

involving Fourier multipliers on the set R × Z. The a priori estimate is

stated in the next Theorem.

Theorem 1.3. Let f(t, x) be a function with (t, x) ∈ R × T and denote by

f̂(τ, ξ) its Fourier transform, with (τ, ξ) ∈ R × Z. The following estimates

hold

(1.17a) ‖f‖L4(R×T) ≤ C‖(||τ | − ω(ξ)|+ 1)
3
8 f̂‖L2(R×Z)

and its dual

(1.17b)
∥∥∥ f̂

(||τ | − ω(ξ)|+ 1)
3
8

∥∥∥
L2(R×Z)

≤ C‖f‖
L

4
3 (R×T).

The proof of Theorem 1.3 will be given in the next section.
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Proof of Theorem 1.2. The linear part of (1.16), i.e. U(t, x) can be

written

tû1(0)+û0(0)+
∑

ξ 6=0

(ei(xξ+tω) − ei(xξ−tω)

2iω
û1(ξ)+

ei(xξ+tω) + ei(xξ−tω)

2
û0(ξ)

)
,

from which we can obtain the estimate

(1.18) ‖S 1
2 ψ̂δ ∗ Û‖L2(R×Z) ≤ C(ψ)

(
‖u1‖H−2 + ‖u0‖L2

)
.

Call

D = C(ψ)
(
‖u1‖H−2 + ‖u0‖L2

)
,

which is a constant depending only on the initial data.

Now consider the map T defined by

(1.19) Tu(t, x) = ψδ(t)U(t, x) + ψδ(t)Ψ(t, x) + F (t, x).

Notice that (Tu)x = Tux. We want to show that T is a contraction under

the norm

N(u) = ‖S 1
2 û‖L2(R×Z).

Without loss of generality, we may assume that f(u) = |u|p−1u. Combining

Theorems 1.1 and 1.3 and the estimate for U , we have, for ε = 1
4 ,

N(Tu) ≤ C(D) +
C

R
ε
2

∥∥∥ f̂

S
1−ε
2

∥∥∥
L2(R×Z)

≤ C(D) +
C

R
ε
2
‖|u|p‖

L
4
3 (R×T)

≤ C(D) +
C

R
ε
2
‖u‖p

L4(R×T) ≤ C(D) +
C

R
1
8
N(u)p.

(1.20)

By choosing sufficiently large M , we have, for suitable δ and R,

(1.21) N(u) ≤ M =⇒ N(Tu) ≤ M,

provided that the following condition holds

C(D) +
C

R
1
8
Mp ≤ M.
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Notice that in the estimate (1.15) we make the choice δ ∼ 1
R . This implies

the time interval of existence δ is small if the quantity R is large.

Next, consider the difference Tu− Tv and denote

(1.22) u = Φ + Ψu + Fu, v = Φ + Ψv + Fv.

Elementary calculations and the inequality

(1.23)
∣∣∣|u|p−1u− |v|p−1v

∣∣∣ ≤ C(|u|p−1 + |v|p−1)|u− v|,

give

(1.24) N(Tu− Tv) ≤ C

R
1
8

(
N(u)p−1 + N(v)p−1

)
N(u− v).

Therefore, again for suitable δ and R, we obtain

N(Tu− Tv) ≤ 1
2
N(u− v),

provided that
C

R
1
8

(
Mp−1 + Mp−1

) ≤ 1
2

which can be satisfied by choosing R large for given M . This proves that

the map T is a contraction with respect to the norm N(u), hence it has a

unique fixed point. ¤

The above theorem proves that a unique solution exists for finite time. In

order to prove that the solution persists for all time, it is necessary to control

the L2-norm over the space variable for each fixed time. The norm

(1.26) Q(u) = sup
t
‖u(t, ·)‖L2

can be estimated as follows. Assume for simplicity that f(u) = |u|p−1u and

ε = 1
4 , the term F in (1.8) can be estimated as follows

‖F (t, ·)‖2L2(T) = ‖F̃ (t, ·)‖2L2(Z) ≤
∑

ξ

(∫ ∣∣∣ b̂(τ − ω)
τ − ω

− b̂(τ + ω)
τ + ω

∣∣∣ξ
2|f̂ |
ω

dτ

)2

≤
∑ ∫ ∣∣∣ b̂(τ − ω)

τ − ω
− b̂(τ + ω)

τ + ω

∣∣∣
2

S1−εdτ

∫
ξ2|f̂ |2
ω2S1−ε

dτ

≤ C

Rε

∥∥∥ f̂

S
1−ε
2

∥∥∥
2

L2(R×Z)
.

