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1 Introduction

Let X be a Banach space. Consider the nonlocal problem of the nonlinear fractional im-

pulsive evolution equation of the form

⎧
⎪⎪⎨
⎪⎪⎩

CD
q
t x(t) =Ax(t) + f (t,x(t)), t ∈ J , t �= tk ,

�x|t=tk = Ik(x(tk)), k = 1, 2, . . . ,m,

x(0) + g(x) = x0 ∈ X,

(1.1)

where J = [0,a], a > 0 is a constant, CD
q
t denotes the Caputo fractional derivative of order

q ∈ (0, 1), A : D(A) ⊂ X → X is a sectorial operator in X, tk (k = 1, 2, . . . ,m) are the con-

stants where the impulses occur, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = a, �x|t=tk = x(t+k ) – x(t–k ),

x(t+k ) and x(t–k ) denote the right and left limits of x at t = tk , and f , g , and Ik are given

functions, which will be specified later.

It is well known that the fractional derivatives are valuable tools for description of mem-

ory and hereditary properties of various materials and processes, which cannot be char-

acterized by integer-order derivatives. The fractional differential equations have gained

considerable importance during the past three decades. Hence, the theory of fractional

differential equations has emerged as an active branch of appliedmathematics. It has been

used to construct manymathematical models in various fields, such as physics, chemistry,

electrodynamics of a complex medium, polymer rheology, and so on. For recent works on

the theory and applications of fractional differential equations, we refer to themonographs

[12, 20, 26, 28, 29, 32] and the papers [1–7, 10, 11, 13–19, 21–25, 27, 30, 31, 33–42].
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In addition, impulsive differential equations have been an interesting object because

of their wide applications in physics, biology, engineering, medical fields, industry, and

technology. Impulsive differential problems are appropriate models for describing the real

processes that change their states rapidly at certain moments and cannot be described by

using the classical differential equations. The fractional differential equations with impul-

sive effects have been studied by many authors; see [2, 3, 7, 10, 13–15, 19, 21, 25, 27, 34,

35, 37] and the references therein.

Moreover, the nonlocal Cauchy problems, which have strong background coming from

physical problems, were initialed by Byszewski [8, 9]. Because nonlocal initial conditions

generalize classical ones and play an important role in physics and engineering, more and

more researchers pay attention to nonlocal Cauchy problems for different kinds of dif-

ferential equations. For the fractional differential equations with nonlocal conditions, we

refer to [18, 23, 42]. For the fractional differential equations with nonlocal conditions and

impulsive effects, we refer to [13, 14, 21, 37].

Recently, the existence of mild solutions for abstract evolution equations or inclusions

involving sectorial operators has been studied by many authors. For example, Shu et

al. [34] introduced the concept of mild solutions for the initial value problem of frac-

tional impulsive evolution equations (1.1). Assuming that A is a sectorial operator and

f is Lipschitz continuous or completely continuous, they proved the existence theorems

of mild solutions for (1.1) when the operator families (Uq(t))t≥0 and (Vq(t))t≥0
, where

(Vq(t))t≥0
= t1–qVq(t), are compact. Agarwal et al. [1], in finite-dimensional spaces, dis-

cussed the existence of mild solutions for fractional nonlocal evolution inclusions with-

out impulses whenA is a sectorial operator. They studied the dimension of the set of mild

solutions. Wang et al. [37] investigated the existence of PC-mild solutions for fractional

impulsive evolution inclusions with nonlocal initial conditions when A is a sectorial op-

erator. The results are obtained without supposing the compactness of operator families

(Uq(t))t≥0 and (Vq(t))t≥0
, but the nonlinear multivalued function satisfies the regularity

condition expressed by the measure of noncompactness.

In this paper, motivated by the results mentioned, we consider the existence and con-

trollability of fractional nonlocal impulsive problem for abstract evolution equation (1.1).

Our main result, Theorem 3.1, extends Theorem 3.1 of [34] by discussing the problem in

a new set S . Particularly, because of this set S , Theorem 3.1 is not a particular case of

Theorem 3.3 in [37]. At last, we study the nonlocal controllability of fractional impulsive

evolution equation with nonlocal condition of the form (1.1) (see Theorem 3.4 for details),

which is not discussed in [34, 37].

The rest of the paper is organized as follows. In Sect. 2, we recall some definitions and

notions of sectorial operators. In Sect. 3, we prove the existence, uniqueness, and nonlocal

controllability of PC-mild solutions for the fractional impulsive evolution equation (1.1).

