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Abstract: This paper considers two-level orthogonal arrays that allow joint esti-

mation of all main effects and a set of prespecified two-factor interactions. We

obtain some theoretical results that provide a simple characterization of when such

designs exist, and how to construct them if they do. General as well as concrete

applications of the results are discussed.
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1. Introduction

We discuss two-level factorial designs that allow joint estimation of all main
effects and selected two-factor interactions (2fi’s). Consideration of such a prob-
lem in the context of regular factorial designs dates back to Addelman (1962).
Greenfield (1976) used the concept of requirement set to denote a set of effects
the experimenter is interested in estimating. This line of research was further
pursued by Franklin and Bailey (1977), Wu and Chen (1992), Dey and Suen
(2002), Ke and Tang (2003), and Cheng and Tang (2005). Without restricting to
regular factorial designs, Hedayat and Pesotan (1992) investigated the existence
and construction of saturated designs for main effects and selected 2fi’s. Earlier,
Rechtschaffner (1967) provided a simple construction of saturated designs for all
main effects and all 2fi’s. Cheng (2003) showed that this idea of construction also
works for a general requirement set provided that the effects in the requirement
set have a nested structure. In general, the saturated designs in Rechtschaffner
(1967), Hedayat and Pesotan (1992), and Cheng (2003) are not orthogonal ar-
rays. One situation where certain 2fi’s are of importance is the setting of robust
parameter design. Designs suitable for such a situation include compound arrays
as discussed in Rosenbaum (1996) and Hedayat and Stufken (1999), and com-
bined arrays selected via some aberration criteria as done in Wu and Zhu (2003)
and Ke and Tang (2003). The work on clear 2fi’s goes further than that on the
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requirement set. We refer the reader to Wu and Chen (1992), Chen and Hedayat
(1998), Wu and Hamada (2000), Wu and Wu (2002) and Tang (2006) for details.

This paper presents some characterizing results on the existence and con-
struction of orthogonal arrays for jointly estimating all main effects and some
specified 2fi’s. Our characterization is simple to use, yet powerful enough to al-
low many useful designs to be found. If a regular factorial is found for a given
requirement set, it achieves full efficiency; otherwise, one has to consider designs
with at least doubled run sizes. In contrast, saturated designs of Rechtschaffner
(1967) and Hedayat and Pesotan (1992) are most economical but suffer low ef-
ficiency. Orthogonal arrays provide a compromise. The run sizes of two-level
orthogonal arrays are multiples of four, leaving only small gaps between adjacent
run sizes. Orthogonal arrays at least guarantee that all main effects are mutually
orthogonal, making them more efficient than the designs of Rechtschaffner (1967)
and Hedayat and Pesotan (1992), and much more so if there are only a small
number of 2fi’s in the requirement set.

2. Characterizing Results

We use an n×m matrix of ±1 to denote a two-level factorial design of n runs
for m factors. Such a design is an orthogonal array of strength t if in each n × t

submatrix, the 2t level combinations occur with the same frequency. If we speak
of an orthogonal array without specifying its strength, we mean that the strength
is at least two. When n = m + 1, the orthogonal array is called saturated. The
existence of a saturated orthogonal array of size n is equivalent to the existence
of a Hadamard matrix of order n. A Hadamard matrix is a square orthogonal
matrix of ±1. The order of a Hadamard matrix is necessarily equal to 1, 2, or
a multiple of 4. For a general discussion on orthogonal arrays and Hadamard
matrices, we refer to Hedayat, Sloane and Stufken (1999). Our attention in this
paper is paid to orthogonal arrays that can be obtained by selecting columns
from saturated orthogonal arrays. Designs from saturated orthogonal arrays are
very rich, although it is not true that every orthogonal array can be obtained
this way. Beder (1998) and Li, Deng and Tang (2004) contain some nontrivial
examples of orthogonal arrays that cannot be imbeded into Hadamard matrices.
For all practical purposes, assuming the existence of Hadamard matrices is not as
severe of a restriction as it seems, as the only values of n in the range n ≤ 1, 000,
for which Hadamard matrices have not been found, are 668, 716, 764, and 892.