(1.27a)
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For Ψ in (1.10), we have

‖Ψ1(t, ·)‖2L2(T) = ‖Ψ̃1(t, ·)‖2L2(Z)

≤ C
∑

ξ

(∫
b̂2(τ − ω)
(τ − ω)2

S1−εdτ +
∫

b̂2(τ + ω)
(τ + ω)2

S1−εdτ

) ∫ |ξ2f̂ |2
ω2S1−ε

dτ

≤ C

Rε

∥∥∥ f̂

S
1−ε
2

∥∥∥
2

L2(R×Z)

(1.27b)

and

‖Ψ2(t, ·)‖L2(T) = ‖Ψ̃2(t, ·)‖L2(Z) ≤
∑

k

tk(‖Ĝ−k ‖L2(Z) + ‖Ĝ+
k ‖L2(Z))

≤ C
∑ (2Rt)k

k!2R
R1− ε

2

∥∥∥ ξ2f̂

ωS
1−ε
2

∥∥∥
L2(R×Z)

≤ C
e2Rt

R
ε
2

∥∥∥ f̂

S
1−ε
2

∥∥∥
L2(R×Z)

.

(1.27c)

For U , see (1.3), we have

‖U(t, ·)‖L2(T) = ‖Ũ(t, ·)‖L2(Z) ≤ C(‖u1‖H−2 + ‖u0‖L2).
(1.27d)

Combining the above results we get the estimate

‖u(t, ·)‖L2(T) ≤ D + C
e2Rt

R
ε
2

∥∥∥ f̂

S
1−ε
2

∥∥∥
L2(R×Z)

≤ D + C
e2Rt

R
1
8

N(u)p.

(1.28)

However, the L2-estimate we have for u(t, ·) in (1.28) is not sufficient to

show global existence. Choosing R large, δ ∼ 1/R and 1
2M ≡ D so that

N(u) ≤ M , we obtain

(1.29) ‖u(t, ·)‖L2(T) ≤
1
2
M +

Ce2Rt

R1/8
Mp.

This only leads to finite time of existence. At each step we argue the local

existence, the time period of existence δn is of the order of 1/Rn and Rn ≥
(2CMp−1

n )8. Using (1.29), we find that the bound on the norm N(u) increases

exponentially, i.e.

(1.30)
1
2
Mn+1 ≤ (

1
2

+
Ce2RnδnMp−1

n

R
1
8
n

)Mn ≤ 2nM0.
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Hence the maximum time period of existence can be estimated by

(1.31) Tmax =
∑

n

δn ∼
∑ 1

Rn
∼ C

M
8(p−1)
0

∑ 1
[28(p−1)]n

.

In fact equation (1.16) can blow up in finite time, see [KL], [S] and [L2].

However, if the energy is positive or semipositive definite, one expects a

global solution. This implies that we need the initial data in H1 to have a

solution for which the energy is well-defined. On the other hand, in order

to be able to prove an analog of Theorem 1.2 for general p > 1, it is also

necessary to raise the regularity of initial data.

Before proving a global result, we prove the following theorem.

Theorem 1.4. Assume that the initial data in (1.16) satisfy u0 ∈ Hs, u1 ∈
H−2+s with 0 ≤ s ≤ 1. If |f(u)| ≤ C|u|p and p is an integer, then equation

(1.16) has a local unique solution for

(1.32)

{
p ≤ p(s) = 3−2s

1−2s , if 0 ≤ s < 1
2 ;

p < +∞ if 1
2 ≤ s.

Remark. Notice that s = 1
4 gives p(s) = 5, see [FLS], where f(u) = 4u3 −

6u5; on the other hand, there is no restriction on p if s ≥ 1/2. This is to

be expected since H
1
2 can be embedded into Lp for any p < +∞. Notice

that u0 ∈ H
1
2 and u1 ∈ H− 3

2 will give a local weak solution such that the

momentum

(1.33) I =
∫

T
uvdx

is well defined and conserved for all time.

To prove the theorem we need a lemma for the chain rule and Leibniz’s rule

for fractional derivatives. In particular, we need the following proposition

from [CW].