2 Preliminaries

Let X be a real Banach space with norm ‖ · ‖. We denote by C(J ,X) the Banach space

of all continuous functions x : J → X with the norm ‖x‖C = sup{‖x(t)‖ : t ∈ J}. For any

p ∈ [1,∞], Lp(J ,X) denotes the Banach space of all stronglymeasurable functions x : J → X

with the norm

‖x‖p =

⎧
⎨
⎩
(
∫
J
‖x(t)‖p)

1
p , 1≤ p <∞,

ess supt∈J ‖x(t)‖ = inf{ℓ ≥ 0 : ‖x(t)‖ ≤ ℓ a.e. t ∈ J}, p = ∞.
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Let L(X) be the Banach space of bounded linear operators from X to X. For a linear op-

erator A, we denote by σ (A) its spectrum and by ρ(A) = C – σ (A) its resolvent set. The

family R(λ,A) = (λI –A)–1, λ ∈ ρ(A), denotes the resolvent operator ofA.

An operatorA is called a sectorial operator if

(1) ρ(A)⊂
∑

η,̺ , and

(2) ‖R(λ,A)‖L(X) ≤
M

|λ–̺|
,M > 0, λ ∈

∑
η,̺ ,

where
∑

η,̺ = {λ ∈ C : λ �= ̺, | arg(λ – ̺)| < η}, η ∈ [π
2
,π ], and ̺ ∈ R. Examples of sectorial

operators are some differential operators on unbounded domains, such as the Laplace

operator or the Stokes operator on exterior domains.

Let q > 0 and ω = [q], the smallest integer greater than or equal to q. Given x̂0, we con-

sider the Cauchy problem of the q ∈ (ω – 1,ω)th-order Caputo fractional evolution equa-

tion of the form

⎧
⎨
⎩

CD
q
t x(t) =Ax(t), t > 0,

x(0) = x̂0, x(i)(0) = 0, i = 1, 2, . . . ,ω – 1,
(2.1)

whereA is a sectorial operator that is closed and densely defined in X. Definitions 2.1–2.3

and Lemma 2.4 can be found in [4, 26, 28].

Definition 2.1 A family {Uq(t)}t≥0 is called a solution operator of the Cauchy problem

(2.1) if the following conditions are satisfied:

(i) Uq(t) is strongly continuous for t ≥ 0, and Uq(0) = I , where I is the identity operator;

(ii) Uq(t)D(A)⊂D(A) and AUq(t)x = Uq(t)Ax for all x ∈D(A) and t ≥ 0;

(iii) Uq(t)x is a solution of (2.1) for all x ∈D(A) and t ≥ 0.

Definition 2.2 The solution operator Uq(t) is called exponentially bounded if

∥∥Uq(t)
∥∥
L(X)

≤ Ceυt , t ≥ 0, (2.2)

for some constants C ≥ 1 and υ ≥ 0. An operator A is said to belong to e
q(C,υ) if the

solution operator Uq(t) of (2.1) satisfies (2.2).

Denote eq(υ) :=
⋃

{eq(C,υ) : C ≥ 1} and e
q :=

⋃
{eq(υ) : υ ≥ 0}. Clearly, e1 and e

2 are the

sets of all infinitesimal generators of C0-semigroups and cosine operator families, respec-

tively.

Definition 2.3 A solution operator Uq(t) of (2.1) is said to be analytic if it admits an an-

alytic extension to a sector
∑

η0
:= {λ ∈ C – {0} : | argλ| < η0} for some η0 ∈ (0, π

2
]. An

analytic solution operator of (2.1) is said to be of analyticity type (η0,̺0) if for all η < η0

and ̺ > ̺0, there is C = C(η,̺) such that

∥∥Uq(t)
∥∥
L(X)

≤ CeυRet

for some t ∈
∑

η := {t ∈C – {0} : | arg t| < η}.
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Let us introduce Aq(η0,̺0) := {A ∈ e
q : A generates an analytic solution operator Uq(t)

of analyticity type (η0,̺0)}. Furthermore, set

A
q(η0) :=

{
A

q(η0,̺0) : ̺0 ∈R
}
, A

q :=

{
A

q(η0) : η0 ∈

(
0,

π

2

]}
.

For q = 1, we obtain the set of all infinitesimal generators of analytic semigroups.