The situations considered in this paper are that the requirement sets contain
all main effects and some selected 2fi’s. Such a requirement set specifies a model
with the grand mean, all main effects, and selected 2fi’s. For a given requirement
set S, we define its core, denoted by C(S), to be the subset of S such that C(S) in-
cludes all the 2fi’s in S and that the factor of every main effect in C(S) must occur
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in at least one 2fi. Clearly, every requirement set has a unique core. For exam-
ple, the core of {F1, F2, F3, F4, F5, F6, F1F2, F3F4} is {F1, F2, F3, F4, F1F2, F3F4}
and that of {F1, F2, F3, F4, F5, F1F2, F2F3} is {F1, F2, F3, F1F2, F2F3}, where F1

denotes the main effect of the first factor and F1F2 is the 2fi between factors 1
and 2. A requirement set can be represented by a graph if we associate a main
effect with a vertex and a 2fi with an edge in the graph. Then the core of a
requirement set is obtained by simply deleting all isolated vertices. We say that
a design supports a requirement set if it allows joint estimation of the effects in
the requirement set.

Theorem 1. An orthogonal array that supports a requirement set S exists if and
only if an orthogonal array that supports its core C(S) exists.

The beauty of this result is that the problem of finding an orthogonal array
for S reduces to that of finding an orthogonal array for C(S). This result is
especially powerful if only a few 2fi’s are to be estimated, in which case C(S) has
a much smaller size than S. The necessity part of Theorem 1 is obvious. Only
the sufficiency part needs some explanation. Let the requirement set S consist
of m main effects and e 2fi’s. Then its core C(S) consists of m1 of the m main
effects and all e 2fi’s in S. For an orthogonal array to support the requirement
set S, its run size n must satisfy that n ≥ 1+m+e, which we assume throughout
the paper. Let H be a saturated orthogonal array of n runs and D1 be a subarray
of H with m1 columns that supports C(S). Now write H = (D1, D2, D3), where
D2 has m2 = m − m1 columns and D3 has m3 = n − 1 − m columns. Then
Theorem 1 says that one can always obtain D = (D1, D2) that supports S by
deleting certain m3 = n − 1 − m columns, which form D3, from H. Any D3 can
be deleted as long as it satisfies

det(XT
2 D3D

T
3 X2) > 0, (2.1)

and such a D3 always exists provided that D1 supports C(S). In (2.1), det
denotes determinant and X2 denotes the model matrix for the e 2fi’s. There are
in all

(
m2+m3

m3

)
possible candidates for D3 and many of these may satisfy (2.1).

Which is the best? Theorem 2 answers this question. To present this result,
we need the concept of the D-efficiency, defined as [det(n−1XT X)]p, where X is
the model matrix and p is the number of parameters in the model. A design is
D-optimal if it maximizes [det(n−1XT X)]p or equivalently det(XT X).

Theorem 2. For a given requirement set S, suppose that an orthogonal array
D1 supports C(S). Then, in terms of D-efficiency, design D = (D1, D2) is best
if D3 maximizes det(XT

2 D3D
T
3 X2).
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Note that Theorem 2 is a conditional optimality result in the sense that it
tells how to choose D3 for given D1. We provide more discussion on this issue in
Section 4.

