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ABSTRACT. The initial value problem for the drift-diffusion equation arising from a
model of semiconductor-devices is studied. The goal in this paper is to derive well-
posedness and real analyticity of solutions of the initial value problem for the drift-
diffusion equation with its dissipating term A = (711)1/ 2. In the preceding works for
some associated equations, the case corresponding to this is known as critical. In this
case, the drift-diffusion equation with A is of elliptic type, so we may not apply the
L?-theory for parabolic partial differential equations used in the case that the dissipating
term is A7 = (741)0/2 with 1 <0 <2.

1. Introduction

We consider the following initial value problem for the drift-diffusion
equation arising from a model of semiconductors:

6,u—|—/19u—V~(ule):07 t>0,xeR"
Y — t>0, xeR" (1)
u(0, x) = up(x), xeR",

where n>2, 1<0<2, 0,=0/0t, V=(01,...,0n), 0j=0/0x; (j=1,...,n),
Al =7 "7 g)], 4= > ojz, and ug = ug(x) is given real valued initial
data. The unknown functions u = u(¢,x) and ¥ = ¥(z, x) stand for the density
of electrons and the potential of electromagnetic-field in a semiconductor,
respectively. When 6 =2, the dissipative operator A’ gives the positive
Laplacian —4. When 1 < < 2, the fractional Laplacian A’ involves the
jumping-process in the stochastic-process and it gives the suitable dissipation to
describe the dynamics of electrons in a semiconductor. This operator yields

the anomalous diffusion in dissipative equations. For the basic properties of
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the anomalous diffusion we refer to Brandolese and Karch [1], Karch [14],
Metzler and Klafter [25], and references therein. In particular, when 6 = 1, the
operator Ap = F ~'[|¢|#[¢]] is called the half-Laplacian and the first equation
on (1) is of elliptic type.

The drift-diffusion equation was first considered as a Neumann problem on
a bounded domain with # =2 in Mock [27]. The first equation d,u — Au—
V- (uVy) =0 is derived from the mass-conservation-law for electrons and the
Poisson equation —Ay = u provides the potential of an electromagnetic-field.
For this Neumann problem, well-posedness and asymptotic-stability of time
steady solutions were shown. For the initial value problem (1) with 1 < 6 <2,
well-posedness, global existence in time, decay and spatial analyticity of solu-
tions were proved in Kawashima and Kobayashi [19], Kurokiba and Ogawa
[21], Ogawa and the first author [29], Matsumoto and Tanaka [24] and the first
author [35]. These facts were shown by employing the L?-theory for equation
of parabolic type. Unfortunately these arguments are difficult to extend into
the case 0 =1 since the dissipation balances the nonlinearity. Namely our
equation is of elliptic type in the case § = 1 (see the remark after Theorem 1 in
this section). Our goal is to derive well-posedness and analyticity of solutions
of (1) when 6= 1.

Before stating our results, we refer to some preceding works for involving
equations. When 6 =2, we see the Navier-Stokes equation describes the
model of incompressible fluid flow and the Keller-Segel equation appearing
in the model of chemotaxis (cf. Escudero [9], Giga, Miyakawa and Osada
[11], Keller and Segal [20], and Nagai, Senba and Yoshida [28]). For those
problems, well-posedness, global existence in time and decay of solutions are
considered by many authors. Moreover spatial analyticity of solutions under
several conditions was shown in Giga and Sawada [12], Kahane [13], Masuda
[23], and Sawada [30]. When 1 <60 <2, we refer to the following two-
dimensional quasi-geostrophic equation with the fractional dissipation:

du+ A% —Viy - Vu=0, t>0, xeR?,
(—A)l/zxp:u, t>0, xeR?,

where V+ = (—0,,0;). We remark that, for the potential-term on this equa-
tion, the divergence-free condition V -V+y =0 holds. The quasi-geostrophic
equation is a model which corresponds to geophysical fluid dynamics. This
is very much related to the three-dimensional incompressible Euler equation
(see Chae, Constantin and Wu [4], and Constantin, Majda and Tabak [5]).
For the initial value problem of this equation with 1 < 0 <2, existence of
smooth solutions was shown. On the preceding studies for the quasi-
geostrophic equation, the case @ =1 is known as critical (cf. Caffarelli and
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Vasseur [3], Constantin and Wu [7], Cordoba and Cordoba [8], Kiselev and
Nazarov [17], Kiselev, Nazarov and Volberg [18] and references therein).
Indeed the structure of the quasi-geostrophic equation with ¢ = 1 is similar to
that of the three-dimensional Navier-Stokes equation. For this fact we refer to
Miura [26]. On the studies for the critical case by Constantin, Cordoba and
Wu [6], smallness of the initial data in L*(R?) was assumed in order to derive
existence of solutions. Moreover the structure of the potential-term, namely
the divergence-free condition, was applied in those preceding works. Maekawa
and Miura [22] also studied well-posedness of solutions to the fractional
dissipative equation with a generalized potential-term which satisfies the
divergence-free condition. Since our potential-term Vi has not such a struc-
ture, the idea of the preceding studies might not work to our problem (1).

Before considering the critical case, we briefly review the results of the
subcritical case for our problem. For the initial value problem (1) with
1 <0 <2, Ogawa and the first author [29] and Matsumoto and Tanaka
[24] showed the following properties.

PropPOSITION 1. Let n>2, 1<0<2, n/0<p<n and uoe L?(R").
Then there exist a positive constant T and a unique solution u of (1) such that

ue C([0,T); L*(R")) N C((0, T); W (R") N C'((0, T); L"(R")).

Moreover, if ugp>0 and uge L'(R") are assumed, then u(t,x)>0 and
lu()|l, = lluoll, hold for any t>0 and xeR". In addition, assume that
up € L'(R"YNL*(R"), then the solution of (1) exists globally in time and
satisfies

||”(t)||u(R") <Cc(1+ t)*(n/())(lfl/p)
for any t>0 and 1 < p < o0.

PROPOSITION 2. Let n>2, 1< 0 <2 and uye L"°(R"). Assume that the
solution u of (1) exists globally in time and satisfies

[u(2)]

LP(R") < C(] + l)_(”/ﬁ)(ﬁ/n—l/p)

for any t >0 and n/0 < p < 0. Then there exist positive constants K| and K,
and 1/0 <6 <1 such that

||Vﬁu(l) HLI’(R”) <K, (K2|ﬁ|)Vf\—él—(n/(’)((’/n—l/p)—\/)'l/(’

for any n/0 < p <o, feZ\{0} and t > 0. Especially, the solution u is
analytic in x.
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Proposition 2 was proved in [35]. The above propositions are proved by
employing the L”-theory for equation of parabolic type. Unfortunately, in the
case # = 1, we cannot extend those propositions since our equation is of elliptic
type. Hereafter we consider this case. Namely we study

ou+ Au—V - (uVy) = 0.

In order to discuss our results, we introduce the following weighted-Sobolev
spaces:

H,(R") = {pe Z'(R") |[<x)"Jp e L*(R")}, 2
Hy(R") = {pe 2'(R")||x]"Tp e L*(R")},

:

where J* = (1 —A)S/ * and (x)=1/1+|x|*>. For simplicity, we represent
H,(R") = H’(R") and #,(R") = #°(R"). The inner-products on H}(R")
and J;(R") are given by

SsPuywny = OIS T g0 2wy
<fag>9{/m‘(R”) = <|x|m‘]sf, ‘X|mJSg>Lz(Rn),

where {-,->;2gr) is the standard inner-product on L*(R"). Then we give
well-posedness of solutions of (1).