Lemma 2.4 Let q ∈ (0, 2). A linear closed densely defined operatorA belongs toAq(η0,̺0)

iff λq ∈ ρ(A) for each λ ∈
∑

η0+
π
2
(̺0) := {λ ∈ C – {0} : | arg(λ – ̺0)| < η0 +

π
2
} and ̺ > ̺0,

η < η0, there exists a constant M =M(η,̺) such that

∥∥λq–1R
(
λq,A

)∥∥
L(X)

≤
M

|λ – ̺|

for some λ ∈
∑

η0+
π
2
(̺).

IfA ∈Aq(η0,̺0) for some η0 ∈ (0, π
2
] and ̺0 ∈R, we see, from the proof of Theorem 2.14

in [4], that the solution operator of the Cauchy problem (2.1) is defined by

Uq(t) =
1

2π i

∫

Ŵ

eτ tτ q–1R
(
τ q,A

)
dτ , (2.3)

where Ŵ is a suitable path lying on
∑

η,̺ .

Let J0 = [0, t1], Ji = (ti, ti+1], i = 1, 2, . . . ,m. We consider the space

PC(J ,X) =
{
x : J → X : x|Ji ∈ C(Ji,X), i = 0, 1, 2, . . . ,m,

and x
(
t+i

)
exist for all i = 1, 2, . . . ,m

}
.

Then PC(J ,X) is a Banach space with the norm

‖x‖PC = sup
{∥∥x(t)

∥∥ : t ∈ J
}

for x ∈ PC(J ,X). According to [1, 6, 34, 37], we have the following definition of PC-mild

solutions for the nonlocal problem (1.1).

Definition 2.5 LetA ∈Aq(η0,̺0) for some η0 ∈ (0, π
2
] and ̺0 ∈ R. A function x ∈ PC(J ,X)

is called a PC-mild solution of (1.1) if it satisfies the following integral equation:

x(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uq(t)[x0 – g(x)] +
∫ t

0
Vq(t – s)f (s,x(s))ds, t ∈ J0,

...

Uq(t)[x0 – g(x)] +
∑i

k=1Uq(t – tk)Ik(x(tk))

+
∫ t

0
Vq(t – s)f (s,x(s))ds, t ∈ Ji, 1≤ i≤ m,

where Uq(t) is given in (2.3), and

Vq(t) =
1

2π i

∫

Ŵ

eτ tR
(
τ q,A

)
dτ , (2.4)

where Ŵ is a suitable path lying on
∑

η,̺ .
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Remark 1 Our Definition 2.5 follows from Definition 2.20 of [37]. In [37], the authors

claimed that the definition of solutions of impulsive Caputo fractional equations is ques-

tionable. They do not claim that Definition 2.20 is the best one. I agree with their view.

Therefore Definition 2.5 is following a similar way as for ordinary differential equations

with impulses. For details of Definition 2.5, we refer to [15, 38].

By (2.3) and (2.4) the operator families {Uq(t)}t≥0 and {Vq(t)}t≥0 satisfy the following

properties [4, 26, 28].

Lemma 2.6 If A ∈Aq(η0,̺0) for some η0 ∈ (0, π
2
] and ̺0 ∈R, then

∥∥Uq(t)
∥∥
L(X)

≤ M̂1,
∥∥Vq(t)

∥∥
L(X)

≤ M̂2t
q–1,

where

M̂1 = sup
t∈J

∥∥Uq(t)
∥∥
L(X)

, M̂2 = sup
t∈J

Me̺t
(
1 + t1–q

)
,

where M =M(η,̺) is a constant.

3 Main results

Let S := {x ∈ PC(J ,X) : ∃L > 0,‖x(t)‖ ≤ Leθ t ,∀θ > 0, a.e. t ∈ J}. Define the norm

‖x‖S = sup
{∥∥x(t)

∥∥e–θ t : t ∈ J
}
. (3.1)

It is easy to see that S is a Banach space with norm (3.1) and

‖x‖S ≤ L, ∀x ∈ S . (3.2)

Theorem 3.1 LetA ∈Aq(η0,̺0) for some η0 ∈ (0, π
2
] and ̺0 ∈ R. Suppose that the follow-

ing conditions hold:

(H1) f : J ×X → X , and there exists a function ρ ∈ L1(J ,R+) such that

∥∥f (t,u) – f (t, v)
∥∥ ≤ ρ(t)‖u – v‖, a.e. t ∈ J ,u, v ∈ X.

(H2) For each k ∈ {1, 2, . . . ,m}, Ik : X → X , and there exists ζk > 0 such that

∥∥Ik(u) – Ik(v)
∥∥ ≤ ζk‖u – v‖, ∀u, v ∈ X.