Proposition 1.5. (Christ & Weinstein) Suppose that F ∈ C1(C), s ∈ (0, 1),

1 < p, q, r < ∞, and r−1 = p−1 + q−1. If u ∈ L∞(R), Dsu ∈ Lq, and

F ′(u) ∈ Lp, then Ds(F (u)) ∈ Lr and

(1.34) ‖DsF (u)‖r ≤ C‖F ′(u)‖p‖Dsu‖q.
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Let s ∈ (0, 1), 1 < r, p1, p2, q1, q2 < ∞, and suppose r−1 = p−1
i + q−1

i , for

i = 1, 2. Suppose that f ∈ Lp1 , Dsf ∈ Lp2 , g ∈ Lq2 , Dsg ∈ Lq1 . Then

Ds(fg) ∈ Lr and

(1.35) ‖Ds(fg)‖r ≤ C‖f‖p1‖Dsg‖q1 + ‖g‖q2‖Dsf‖p2 .

Proof of Theorem 1.4. We will only give an outline of the proof. Let

(1.36) ∂su(t, x) = F−1{|ξ|sû(τ, ξ)},

where F−1 is the inverse Fourier transform in the t, x variables. We want to

estimate the nonlinear terms using the norms

(1.37) N(u) = ‖S 1
2 û‖L2 and Q(u) = sup

t
‖F−1(|û|)(t, ·)‖L2 .

Estimate (1.17) in Theorem 1.3 implies that ‖u‖L4 ≤ CN(u). On the other

hand, Sobolev’s inequalities give

(1.38)
(∫ ( ∫

|u| 4
1−4s dx

)1−4s

dt
) 1

4 ≤ CN(∂su),

(1.39) sup
t

( ∫
|u| 2

1−2s dx
)
≤ C

(
sup

t
‖∂su(t, ·)‖L2

) 2
1−2s

.

For the linear Boussinesq equation

(1.40) (∂su)tt − (∂su)xx + (∂su)xxxx = h,

we have estimates like (1.13) and (1.28) combined with (1.17b) for N(T∂su)

and Q(T∂su), these imply

(1.41) N(T∂su) + Q(T∂su) ≤ C +
C

R
1
8
‖ ĥ

ωS
3
8
‖L2 ≤ C +

C

R
1
8
‖F−1

( ĥ

ω

)
‖

L
4
3
,

where R can be arbitrarily large.

In the point of view of (1.34), the nonlinear term of (1.16) after taking s

derivatives is essentially like

(1.42) h = ∂xx(up−1∂su)
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( see [KPV] or [CW]).

Using the fact that N(F−1(|û|)) = N(u) and Hölder’s inequality, the L
4
3

norm of up−1∂su can be estimated as follows.
∫∫

|F−1(|û|)|(p−1) 4
3 |v| 43 dxdt

≤ C
( ∫ ∫

|F−1(|û|)|2p−2dxdt
) 2

3
( ∫ ∫

|v|4dxdt
) 1

3
.

The second term on the right hand side is bounded by
[
N(∂su)

] 4
3
. For the

first term on the right hand side, we consider the integral over the x variable

first, then write 2p− 2 = 4 + 2(p− 3) and use Hölder’s inequality to get

( ∫
|F−1(|û|)|4|F−1(|û|)|2(p−3)dx

)

≤
( ∫

|F−1(|û|)| 4
1−4s dx

)(1−4s)

·
( ∫

|F−1(|û|)| 2(p−3)
4s dx

)4s

,

(1.43)

where the inequality exponents are r = 1
1−4s , r′ = 1

4s for s < 1
4 .

Using (1.39) to control the right-most term in (1.43), we need the condition
2(p−3)

4s ≤ 2
1−2s which implies that

(1.44) p ≤ 3 +
4s

1− 2s
=

3− 2s

1− 2s
= p(s),

so that it can be bounded by Q(∂su)2(p−3). Using (1.38), the middle term

in (1.43) can be bounded by N(∂su)4.

Hence, we have the following inequality

(1.45)
∫∫

|F−1(|û|)|(p−1) 4
3 |∂su| 43 dxdt ≤ Q(∂su)

4
3 (p−3)N(∂su)4,

Combine (1.41) and (1.45) we have

(1.46) N(T∂su) + Q(T∂su) ≤ C +
C

R
1
8
Q(∂su)p−3N(∂su)3;

and similar calculations give

(1.47) N(Tu) + Q(Tu) ≤ C +
C

R
1
8
Q(∂su)p−1N(u).
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At this stage it is natural to define the norm

(1.48) N1(u) = N(u) + Q(u) + N(∂su) + Q(∂su).

