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EXISTENCE AND DECAY OF SOLUTIONS TO A
VISCOELASTIC PLATE EQUATION

SALIM A. MESSAOUDI, SOH EDWIN MUKIAWA

Abstract. In this article we study the fourth-order viscoelastic plate equation

utt + ∆2u−
Z t

0
g(t− τ)∆2u(τ)dτ = 0

in the bounded domain Ω = (0, π)×(−`, `) ⊂ R2 with non traditional boundary
conditions. We establish the well-posedness and a decay result.

1. Introduction

This article is devoted to the well-posedness and the decay rate of the energy
functional for the fourth-order viscoelastic plate problem

utt + ∆2u−
∫ t

0

g(t− τ)∆2u(τ)dτ = 0, Ω× (0, T )

u(0, y, t) = uxx(0, y, t) = 0, for (y, t) ∈ (−`, `)× (0, T )

u(π, y, t) = uxx(π, y, t) = 0, for (y, t) ∈ (−`, `)× (0, T )

uyy(x,±l, t) + σuxx(x,±l, t) = 0, for (x, t) ∈ (0, π)× (0, T )

uyyy(x,±l, t) + (2− σ)uxxy(x,±l, t) = 0, for (x, t) ∈ (0, π)× (0, T )

u(x, y, 0) = u0(x, y), ut(x, y, 0) = u1(x, y), in Ω

(1.1)

where Ω = (0, π)×(−`, `), 0 < σ < 1
2 and g is a positive and nonincreasing function.

This type of problems models the motion of a viscoelastic plate. The fundamental
work of Ferrero and Gazzola [14] in 2013, where they modeled a suspension bridge
as a rectangular plate with the same boundary conditions as (1.1), suggests the
investigation of the viscoelastic material used in construction. Al-Gwaiz et al [1]
also investigated the bending and stretching energies of the rectangular plate model
suggested in [14]. Contributions on the analysis of a suspension bridge have also
come from Mckenna and Walter [24], Mckenna et al [15], Ma and Zhong [23] and
Bochicchio et al [6].

The existence, decay and blow up properties of viscoelastic problems has at-
tracted a lot of attention since the pioneer work by Dafermos [12, 13] in 1970.
Hence, a considerable number of results for models similar to (1.1), for both second
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and fourth order have been established. We begin with the result of Messaoudi
[25], where he considered

utt −∆u+
∫ t

0

g(t− τ)∆u(τ)dτ = 0, in Ω× (0,+∞) (1.2)

with general conditions on the relaxation function g, and proved a general decay
result that is not necessarily of exponential or polynomial type. His result gener-
alized and improved many results in literature such as [4, 5, 2, 3, 10]. Rivera et al
[27] considered the fourth-order equation

utt + γ∆utt + ∆2u−
∫ t

0

g(t− τ)∆2u(τ)dτ = 0, in Ω× (0, T ) (1.3)

together with initial and dynamical boundary conditions and proved that the sum
of the first and second energies decays exponentially (polynomially) if the kernel
g decays exponentially (polynomially). Mustafa and Ghassan [28] considered the
plate equation

utt + ∆2u = 0, in Ω× (0,+∞) (1.4)

with viscoelastic damping localized on a part of the boundary and established a
decay result. For more results related to the plate equation, we refer the reader to
Messaoudi [26], Kang [17], Santos and Junior [29], Lagnese [19], Horn and Lasiecka
[16], Lasiecka [20], and Lasiecka et al [21], Cabanillas et al [8] Lasiecka et al [9].

The aim of this work is to take advantage of the techniques used in [25] and
the new model in [14] to establish a global existence and general decay results for
problem (1.1). We organize this work as follows. In section 2, we present some
important and fundamental materials to be used in establishing our main results.
In section 3, we state and prove the global existence result. Finally, in section 4 we
state and prove the general decay result.

2. Preliminaries

In this section, we present some fundamental materials needed for the proof of
our main results. For this, we assume the following conditions on the relaxation
function g.