Proofs of Theorems 1 and 2. Let X1 = (I,D1), where I is the column of
all plus ones and corresponds to the grand mean. Then (X1, X2) is the model
matrix for the requirement set C(S). We first have det[(X1, X2)T (X1, X2)] =
det(XT

1 X1) det[XT
2 X2 − XT

2 X1(XT
1 X1)−1XT

1 X2]. Noting that (X1, D2, D3) is a
Hadamard matrix of order n, we obtain

det[(X1, X2)T (X1, X2)] = nm1+1−e det[XT
2 D∗D∗T X2], (2.2)

where D∗ = (D2, D3). As design D1 supports C(S), we must have det[XT
2 D∗D∗T

X2] > 0. The fact that matrix XT
2 D∗D∗T X2 has full rank implies that the

e × (m2 + m3) matrix XT
2 D∗ has rank e. Note that m2 + m3 ≥ m3 ≥ e.

Then the matrix XT
2 D∗ must contain a submatrix of m3 columns with rank

e. This shows that we can select m3 columns from D∗ to obtain a D3 such that
det[XT

2 D3D
T
3 X2] > 0. Now let X = (I,D1, D2) so that (X,X2) is the model ma-

trix for the requirement set S. Similar to (2.2), we have det[(X,X2)T (X,X2)] =
nm+1−e det[XT

2 D3D
T
3 X2], which is strictly positive for the choice we have just

made for D3. This shows that D = (D1, D2) supports S, proving Theorem 1. It
is also immediate that det[(X,X2)T (X,X2)] is maximized if det[XT

2 D3D
T
3 X2] is

maximized, which establishes Theorem 2.

Remark 1. In the proofs, the fact that X2 consists of only 2fi’s never gets used.
Then Theorems 1 and 2 are also valid for a general requirement set, thus allowing
interactions of higher order to be included. The core of a general requirement
set is similarly defined, and given by removing all main effects not occurring in
any interaction.

To gain some intuitive understanding of the results in Theorems 1 and 2,
consider regular fractional factorial designs. In this case, the columns of X2 form
a subset of distinct columns from D∗ = (D2, D3) if D1 supports C(S). Then if
D3 consists of all the e columns of X2 and any extra m3 − e columns from the
remaining columns of D∗, the columns of (D1, D2, X2) are all distinct and belong
to H. Including all the columns of X2 in D3 is equivalent to excluding all columns
of X2 from D2. That is, D2 can consist of any m2 columns from D∗ that are not
in X2. In the general case of orthogonal arrays, though X2 is not necessarily a
subset of D∗, it nevertheless occupies an e-dimensional space in the (m2 + m3)-
dimensional space, making it possible to choose D2 of m2 columns from D∗ to
maintain linear independence among the column vectors of (D1, D2, X2).
Example 1. Suppose that we want an orthogonal array of 20 runs and 15 factors
for the requirement set S = {F1, . . . , F15, F1F2, F2F3, F3F4, F1F5}. The core of S
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is given by C(S) = {F1, F2, F3, F4, F5, F1F2, F2F3, F3F4, F1F5}. Now consider the
20-run saturated orthogonal array H generated by using (1, 1,−1,−1, 1, 1, 1, 1,
−1, 1,−1, 1,−1,−1,−1,−1, 1, 1,−1) as the first row, cyclically shifting this row
vector one place to the left 18 times and then adding a row of all minus ones.
Let H = (d1, . . . , d19). We can easily check that D1 = (d1, d2, d3, d4, d5) sup-
ports C(S) with the factors F1, . . . , F5 assigned to d1, . . . , d5, respectively. Now
consider X2 = (d1d2, d2d3, d3d4, d1d5) and D∗ = (D2, D3) = (d6, . . . , d19). Then
XT

2 D∗ is given by
4 −4 4 −12 −4 −4 4 4 −4 4 −4 −4 −4 −4
4 4 −4 4 −12 −4 −4 4 4 −4 4 −4 −4 −4
4 4 4 −4 4 −12 −4 −4 4 4 −4 4 −4 −4

−4 4 −4 −4 4 4 −4 4 −12 −4 −4 4 −4 4

 . (2.3)

As D1 supports C(S), the matrix in (2.3) must have rank 4. Let A be a 4 × 4
submatrix of the matrix in (2.3). We now evaluate det(AAT ) for all the

(
14
4

)
=

1, 001 submatrices and present the results for 4−8 det(AAT ) in the following table.

