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Abstract. We give conditions for the parabolic evolution operator to be an-

alytic with respect to a coefficient operator. We also show that the solution
of a homogeneous parabolic evolution equation is analytic with respect to the

coefficient operator and to the initial data. We apply our results to example

that can not be studied by the standard methods.

1. Introduction

Despite the great development in the theory of nonlinear parabolic equations,
some gaps remain in the theory of nonautonomous linear parabolic equations. To
formulate the question more precisely, consider two Banach Spaces X, Y with Y ⊂
X, densely, with continuous immersion and call by Zα = (X, Y )α, 0 ≤ α < 1, an
interpolation space between X and Y obtained by a suitable interpolation method
( , )α. For all t ∈ J , where J is an interval, let R(t), S(t) be closed linear operators
in X with constant domain Y such that there exist parabolic evolution operators
TR and TS satisfying the equations:

dTR

dt
(t, s) + R(t)TR(t, s) = 0, TR(s, s) = I

dTS

dt
(t, s) + S(t)TS(t, s) = 0, TS(s, s) = I,

where (t, s) ∈ {(t, s) : t, s ∈ J, t > s} and I is the identity operator in X. We have
estimates such as

‖TR(t, s)− TS(t, s)‖L(Zα,Zβ) ≤ c(t− s)β−α max
t∈J

{‖R(t)− S(t)‖L(Y,X)} ,

using many types of interpolation methods, where c > 0, α ∈ (0, 1] and β ∈ [0, 1). In
particular, if α = β, roughly speaking, we have a Lipschitz continuous dependence
of the evolution operator in relation to the operator. In fact, this seems be the best
available result for parabolic evolution operators in infinite dimension. Here, in a
less general setting, we present better results.
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Let X be a Banach space and A a constant linear closed operator in X and TP

the parabolic evolution operator which is the solution of the equation

dTP

dt
(t, s) + P (t)ATP (t, s) = 0, TP (s, s) = I,

where P = P (t) is a time dependent operator called here a coefficient operator,
such that P varies in an open set of the space of the functions which are continuous
functions from J to L(Zµ), with Zµ = (X, Y )µ for some µ ∈ (0, 1), and Hölder
continuous from J to L(X). We define the open condition, putting the usual hy-
pothesis to obtain the existence of a parabolic evolution operator. As an additional
hypothesis, we suppose that P (t) is an isomorphism in X and in Xµ. Thus, we
prove that the evolution operator with respect to the coefficient operator is analytic
and the solution of the equation

du

dt
+ P (t)Au(t) = 0, u(s) = ξ

is analytic with respect to P and ξ.
The main references are: [5], [6] and [10], for the theory of parabolic evolution

operators; [1] and [7], for the application of those operators in the context of the
interpolation spaces; [3], for a direction and motivation in a geometrical point of
view.

Finally, we need to observe that the equations which are being considered have
operators with constant domain. This restriction limits the applications of the
results obtained here in concrete cases, for example, in diffusion equations with
time-dependent linear boundary conditions.
Notation: For the readers convenience, we introduce here the basic notation.
When necessary, additional notation will be given. We refer to X, Y , Z, and so
on, as complex Banach spaces, J as a real interval and L(X, Y ) as the Banach
space of all linear bounded operators from X to Y . If X = Y , we use L(X). For a
linear operator T , we use ρ(T ) and σ(T ) as the resolvent and spectral set of T and
we denote Re σ(T ) > c as the subset {λ ∈ σ(T )|Re(λ) > c}. Also, we denote as
C(J, Z) the Banach space of all bounded continuous functions u defined in J with
values in Z with the norm given by

max
t∈J

‖u(t)‖Z .

Moreover, for ε ∈ (0, 1], Cε(J, Z) denotes the Banach space of all Hölder continuous
functions whose the norm of the space is the finite number

sup
t∈J

‖u(t)‖Z + sup
t,s∈J,t6=s

‖u(t)− u(s)‖Z

|t− s|ε
.

For the Banach space X ∩ Y , we use the norm ‖w‖X∩Y = min{‖w‖X , ‖w‖Y } with
w ∈ X ∩ Y . Finally, the symbol ∆ is the set {(t, s), t > s, t, s ∈ J}.

2. Analytic Semigroups and Interpolation Spaces

On using the interpolation spaces theory, we adopt a non-direct method. It
consists on considering only the necessary properties to reach an estimate which
is related to the analytic semigroups used to obtain the stated regularity results.
In the following, only the first definition is unusual in classical books about inter-
polation space theory. Indeed, in such books, these properties are obtained as a
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consequence of an explicit definition for each interpolation method. The other two
definitions are standard and included here for the sake of the understanding.
Notation: In the following, for any Banach space, for convenience, we denote
(X, Y )0 := X and (X, Y )1 := Y .

Definition 2.1. We say that an interpolation method ( , )α has the property 1 if
for any two Banach spaces X, Y with Y ⊂ X, continuously, it is true that:

(i) Each (X, Y )α, 0 < α < 1, is a Banach space;
(ii) (X, X)θ = X, (Y, Y )θ = Y with equivalent norms for each θ ∈ (0, 1);
(iii) (X, Y )α ⊂ (X, Y )β , continuously, if α ≥ β with α, β ∈ [0, 1].