Tueorem 1. Let n>3, 0 =1, s>5+1 and uye HJ(R"). Then there
exist a positive constant T >0 and a unique solution u of (1) such that

we L™ (0, T; Hi(R")) N L*(0, T; H**'2(R")),

where H3(R") is defined as (2).

In the assumption of this theorem the regularity H*(R") with s > n/2 + 1
is not essential. Indeed it is possible that we solve (1) on some natural class
in view of the invariant-scaling u,(¢,x) = Au(Af,Ax) (2> 0) but we will not
develop this point here. Also we can prove the assertion of this theorem if
the initial function is in H;(R") instead of in H35(R"). However the proof
would be longer in this case, because the estimate of the term [{x)J* A] is
more complicated than that of [|x|2J%, 4] in (20) for example. For simplicity,
we assume that the initial function is in HJ(R") in this paper. A more
complete claim will be proved in our forthcoming paper [32]. The proof of
Theorem 1 is based on the energy method with weighted L?(R")-norm. When
1 <0 <2, we have derived Proposition 1 by employing the energy method
with usual L?(R")-norm and the Sobolev inequality (see [21, 29]). Unfortu-
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nately, when 6 = 1, we cannot apply the similar procedure as in the proof of
Proposition 1 since the regularizing effect from A is too weak in this case. In
Section 3, we prove Theorem 1 by employing a commutator estimate via Kato
and Ponce [16] and Hardy’s inequality.

Our second objective is established as follows.

THEOREM 2. Letn>3,0=1,s>%5+1 and uy € Hy(R"), where Hj(R") is
defined as (2). Then the solution of (1) is real analytic with respect to both the
space and the time variable on (0,T) x R", where T is the positive constant
which is determined in Theorem 1.

We do not use the decay property that (x>u(t,x) € L*(R") in the proof of
Theorem 2. Our proof works when ue C*((0,7); H*(R")) is ensured. In
[15], the second author showed analyticity of the solution to elliptic equations
by using a cut-off function. In Section 4, we employ this idea in order to
prove Theorem 2.

By using the similar arguments as in this paper, we can treat some
fractional dissipative equations with a potential-term. For example we con-
sider the following Keller-Segel equation of parabolic-elliptic type:

ou+A%u+vV - V) =0, t>0, xeR",
Y — A =u, t>0,xeR", (3)
u(0,x) = up(x), xeR".

Then we have well-posedness of solutions of (3) with 0 < 6 < 2. In particular
we obtain analyticity of the solution when 1 <0 < 2.

NoTATION. In this paper, we use the following notation. For x =
(X1,...,x,) and y= (y1,...,ys) €R", we denote x-y=x1p1+ 4+ Xy Vn,

x| = /x-x and (x> =/1+]|x|>. We define the Fourier transform and the
Fourier inverse transform by Z[g](&) = (2n) "> [gr e >p(x)dx, Fp](x) =
(1) "2 fqne™p(E)dE,  Filpl(n, &) = 2m) R [ fo re T (e, xX)dxdr,
F ol (t,x) = 2r) "R [ [0 wn €T ¥0(c, E)dEdT, where i = v/—1.  For sim-
plicity we denote ¢(¢) = 7 [p](¢). The partial derivative operators are denoted
by 6,=0/dt, 0; =3/dx; (1 <j<n),V=_01,...,0), A=0] +--+ 02, A9 =
77 p)) and Jip = (1-4)"p=7"[(1+¢*)*Z[g]]. The gamma
function I'(p) for p>0 is provided by I'(p)= [ e 't»"!dr. We write
[4,B] = AB— BA for operators A and B. For o= (uy,...,a,) and f=
(Br,... B, €Zl, weuse V* =T[L, 0/ and || = 3./, B;, where Z, = NU{0}.
We write a < if o <f; (1<j<n), and a <f if « <f and a# . We
denote (£) = HJ’;]% for « and feZ such as o <f. We denote L”
and H* the Lebesgue spaces and the Sobolev spaces for 1 < p < co and s € R.
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The norm of L”(R") and H*(R") are represented by || - [|,,g») and || - || sgre)-
In particular the inner-products on L?(R") and H*(R") are denoted by
Soprwn = g f(x)g(x)dx and {f,g>ywny = <Jf,J°gyr2. The homoge-
nous Sobolev spaces and their inner-products are represented by H*(R") and
<f,g>Hs(Rn) = </1Sf,/1‘vg>Lz<Rn>. We denote the set of all functions f on R”
whose Lipschitz-norm || /|| &) = 1/l = ®n) + IVl = ey is finite by Lip(R").
For ueR, the Gauss’ symbol [u] describes [u] = max{meZ|m < u}. The
dual space of a normed space X is denoted by X*. We denote the coupling
of feX* and xe X by {f,x)>. For normed spaces X and Y, we denote
the set of linear bounded operators X to Y by Z(X,Y). Especially we
denote #(X) = (X, X) and || 4]y, = sup, soll Axlly/Ilx]ly for 4 e Z(X).
Various constants are simply denoted by C.

2. Preliminaries

In this section, we prepare several lemmas to be used in the proof of our
main conclusions.

LemMma 1 (Kato-Ponce’s inequality). Let s >0 and f € H*(R") N Lip(R")
and g € H* Y (R")NL*(R"). Then the following inequality holds:

1% 19l 2wy < CULS N o]

Il ey + 11 Nipwe 191 g1 m) )

where J* = (1 — A)S/ > and C is a positive constant which is independent of f
and g.

Proor. For the proof of this lemma, see [16]. O

LEmMMA 2 (Hardy’s inequality). Let 0 <s<n/2. Then there exists a
positive constant C such that the inequality

A N 2y < CIAS ] 2y
holds for any f e H*(R").
Proor. The proof of this lemma is given in [33]. O
Hardy’s inequality provides the following inequalities.

LEMMA 3. Let n>3. Then there exists a positive constant C such that
the inequality

llV(_A)71¢‘|L2(R”) < Clloll s ®m

holds for any ¢ € #4(R").
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Proor. Using the Perseval identity, we see that

-1 1.
V(=4)"0ll 2@y < CIHE 0l L2
Applying Lemma 2, we obtain the desired inequality. O

LemMA 4. Let s > 54 1. Then there exists a positive constant C such that
the inequality

V(=) " 0ll gy < CUl0ll ey + Il ve)
holds for any ¢ € H{~'(R").

Proor. The Sobolev inequality yields
V(=) 0ll e gy < CIV (=) 0l 1o

Hence, employing the Perseval identity, we see that

1 AN
(=)ol < € | A+ i)
R” |6|

(1+|f|2)s N2
=C -~ - d
L« FLGI

(L1222
+CJ|¢>1 EA @

16(&)dé

Lemma 2 yields

1+ 52 s A R é ,
Jlésl(é||2|)|¢(f)|2dfﬁ CJ ,,Wé)z'dg

2
< Clloll &
For the second term on the right hand side of (4), we have

1 2\ 8 .
| U o< c| a1k
st ¢ R’

2
< Cllollg 1 rr)-

Thus we obtain that

V(=) 0l 7wy < CUDl 71y + 10l ) (5)

Consequently we derive the desired inequality. O
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The following lemma is well-known in functional analysis.

LemMmA 5 (Banach-Alaoglu’s theorem). Let X be a separable normed
space, and let {f,},.n © X* be a sequence which is norm bounded. Then there
exists a subsequence of {f,},en Which converges weakly*. Namely there exists
feX* such that

Tim (i xy = (0
holds for any x e X.
Proor. For the proof of Lemma 5, we refer [2]. O

On the Sobolev spaces, a product of functions is treated by the following
inequality.