Combining (1.46) and (1.47) we get the inequality

(1.49) N1(Tu) ≤ C(D) +
C

R
1
8
N1(u)p.

To estimate the difference Tu− Tv, i.e. to estimate

|∂s(|u|p−1u)− ∂s(|v|p−1v)|,

we use (1.35) which is a version of Leibniz’s rule ( see [CW]) to get

(1.50) N1(Tu− Tv) ≤ C

R
1
8

(
N1(u)p−1 + N1(v)p−1

)
N1(u− v).

Therefore we can choose suitable δ and R so that T is a contraction. ¤

Corollary 1.5. Assume that u0 ∈ H1 and u1 ∈ H−1. Let |f(u)| ≤ C(|u|q +

|u|p), where p and q are two numbers greater than 1. Then equation (1.16)

has a unique weak solution for t ∈ [−δ, δ], where δ depends on the initial

data.

The global existence of a solution can be obtained from the conservation

of the energy. Since the energy

(1.51) E =
1
2

∫

T
[v2 + u2 + u2

x − 2F (u)]dx.

is conserved we can continue the solution for all time using Corollary 1.5,

provided that f(u) = λ|u|q−1u− |u|p−1u, q < p, i.e.

(1.52) F (u) =
λ

q + 1
|u|q+1 − 1

p + 1
|u|p+1,

so that F (u) < 0 for |u|p−q > λ(p+1)
q+1 . The energy gives the estimate

(1.53)
1
2

∫

T
v2 + u2 + u2

xdx ≤ E +
∫

|u|p−q<
λ(p+1)

q+1

F (u)dx ≤ E + C(λ, p, q).

The above discussion proves the following global existence theorem.
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Theorem 1.6. Assume that in equation (1.16) the initial data satisfy that

u0 ∈ H1, u1 ∈ H−1. If f(u) = λ|u|q−1u − |u|p−1u for 1 < q < p, λ ∈ R,

then the problem (1.16) has a global unique solution u such that u and ∂xu

are in the space L4(Rloc × T).

2. A Priori Estimates.

This part of the paper is devoted to the proof of Theorem 1.3 which we

restate below. The method of proof is actually quite general and depends

only on the geometric properties of the level curves given by ω(ξ1)+ω(ξ2) =

constant, see (2.1b).

Theorem 2.1. Let f(t, x) be a function with (t, x) ∈ R × T and denote by

f̂(τ, ξ) its Fourier transform, with (τ, ξ) ∈ R × Z. The following estimate

holds

(2.1a) ‖f‖L4(R×T) ≤ C‖S 3
8 f̂‖L2(R×Z),

where

(2.1b) S = (||τ | − ω(ξ)|+ 1) and ω(ξ) =
√

ξ2 + ξ4.

Remark. The dual of (2.1a) is

(2.1c)
∥∥∥ f̂

S
3
8

∥∥∥
L2
≤ C‖f‖

L
4
3

and can be proved by a standard duality argument.

In the general case, considering the Boussinesq equation with different pe-

riod will require to rescale space and time and can be reduced to an equation

of the form

utt − c2uxx + µ2uxxxx + g = 0.

Obvious modifications in the proof of Theorem 2.1 yield the following corol-

lary.
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Corollary 2.2. Let f(t, x) be a function with (t, x) ∈ R× T and denote by

f̂(τ, ξ) its Fourier transform, with (τ, ξ) ∈ R× Z. Now call

ωµ =
√

c2ξ2 + µ2ξ4 and Sµ = ||τ | − ωµ|+ 1.

The following estimate holds

(2.2) ‖f‖L4 ≤ C‖S
1
4
µ f̂‖L2 +

C√
µ
‖S

3
8
µ f̂‖L2 .