Definition 2.2. We say that the interpolation method ( , )α has the reiteration
property if for any two Banach spaces Y, Z, we have:

((Y, Z)α, (Y,Z)β)θ = (Y, Z)(1−θ)α+θβ

with equivalent norms form each α, β ∈ [0, 1] and θ ∈ (0, 1).

Definition 2.3. We say that an interpolation method ( , )α has the interpolation
property if, for all Banach spaces Z1, Z2, W1, W2 such that W1 ⊂ Z1, W2 ⊂ Z2,
continuously, and for all T ∈ L(Z1, Z2) ∩ L(W1,W2), we have that, for each θ ∈
(0, 1),

‖T‖L((Z1,W1)θ,(Z2,W2)θ) ≤ c0‖T‖1−θ
L(Z1,Z2)

‖T‖θ
L(W1,W2)

where c0 > 0 does not depend on T .

Definition 2.4. Let X, Y be Banach spaces such that Y ⊂ X, continuously. We
say that (X, Y )α is an interpolation space between X and Y if the method ( , )α

has the property 1, the interpolation and the reiteration properties.

In the following, if X0, X1 are two Banach spaces with X1 ⊂ X0, continuously,
we denote as Xθ the interpolation space (X0, X1)θ for θ ∈ (0, 1). Calderon [12] and
Hans Triebel [13, sections 1.9.3, theorem A and remark 1] give us that the complex
interpolation method is an interpolation method as defined above. By Lunardi [7],
the same is true for the real interpolation method.

Next, we consider sectorial operators, i.e., operators which generate analytic
semigroups (for definition of sectorial operator and analytic semigroup see [3]). It
is well known a sectorial operator A generates an analytic semigroup e−tA. But here,
we have to obtain estimates for the bounded operators e−tA between interpolation
spaces uniformly with respect to A, thus we need to consider a slight modification
on the definition of sectorial operator.

Definition 2.5. Let X, Y be Banach spaces such that Y ⊂ X, continuous and
densely. We define a family of sectorial operators in X with domain Y as any set
S of closed linear operators in X such that:

(i) D(S) = Y with uniformly equivalents norms for all S ∈ S;
(ii) There exists ω and θ ∈ (0, π/2) such that the subset Sω,θ = {λ ∈ C| arg(λ−

ω) > π/2 − θ or λ = ω} is in the resolvent set of each S, S ∈ S, and
(|λ|+ 1)‖(λ− S)−1‖L(X) is uniformly bounded for all λ ∈ Sω,θ and S ∈ S.

Proposition 2.6. Let S be a family of sectorial operators in X0 with domain X1.
If all S ∈ S have Re σ(S) > ω, for a constant ω, then there exist c, c′ > 0 such that

(i) ‖e−tS‖L(Xα,Xβ) ≤ c(1 + t−1)β−αe−ωt for t > 0 and 0 ≤ α ≤ β ≤ 1;
(ii) ‖Se−tS‖L(Xα,Xβ) ≤ c′(1 + t−1)1+β−αe−ωt for t > 0 and 0 ≤ α ≤ β ≤ 1.
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Proof. By [3, Theorem 1.3.4], there exist c1, c2 > 0 such that

‖e−tS‖L(X0) ≤ c1e
−ωt , ‖Se−tS‖L(X0) ≤ c2t

−1e−ωt

for all S ∈ S. Call m1 and m2 two positive numbers such that:

m1‖y‖D(S) ≤ ‖y‖X1 ≤ m2‖y‖D(S)

for all S ∈ S in which we have denoted ‖y‖D(S) = ‖y‖X0 + ‖Sy‖X0 . So

‖e−tS‖L(X0,X1) ≤ c3(1 + t−1)e−ωt

where c3 = m2 max{c1, c2}. Suppose y ∈ X1, t > 0. Since Se−tSy = e−tSSy, we
have that

‖e−tS‖L(X1) ≤
c1m2

m1
e−ωt .

For α ∈ (0, 1), Xα = (X0, X1)α and X1 = (X1, X1)α with equivalent norms, calling
c4 > 0 for ‖y‖X1 ≤ c4‖y‖(X1,X1)α

, we have that:

‖e−tS‖L(Xα,X1) ≤ c4‖e−tS‖L((X0,X1)α,(X1,X1)α) .

But, by the interpolation property,

‖e−tS‖L((X0,X1)α,(X1,X1)α) ≤ c0‖e−tS‖1−α
L(X0,X1)

‖e−tS‖α
L(X1,X1)

so
‖e−tS‖L(Xα,X1) ≤ c0(c1m2/m1)αc1−α

3 c4(1 + t−1)1−αe−ωt .

Now, by the reiteration property, for α ∈ [0, 1), β ∈ (0, 1), Xα = (X0, Xα/β)β , so
taking c5 such that ‖w‖(X0,Xα/β)β

≤ c5‖w‖Xα
for all w ∈ Xα, we have that:

‖e−tS‖L(Xα,Xβ) ≤ c5‖e−tS‖L((X0,Xα/β)β ,(X0,X1)β) .