LEmMMA 6. Let s > 0. Then there exists a positive constant C such that the
inequality

HWHH.\(R”) < C(H“”H“(R”)”UHL%(R”) + HuHLx(R”)||v||H“(R”))
is satisfied for any u,ve H*(R")NL*(R").
ProoF. The proof of this lemma is given in [34]. O
For a pseudo-differential operator, we obtain the following lemma.
LemMA 7 (Calderén-Vaillancourt’s theorem). Let p e C*"*!(R" x R") and

the pseudo-differential operator P(x,D,) be defined by

PU.DJol) = | epl 9(E)ae
for p e L>(R").  Assume that

Z ||V$pr||“ (R"xR") < @O (6)
[o+-p| <2n+1

is satisfied. Then
P(x, D) € Z(L*(R"))
holds.

Proor. For the proof of Lemma 7, we refer to [10]. O
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3. Proof of well-posedness of solutions
In order to prove Theorem 1, we represent our problem as

Ot + Au — V(—A)_lu Vu+u?>=0, t>0,xeR",
u(0, x) = up(x), xeR",

where the operator (—4)" is defined by

N ol = L /2) 480
)09 = sy e

For some s >%+1 and T >0, we introduce the following complete metric
spaces X7 and Y7:

Xr=L*0,T;H;(R"),  |lully, = sup [Kx>2T°u(t)]] 2o,
te(0,7)

Yr=L*(0,T; Hy(R")),  lully, = sup, 1<% ()| 2w
te (0,

where H3(R") and H>(R") are defined as (2). For M >0, we define
Xrom =A{ue Xr||lully, <M}, ()
in which we look for solutions.

PrROPOSITION 3. Let the function spaces Xty and Yp be defined as
above. Then Xr a is a closed subset in Yr.

Proor. Since Y7 is a Banach space, for any Cauchy sequence {un},,.n
in Yp with {uy,},,.n © X7, M, there exists u € Y satisfying u,, — u as m —
in Y7. Namely

lim (x)>2u,, = (x>?u  in L*(0, T; L*(R™)).

m—o0
We show u e Xr p. Since u, € X7y, we see that

sup [[<x7T (1)l 2y < M.

0<t<T

In addition L*(0,7;L?*(R")) is the dual space of L'(0,T;L*(R")). Hence
Lemma 5 states that there exist a subsequence {um}; N = {tm},n and
ve L*(0,T;L*(R")) such that

w*-lim <x)*J*u,, =v  in L*(0,T;L*(R")).

J— 0
We define the function & by & =J*({x)%v). Then we see that

e L”(0,T;H5(R"))
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and

sup [[<x>2a(1)|| 2y = sup (|00 22rr)
0<t<T 0<t<T

< liminf sup [[<x)*J *, (1)]| 2mry < M.
J7O 0<u<T

Namely we have that @i e X7 3. On the other hand, since the limit value
of {uy,};cn 18 unique, we obtain that # =wu. Thus we complete the proof.

O
For ve Xr ), we introduce the following linearized problem:
i+ Au—V(—=A) "o Vu+wm=0, 0<t<T,xeR", ®)
u(0, x) = up(x), xeR".

The solution of (8) can be constructed by using the following approximated
problem of (8):

{ dutty + AT, (Dy)ty — Jo(D)WV(—4) "0 - VI (Do)t + v, = 0, o)

u:(0, x) = up(x),

where J,(D,) is a Friedrich’s mollifier. (9) can be regarded as a linear
ordinary differential equation for u, in Banach space H*(R"), which is solved
for each ¢. The same estimate as in the proof of Proposition 4 and the
standard weak convergent argument show existence and uniqueness of solutions
of (8) (see [34, Chapter 5] for more details). Then (8) has a unique solution

ue L*(0,T; Hi(R")) N L*(0, T; H**1/2(R"))
associated with v. We define a map @ by
Dlv] =u (10)
for ve X7 y. Then the following proposition holds.

PROPOSITION 4. Let s>541 and M = 4||uol| uy- Let the function-class
X7.m and the mapping @ be defined by (7) and (10). Then the inequality

P[]l y, <M (11)

holds for all ve Xt y, if T >0 is sufficiently small. Moreover there exists a
constant 0 < L < 1 such that the inequality

[@[v1] = Plva]lly, < Lijvr = vy, (12)

is satisfied for all vy and vy € X1 _p.
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ProoOF. We show the inequality (11). Using (8), we see that
O u(t), Jou(t) Y oy + <AJ u(t), T u(t) ) 2y
= PV (=)0 Vu) (1), Ju(t)> Loy — I (o) (6), T u(t) ) gy
Hence we obtain that

1d 2 2
> O ey + 14200 e

= V(=) ol0) - Vu(t), u(0) > sy = <olO)u(0),u(t) > pomrys (13)
since A'/? is self-adjoint on L2(R"). For the first term on the right hand side
of this equality, we see that
V(=) o(0) - Vae), u() ey = <V (=4) " 0(0) - VI*u(1), Ju(0) e,

+ IV (=) oVult), u(0) gy (14)

Using integration by parts for the first term on the right hand side of (14), we
have that

V(=2)"00) - VIu(t), T u(0) 2oy = %j V(T (1)) - V(=4) o(r)dx

_ %J () (0.

Hence, applying the Holder inequality and the Sobolev inequality, we obtain
that

<V (=4) " o(t) - VI u(t), T u(t) 2| < Cllo()

s 2
Lo 1w 12
2
< Cllo()l s 1@ s rem -

Thus the condition of v(f) concludes that

<V (=4) " o(t) - VI u(0), T u(t) 2y < CM|u() |7y

Schwarz’ inequality and Lemma 1 yield that the second term on the right hand
side of (14) satisfies

[,V (=4) " olVu(t), Ju(t) > 2|
< IV (=2) " oV u()]| oo 1w 2w

< CIV (=) 0(0) |+

2
u() s (rr)-
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Thus, applying (5) to this inequality, we have that
KV (=2) ™ olWa(0), T u(e) o | < CloC0) gy 1) ey
2
< CM|Ju(1)||77:r)-

Consequently, employing those inequalities on (14), we conclude that the first
term on the right hand side of (13) satisfies

<V (=)~ 0(2) - Vau(t), u(0) sy | < CMu(0) 7y (15)

For the second term on the right hand side of (13), the Hdlder inequality,
Lemma 6 and the Sobolev inequality yield that

[<o(@)u(t),u(t)) gswn) < Cllv(O)]] gswn) |”(Z)H12L1s(R")
< CM [[u(0) | 7 rr- (16)
Applying (15) and (16) into (13), we see that

1d

2 2 2
T () 175y + 114" 2u(0)]| 3@y < CM (D) rogrr-

Hence we obtain that the inequality

t
0 <t<T

et (O -y +J 14" 2u(2) |77y de < o] 7oy + CMT Sup et () 77+ e

holds for any 7€ (0, 7). Consequently, if 7 > 0 is sufficiently small, we con-
clude that

T
supT (1) |3, + JO 1A 2u(0)||7,.dt < M? /4. (17)

0<t<

We estimate Hu(t)H%X(Rn) in order to conclude the inequality (11). Using
(8), we obtain that

oV H”(f)Hi«/;(R") + {Au(t), u(t)) 7y v
= V(=) o(t) - Vu(0), (1) sy — <o(0u(0),u()> ysmry- (18)
The second term on the left hand side of this equality is split into
(D), u(2) gy = <IXPT Au(t), [x2T (1)) 2
= AT u)(0), [XP T u(t)> 2wy