(H3) g : S → X is continuous, and there exists a constant K > 0 such that

∥∥g(x) – g(y)
∥∥ ≤ K‖x – y‖S , ∀x, y ∈ S .
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(H4) There exist constants γ1 > 0 and β1 ∈ (0, 1) such that

M̂1

[
‖x0‖ +

∥∥g(0)
∥∥ +

m∑

k=1

∥∥Ik(0)
∥∥
]
+ M̂2

∫ t

0

(t – s)q–1
∥∥f (s, 0)

∥∥ds

≤ γ1e
θ t , t ∈ J ,

M̂1

[
K + eaθ

m∑

k=1

ζk

]
+ M̂2

∫ t

0

(t – s)q–1ρ(s)eθs ds ≤ β1e
θ t , t ∈ J .

(3.3)

Then the nonlocal problem (1.1) has a unique PC-mild solution on J .

Proof Define the operator Q : S → PC(J ,X) by

(Qx)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uq(t)[x0 – g(x)] +
∫ t

0
Vq(t – s)f (s,x(s))ds, t ∈ J0,

...

Uq(t)[x0 – g(x)] +
∑i

k=1Uq(t – tk)Ik(x(tk))

+
∫ t

0
Vq(t – s)f (s,x(s))ds, t ∈ Ji, 1≤ i≤ m.

(3.4)

We first prove that QS ∈ S . For any x ∈ S and t ∈ J0, it follows from (H1)–(H4), (3.2), and

Lemma 2.6 that

∥∥(Qx)(t)
∥∥ ≤

∥∥Uq(t)
[
x0 – g(x)

]∥∥ +

∥∥∥∥
∫ t

0

Vq(t – s)f
(
s,x(s)

)
ds

∥∥∥∥

≤ M̂1

[
‖x0‖ +

∥∥g(x)
∥∥]

+ M̂2

∫ t

0

(t – s)q–1
∥∥f

(
s,x(s)

)∥∥ds

≤ M̂1‖x0‖ + M̂1K‖x‖S + M̂1

∥∥g(0)
∥∥

+ M̂2

∫ t

0

(t – s)q–1ρ(s)
∥∥x(s)

∥∥ds + M̂2

∫ t

0

(t – s)q–1
∥∥f (x, 0)

∥∥ds

≤ (γ1 + Lβ1)e
θ t .

Similarly, for any t ∈ Ji, 1≤ i≤ m, we can prove that

∥∥(Qx)(t)
∥∥ ≤ (γ1 + Lβ1)e

θ t .

Thus, for all t ∈ J , we have

∥∥(Qx)(t)
∥∥ ≤ (γ1 + Lβ1)e

θ t .

This fact, combined with (3.1), implies

‖Qx‖S ≤ γ1 + Lβ1.

Hence Qx ∈ S for all x ∈ S .
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Next, we verify thatQ is a contraction. For any t ∈ J0 and x, y ∈ S , from (H1)–(H4), (3.2),

and Lemma 2.6 we obtain

∥∥(Qx)(t) – (Qy)(t)
∥∥ ≤

∥∥Uq(t)
[
g(x) – g(y)

]∥∥ +

∥∥∥∥
∫ t

0

Vq(t – s)
[
f
(
s,x(s)

)
– f

(
s, y(s)

)]
ds

∥∥∥∥

≤ M̂1

∥∥g(x) – g(y)
∥∥ + M̂2

∫ t

0

(t – s)q–1
∥∥f

(
s,x(s)

)
– f

(
s, y(s)

)∥∥ds

≤

[
M̂1K + M̂2

∫ t

0

(t – s)q–1ρ(s)eθs ds

]
‖x – y‖S

≤ β1e
θ t‖x – y‖S .

Similarly, for any x, y ∈ S and t ∈ Ji, 1≤ i≤ m, we have

∥∥(Qx)(t) – (Qy)(t)
∥∥

≤

[
M̂1K + M̂1e

aθ

m∑

k=1

ζk + M̂2

∫ t

0

(t – s)q–1ρ(s)eθs ds

]
‖x – y‖S

≤ β1e
θ t‖x – y‖S .

Thus, for any t ∈ J and x, y ∈ S , we have

∥∥(Qx)(t) – (Qy)(t)
∥∥ ≤ β1e

θ t‖x – y‖S . (3.5)

This implies

‖Qx –Qy‖S ≤ β1‖x – y‖S , ∀x, y ∈ S .