Thus the interpolation property gives

‖e−tS‖L(Xα,Xβ) ≤ c0c5‖e−tS‖1−β
L(X0)

‖e−tS‖β
L(Xα/β ,X1)

,

or, if α ≤ β,
‖e−tS‖L(Xα,Xβ) ≤ c(1 + t−1)β−αe−ωt

where c = c1+β
0 c1−β+α

1 cβ−α
3 cβ

4 c5(m2/m1)α. Finally, since, for t > 0, Se−tS =
e−tS/2Se−tS/2, we have:

‖Se−tS‖L(Xα,Xβ) ≤ ‖e−tS/2‖L(X0,Xβ)‖S‖L(X1,X0)‖e
−tS/2‖L(Xα,X1)

or
‖Se−tS‖L(Xα,Xβ) ≤ c′(1 + t−1)β−α+1e−ωt ,

where c′ = 2β−α+1c2+β
0 c1−β+α

1 c1+β−α
3 c1+β

4 mα
2 /m1+α

1 . �

3. Topology

We start this section with a preliminary result on linear operators in a way we
have not seen in classical references such as [2] or [4].

Proposition 3.1. Let A be a linear closed operator, densely defined in a Banach
space X, and let Y be the domain of A with the graph norm (or only that Y is a
Banach space, continuously immersed in X, such that D(A) ⊂ Y , continuously).
Then

(a) The normed space D(A + H) with the graph norm satisfies D(A) ⊂ D(A +
H), continuously, for any H ∈ L(Y, X) and uniformly in a bounded subset
of L(Y, X);



EJDE-2009/31 PARABOLIC EVOLUTION OPERATOR 5

(b) If ρ(A) is not void, we have that D(A + H) ⊂ D(A), continuously for all
H ∈ L(Y, X), such that ‖H‖L(Y,X) ≤ ‖(ω−A)−1‖−1

L(X,Y ) for any ω ∈ ρ(A),
and with uniformly continuous immersion for all H, with ‖H‖L(Y,X) ≤
l‖(ω −A)−1‖−1

L(X,Y ) and 0 < l < 1. In any case, ω ∈ ρ(A + H).

Proof. Let m1 > 0 be such that m1‖y‖Y ≤ ‖y‖D(A). So

‖y‖D(A+H) = ‖y‖X + ‖(A + H)y‖X ≤ (1 +
‖H‖L(Y,X)

m1
)‖y‖D(A)

which proves item (a).
The proof of (b) is more delicate. Take ω ∈ ρ(A). Firstly, we recall that ω ∈

ρ(A + H) if ‖H‖L(Y,X) is sufficiently small. In fact:

ω − (A + H) = (I −H(ω −A)−1)(ω −A) ,

so if ‖H‖L(Y,X)‖(ω −A)−1‖L(X,Y ) = h < 1, h depending on H or ‖H‖L(Y,X)‖(ω −
A)−1‖L(X,Y ) = l with 0 < l < 1, l a constant, that is true and

‖(ω − (A + H))−1‖L(X) ≤
1

1− l1
‖(ω −A)−1‖L(X) ,

where l1 = h or l1 = l. We also observe that

‖(ω −A)−1‖L(X,Y ) ≤
1

m1
(1 + (|ω|+ 1)‖(ω −A)−1‖L(X)) .

Then, writing A = A + H − ω + ω −H, we have that

A = (I + (ω −H)(A + H − ω)−1)(A + H − ω) .

As a necessary step, we estimate A(A + H − ω)−1, following from the identity:

A(A + H − ω)−1 = A(A− ω)−1(I + H(A− ω)−1)−1 .

Thus,

‖A(A + H − ω)−1‖L(X) ≤
1 + |ω‖|(A− ω)−1‖L(X)

1− l1
which implies

‖A(A + H − ω)−1‖L(X,Y ) ≤
1

m1(1− l1)
(1 + (|ω|+ 1)‖(A− ω)−1‖L(X)) .

Finally, for any y ∈ Y ,

‖Ay‖ ≤ (1 +
ω

1− l1
‖(ω −A)−1‖L(X)

+
‖H‖L(Y,X)

m1(1− l1)
(1 + (1 + |ω|)‖(A− ω)−1‖L(X)))(‖(A + H)y‖+ |ω‖|y‖) .

Calling the first factor l2, we obtain that

‖Ay‖ ≤ l2(‖(A + H)y‖+ |ω‖|y‖) ,

or
‖y‖D(A) ≤ max{l2, l2|ω|+ 1}‖y‖D(A+H) ,

which concludes the proof. �
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Proposition 3.2. Let S be a family of sectorial operators in X with domain Y .
Then there exists an open set V in L(Y, X) which contains S and is a family of
sectorial operators in X with domain Y . Moreover, V can be taken, for a fixed
r > 0, as

V = ∪A∈SB(A, r)
in which B(A, r) in L(Y, X) is the ball of center A and radius r. The value of r
can be chosen as any r < m1/(M + 1) in which m1 is the immersion constant of
D(A) ⊂ Y and M is such that (|λ| + 1)‖(λ − S)−1‖L(X) ≤ M for all S ∈ S and
λ ∈ Sω,θ for those ω and θ which define the family S.