+ P Au(e), |xPT u(t) gy
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Since the operator A'/? is self-adjoint on L%*(R"), the first term on the right
hand side of this satisfies

CAPTw) (), [¥PT°u(0) ey = 145 T u) (0| 72w
and the equation (18) is represented as

1d 2 2 2
5 7 1O ey + A2 (X2 ) (O 2 e

= WV (=A) " o(1) - Vu(t), u(t)> sy — <o), u(0) ) smery
— IXPT*, AJu(D), [xPTu(t) > 2w (19)

In the last term on the right hand side of (19), the commutator [|x|>J*, 4]
is represented as

(2%, Al = |x>Z M [e)(1 + )2 Z ] — 7 M |E[ 7 [T u]
= 7 (=4 (€1 + &) 7 )]
(=41 + €27 )]
= 7 (= 42N (1 + 1) 7 )]
+27 M (=Velé)) - Ve((1+ €127 [u]). (20)

The Plancherel identity and Lemma 2 yield that the first term on the right hand
side of (20) satisfies

17 (= 41D (1 + 1) 2 ) ()] 2wy
< QI A+ 1) P F (1) e
Applying Lemma 2 and the Plancherel identity again, we obtain that
17 7 (= 4lED (1 + 1) 2 ) (0] 2wy
< Cllu() sy + (O] rr))- (1)

For the second term on the right hand side of (20), employing the Plancherel
identity and the Holder inequality, we have that

17 (= Velel) - Ve + 1EP) PZ DO 2 e

< IVe((1+ 1) 2F 1) ()] 2y
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Hence the Plancherel identity yields that
17 [(=Velel) - V(1 + 7)) ] gy
< Cllu(®) e
< )Ly + 1Oy (22)
Applying the inequalities (21) and (22) into (20), we obtain that
N2, Aue) gy < CUO ey + Ny + 1O )
< COM + [u(t) | )
Hence the last term on the right hand side of (19) satisfies that
<X, AJue), [¥12Tu(t) 2 e
< X127, (O g | 12T w0 ]2 e
< COM -+ 11u(0) o) 11C0) ey (23)
We consider the first term on the right hand side of (19). The identity
IX|2T(V(=4) " v Vu)
= (I IV (=) - Va) + [,V (=24) " o) (x| V)

+ V(=)o [T X Vu+ XV (=d) o TV
gives that

V(=) 0(1) - Vau(r),u(t) > s e
= (X2 7V (=4) " o Va) (0), X2 u(t)> e
+ V(=) (XY (0), (2T u(0) ) 2wy
+ V(=) o) - [ [<PVue), |52 T u(t)) ey
+ NPV (=) o) - TVu(e), [XPTu(1)) o g (24)

By the similar calculation as in (20), the commutator on the first term on the
right hand side of this equality is represented by

(X2, )V (=)0 - Vi) = F (= 4:(1 + |EH)HF WV (=4) v - V]

=27 (Ve(L+ [E)7) - VeF V(= 4) v - Vul].
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Since Vi (1+ |¢[%)*? = s&(1+[¢%)"* 7" and Ae(1+1¢)" = sn(1 + (&))" +
s(s — 2)EF(1 +1€1)**2, we have that

11, )V (=)~ o - Vi) (D 2wy < CIT* V(=) 0 - Vi) (0] 2wy
+ CII T V(=) o Vi) (0] 2y

Thus Lemma 6, the Sobolev inequality and (5) give

10161, 7V (=) "o Vi) (1)l ey < CU00 gy + 12O 100

< C(M + [u(D)] s r))
and we see that the first term on the right hand side of (24) satisfies
(<O, )V (=) o Vi) (1), 131 *u(0) 12|
<C(M+ ”u(t)||H1f(R”))||u([)||9f2“(R”)' (25)

The Holder inequality and Lemma 1 give that the second term on the right
hand side of (24) satisfies

<,V (=) o (32Va) (), ¥ T*u(1) ) Lo
< |72, V(= 4) " o) (|5 *Vu) (1) | 2oy [ 1312w (0) | 2y
< CIV (=)~ 0l gy 1 XV 01 ey 100 g ey
Thus the inequality (5) and the condition of v(¢) provide that
<4,V (=) o (xPVa) (), ¥ T*u(1) ) Lo
< Cllo() sy (O | sy + 1O ) (O s vy
< CM(M + ||u(O) ||y ) 1O ]y e - (26)

The commutator on the third term on the right hand side of (24) is represented
as

o, 6P Vu = =7 (= 4:(1 + 1£17) ) F (V]

+ 27 V(L + |E7) ) - Ve V).

Hence we see that
2 _ _
% (5 IV ()| 2y < CIIPT2Va(0) | 2 ey + CIT ™ V) (0)]] L2y

< Cllu(0)ll 1y
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A combination of this and Lemma 4 gives that the third term on the right hand
side of (24) satisfies

<V (=) o(t) - [7° [P IVa), 12T u(t) ) oo

< V(=) o)l e ey I [P WVu(0) | 2 e

()L
< Cllo( gy rey 1O | g1 ey (O] ey -
Thus, using (17) and the condition of v(#), we conclude that
KV (=)o) - 177, [xP Va0, [xPTu(0) oy | < CM ()] gy (27)

Applying integration by parts, we have that the last term on the right hand
side of (24) is split into

APV (=2) " o(r) - IVao), [P Tu(0)) 2w
= —2(VIx?) - V(=) " o(0) T u(t), [T *u(1) ) 2y
oI u(e), X2 u(t)) 12wy
— V(A o) u(), NPT Vu(0) e, (28)

We transport the last term on the right hand side of (28) into the left hand
side of (28), then we obtain

XV (=) o(t) - TVu(t), |xT*u(t) 2

= —VIxP) -V (=2) 7 () ult), 15T u(t) ) ey

1
5 <o u(e), [ u(0) e
Hence the Holder inequality and Lemma 4 provide that

[PV (=) w() - TVu(e), |52 u(0)> 2

-1
< C(IV(=4) " oIl = ey 1) [ sy 1 (O] ey
2

+ ol g ey () s ery)

< Clle(2)]

2
H;(R")||”(l)||;¢;(R")-
Thus the condition of v(r) gives that

<XV (=) o(2) - T Vu(t), |12 u(0)> | < CM|u(0)| 5 mey- (29)
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Applying (25)—(27) and (29) into (24), we see that the first term on the right
hand side of (19) satisfies

[V (=4) " o(2) - Vau(D), u(0) ) s v
< C(1L+ M) (M + [[u(0) | s ) () ey (30)

Schwarz’ inequality gives that the second term on the right hand side of (19)
satisfies

[<Cole)ut), (D) sgrry | < N0 g e 11O g ey
Since the equality
X2 (vu) = 7 (—40) (1 + 1% 7 ou)
is satisfied, we see by Lemma 6 and the Sobolev inequality that
(Ol s ey < CURDUD) o2y + 1V + 1)) - F oo 1) 2 e
2 (u0) g )
< CM({[u(@)| s rry + (O] )
Thus we obtain that

[<o(O)u(t), u(1))mm| < CM (M + [[u(?)] 5 r))

()] mry- (1)
Applying the inequalities (23), (30) and (31) into (19), we obtain that

d ,
IO e + 14 20 (0

< C(1+ MYM + [[u() ||y ey ()| ey - (32)
Using Gronwall’s inequality, we have that

sup. 4(2) |5 rry < €SO oy + C(1 4 M)MP (ST — 1),
<t<

Hence we derive that

sup Hu(l)Hi@(R") < M?*/4

0<t<T

holds if 7 > 0 is sufficiently small. Summing up this inequality and (17), we
obtain the desired inequality (11).