(A1) g : R+ → R+ is a differentiable function such that

g(0) > 0, 1−
∫ +∞

0

g(s)ds = l0 > 0. (2.1)

(A2) There exists a differentiable function ξ satisfying

g′(t) ≤ −ξ(t)g(t), t ≥ 0

ξ(t) > 0, ξ′(t) ≤ 0, ∀t > 0,
∫ +∞

0

ξ(s)ds = +∞
(2.2)

The following three functions satisfy (A1)–(A2).

g1(t) =
ae−t

(1 + t)
, a > 0,

g2(t) =
a

(1 + t)p
, p > 1, a > 0, g3(t) = ae−b(1+t)p

, 0 < p ≤ 1, a, b > 0.
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We introduce the space

H2
∗ (Ω) = {w ∈ H2(Ω) : w = 0 on {0, π} × (−`, `)}, (2.3)

with the inner product

(u, v)H2
∗

=
∫

Ω

[(∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dx dy, (2.4)

and set H(Ω) as the dual of H2
∗ (Ω). For completeness, we state some results from

Ferrero and Gazzola [14].

Lemma 2.1 ([14]). Assume 0 < σ < 1/2. Then the norm ‖ · ‖H2
∗(Ω) given by

‖ · ‖2H2
∗(Ω) = (·, ·)H2

∗
is equivalent to the usual H2(Ω)-norm. Moreover, H2

∗ (Ω) is a
Hilbert space when endowed with the scalar product (u, v)H2

∗
.

Theorem 2.2 ([14]). Assume 0 < σ < 1/2 and let f ∈ L2(Ω). Then there exists a
unique function u ∈ H2

∗ (Ω) such that∫
Ω

[∆u∆v + (1− σ)(2uxyvxy − uxxvyy − uyyvxx)] dx dy =
∫

Ω

fv, (2.5)

for all v ∈ H2
∗ (Ω).

The function u ∈ H2
∗ (Ω) satisfying (2.5) is called the weak solution of the sta-

tionary problem

∆2u = f,

u(0, y) = uxx(0, y) = u(π, y) = uxx(π, y) = 0,

uyy(x,±l) + σuxx(x,±l) = uyyy(x,±l) + (2− σ)uxxy(x,±l) = 0.

(2.6)

Lemma 2.3 ([30]). Let u ∈ H2
∗ (Ω) and assume 1 ≤ p < +∞. Then, there exists a

positive constant Ce = Ce(Ω, p) > 0 such that

‖u‖pp ≤ Ce‖u‖
p
H2
∗(Ω).

Let us also introduce the energy functional associated to problem (1.1),

E(t) =
1
2

∫
Ω

u2
t +

1
2

(
1−

∫ t

0

g(s)ds
)
‖u‖2H2

∗(Ω) +
1
2

∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ.

(2.7)

3. Well-posedness

In this section, we show that problem (1.1) has a unique global weak solution.

Definition 3.1. A function

u ∈ C([0, T ), H2
∗ (Ω)) ∩ C1([0, T ), L2(Ω)) ∩ C2([0, T ),H(Ω)) (3.1)

is called a weak solution of (1.1) if∫
Ω

uttw + (u,w)H2
∗(Ω) −

∫ t

0

g(t− τ)(u(τ), w)H2
∗(Ω)dτ = 0, ∀w ∈ H2

∗ (Ω),

u(0) = u0, ut(0) = u1.

(3.2)

Theorem 3.2. Let (u0, u1) ∈ H2
∗ (Ω)×L2(Ω). Assume that (A1), (A2) hold. Then

problem (1.1) has a unique weak global solution

u ∈ C([0, T ), H2
∗ (Ω)), ut ∈ C([0, T ), L2(Ω)), utt ∈ C([0, T ),H(Ω)) (3.3)
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Proof. We use the Galerkin approximation method. Let {wj}∞j=1 be a basis of the
separable space H2

∗ (Ω) and Vm = span{w1, w2, . . . , wm} be a finite subspace of
H2
∗ (Ω) spanned by the first m vectors. Let

um0 (x, y) =
m∑
j=1

ajwj(x, y) and um1 (x, y) =
m∑
j=1

bjwj(x, y)

be sequences in H2
∗ (Ω) and L2(Ω) respectively, such that

um0 → u0 in H2
∗ (Ω), um1 → u1 in L2(Ω). (3.4)

We seek a solution of the form

um(x, y, t) =
m∑
j=1

cj(t)wj(x, y),

which satisfies the approximate problem∫
Ω

umtt (x, y, t)wj + (um(x, y, t), wj)H2
∗(Ω)

−
∫ t

0

g(t− τ)(um(x, y, τ), wj)H2
∗(Ω)dτ = 0, ∀wj ∈ Vm, j = 1, 2, . . . ,m.

um(0) = um0 , umt (0) = um1 .