Proof. Take m1 > 0 such that m1‖y‖Y ≤ ‖y‖D(A) for all y ∈ Y and A ∈ S, and
M > 0 such that (|λ|+1)‖(λ−S)−1‖L(X) ≤ M for all S ∈ S and λ ∈ Sω,θ for some
ω and θ ∈ (0, π/2]. Since, for all A ∈ S,

‖(ω −A)−1‖L(X,Y ) ≤
1

m1
(1 + (|ω|+ 1)‖(ω −A)−1‖L(X))

so
‖(ω −A)−1‖L(X,Y ) ≤

M + 1
m1

and, by Proposition 3.1, for a fix r > 0, r < m1
M+1 , the first condition of sectorial

family operators is true for ∪A∈SB(A, r). Proceeding as in the proof of the last
proposition, we obtain that

‖(λ− (A + H))−1‖L(X) ≤
‖(λ−A)‖L(X)

1− r M+1
m1

< 1 ,

if ‖H‖L(Y,X) < m1
M+1 . So the condition (ii) of the sectorial family definition is true

for the subset ∪A∈SB(A, r), with the same parameters θ and ω of S. �

Notation: Now, we design an open set which contains the coefficient operators
P (t) for which not only there is a parabolic evolution operator TP which satisfies
the equation

dTP

dt
(t, s) + P (t)ATP (t, s) = 0 , t > s , TP (s, s) = I

t, s ∈ J , but also such that it can be conveniently estimated.

Proposition 3.3. Let ε ∈ (0, 1], µ ∈ (0, 1) and A be a linear closed operator densely
defined in X0 with domain X1. If W is the subset of any P ∈ Cε(J,L(X0)) ∩
C(J,L(Xµ)) which satisfies the following conditions:

(i) {P (t)A, t ∈ J} is a sectorial family in X0 with domain X1;
(ii) P (t) : X0 → X0 and P (t) : Xµ → Xµ are isomorphisms for all t ∈ J ;
(iii) ‖P−1(t)‖L(X0) and ‖P−1(t)‖L(Xµ) are both uniformly bounded for all t ∈ J .

Then W is an open set in Cε(J,L(X0)) ∩ C(J,L(Xµ)). Moreover, given a set
V0 ∈ W such that the conditions (i), (ii), (iii) are satisfied uniformly for all P ∈ V0,
then there exists an open set V ⊃ V0 in Cε(J,L(X0)) ∩ C(J,L(Xµ)) such that the
conditions are satisfied uniformly for all P ∈ V . Indeed, the subset V can be taken
as V = ∪P∈V0B(P, r) for a fix r > 0.

Proof. Take P ∈ W . Proposition 3.2 states the existence an open set V ′ in
L(X1, X0) such that V ′ ⊃ {P (t)A, t ∈ J} which can be chosen as

V ′ = ∪t∈JB(P (t)A, r1),
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for a fix r1 > 0, denoting B(P (t)A, r1) as the open ball in L(X1, X0) with center
P (t)A and radius r1. Let B(P, r1/‖A‖L(X1,X0)) be the ball in C(J,L(X0)) with
center P and radius r1/‖A‖L(X1,X0). So, if Q ∈ B(P, r1/‖A‖L(X1,X0)) then

‖(Q(t)− P (t))A‖L(X1,X0) < r1

yielding that the set {Q(t)A|Q ∈ B(P, r1/‖A‖L(X1,X0)), t ∈ J} is a sectorial family
in X0 with domain X1. Take now M1 such that ‖P−1(t)‖L(X0) ≤ M1, for all t ∈ J .
The Identity Perturbation Theorem gives that ‖Q−1(t)‖L(X0) is uniformly bounded
if Q ∈ B(P, r2), such that B(P, r2) is the ball in C(J,L(X0)) of center P and radius
r2, with r2 < 1/M1. In fact,

‖Q−1(t)‖L(X0) ≤
M1

1− r2M1
.

By the same argument, ‖Q−1(t)‖L(Xµ) ≤ M2/(1 − r3M2) if Q ∈ B(P, r3) ⊂
C(J,L(Xµ)), where r3 < 1/M2. Since Cε(J,L(X0)) ⊂ C(J,L(X0)), continuously,
(the immersion constant can be taken as 1), if r = min{r1, r1/‖A‖L(X1,X0), r2, r3},
then the ball B(P, r) of Cε(J,L(X0)) ∩ C(J,L(Xµ)) is in W . Finally, for any
P ∈ V0, following the above argument, it can be taken r1, r2, r3 independent of P ,
so ∪P∈V0B(P, r) has the enunciated properties. �

4. Estimates for the parabolic evolution operator

The basic properties of the parabolic evolution operators in many contexts may
be obtained from the classical works of Sobolevskii [10], Kato [4] and [5], Tanabe
[11], Pazy [9] or from the recent of Amann [1] or Lunardi [7]. Here, before going to
the estimates, we give a definition and a condition for its existence. So, let X and
Y be Banach spaces such that Y ⊂ X continuous and densely and suppose that
S(t), t ∈ J , where J is an interval, is a closed linear operator in X with domain Y
and, for each t ∈ J , it generates an analytical semigroup e−rS(t), r ≥ 0. Thus, we
define the parabolic evolution operator for the equation x′(t)+S(t)x(t) = 0, t ∈ J ,
as the operator T (t, s) which has the following properties:

(i) for all t, s ∈ J , L(X) 3 T (t, s) is differentiable with respect to t, t ∈ J , in
L(X) and T (t, s) ∈ Y if t > s, t ∈ J ;

(ii) ∂T (t,s)
∂t + S(t)T (t, s) = 0, t ∈ J , t > s, and T (s, s) = I.