4−8 det(AAT ) 0 64 256 576 1,024 2,304 4,096
frequency 364 305 242 22 55 6 7

From the table, we see that of 1,001 submatrices, seven take the largest
value of 4−8 det(AAT ) = 4, 096, one of which is given by columns 2, 4, 5, 6
of the matrix in (2.3). These columns of the matrix in (2.3) correspond to
columns d7, d9, d10, d11 in D∗. One best design for the requirement set S given
by Theorems 1 and 2 is therefore D = (d1, . . . , d6, d8, d12, . . . , d19).

In applying Theorem 2, very often more than one D3 maximizes det(XT
2 D3

DT
3 X2). For instance, we see seven such choices for D3 in Example 1. Although

all these are the same in terms of D-efficiency, the resulting designs may be
different in other aspects. One way to take advantage of the situation is to
select the design that minimizes the contamination due to the 2fi’s outside the
requirement set (Ke and Tang (2003)).

3. Applications

This section explores the power of Theorem 1 for the case that S is saturated
and has a structure that corresponds to a compromise plan of class one (Addel-
man (1962)). This special structure for S says that, besides m main effects, S

contains all the
(
m1

2

)
2fi’s among a set of m1 ≤ m factors. We use S(m1,m) to

denote such a requirement set and simply write S(m1) = S(m1, m1), which is the
core of S(m1,m) for any m ≥ m1. Any requirement set consisting of main effects
and some 2fi’s is a subset of an S(m1,m), provided n ≥ 1 + m + m1(m1 − 1)/2.
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That S is saturated means that m = n−1−m1(m1 −1)/2, leaving no degrees of
freedom for estimating the error variance. Consideration of saturated S(m1,m)
provides a quick and simple way for finding a solution to various requirement
sets by applying the following result and Theorem 1.

Lemma 1. If an orthogonal array of n runs for a saturated S(m1, m) exists,
then an orthogonal array of n runs exists for any S as long as C(S) ⊆ S(m1,m).

This result, though very simple, allows designs to be constructed for require-
ment sets with different configurations from those for saturated S(m1,m). For
example, suppose that design D = (d1, d2, d3, d4, d5) of 12 runs supports

S(m1 = 4,m = 5) = {F1, F2, F3, F4, F5, F1F2, F1F3, F1F4, F2F3, F2F4, F3F4}.

Then design D1 = (d1, d2, d3, d4) supports {F1, F2, F3, F4, F1F2, F1F3, F2F4},
from which one can find a design for {F1, F2, F3, F4, F1F2, F1F3, F2F4, F5, F6,
F7, F8} by Theorem 1. The next result allows large designs to be constructed
from small designs.

Lemma 2. For given m1, if an orthogonal array of n′ runs for saturated
S(m1,m

′) exists, then an orthogonal array of n = kn′ runs for saturated S(m1,m)
exists, where k is such that a Hadamard matrix of order k exists.

Cheng (1995) showed that any projection design of an orthogonal array onto
four factors allows estimation of all main effects and all 2fi’s if the run size
n (≥ 12) is not a multiple of 8. Cheng (1998) obtained a similar result for
orthogonal arrays of strength three. Combining these with Theorem 1, we have
the following result.

Lemma 3. Suppose that there exists a Hadamard matrix of order n, where
n ≥ 12 is not a multiple of 8. Then we can construct an orthogonal array of
n runs for saturated S(m1 = 4,m), and an orthogonal array of 2n runs for
saturated S(m1 = 5,m).