292 Masakazu Yamamoro, Keiichi Kato and Yuusuke SuGiyaAMa

Next we show the inequality (12). For v; and v, € X7 ), we denote
up=®] (j=1,2), 9=v; —vy and @& =u; —up. Then we obtain

Qi+ Aa=V(—A)""v - Vi — vja
+V(=A)"%5-Vuy — tuy, t>0, xeR”, (33)
#(0,x) =0, x e R"

We multiply the first equation on this by # and obtain

d, . -
a1z ey + 14" 280 72w,
dt

_ %J at) o (6)x — Con (De), w1 ey

+ V(=) 7'8(0) - Vo (1), (1)) ey — <B(Ou(0), #(0) > 2y (34)

The first, the second and the last terms on the right hand side of this equality
are estimated in the similar way as in the derivation of (17). Indeed the
inequalities

|, a0 (0ax < otlaoFue
and
o1 (0R0). 8(0) ey |+ 1B (1), 7(0) |
< CMIa(0) g 1500 e

hold. Since s > n/2 + 1, the Holder inequality and Lemma 4 imply that the
third term on the right hand side of (34) satisfies

[V (=4) "1 8(2) - Vo (1), #(1) ) 2 )|

< V(=)' 50 o IV a2(1)]

Lo 0] 2w

< Cllo@] 4y 12 () s |

< CM ()] 5y 18] L2

u(0)l 2 rm)

Hence we obtain that

d, . _
O Eoqn + 1420 o

< C([a)l 2y + N0, @) 17O 2 ) (35)
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Befozre concluding the es‘Fimate for ||L7(I)HL'2(RH), we estima‘;e~ ||52¢(l)||E%(Rn) =
| [x[“a(0)[| ;2 (gn)-  We multiply the first equation on (33) by [x[“#|x|” and obtain

d

7 Hﬁ(l)”i{/z(R“) + {Au(t), u(t)) 5 mr)

=V (=4)""01(2) - Vu(t), u(t) )y mey — o1 ()u(t), u() ) 5 mn)
+ V(= d) (1) - Vi (1), (1) )y — <B(0)ua (1), 8(0) Y ey (36)

The first, the second and the last terms on the right hand side and the second
term on the left hand side of this equality are treated in the same way as in
the derivation of (32). Indeed the first and the second term on the right hand
side of (36) can be estimated as

KV (=4) " 01(2) - Va(e), #(0)> sy | < CMa(0) | ey (37)
and
[ <o1 (D)a(1), 4(1) ) vy | + [<B(Oua(2), 4(1) > 1 m)|
< CM[a(0) ||y NEO Ly + 120 ] wr))- (38)
The second term on the left hand side of (36) satisfies
CAE), (1) gy = A2 (6P0)) 132 gy + <1, ANi(e), [ePa0)> ey (39)
and
<2, AJae), [x*a(6)> | < Clla() |7 g (40)

For the third term on the right hand side of (36), using the Hoélder inequality,
we see that

KV (=2)7"6(2) - Vua (1), (1) > )|
= K[xIPV (=4) " 6(t) - Vi (1), |xPi(1) D 12|

< ||V(_A)7ll~7(t)||L2(R”)

2~
PV (O o o | X ()] 2 -

Employing Lemma 3 and the Sobolev inequality, we obtain that
KV (=4)715(1) - Vaaa (8), () s |
< ClUBE ey | V2020 17501 ey 1) ey

< CM[()[] 5 oy 1ECO) || ey - (41)
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Hence, applying (37)-(41) into (36), we have that

d
O gy + 14" (0] e

< C(l[u()l] gy vy + 10Oy ey N[O | 1, r7)-
By summing up this and (35), we obtain that

d, . - - -
7 (O 7y < CUE gy + 15 s )10y -

Thus Gronwall’s inequality provides that
lall3, < Ce" = 1)]ja3,.
Consequently we conclude (12) if 7> 0 is sufficiently small. O

We remark that the norm ||u(t)||f{2x may not be differentiated with the
time variable. The proof of Proposition 4 is justified by employing a mollifier.
In the following, we give our proofs with formal calculus, but we can justify
the proofs by applying the argument with mollifier.

Proposition 4 provides the proof of Theorem 1.

PrOOF OF THEOREM 1. Since X7,y is a closed subset on Y7, Proposition 4
and Banach’s contraction mapping theorem imply that there exists u e X7 u
such that @[u] = u if we take T > 0 as sufficiently small. Especially this u is
a unique solution of (1) with § = 1. Employing (17), we see that

T
2
L A" 2u()|| 3yt < 0.

In particular we have u e L*(0, T; H**'/>(R")). Thus we complete the proof.
]

4. Proof of analyticity of the solution

Ellipticity of the equation (1) with respect to (z,x) gives the following
proposition which is proved in the same way as in Proposition 7.1.B in Taylor’s
textbook [34].

PROPOSITION 5. Let n>3, s >541 and ug € Hy(R"). Then the solution

of (1) satisfies
ue C*((0,T); H*(R")),

where T is the positive constant which appears in Theorem 1.
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ProOF. We prove this proposition by applying the formal argument,
which can be justified by employing a mollifier. We put

M = sup [[u(t)]| 70 g

0<t<T

for some so € (1 +2%,s). Since ue L*(0, T; L2(R")) N L%(0, T; H**'/2(R")), we
see that u(f) e H**'/2(R") for almost all e (0,T). We show that u(f)e
H**V2(R"™) for any te (0,T) and

ue L*(0, T; H*'(R")) N L™ (0, T; H*'/2(R™)).
In the similar way as in the proof of Theorem 1, we have that
1d

2 2
5 1Oy + 1AM 2u(0) | roe12 ey

= V(= 4)" u() - Va(t),u(t) sy = <ul0),u(t) oy (42)
The first term on the right hand side of this equality is split into
V(=A)""ult) - Vu(t), u(t)> e g
= V(=) u(t) - VI (), 7 Pu0)) 2wy
+ 2V (=) ] V), T Pu()> ey (43)
Using integration by parts, we have that
V(=) ult) VI (), T () e
= 2O Pul), T Pu) e,

Hence the Holder inequality and the Sobolev inequality give that the first term
on the right hand side of (43) satisfies

V(=) u(t) - VI Pu(t), I H2u(0) ) ooy < Clla() e oy 19 P00 2w

2
< ClluO| o ey 1O 75172 ey -

Applying the Schwarz inequality and Lemma 1 into the second term on the
right hand side of (43), we have that

<[J‘Y+l/2vv(—4')71“] 'V”(f),J‘Y+1/2u(t)>L2(R”)
< CUIV (=) u(®) | Liprn V() | 112y

+ ||V(_A)71u(l) ||Hs+1/2(Rn>

Vu(O)ll = @) ()] ov12we)-
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Thus Lemma 4, the inequality (5) and the Sobolev inequality provide that
IV (=) ) V() T Pu(t)y paey < CM(L A+ ()17 000)-

Consequently, by those inequalities on (43), the following estimate holds for the
first term on the right hand side of (42):

V(= 2) " ult) - Vul0), (1) pgoory < CM O+ (D)) (44)

Employing Lemma 6, we see that the second term on the right hand side of
(42) satisfies

() u(@)> ey < CMP ()| ooz - (45)

Applying (44) and (45) into (42), we obtain that
d
7 ||”(l)||%{w/2(R") + HAI/ZM(Z)Himl/z(R") <CM(1+ Hu(I)HIZ-I»‘Hﬂ(R"))' (46)

Here we choose # e (0,7) such that u(ty) e H**'/>(R"). Then Gronwall’s
inequality gives that

t
) oy + | €IV 28) s < (14 ) e Je
1

Especially we have that u(f) € H**'/>(R") for any te (t,T) and
ue L*(ty, T; H'(R™)).