(3.5)

We note that (3.5) leads to system of ODEs with m unknown functions cj , j =
1, 2, . . . ,m. Thus, using ODE theory (see [11]), we obtain functions

cj : [0, tm)→ R, j = 1, 2, . . . ,m,

which satisfy (3.5) for almost every t ∈ (0, tm), 0 < tm < T . Therefore, we obtain a
local solution um of (3.5) in a maximal interval [0, tm), tm ∈ (0, T ]. Next, we show
that tm = T and that the local solution is uniformly bounded independent of m
and t. For this, we multiply (3.5) by c′j(t) and sum over j = 1, 2, . . . ,m, to obtain

d

dt

[1
2
‖umt ‖2L2(Ω) +

1
2

(1−
∫ t

0

g(s)ds)‖um‖2H2
∗(Ω)

+
1
2

∫ t

0

g(t− τ)‖um(t)− um(τ)‖2H2
∗(Ω)dτ

]
=

1
2

∫ t

0

g′(t− τ)‖um(t)− um(τ)‖2H2
∗(Ω)dτ −

1
2
g(t)‖um‖2H2

∗(Ω)

It follows from (2.7) that

d

dt
Em(t) =

1
2

∫ t

0

g′(t− τ)‖um(t)− um(τ)‖2H2
∗(Ω)dτ −

1
2
g(t)‖um‖2H2

∗(Ω) ≤ 0, (3.6)

by assumptions (A1) and (A2). Integrating (3.6) over (0, t), t ∈ (0, tm) and noting
that (um0 ) and (um1 ) are bounded in H2

∗ (Ω) and L2(Ω) respectively (as convergent
sequences (3.4)), we obtain

Em(t) ≤ Em(0) =
1
2
‖um1 ‖2L2(Ω) +

1
2
‖um0 ‖2H2

∗(Ω) ≤ C (3.7)

where C is a positive constant independent of m and t. Therefore,

1
2
‖umt ‖2L2(Ω) +

1
2

(1−
∫ t

0

g(s)ds)‖um‖2H2
∗(Ω)
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+
1
2

∫ t

0

g(t− τ)‖um(t)− um(τ)‖2H2
∗(Ω)dτ ≤ C.

This implies
1
2

sup
t∈(0,tm)

‖umt ‖2L2(Ω) +
l0
2

sup
t∈(0,tm)

‖um‖2H2
∗(Ω) ≤ C. (3.8)

So, the approximate solution is uniformly bounded independent of m and t. There-
fore, we can extend tm to T . Moreover, we obtain from (3.8) that

(um)is a bounded sequence in L∞((0, T ), H2
∗ (Ω)),

(umt ) is a bounded sequence in L∞((0, T ), L2(Ω)).
(3.9)

Thus, there exists a subsequence (uk) of (um) such that

uk ⇀ u weakly star in L∞((0, T ), H2
∗ (Ω)) and weakly in L2((0, T ), H2

∗ (Ω))

ukt ⇀ ut weakly star in L∞((0, T ), L2(Ω)) and weakly in L2((0, T ), L2(Ω))
(3.10)

Using that H2
∗ (Ω) is compactly embedded in L2(Ω) (remember that Ω is bounded

and H2
∗ (Ω) ⊂ H2(Ω)), we can extract a subsequence (ul) of (uk) such that

ul → u strongly in L2((0, T ), L2(Ω)),

ul → u a.e in Ω× (0, T ).

Now, replacing (um) by (ul) in (3.5) and integrating over (0, t) we obtain∫
Ω

ultwj +
∫ t

0

(ul, wj)H2
∗(Ω)dt−

∫ t

0

∫ s

0

g(s− τ)(ul(τ), wj)H2
∗(Ω)dτds

=
∫

Ω

ul1wj , ∀j ≤ l.
(3.11)

Letting l→ +∞, we obtain∫
Ω

utwj +
∫ t

0

(u,wj)H2
∗(Ω)dt−

∫ t

0

∫ s

0

g(s− τ)(u(τ), wj)H2
∗(Ω)dτds

=
∫

Ω

u1wj , ∀j ≥ 1.
(3.12)

This implies∫
Ω

utw = −
∫ t

0

(u,w)H2
∗(Ω)dt+

∫ t

0

∫ s

0

g(s− τ)(u(τ), w)H2
∗(Ω)dτds

+
∫

Ω

u1w, ∀w ∈ H2
∗ (Ω).