Proof of Theorem 2.1. Without loss of generality we can assume that the

support of f̂(τ, ξ) is inside the set

{(τ, ξ) : τ ≥ 0, τ − ω(ξ) ≥ 0},

because otherwise we can split the function f̂(τ, ξ) into a finite sum of func-

tions, each supported in one set of the above type and the proof is similar for

each set. Next we want to make a dyadic decomposition of f̂(τ, ξ) along the

variable p = τ − ω(ξ), in order to achieve this, consider a smooth function

â(p) with support in the interval [ 12 , 2] such that

∞∑

j=−∞
â(

p

2j
) = 1 if p 6= 0.

Call âj(p) = â( p
2j ) and

â0(p) = 1−
∞∑

j=1

âj(p).

Denote

4j = [2j−1, 2j+1]

a dyadic interval, and write

f̂j(τ, ξ) = âj(τ − ω(ξ))f̂(τ, ξ).

Now we can write

f =
∞∑

j=0

fj
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and the estimate (2.1) will follow from the inequality

(2.3) ‖fjfk‖L2(R×T) ≤
C

2
1
8 |j−k| ‖S

3
8 f̂j‖L2‖S 3

8 f̂k‖L2 ,

by squaring f , taking the L2 norm and using the triangle inequality and

Cauchy-Schwartz. In order to show (2.3) we compute the Fourier transform

of fjfk

(2.4a) (fjfk)(t, x) =
∫

dτ1dτ2

∑

ξ1ξ2

eiΩf̂j(τ1, ξ1)f̂k(τ2, ξ2),

where

(2.4b) Ω = t(τ1 + τ2) + x(ξ1 + ξ2).

Without loss of generality, we can assume that k ≤ j. Make the change of

variables

(2.5a)
{

τ = τ1 + τ2, ξ = ξ1 + ξ2;
pi = τi − ω(ξi) i = 1, 2.

and call

(2.5b) p = p1 + p2, q = p2.

Formula (2.4) can be written as

(2.6) (fjfk)(t, x) = F{Ĝjk(τ, ξ)},

where

(2.7a) Ĝjk(τ, ξ) =
∫

4k

dq
∑

p∈Λj

(f̂j f̂k)(τ, ξ, p, q)

and the set Λj(τ, ξ, q) is a discrete set defined by

(2.7b) Λj(τ, ξ, q) = {p ∈ 4j + q : ξ1,2(τ, ξ, p, q) ∈ Z}.

Remark. Notice that ξ1,2 are computed by solving the system of equations,
{

ω(ξ1) + ω(ξ2) = τ − p,

ξ1 + ξ2 = ξ,
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with respect to ξ1, ξ2. If we call X = ξ1 − ξ2, the above system can be

rewritten as

(τ −p)4 +X2ξ2
(
1+

X2 + ξ2

2

)2

− (τ −p)2
[
X2 +ξ2 +

(X2 + ξ2)
4

+X2ξ2
]

= 0.

Solving the above equation gives a root X(τ − p, ξ) and we require that

ξ ±X ∈ 2Z,

which forces p to take discrete values.

Plancherel’s theorem in equation (2.6) gives

(2.8) ‖fjfk‖L2 = ‖Ĝjk‖L2 .

To estimate the right hand side of the above equation, observe first that

(2.9) |Ĝjk|2 ≤ 2k|Λj(τ, ξ, q)|
∫

4k

dq
∑

p∈Λj

|f̂j |2|f̂k|2.

The crucial observation here is that the size of Λj is much better than what

one should normally expect.

Claim. There exists a constant C such that

(2.10) sup
τ,ξ,q

|Λj(τ, ξ, q)| ≤ C2
j
2 .

The proof of the claim will be given at the end.

Assuming the claim, we have
∫

dτ
∑

ξ

|Ĝjk|2 ≤ C2k2
j
2

∫
dτdq

∑

ξ,p

|f̂j |2|f̂k|2

and the right hand side of the above can be rewritten as

C
1

2
1
4 (j−k)

2
3
4 j2

3
4 k‖f̂j‖2L2‖f̂k‖2L2 ,

in view of (2.9) and (2.10), which is exactly the right hand side of (2.2). This

proves the theorem. ¤
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Proof of Claim. In order to prove the claim, notice first that Λj depends

only on ξ and τ − q hence

(2.11)

Λj(ξ,A) = {(ξ1, ξ2) ∈ Z2 : ξ1 + ξ2 = ξ, A ≤ ω(ξ1) + ω(ξ2) ≤ A + 3 · 2j−1},

where A = τ − q − 2j+1 and consider the level curves of ω(ξ1) + ω(ξ2) in R2

given by

(2.12) K(A) = {(ξ1, ξ2) ∈ R2 : ω(ξ1) + ω(ξ2) = A}.