Proposition 4.1. Let {S(t), t ∈ J} be a family of sectorial operators in X with
domain Y and suppose that S ∈ Cε(J,L(Y, X)) for some ε ∈ (0, 1]. Then there is
a unique parabolic evolution operator for the equation x′(t) + S(t)x(t) = 0, t ∈ J .

For a proof of the above proposition, see [1, 4, 9, 10, 11].
Next, we present a type of singular Gronwall inequality. In fact, this is the kernel

of the estimates and so we try to obtain a clear form for the constants.

Proposition 4.2. Suppose β ∈ (0, 1] and x > 0. So, for any δ > 0, we have the
estimate

∞∑
i=1

xi−1

Γ(βi)
≤ c1e

(1+δ)x1/β

in which, as follows from Amann [1, Section 3.2], c1 = c1(β, δ) can be taken as

c1 = max
y∈[0,1]

(
e

1+δ
β y1/β

− 1
y

)β(2π)
β−1

2 e
β
12 β

1
12

∞∑
i=1

i
1+β

2(1−β)

(1 + δ)
β

1−β i
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if β ∈ (0, 1) and as c1 = 1 (including δ = 0) if β = 1.

Now suppose b ≥ 0, a(t) is a locally integrable non-negative function on 0 ≤
t < T (some T ≤ ∞)) and suppose u(t) is non-negative and locally integrable on
0 ≤ t < T with

u(t) ≤ a(t) + b

∫ t

0

(t− s)β−1u(s)ds

on this interval; then

u(t) ≤ a(t) + bc1Γ(β)
∫ t

0

(t− s)β−1 exp[(1 + δ)(bΓ(β))1/β(t− s)]a(s)ds

on 0 ≤ t < T .

Proof. By Henry [3, Lemma 7.1.1]

u(t) ≤ a(t) +
∫ t

0

∞∑
i=1

(bΓ(β))i(t− s)iβ−1

Γ(iβ)
a(s)ds

and so the conclusion is immediate. �

Notation. In the following, consider a family of sectorial operators of W , which
is denoted as S, such that for all P ∈ S, we call a0, b0, aα,β , bα,β , b and a and aµ

constants such that:

(1) ‖P (t)Ae−(t−s)P (t)A‖L(X0) ≤ a0(t− s)−1e−ω(t−s);
(2) ‖e−(t−s)P (t)A‖L(X0) ≤ b0e

−ω(t−s);
(3) ‖Ae−(t−s)P (t)A‖L(Xα,Xβ) ≤ aα,β(1 + (t− s)−1)1+β−αe−ω(t−s);
(4) ‖e−(t−s)P (t)A‖L(Xα,Xβ) ≤ bα,β(1 + (t− s)−1)β−αe−ω(t−s);
(5) ‖P (t)− P (s)‖L(X0) ≤ b|t− s|ε;
(6) ‖P−1(t)‖L(X0) ≤ a;
(7) ‖P−1(t)‖L(Xµ) ≤ aµ;

for all t ∈ J .
Obviously, the existence of these constants is given by Proposition 2.6 and by

the definition of W . It is convenient to observe, from the proof of that proposition,
that it can be taken a constant c, not dependent on α and β, such that aα,β ≤ c
and bα,β ≤ c. Others constants, which depend on the constants defined above, can
be defined in the next propositions. Concerning the way we proceed to obtain the
estimates, it was necessary a little bit of analysis to allow that the interval of the
estimates could be infinite.

Proposition 4.3. Suppose α ∈ (0, 1]. Then

‖ATP (t, s)‖L(Xα,X0) ≤ aα,0(1 + (t− s)−1)1−αe−Ω(t−s)(1 + m(t− s)ε) ,

t > s, in which Ω = ω − (1 + δ)(a0abΓ(ε))
1
ε and m = a0abc1Γ(ε)B(ε, α), where

c1 = c1(ε, α).

Proof. By the properties of the evolution operator, we have the relation:

TP (t, s) = e−(t−s)P (t)A +
∫ t

s

e−(t−τ)P (t)A(P (τ)− P (t))ATP (τ, s)dτ .
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So, applying A and taking the norms,

‖ATP (t, s)‖L(Xα,X0)

≤ ‖Ae−(t−s)P (t)A‖L(Xα,X0)

+
∫ t

s

‖Ae−(t−τ)P (t)A‖L(X0)‖P (τ)− P (t)‖L(X0)‖ATP (τ, s)‖L(Xα,X0))dτ ,

in which the insertion of A in the integral is valid because A is closed. With the
above constants and changing the variables to r = t − s, τ ′ = τ − s and calling
u(r) = ‖eωrATP (r + s, s)‖L(Xα,X0), we obtain

u(r) ≤ aα,0(1 + r−1)1−α + a0ab

∫ r

0

(r − τ ′)ε−1u(τ ′)dτ ′ .