Since β1 ∈ (0, 1), we obtain that Q : S → S is a contraction. Applying the Banach fixed

point theorem, we get that the operator Q has a unique fixed point in S . Hence, the non-

local problem (1.1) has a unique PC-mild solution in S . �

Next, we consider the controllability of control system governed by the fractional im-

pulsive evolution equation

⎧
⎪⎪⎨
⎪⎪⎩

CD
q
t x(t) =Ax(t) + f (t,x(t)) + Bu(t), t ∈ J , t �= tk ,

�x|t=tk = Ik(x(tk)), k = 1, 2, . . . ,m,

x(0) + g(x) = x0 ∈ X,

(3.6)

where the notions CD
q
t , A, �x|t=tk and the functions f , Ik , g are defined as in (1.1), u is

given in L∞(J ,U), the Banach space of admissible control functions, U is a real Banach

space, and B is a bounded linear operator from U to X.

Definition 3.2 System (3.6) is said to be nonlocally controllable on the interval J = [0,a]

if for any x0,x1 ∈ X, there exists a control function u ∈ L∞(J ,U) such that the PC-mild

solution of (3.6) satisfies x(0) = x0 – g(x) and x(a) = x1 – g(x).

To prove the nonlocal controllability of system (3.6), we introduce the following assump-

tions:
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(H5) The bounded linear operatorW : L∞(J ,X) → X defined by

W (u) =

∫ a

0

Vq(a – s)Bu(s)ds

has a bounded inverseW–1 : X → L∞(J ,X)/Ker(W ), and there exists a constant

N > 0 such that ‖W–1‖ ≤ N and ‖B‖ ≤ N .

(H6) There exist two positive constants γ2 and β2 satisfying

(
1 + M̂2N

2 a
q

q
eaθ

)
β2 < 1 (3.7)

such that

N1 + M̂2

∫ t

0

(t – s)q–1
∥∥f (s, 0)

∥∥ds≤ γ2e
θ t , t ∈ J ,

N2 + M̂2

∫ t

0

(t – s)q–1ρ(s)eθs ds≤ β2e
θ t , t ∈ J ,

where

N1 = ‖x1‖ + M̂1

(
‖x0‖ +

m∑

k=1

∥∥Ik(0)
∥∥
)
+ (1 + M̂1)

∥∥g(0)
∥∥,

N2 = (1 + M̂1)K + M̂1e
aθ

m∑

k=1

ζk .

In view of assumption (H5), we can define the control function u(·;x) ∈ L∞(J ,X) by

u(t;x) =W–1

[
x1 – g(x) – Uq(t)

(
x0 – g(x)

)
–

m∑

k=1

Uq(a – tk)Ik
(
x(tk)

)

–

∫ a

0

Vq(a – s)f
(
s,x(s)

)
ds

]
(t), t ∈ J .

Lemma 3.3 If assumptions (H1)–(H3), (H5), and (H6) hold, then

∥∥Bu(t;x)
∥∥ ≤ N2(γ2 + β2L)e

θa

and

∥∥Bu(t;x) – Bu(t, y)
∥∥ ≤ N2β2e

θa‖x – y‖S

for all t ∈ J and x, y ∈ S .

Proof For any t ∈ J and x ∈ S , it follows from assumptions (H1)–(H3), (H5), and (H6) that

∥∥Bu(t;x)
∥∥ ≤ N2

[
‖x1‖ +

∥∥g(x)
∥∥ + M̂1

(
‖x0‖ +

∥∥g(x)
∥∥)

+ M̂1

m∑

k=1

∥∥Ik
(
x(tk)

)∥∥

+ M̂2

∫ a

0

(a – s)q–1
∥∥f

(
s,x(s)

)∥∥ds
]
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≤ N2

[
‖x1‖ + M̂1‖x0‖ + (1 + M̂1)

∥∥g(0)
∥∥

+ M̂1

m∑

k=1

∥∥Ik(0)
∥∥ + M̂2

∫ a

0

(a – s)q–1
∥∥f (s, 0)

∥∥ds

+ (1 + M̂1)K‖x‖S + M̂1e
θa

m∑

k=1

ζk‖x‖S

+ M̂2

∫ a

0

(a – s)q–1ρ(s)eθs ds‖x‖S

]

≤ N2(γ2 + β2L)e
θa,

and for all t ∈ J and x, y ∈ S , we have

∥∥Bu(t;x) – Bu(t, y)
∥∥

≤ N2

[
∥∥g(x) – g(y)

∥∥ + M̂1

∥∥g(x) – g(y)
∥∥ + M̂1

m∑

k=1

∥∥Ik
(
x(tk)

)
– Ik

(
y(tk)

)∥∥

+ M̂2

∫ a

0

(a – s)q–1
∥∥f

(
s,x(s)

)
– f

(
s, y(s)

)∥∥ds
]

≤ N2

[
K(1 + M̂1)‖x – y‖S + M̂1

m∑

k=1

ζke
θ tk‖x – y‖S

+ M̂2

∫ a

0

(a – s)q–1ρ(s)eθs ds‖x – y‖S

]

≤ N2β2e
θa‖x – y‖S .