We assert that the radius of the inscribed and circumscribed circles to the

above curve K(A) are given by

(2.13)
{

r2
max = (−1 +

√
1 + 4A2)/2

r2
min = −1 +

√
1 + A2.

To see this use a parametric representation of the curve
√

ξ2
1 + ξ4

1 = A cos2 θ , ξ2
1 =

1
2
(−1 +

√
1 + 4A2 cos4 θ);

√
ξ2
2 + ξ4

2 = A sin2 θ , ξ2
2 =

1
2
(−1 +

√
1 + 4A2 sin4 θ).

Let r(θ) denote the distance between the point (ξ1, ξ2) and the origin, thus

(2.14) r2(θ) = ξ2
1 + ξ2

2 = −1 +
1
2

(√
1 + 4A2 cos4 θ +

√
1 + 4A2 sin4 θ

)

and its derivative is

(2.15)
dr2(θ)

dθ
= 4A2 sin θ cos θ

{ sin2 θ√
1 + 4A2 sin4 θ

− cos2 θ√
1 + 4A2 cos4 θ

}
≤ 0

with equality only if θ = 0 or θ = π
4 . Because of the symmetries of the curve

K(A) it is enough to consider θ ∈ [0, π
4 ]. Notice that θ = 0 implies ξ2 = 0

while θ = π
4 implies ξ1 = ξ2. See figure 2.

Call L(ξ) the line perpendicular to the line ξ1 = ξ2 at the point ξ = ξ1+ξ2,

see figure 2, then Λj(ξ) is the number of lattice points on L(ξ) between the

curves K(A) and K(A + d) with d = 3
22j . Observe that for fixed A

(2.16) Λj(ξ) ⊂ Λ̃j(ξ),
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ξ 2

1

K(A+d)

(ξ)

ξ

Λ

K(A)

Fig 2. The level curves of K(A).

where Λ̃j is the lattice points belonging to the intersection of L(ξ) with the

annulus

(2.17)
{

(ξ1, ξ2) ∈ Z2 : −1 +
√

1 + A2 ≤ ξ2
1 + ξ2

2 ≤
−1 +

√
1 + 4(A + d)2

2

}
.

Call P (ξ, A) the length of the intersection of L(ξ) with the annulus in (2.17).

The maximum length of P (ξ, A) as ξ varies, is achieved when ξ2/2 = −1 +√
1 + A2, see figure 2. Now P (ξ, A) can be estimated

(2.18) P 2(ξ, A) ≤ 2(1 +
√

1 + 4(A + d)2 − 2
√

1 + A2),

from which it follows that

(2.19) sup
ξ

P (ξ, A) ∼ sup
ξ
|Λj(ξ,A)| ∼ C2

j
2 .

The claim is proved. ¤
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Remark. Notice that if A is large, namely A À d, where A = τ − q− 2j−1,

then the thickness of the annular region defined in (2.17) can be estimated

by

(2.20) 4R ∼ 2j

A

which means that for τ large the annular region is very narrow. On the other

hand, P (ξ, A) can be estimated for different ξ as follows:

If √
−1 +

√
1 + A2 ≤ |ξ| ≤

√
−1 +

√
1 + A2 +4R,

then

(2.21) |P (ξ, A)| ∼ 2
j
2 .

If

|ξ| ≤
√
−1 +

√
1 + A2,

then after some straightforward calculation we obtain

(2.22) |P (ξ,A)| ≤ C
2j

A
3
4

which implies |Λj(ξ)| ≤ 1, provided that A > 2
4
3 j . This indicates that the

estimate in Theorem 2.1 could be extended for Lp with 4 ≤ p < 6 and Sα

with 3
8 ≤ α < 1

2 . This is a similar conjecture to the one which made by

Bourgain in [B1].

Interpolating between (2.1a) and Plancherel’s formula, one can prove the

following.

Corollary 2.3. With the same assumptions and notations as in Theorem

2.1 the following estimate holds

(2.23) ‖f‖Lp ≤ C‖Sαf̂‖L2 ,

where 2 ≤ p ≤ 4 and α = 3
4 − 3

2p .

Remark. The above inequality must hold for 2 ≤ p < 6.
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