So, dropping the ′ and applying the singular Gronwall inequality

u(r) ≤ aα,0(1 + r−1)1−α + aα,0a0abc1Γ(ε)

×
∫ t

0

(r − τ)ε−1(1 + τ−1)1−α exp[(1 + δ)(a0abΓ(ε))1/ε(r − τ)]dτ .

Either

u(r) ≤ aα,0(1 + r−1)1−α(1 + a0abc1Γ(ε)B(ε, α)rε exp[(1 + δ)(a0abΓ(ε))
1
ε r]),

or

u(r) ≤ aα,0(1 + r−1)1−α exp[(1 + δ)(a0abΓ(ε))
1
ε r](1 + a0abc1Γ(ε)B(ε, α)rε) .

Then, coming back the variables, the proof is complete. �

Proposition 4.4. Suppose 0 < α ≤ β ≤ 1. Then

‖TP (t, s)‖L(Xα,Xβ) ≤ (1 + (t− s)−1)β−αe−Ω(t−s)p1(t− s),

t > s, where p1(t − s) = (m1 + (m2(t − s)ε + m3(t − s)2ε)(1 + t − s)), m1 = bα,β,
m2 = B(1− β + ε, α)bα,βbaα,0, m3 = mB(1− β + ε, α + ε)b0,βbaα,0.

Proof. We have

‖TP (t, s)‖L(Xα,Xβ)

≤ ‖e−(t−s)P (t)A‖L(Xα,Xβ)

+
∫ t

s

‖e−(t−τ)P (t)A‖L(X0,Xβ)‖P (τ)− P (t)‖L(X0)‖ATP (τ, s)‖L(Xα,X0)dτ .

So, with the notation of the above proposition,

‖TP (t, s)‖L(Xα,Xβ)

≤ bα,β(1 + (t− s)−1)β−αe−ω(t−s) + b0,βbaα,0e
−Ω(t−s)

×
∫ t

s

(1 + (t− τ)−1)β(t− τ)ε(1 + (τ − s)−1)1−α(1 + m(τ − s)ε)dτ .

Since ∫ t

s

(1 + (t− τ)−1)β(t− τ)ε(1 + (τ − s)−1)1−α(1 + m(τ − s)ε)dτ

≤ (1 + (t− s)−1)β−α(1 + (t− s))(B(1− β + ε, α)(t− s)ε

+ mB(1− β + ε, α + ε)(t− s)2ε) ,



10 A. S. MUNHOZ, A. C. SOUZA FILHO EJDE-2009/31

the proof is complete. �

Proposition 4.5. Suppose 0 < α ≤ 1 and 0 ≤ µ < ε. Then

‖ATP (t, s)‖L(Xα,Xµ) ≤ (1 + (t− s)−1)1+µ−αe−Ω(t−s)p2(t− s) ,

where p2(t − s) = (n1 + (n2 + (t − s)ε + n3(t − s)2ε)(1 + t − s)), n1 = aα,µ,
n2 = a0,µaα,0bB(ε, α), n3 = a0,µaα,0bB(ε− µ, α + ε)m.

Proof. We have

‖ATP (t, s)‖L(Xα,Xµ)

≤ ‖Ae−(t−s)P (t)A‖L(Xα,Xµ)

+
∫ t

s

‖Ae−(t−s)P (t)A‖L(X0,Xµ)‖P (τ)− P (t)‖L(X0)‖ATP (τ, s)‖L(Xα,X0)dτ

which implies

‖ATP (t, s)‖L(Xα,Xµ)

≤ aα,µ(1 + (t− s)−1)1+µ−αe−ω(t−s) + a0,µaα,0e
−Ω(t−s)

×
∫ t

s

(1 + (t− τ)−1)1+µ(1 + (τ − s)−1)1−α(t− τ)ε(1 + m(τ − s)ε)dτ .

Proceeding as before, the proof is complete. �

Proposition 4.6. Suppose ε ∈ (0, 1], 0 < µ < ε and µ < α ≤ 1. Then

‖A(TP (t, s)− TQ(t, s))‖L(Xα,X0)

≤ e−Ω(t−s) max
τ∈[s,t]

‖P (τ)−Q(τ)‖L(Xµ)(1 + (t− s)−1)1−αp(t− s),

where p(t−s) =
∑

index(1+ t−s)(t−s)(α1+α2)ε+δB(α1ε+µ, α2ε+α+δ−µ)cα1,α2,δ

and such that the index set is 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 2, 0 ≤ δ ≤ 1, α1, α2, δ ∈ Z, and
the coefficients cα1,α2,δ can be determined in the last inequality of the proof below.

Proof. The properties of the evolution operator give

TP (t, s)− TQ(t, s) = −
∫ t

s

TQ(t, τ)(P (τ)−Q(τ))ATP (τ, s)dτ .