(3.13)

Now, observe that the terms in the right-hand side of (3.13) are absolutely continu-
ous since they are functions of t defined by integrals over (0, t), hence differentiable
almost everywhere. Thus, differentiating (3.13), we obtain that for a.e t ∈ (0, T ),∫

Ω

uttw + (u,w)H2
∗(Ω) −

∫ t

0

g(t− τ)(u(τ), w)H2
∗(Ω)dτ = 0 (3.14)

for all w ∈ L2((0, T ), H2
∗ (Ω)). To handle the initial conditions, we note that

ul ⇀ u weakly in L2((0, T ), H2
∗ (Ω))

ult ⇀ ut weakly in L2((0, T ), L2(Ω))
(3.15)
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Thus, using Lions’ Lemma [22], we obtain

ul → u in C([0, T ), L2(Ω)). (3.16)

Therefore, ul(x, y, 0) makes sense and ul(x, y, 0) → u(x, y, 0) in L2(Ω). Also we
have that

ul(x, y, 0) = ul0(x, y)→ u0(x, y) in H2
∗ (Ω).

Hence
u(x, y, 0) = u0(x, y). (3.17)

As in [14, 18], let φ ∈ C∞0 (0, T ) and replacing (um) by (ul), we obtain from (3.5)
and for any j ≤ l that

−
∫ T

0

(ult(t), wj)L2(Ω)φ
′(t)dt

= −
∫ T

0

(ul(t), wj)H2
∗(Ω)φ(t)dt+

∫ T

0

∫ t

0

g(t− τ)(ul(τ), wj)H2
∗(Ω)φ(t)dτdt.

(3.18)

As l→ +∞, we obtain that

−
∫ T

0

(ut(t), wj)L2(Ω)φ
′(t)dt

= −
∫ T

0

(u(t), wj)H2
∗(Ω)φ(t)dt+

∫ T

0

∫ t

0

g(t− τ)(u(τ), wj)H2
∗(Ω)φ(t)dτdt,

for all j ≥ 1. This implies

−
∫ T

0

(ut(t), w)L2(Ω)φ
′(t)dt

= −
∫ T

0

(u(t), w)H2
∗(Ω)φ(t)dt+

∫ T

0

∫ t

0

g(t− τ)(u(τ), w)H2
∗(Ω)φ(t)dτdt,

for all w ∈ H2
∗ (Ω). This means utt ∈ L2([0, T ),H(Ω)). Thus,

ut ∈ L2([0, T ), L2(Ω)), utt ∈ L2([0, T ),H(Ω)) =⇒ ut ∈ C([0, T ),H(Ω)). (3.19)

So, ult(x, y, 0) makes sense (see [18, p.116]). It follows that

ult(x, y, 0)→ ut(x, y, 0) in H(Ω).

But
ult(x, y, 0) = ul1(x, y)→ u1(x, y) in L2(Ω).

Hence
ut(x, y, 0) = u1(x, y). (3.20)

For the uniqueness, suppose u and ū satisfy (3.14), (3.17) and (3.20). Then v = u−ū
satisfies ∫

Ω

vttw + (v, w)H2
∗(Ω) −

∫ t

0

g(t− τ)(v(τ), w)H2
∗(Ω)dτ = 0,

∀w ∈ L2((0, T ), H2
∗ (Ω)),

v(0) = vt(0) = 0.