Since we can choose 7 > 0 sufficiently small, we conclude that u(z) € H**/?(R")
for any € (0,7) and u e L*(0, T; H*'(R")). From (46), we have that for any
t,7€(0,7T),

t
2 2 2
O zs2 ey = (@) 712y |+ J 1A 2u(s) | g2 ey s < Cle =1,
T

where the positive constant C depends on M and 7, which implies that
ue C((0,T); H'2(R") N C'((0, T); H~'*(R")),

by the equations in (1) and the fact that u e L?(0, T; H**'(R")). By repeating
this procedure, we obtain the desired conclusion. O

In order to prove Theorem 2, we introduce a cut-off function as follows.
We choose fy e (0,7) arbitrarily. For this #, we introduce a real-valued
function r; € C°(0,T) such that 0 <r(f) <1 and r; =1 on a neighborhood
of thp. We prove the following proposition.
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PROPOSITION 6. Let n>3, s >5+1, ug € Hy(R") and u be the solution of
(1). Let ry = r1(¢) be defined as above. Let a be an even integer which satisfies
o> [ + 1. Then there exist positive constants C* and K such that

()" 0V ooy < K+ ]! (47)
and
()" 07V VY ey < CTK™ P m o [ = 1)1 (48)
hold for any (m,o) e Z, x Z\{(0,0)}.
ProoF. By the definition of r, there exists a small constant J > 0 such

that suppri < (fp —6,%+9J). We introduce a cut-off function {, € C;°(R)
such that 0 < {y(r) <1 and

L) =1, te(ty—9,t+0),
{ Lo(t) =0, te(—oo,tg—20)U(ty + 20, 00).

Since we estimate u(f,x) only on suppr;, we can identify u(¢,x) with
Lo(Hu(t, x). By Proposition 5, we see that (47) with (m,«) = (0,0) holds. We
prove (47) and (48) by induction in three steps. For N € Z,, we assume that
(47) and (48) hold for any (m,u)eZ, x Z] with m+ |o| < N. Under this
assumption, we show that (47) for any (m,a)eZ, x Z with |« #0 for
m+ |o| = N+ 1 in the first step, (47) with |a| =0 for m+ |o| = N + 1 in the
second step and (48) for m + |«| = N + 1 in the third step. Those are done if
we take C* and K sufficiently large, which are determined later.

First Step. We take and fix o, f € Z] and m e Z, with m + || = N and
|l =1. We estimate

r (t) m+|1‘+2v/j’aznvxu — Vﬁ(”l ([)mHaHZatmvau).

The crucial point of the first step is to replace V¥ by &, + A4 — Vi -V, which
is carried out in (60). Putting

U(t,x) = ri(0)" 207 u(t, ), (49)
we prove that

VAU oy < VLN + 1)L (50)
We introduce a positive function {; € C;°(R x R”) such that 0 <{; <1 and

(1 for|(z,é)| <1,
5“@@{0 for [(£,0)] > 2,

where |(7,&)| = /2 +|€]*. We put

C2(Taé) =1- Cl(mi)- (51)
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Then, employing the Plancherel identity, we obtain that
HVﬂUHH”(RxR”) =7 [é/{%J[U]]HH”(RxR”)

< 172 15, O)IE1 (7,8 Z [ U o iy

p
o [leOeE0 5 SCY)

I +(z.8)

H?(RxR")
Since |(7,¢)|¢; <2 holds, the assumption of induction shows
- 1
17200 96 Ul oy < 2KVNU < KV N 4L, (53)
if K satisfies K > 4.
Putting L =0, + A4 —Vy -V, integration by parts yields that

F1x[LU(7, &) = (it + [¢]) 71« [U](2, &) — F x[uU](z, &)

— 2m) D2 ” UV (s, y)dyds. (54)

RxR"

We divide the first term of the right hand side of the above into
(it + €))7, <[ U](2, )
= (it + [€|L4($)) Zx[UN (2, ) + [€16:(8) 71, : U] (7, €), (55)
where (3 € Cy°(R") is a positive function such that 0 < {3 <1 and
0 = { I for[¢] < g m?n{l,(sup[o,r] HV‘//HL‘K):I
0 for || = § min{1, (supy, 1y [V¥l) "
G(Q) =1-5(9).

Here we assume that Vi # 0 without of loss of generality. Indeed, when
Vi = 0, our problem is trivial. Since the Taylor expansion of i is represented
by

)

}
12 (56)

O*VIV(t, x)

Vi (s, y) = (s—0"(y—x)7

vigrer R
N Jlényle(t-l—/l(s—t),x+/1(y—x))
k+lyl=1+170 kly!

x (1= A)'di(s — )" (y — x)7, (57)
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the equalities (54) and (55) provide that
F1x[LU|(z,€)
= (it +[€[C4(&) — i€ - VY (1, x)) F1, < [U(x, &) — 1, [uU](z,€)
+ |é|€3(§)%h[U}(Taé) + Z Rk,y(tvrvxvé) +1~{l(ta‘[7xvf)7 (58)

L<k+[y| <l

where

ey iE - OFVIV (1, x)

Rk‘,y(l, 7,x,¢) = —(2n) kiy!

X JJ e BT (s, y) (s — 1) (y — x)7dyds,
RxR"

i{](l‘, T,x, é) _ _(2n)—(n+l)/2 JJ e—isr—iyéU<S7 y)lf

RxR”
Jl VIVt + As— 1), x + Ay — x)) (- 2'di
ket [p=i41 70 kly!
x (s — ) (y = x)"dyds. (59)

We determine /e€Z, on (57) later. Dividing the both sides of (58) by
(it + |&|L4(E) — i€ -V (L, x)), we obtain that

F U5, &) = (it + [ECa(&) —i& - Vi (2,x)) ™ (ﬁ,x[LU](T,f) + ZixuU](7,Q)

— €186 Z < [U(7, &) — Z Rkﬁ},(t,f,x,f) — RI(L T, x7é)>.

L<k+]y| <l

The second term on the right hand side of (52) is represented by
(141w &))" p(z, )7 U (x,9)

= (1 +1(, 1) 81,7, x,¢) (fﬁ,x[LU](f,f) + 7 uU](7, )

- |5‘C3(£)%,Y[U](Taf) - Z Rk-y(t7f’x7 é) _Rl(tv T, X, f)>’ (60)

L<k+]y| <l
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where

. 91", )

p(va): 3
I +|(z,¢)

and
S(t,7,x,) = p(z, &) (it + [E|04(&) — i& - Vip(1,x))

The symbol S(z,7,x,&) is smooth since this contains the cut-off functions
(o (7, &) and {4(¢) which are defined by (51) and (56). The symbol S(z, 7, x, &)
satisfies the assumption on Lemma 7 with p =S. Namely the inequality

Z |0, a;nzvzvg’ﬁSHL"»(R><R><R”><R“) <

my+may+|o+p| <2n+3

holds. The symbol satisfies that
05VS (1,7, x,6)| < C(1+ 1) (1 4 |g) " (61)

for any ke Z, and y e Z" with k + |y| >/ if we choose / € Z, as sufficiently
large. We remark that / depends only on S(z,7,x,&). Thus / is independent
of N. The inequality (61) can be checked easily by using the inequality