Cheng’s results (1995; 1998) are concerned with all projection designs onto
four or five factors. To apply Theorem 1, we only need one projection design
that supports S(m1). We, therefore, expect that stronger results than those in
Lemma 3 are available for many values of run size n. To this end, consider the
problem of finding an orthogonal array with the largest m1 factors such that it
supports S(m1) from a given saturated orthogonal array. Table 1 provides the
largest m1 values for which a design for S(m1) can be found from a saturated
orthogonal array, 12 ≤ n ≤ 60. In all the cases in Table 1, the results are the
best in the sense that any larger value for m1 will break the degree of freedom
constraint n ≥ 1 + m1 + m1(m1 − 1)/2. The entries for n = 12, 16 are obvious,
and those for n = 20, 24, 28 are available from Loeppky, Sitter, and Tang (2007).
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Table 1. The largest m1 values for which a design for S(m1) can be found.

n m1 Hadamard matrix
12 4 Cheng (1995)
16 5 resolution V design
20 5 Loeppky et al. (2007)
24 6 Loeppky et al. (2007)
28 6 Loeppky et al. (2007)
32 7 had.32.pal
36 7 had.36.pal2
40 8 had.40.tpal
44 8 had.44.pal
48 9 had.48.pal
52 9 had.52.will
56 10 had.56.tpal2
60 10 had.60.pal

For 32 ≤ n ≤ 60, Table 1 provides the Hadamard matrices from which we obtain
our results. These Hadamard matrices and their labels are from Neil Sloane’s
webpage (http://www.research.att.com/~njas/).

The existence of orthogonal arrays for various requirement sets can be estab-
lished by combining Table 1 with Theorem 1 and Lemmas 1 and 2. For example,
the existence of an orthogonal array of 44 runs for S(m1 = 8) in Table 1 implies
the existence of a design of 44 runs for S = {F1, . . . , F8, F1F2, F3F4, F5F6, F7F8}
by Lemma 1. Applying Theorem 1, we establish the existence of a design of
44 runs for S = {F1, . . . , F8, F1F2, F3F4, F5F6, F7F8, F9, . . . , F39}. The same
idea in Lemma 2 further implies the existence of a design of 176 runs for S =
{F1, . . . , F8, F1F2, F3F4, F5F6, F7F8, F9, . . . , F171}.

Our focus in this section has been to establish the existence of orthogonal
arrays for various requirement sets. We conclude the section with a brief comment
on the performance of these designs under the D-criterion. Unless an orthogonal
array provides an orthogonal design for the given requirement set, full efficiency is
not achieved. The efficiency loss is due to the possible nonorthogonality between
main effects and the 2fi’s and between the 2fi’s themselves. When the number of
2fi’s is small relative to that of main effects, one would expect that the designs
for such requirement sets achieve high efficiency.

4. Discussion

A more ambitious research problem than what has been done in this paper
is to find a D-optimal orthogonal array for a given requirement set from all

http://www.research.att.com/~njas/
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orthogonal arrays. The results in this paper only provide a partial solution to this
problem, as Theorem 2 is an optimality result conditional on a given orthogonal
array that supports C(S). Completely solving this problem is nontrivial if not
impossible. Two complications arise. The first is that we need to consider all
nonisomorphic saturated orthogonal arrays for a given run size. The complete
set of nonisomorphic saturated orthogonal arrays is available for run size n ≤ 24.
Although the complete set of nonisomorphic Hadamard matrices of order 28
is available, the complete set of nonisomorphic saturated orthogonal arrays of
run size 28 has not been identified. There is no simple way of resolving this
complication, which also occurs in almost all other studies of design selection.
A realistic approach would be simply considering some saturated orthogonal
arrays one can easily obtain when the complete set is unavailable. The second
complication is that in terms of D-efficiency, the best orthogonal array for S does
not necessarily come from the best orthogonal array for C(S). Despite this, we
can still establish that det[(X,X2)T (X,X2)] ≤ nm−m1 det[(X1, X2)T (X1, X2)],
which is useful for developing computational algorithms in the search of the best
design for S. This is a topic for future research.
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