Then

‖A(TP (t, s)− TQ(t, s))‖L(Xα,X0)

≤ −
∫ t

s

‖ATQ(t, τ)‖L(Xµ,X0)‖(P (τ)−Q(τ))‖L(Xµ)‖ATP (τ, s)‖L(Xα,Xµ)dτ .

yielding

‖A(TP (t, s)− TQ(t, s))‖L(Xα,X0) ≤ e−Ω(t−s) max
τ∈[s,t]

‖P (τ)−Q(τ)‖L(Xµ)aµ,0I1

in which

I1 =
∫ t

s

(1 + (t− τ)−1)1−µ(1 + m(t− τ)ε(1 + (τ − s)−1)1+µ−α

× (n1 + (n2(τ − s)ε + n3(τ − s)2ε)(1 + τ − s))dτ .
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Observing that∫ t

s

(1 + (t− τ)−1)1−µ(t− τ)α1ε(1 + (τ − s)−1)1+µ−α(τ − s)α2ε+δdτ

≤ (1 + (t− s)−1)1−α(1 + t− s)(t− s)(α1+α2)εB(α1ε + µ, α2ε + α + δ − µ) .

The result is concluded. �

5. Analyticity

The construction of a convenient topology gives the necessary tool to ask about
the regularity of the evolution operator in relation to the coefficient operator, which
is done now.

Theorem 5.1. Suppose ε ∈ (0, 1), µ ∈ (0, ε) and J is a finite interval. Then the
map

P → {TP (t, s) : t > s, t, s ∈ J} :

W ⊂ Cε(J,L(X0)) ∩ C(J,L(Xµ)) → C(∆,L(Xα))

is analytic if α ∈ (0, 1) and if Xα ⊂ X0, continuously and densely, then

(P, ξ) → {TP (t, s)ξ : t ≥ s, t, s ∈ J} :

W ×Xα ⊂ Cε(J,L(X0)) ∩ C(J,L(Xµ))×Xα → C(∆,L(Xα))

is also analytic.
Furthermore, let J = [0, T ], T < ∞, and G(P, f)(t) =

∫ t

0
TP (t, s)f(s)ds. The

map
(P, f) → G(P, f) : W × C(J,Xβ) → C(J,Xα)

is analytic if α ∈ [0, 1) and µ < β ≤ 1 and β ≥ α.

Proof. The well definition of the the first map follows from the properties of the
evolution operators which say that [(t, s) → TP (t, s)] ∈ C(∆,L(X0)) and [(t, s) →
TP (t, s)] ∈ C(∆,L(X1)). So, by interpolation arguments, [(t, s) → TP (t, s)] ∈
C(∆,L(Xα)). The others follow from similar arguments.

It is well known that if X, Y are complex Banach spaces, U ⊂ X is an open
set such that the map f : U ⊂ X → Y is locally bounded and complex Gâteaux
differentiable, then f is analytic. Thus, consider any P,Q ∈ W and take an open
ball B(P, r) with center P and radius r such that {R(t)A|t ∈, R ∈ B(P, r)} is a
family of sectorial operators in X0 with domain X1. As a result, there exists a0 > 0
such that ‖TR(t, s)‖L(Xα) ≤ a0 for all R ∈ B(P, r). Therefore the function R → TR

is locally bounded. Recall the last section and substitute the family of sectorial
operators S, defined in the initial part of that section, by the ball B(P, r). So
use here, the constants defined in those propositions. Consider also the complex
neighborhood O = {λ|P + λQ ∈ B(P, r)}. For all λ ∈ O, we have

∂

∂t
TP+λQ(t, s) + (P (t) + λQ(t))ATP+λQ = 0 , t > s .

Then
∂

∂t
(TP+λQ(t, s)− TP (t, s)) + P (t)A(TP+λQ(t, s)− TP (t, s))

= λQ(t)A(TP+λQ(t, s)− TP (t, s))− λQ(t)ATP (t, s), t > s .
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We write this equation in the integral form,

TP+λQ(t, s) = TP (t, s)− λ

∫ t

s

TP (t, τ)Q(τ)ATP (τ)dτ + Ψ(λ),

where

Ψ(λ) = −λ

∫ t

s

TP (t, τ)Q(τ)A(TP+λQ(τ, s)− TP (τ, s))dτ .

By the estimates concerning the evolution operators, we obtain

‖Ψ(λ)‖L(Xα) ≤ |λ|2e−Ω(t−s) max
τ∈[s,t]

{‖Q(τ)‖L(Xµ)} max
τ∈[s,t]

{‖Q(τ)‖L(X0)}I
∗ ,

where

I∗ =
∫ t

s

(1 + (t− τ)−1)α(1 + (τ − s)−1)1−αp1(t− τ)p(τ − s)dτ .