(7, &) < Clit + |€[C4(&) — i€ - Vi (1, x)],

where (4(&) is defined by (56). We remark that the symbol S(¢,7,x,&) does
not belong to the standard class S{]’O, where the definition of S? is given in
[10]. Indeed the coefficient (it + |€|(4(E) — i€ - Vi(s,x))"" on S(1,7,x,¢) is
not included in S} ,. Putting S(t,7,x,8) = (1+|(z, £)|2)‘7/2S(l, 7,x,&), we have
that the equality (60) derives

(1+ (2, &) 7 [U))(1)

= $(t, D1, %, D) (LU +uU — A:L3(Dy) U)(1) + R(U)(1), (62)

-1
Tl

where S’(t7 D,,x,Dy) is the pseudo-differential operator provided by

S(t, Dy, x, Dy)o(t, x) = (2m) "2 ” TS (1, 7, x, E) Ty [0 (7, €)dédr,
RxR"

R(U) = Ri(U) + Ry(U) (63)

and
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Ri(U)(t,x) = 7(27r)7(”“>/2 Z JJ eilr+ix<g'(1 T |(T,é)|2)a/2
1<k+ly| <1 /RxR"

X S'(t, T, X, é)RkJ(Z,r,x, &dédr,

Ry(U)(t,x) = —(2m) """ “R L (@)

x S(t,7,x,E)Ry(t, 7, x,&)déd.
Lemma 7 implies that
S(t,D;,x,D)(1 + |(Dy, Dy)|})7* € Z(H(R x R"), L*(R x R")),
from which, the second term of the right hand side of (52) can be estimated as

B
Z}l |(Taé)|é CZ <O/7t7x[U]
I +(z9)

Ho(RxR")

= |72 10+ |(z, 1) p7::[U]]]

L2(RxR")
< |8(:,D,, x, Dy )LU|| 12 myrr) + 1S(¢, Dy, x, Dy)(uU)| 12 mxr7)
+18(1, Dy, x, D )AL (D) Ul 2 myrry + (IR(U) 12 m xR
< CUILU oy + 16U ooy + 14D Ul
IR 2, (64)
where
Ci = ||S(1, Dy, x, Dx)||3'(Hﬂ(RxR"),LZ(RxR"))- (65)

The first term on the right hand side of (64) is rewritten by (49) and the
2 as

equation Lu =u
LU = [L, 1y (8)" 12077 2y (1) P2 07y 2(447)
= [L,r1 ()" P20 Ay (0)" PR L, 01
+ 1 ()" RO IL Vw4 1y (1) TR0y (2. (66)
Since

[L, " (Z) m+‘o{|+2]a;nvj({u — [ah " (t) m+|0€‘+2}a;7lv)9;u

= 0,(r ()" ) amv 2,
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by the assumption of induction, the first term on the right hand side of (66)
satisfies

L (0" 2107 2l ey
= (m+ [a + 2) I (0" (00]V 2l oo
< Go(m+ || +2) [ ()" 67V ull o rocie
< Colm + o] + DK™ m + |2,
where C, is a positive constant such that
ri(t) < G (67)

holds. If K satisfies K > 64C;C,, then we have
1
CUlLL, A ()" 210V 2l ey < 35 K7 4 o + 1L (68)

where the constant C; is appeared in (64). Since [L,0;"] = [V -V, 0;"], the

t
second term on the right hand side of (66) is represented by

" (Z)nz+\a|+2[L) a;n}v)o:u _ rl(t)meHz[wa . VX7 6;”]Vfu
m+|o|+2 = m m—k k o
=1 (1) > LoV oV,
k=0

Hence we have by Lemma 6, the Sobolev inequality and the assumption of
induction that

1 ()™ 1L, 0V 2ull o ey

m—1

m m-+|o m— o
= 2 (0 I R S e

m—1

m m—k Am— k4o o
< &3 () I 0 T e I 2T e
k=0

m—1

< Gegm S (’]’:) (m—k = DIk + | + 1),
k=0
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where C; is a positive constant such that the following product estimate

/0l ey < Callf laro@rny 191l (rcrr) (69)

holds. Thus, if K satisfies K > 64C;C3C*, then we derive that
1
Cillr (6™ 2 (L, 07V 2ul| o oy < 3—2Km+\a\+1(m+ o + 1)l (70)

Similarly the third term on the right hand side of (66) is rewritten by

" (t)m-‘r\al-ﬂa;n [L, ij]u

. (l) mHacHZa;n [Vylp . Vx» Vﬂu

- (Z)mHoﬁHZ Z Z (’Z) (Z)a;n—kvz—yvxw . al]cvzvxu

k=0 y<a

This gives that

71 ()™ 2L, V 2 ull o ey
“ m o o Ao
<a S (0 () i@ T e
k=0 y<« l4
x|l (0 20V IV tl] o ey
m
O D N (S [ T AR P et
k=0 y<o

Hence the last term on the right hand side of (66) satisfies

1

Cillr ()" P26 L,V 2l ooy < 55 K" o 1)L (71)

if K satisfies K > 64C;C;C*. Applying (68), (70) and (71) into (66), we
conclude that the first term on the left hand side of (66) satisfies

m-|o m o 3 m-|o
CUlL A (0" 25V 2l ooy < 55 K™ o + DL (72)

The last term on the right hand side of (66) can be estimated as
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m+|o|+2 Amyra
1 (0" 20V 2 () | oo

scssz( ) ()07 2l

VU] oy

< CiRmH Z( )( )|ay|+m (7] + )
C3Km+a|m+a||i;( )( )('f;'li’;:)l

w3 (05"

j=0 y<ok<m
Iyl+k=Jj

Here we used Lemma 6 and the assumption of induction. From the fact that

2 @0)-C7")

l+k=j
we have that

3
S K o+ 1), (73)

Cillr ()™ 20V ) o o) <
if K satisfies K > 32C;Cs.
This estimate is given by employing Lemma 6 and the assumption of
induction. Using (72) and (73) on (66), we estimate the first term on the right
hand side of (64) as

1
CHILU| o urry < gKNH(N‘F Dy, (74)

where N =m+ |¢|. Lemma 6 and Sobolev’s inequality provide that the
inequality

—_—

Cil[uU| oy < gKMH NV + DL (75)

o]

Employing the Plancherel identity, the definition (56) and the assumption of
induction, the third term on the right hand side of (64) satisfies

1

GG D) Ul goryrry < CrCllU|l gogurny < KN(N+1), 0 (76)

oo
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where

Cy = S};{P 1€]83(8) (77)

and we take K > 8CCy.
Applying integration by parts, we have that

_ 0KV IV (1, x) .
Ri(U) = (2n (n+1) o, LA JJ JJ el(f*é)f‘i’l(,\fy)'é
(U) = (27) Z ky! RxR" J JRxR"

1 <k+|y|<i
x E(1+ |(z, D)8 (1,7, x,E) U(s, y) (s — 1) (y — x)"dydsdédr

(=) kv vy (1, x)

_ —(n+1)
= (27) k!

L <k+y|<!

L] et e oS
RxR" JJRxR"

x U(s, y)dydsd&dr.

If we put

Pry(t,7,%,8) = 0VIE( +|(m.O1) S (1,7, x,9)),
then we obtain that

R(U)=| > %Pk,,(t,D,,x, D) U(1,x) - 05V IV (1, x)).
1<k+|y| <!

By the similar argument as in the derivation of (64), we obtain that

Py, (t,D;,x,D,) € Z(H°(R x R"), L*(R x R")").