This completes the proof. �

Theorem 3.4 LetA ∈Aq(η0,̺0) for some η0 ∈ (0, π
2
] and ̺0 ∈R. Suppose that conditions

(H1)–(H3), (H5), and (H6) hold. Then system (3.6) is nonlocally controllable on the inter-

val J .

Proof Define the operator Q̃ : S → PC(J ,X) by

(Q̃x)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Uq(t)[x0 – g(x)] +
∫ t

0
Vq(t – s)[f (s,x(s)) + Bu(s;x)]ds, t ∈ J0,

...

Uq(t)[x0 – g(x)] +
∑i

k=1Uq(t – tk)Ik(x(tk))

+
∫ t

0
Vq(t – s)[f (s,x(s)) + Bu(s;x)]ds, t ∈ Ji, 1 ≤ i ≤ m.

It is clear that any fixed point of Q̃ is a PC-mild solution of the nonlocal system (3.6)

satisfying x(0) = x0 – g(x) and x(a) = x1 – g(x). Next, we prove that Q̃ has a fixed point in S .

For this purpose, we first prove that Q̃ : S → S is continuous.

Indeed, in view of the continuity of all functions involved in (3.6), Q̃ : S → PC(J ,X) is

continuous. On the other hand, by assumptions (H1)–(H3) and (H6) and by Lemma 3.3,
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a similar argument as in the proof of Theorem 3.1 shows that

∥∥(Q̃x)(t)
∥∥ ≤ (γ2 + β2L)

(
1 + M̂2N

2eθ (a–t) a
q

q

)
eθ t , ∀t ∈ J ,x ∈ S .

This implies

‖Q̃x‖S ≤ (γ2 + β2L)

(
1 + M̂2N

2eθa a
q

q

)
.

Thus Q̃ : S → S is continuous.

Secondly, we claim that Q̃ : S → S is a contraction. In fact, for any t ∈ J0 and x, y ∈ S , it

follows from (H1)–(H3), (H6), and Lemma 3.3 that

∥∥(Q̃x)(t) – (Q̃y)(t)
∥∥ ≤ M̂1

∥∥g(x) – g(y)
∥∥

+ M̂2

∫ t

0

(t – s)q–1
∥∥f

(
s,x(s)

)
– f

(
s, y(s)

)∥∥

+ M̂2

∫ t

0

(t – s)q–1
∥∥Bu(s;x) – Bu(s; y)

∥∥

≤

(
M̂1K + M̂2

∫ t

0

(t – s)q–1ρ(s)eθs ds

)
‖x – y‖S

+ M̂2N
2β2e

aθ a
q

q
‖x – y‖S

≤

(
1 + M̂2N

2eθ (a–t) a
q

q

)
β2e

θ t‖x – y‖S .

Similarly, for any t ∈ Ji, 1≤ i≤ m, and x, y ∈ S , we can obtain

∥∥(Q̃x)(t) – (Q̃y)(t)
∥∥ ≤

(
1 + M̂2N

2eθ (a–t) a
q

q

)
β2e

θ t‖x – y‖S .

Thus, for all x, y ∈ S , we have

‖Q̃x – Q̃y‖S ≤

(
1 + M̂2N

2eθ (a–t) a
q

q

)
β2‖x – y‖S

≤

(
1 + M̂2N

2eaθ
aq

q

)
β2‖x – y‖S .

By (3.7), Q̃ : S → S is a contraction. Hence, by the Banach fixed point theorem, Q̃ has a

unique fixed point x in S , which is a PC-mild solution of the nonlocal system (3.6) and

satisfies x(0) = x0 – g(x) and x(a) = x1 – g(x). �

4 Conclusion and future study

This paper deals with the existence and controllability of a fractional nonlocal impulsive

problem for abstract evolution equation (1.1). By using fixed point theorems the existence

and nonlocal controllability of (1.1) are discussed. A similar technique can be used to study

the fractional evolution inclusion involving impulses and nonlocal condition.
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