So I∗ ≤ B(α, 1− α)p1(t− s)p(t− s). Then the limit of

(TP+λQ(t, s)− TP (t, s))/λ

exists uniformly for t, s ∈ J , t > s, in any finite interval J , if Ω < 0, and in an
arbitrary interval (finite or infinite), if Ω > 0. Anyway, the function P → TP is
complex Gâuteaux differentiable from W to C(∆,L(X0)) in any finite interval J .
The other case follows straightforward from the above and from the linearity of
TP (t, s)ξ relative to ξ. As a consequence of this proof, we obtain the derivative

∂P TP (t, s)H = −
∫ t

s

TP (t, τ)H(τ)ATP (τ, s)dτ ,

where H ∈ Cε(J,L(X0)) ∩ C(J,L(Xµ)).
Now we prove the last assertion. For λ ∈ O, we have

G(P + λQ, f + λg)−G(P, f)
λ

=
G(P + λQ, f)−G(P, f)

λ
+ G(P + λQ, g)

The evaluation of the limit for λ → 0 of the first part is done likewise for (ξ, P ) →
{
∫ t

0
TP (t, s)ξdx, t ∈ J} and the second follows straightforward from the observation

that (P, g) → G(P, g) is continuous. �

Corollary 5.2. For P ∈ W such that ‖TP (t, x)‖(Xα,Xβ) = O(e−Ω(t−s)), Ω > 0,
the interval J in Theorem 5.1 can be taken infinite.

6. Application

In this section we present an application of Theorem 5.1. It applies naturally in
obtaining results about the dependence of the solution of reaction-diffusion equa-
tions in respect to the parameters of the equation.

Let n be an integer, 3 ≥ n ≥ 1, Ω ⊂ Rn, a C∞ domain (see Triebel [13] for
definition), and L2(Ω, C) , W 2,2(Ω, C) the usual spaces of Lebesgue and Sobolev.

It is well known that the Laplacian operator ∆, which is defined over the regular
functions that satisfies the Dirichlet conditions u|∂Ω = 0 is closed in L2(Ω, C). Its
domain D(−∆) is the space W 2,2

0 (Ω, C) = {f ∈ W 2,2(Ω, C) |f |∂Ω = 0} and the
norm of this space is equivalent to the norm of the graph −∆.

Let N ≥ 1, N integer, and IN the identity matrix of order N over CN × CN .
Also, define by −IN∆ the operator which diagonal is the Laplacian. Clearly, −IN∆
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is closed in L2(Ω, CN ) and its domains is equal to W 2,2
0 (Ω, CN ), whose the N

components satisfy the Dirichlet conditions.
We consider now the complex interpolation functor [ , ]θ, θ ∈ (1/4, 1). The

interpolation space theory states that the space [L2(Ω, C),W 2,2
0 (Ω, C)]θ is an inter-

polation space likewise it was defined in the Section 2 (see [13, p. 321, theorem
(a)]). Thus, Xθ = [L2(Ω, CN ),W0(Ω, CN )]θ also satisfies the same definition of
Section 2, because L2(Ω, CN ) is isomorphic to L2(Ω, C)× · · · ×L2(Ω, C), N times.
Similarly, W 2,2

0 (Ω, CN ) is isomorphic to W 2,2
0 (Ω, C)× · · · ×W 2,2

0 (Ω, C). Moreover,
the complex interpolation of the Cartesian product is the Cartesian product of the
complex interpolation.

In what follows, let ε ∈ (0, 1) and J be the interval [0, T ], T > 0. Let Cε(J,MN )
be the set of continuous Hölder functions over the space of the square complex
matrices MN ∈ CN × CN , and Cε

+(J,MN ) the open set in Cε(J,MN ), such that
the operator P (t) has non-zero positive eigenvalues for all t ∈ J .

Finally, let f : J → L2(Ω, CN ), Hölder continuous and such that f : J → Xθ is
continuous. Using these conditions, we shall apply Theorem 5.1 to the system

ut + P (t)(IN (−∆))u = f(t)

u|∂Ω = 0,

u(0) = ξ

which has a solution, and it can be written as

u(t) = TP (t, 0)ξ +
∫ t

0

TP (t, s)f(t)ds

We remark, firstly, that the conditions (ii)) and (iii) in the definition of W ,
see Proposition 3.3, follow trivially from the fact that Xθ is a linear space. The
condition (i) follows from the main theorem in Oliveira [8]. Hence, according to
Theorem 5.1, the mapping (P, f) → u(.;P, f, ξ) is analytic, from Cε

+(J,MN ) ×
C(J,Xµ)×Xθ to C(J,Xθ), θ ∈ (µ, 1].

Obviously, this application includes the case

ut + P (λ)(IN (−∆))u = f(t, π)

u|∂Ω = 0

u(0) = ξ

in which λ ∈ Λ and π ∈ Π, where Λ and Π are Banach spaces. Also, supposing the
mappings λ → P (λ) and π → f(., π) are analytic, it allows to conclude the analyt-
icity of u in respect the parameters λ and π. Observe that a theorem, obtained by
Henry [3, Lemma 3.4.2], for the dependency of the parameters with the operator,
covers the case when P (λ) is diagonal matrix and, therefore, the N components of
the equation system can be decoupled.

By repeating Henry’s argument [3, chapter 3, Theorem 3.4.4], the present ap-
plication can be extended to the semilinear case in which f also depends of the
solution with the restriction that the image of f(u) must have greater regularity in
Xµ, µ > 0. In addition, we note that the Semilinear Geometric Theory of Henry
can be constructed with interpolation spaces as referred here.
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