We put

1
Cs = 1;1235(\31 ] [ Pre,5 (2, De, X, D) | (o rxcr), L2 (Rx R - (78)
Employing the assumption of induction and Sobolev’s inequality, we have
that

||R1(U)||L2(RxR")5C5 Z ||U”HU(RxR”)||6th§V¢HL%(RxR”)

I<k+[y| <l

<CsCs Y 6 VIVYllgomern KN, (79)
1<k+|y|<!
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where Cg is a constant such that the following Sobolev’s inequality

/12 rcrry < Coll £l o mcrr) (80)

holds. We consider the term R,(¢) on (63). Since

MO 1= (1 = 3 (s = 0 (= )

= (=) = 321 = ) ok

using integration by parts, we have that

JJ JJ ei(tfs)eri(xfy)f
RxR"” JJRxR"

X (L [e =) 7M1+ e =y

IRy(U)| < (2m)~ "D
k+y|=1+1

x (1= 82)(1 = 42)"aVI(E(L + (5, 1) 7S (1,7, %, )

. éfV;Vl/;(t, s, x, y)U(s, y)dydsd&dz

3

where

1
Vi(t,s,x,y) = Jo Va(t+As—1),x + A(y — x))dA.

Similarly we obtain that

|Ro(U)] < (2m) "V
k+|y|=1+1

JJ JJ ei(t—s)r-‘ri(x—y)'i
RxR" RxR"

X (14 |x = y) (1427~

x (1= a2)(1 = 4)"okvI(E(1 + [(2,8)]) 7S (1,7, x,8))

(1= )+t =) okVIV (e, 5, x, ) U(s, y))dydsdédz|.

The inequality (61) provides that

max [(1—-07)(1 = 4)"0fVI(E(1+ |(z.&)1) 28 (1,7, x, €)|
k+y|=1+1

< Co(1+ )P [e?) DR, (81)
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since / is sufficiently large. Hence, since ¢ is an even integer, we see that

|R:(U)|

<@ "o > > ”Ran “RXRn(1+T2)—1(1+|é|z)_(n+1)/z

k+|y|=l+1mi+my <o
X (L[t =) (1 lx =y 710 ViV (e,s,x, )|

x 1052 U (s, y)|dydsdEdr

SC Rt S S | IR A D (R

k+|y|=l+1mi+m <o
X MV IV (1,5, x, )| 102 U (s, y)ldyds,

where Cg is a positive constant such that

(1= ) f (s)g(s)| < Cy e ()lermg(s)| (82)
m+m <o
holds and
Co— ” (1+ 2271 (1 + E2) "D 2geqr, (83)
RxR"

Thus, applying the Hausdorff-Young inequality and the Holder inequality, we
obtain that

[R2(U)l 2 (rrry < (27) "D G G Gy

k+|y|=l4+1mi+my <o
-1 2\ — m m
(14 2271+ |x|?) "ak" VIVl o wermy 1072 Ull 2 vy
< (2) "V G C3CoCro| Ul ooy

X Z Z ||atk+mlvz}cyv«‘flp||L2(R><R”)7

k+|y|=1+1mi+my; <o

where

Cro = (J Jmn(l + )21+ |x2)2”dxdt>l/2. (84)

Consequently the assumption of induction gives that

IR (V) 2oy < C1CsCoCr0Cri Y 10V IV | yo oy KV NY, - (85)
1 <k+[y|<i+1
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where

Ci=0n) " N =(n) " ale+1) (86)

m+nnp <o

In (79) and (85), if K satisfies that

K > max{CsCs, C;CsCoCioCui} > 0/ VIVY| yomorr):
1 <k+]y|<i+1

then we have that
1
[R(U) | 2 rxrry < gKN“(N+ Dl (87)

Applying (74), (75), (76) and (87) into (64), we derive that

p
g«‘T—Cl M%Y[U] < %KN+1(N+ L. (88)

L+ (o)

He(RxR")

Using (53) and (88) on (52), consequently we conclude that the desired estimate
(50) holds for any me Z, and o,feZ! with m+|x| =N and |f] = 1.

Second Step. We show (47) with |o| =0 for m+ || = N + 1. Since u is
the solution to du+ Au—V - (uVy) =0, we see that

N+2AN+1
()"0, Ul o rxrr)
N+2 AN N+2AN/ 2
< Ir1 ()"0 Aull ooy + 1110707 ()| ro(rcrery

+r @)Y (Vi V)| oo (89)

In the same way as in the proof of (73), the assumption of induction implies
that the second term on the right hand side of this inequality is estimated
as

1
||”1(Z)N+25;N(”2)||Hﬂ(RxR") = gKNH(N‘f‘ DL (90)

The Plancherel identity gives that the first-term on the right hand side of (89)
satisfies

N+2 N+2
I ()™ atNAu”H”(RXR”) = E lr ()™ atNVﬂu”H”(RXR”)'
181=1
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In the similar way as in first step we conclude that
1
N2
I (020 Al eery < K (N + 1)L (1)

The Leibnitz rule on the third term on the right hand side of (89) yields that
N+2 - N0 j
Iy (020 (Vi Vi) e oy < ( )lr 20/Vu- 0 V| yomorr)
Jj=0

+ ()Mo vu - VU o mocrm-

In the same way as in the proof of (73), the first term on the right hand side of
this inequality is estimated as

N-1
N . .
> ( ; )|r1<z>”“a,f\7u NIV o morry < GCKVN!
j=0
1 N+1
< KM )L

if K satisfies that K > 6C3C*. By the similar argument as in the first step,
the second term is estimated as

—_—

I (Y 20NV Vo) < KV N+ DL
Hence we obtain that
N+2 I N |
I ()20 (V- V) | ooy < < 3 KN (92)

By substituting (90), (91) and (92) into (89), we derive that (50) holds for
|| =0 and m =N + 1.

Third Step. Using (47), we can show (48) with m + |a| = N + 1. Indeed,
when o # 0, we have that

()™ 07V V| ooy < Cllr ()™ 07V Pl oy

for some feZ with || = || —1. Here we used the Plancherel identity.
Thus the assumption (47) concludes (48) with m + |« = N+ 1 and « # 0. We
consider the case m =N +1 and o =0. Since

VY =V(=A) "V - (V) — Au),
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using the Plancherel identity, we have that
I (O™ oYV oy < I (010 V) oy
+ (0™ 0Nl ooy (93)

The second term on the right hand side of this inequality is treated by the
assumption of induction. Namely

1 (00 ull o ey < KV N (94)
is satisfied. The first term on the right hand side of (93) can be estimated as

()2 ey < 1) Y
(N N+TAN—I Al
#3008 el e
I=1

Hence, by the similar argument as in (92), we derive that
()™ 0 V)l ooy < C3(CT + K)RNTINL (95)
Thus, by substituting (94) and (95) into (93), we obtain that
()0 V| gmorey < (14 C3)(1+ €™+ KKV,
Consequently, if K > max{1,C*} and C* > 3(C; + 1), then we have that
()0 VY o omry < CTKNANL.

Thus we conclude that the inequality (48) holds for any me Z, and aeZ’
with m+ |o| = N + 1.
If we take C* = 3(C3+1) and

K > max{4, 64C,C,,64C,C5C*,8C1Cy, Cp, C13},

from the above three steps, (47) and (48) for m + || < N yield that (47) and
(48) for m+ |o| = N + 1, where

Co=CsCs Y. VIVl yomurr
I <k+y|<i+1

and

Cis = C1GCoCioCii Y [0/ VIV | romoure-

1 <k+[y|<I+1
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From (65), (67), (69), (77), (78), (80), (81), (82), (83), (84) and (86), K and C*
can be taken to be independent of N. Consequently, employing the induction
with N, we complete the proof. O

PrOOF OF THEOREM 2. Proposition 6 states that the solution u(¢,x) of (1)
is analytic on (0,T) x R" (see [15]). Hence we complete the proof. O
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