(3.21)

Replacing w by vt in (3.21), we obtain

d

dt

[1
2

∫
Ω

v2
t +

1
2
‖v‖2H2

∗(Ω)

]
−
∫ t

0

g(t− τ)(v(τ), vt(t))H2
∗(Ω)dτ = 0. (3.22)
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We have that

J1 = −
∫ t

0

g(t− τ)(v(τ), vt(t))H2
∗(Ω)dτ

=
∫ t

0

g(t− τ)(vt(t), v(t)− v(τ))H2
∗(Ω)dτ −

∫ t

0

g(s)ds(vt(t), v(t))H2
∗(Ω)

=
∫ t

0

g(t− τ)
d

dt

1
2
‖v(t)− v(τ)‖2H2

∗(Ω)dτ −
∫ t

0

g(s)ds
d

dt

1
2
‖v(t)‖2H2

∗(Ω)

=
d

dt

1
2

∫ t

0

g(t− τ)‖v(t)− v(τ)‖2H2
∗(Ω)dτ

− 1
2

∫ t

0

g′(t− τ)‖v(t)− v(τ)‖2H2
∗(Ω)dτ

− d

dt

1
2

∫ t

0

g(s)ds‖v(t)‖2H2
∗(Ω) +

1
2
g(t)‖v(t)‖2H2

∗(Ω).

(3.23)

Inserting (3.23) into (3.22) and taking note of (2.7), we obtain

dẼ(t)
dt

=
1
2

∫ t

0

g′(t− τ)‖v(t)− v(τ)‖2H2
∗(Ω)dτ −

1
2
g(t)‖v(t)‖2H2

∗(Ω) ≤ 0, (3.24)

by (A1) and (A2). Integrating (3.24) over (0, t), we obtain

Ẽ(t) ≤ Ẽ(0) = 0. (3.25)

This implies
‖vt‖2L2(Ω) + ‖v‖2H2

∗(Ω) = 0.
Therefore, u = ū. The proof is complete. �

4. Decay of solutions

In this section, we discuss the stability of solution of problem (1.1). Let us begin
by defining the Lyapunov functional

F (t) = E(t) + ε1Ψ(t) + ε2χ(t), (4.1)

where ε1 and ε2 are positive constants to be specified later and

Ψ(t) =
∫

Ω

uut,

χ(t) = −
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ))dτ dx dy.
(4.2)

Lemma 4.1. Assume (A1), (A2) hold. Then the energy functional, defined in
(2.7), satisfies

dE(t)
dt

=
1
2

∫ t

0

g′(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ −

1
2
g(t)‖u‖2H2

∗(Ω) ≤ 0. (4.3)

Proof. By using (3.14) and the density of H2
∗ (Ω) in L2(Ω) we obtain∫

Ω

uttw + (u,w)H2
∗(Ω) −

∫ t

0

g(t− τ)(u(τ), w)H2
∗(Ω)dτ = 0 (4.4)

for all w ∈ L2([0, T ), L2(Ω)). Repeating exactly the same arguments as in (3.22)-
(3.24), we obtain the result. �
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Lemma 4.2. For every u ∈ H2
∗ (Ω), we have∫

Ω

(∫ t

0

g(t− τ)(u(t)− u(τ))dτ
)2

dx dy

≤ Ce(1− l0)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ,

(4.5)

where Ce > 0 is the embedding constant introduced in Lemma 2.3.

Proof. Since g is positive, we have∫
Ω

(∫ t

0

g(t− τ)(u(t)−u(τ))dτ
)2

=
∫

Ω

(∫ t

0

√
g(t− τ)

√
g(t− τ)(u(t)−u(τ))dτ

)2

By applying Cauchy-Schwarz, (A1) and Lemma 2.3, we obtain∫
Ω

(
∫ t

0

g(t− τ)(u(t)− u(τ))dτ)2

≤
∫

Ω

(
∫ t

0

g(s)ds)(
∫ t

0

g(t− τ)(u(t)− u(τ))2dτ)

≤ Ce(1− l0)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ.

�

Lemma 4.3. For ε1 and ε2 small enough, there exists two positive constants α1

and α2 such that
α1F (t) ≤ E(t) ≤ α2F (t) (4.6)

The proof of the above lemma uses similar techniques as in [25, Lemma 3.3]; we
omit it here.

Lemma 4.4. Under assumptions (A1), (A2), the functional

Ψ(t) =
∫

Ω

uut

satisfies, along the solution of (1.1),

Ψ′(t) ≤
∫

Ω

u2
t −

l0
2
‖u‖2H2

∗(Ω) +
1− l0

2l0

∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ. (4.7)

Proof. By using (3.14) and replacing w by u, direct differentiations yield

Ψ′(t) =
∫

Ω

u2
t − ‖u‖2H2

∗(Ω) +
∫ t

0

g(t− τ)(u(t), u(τ))H2
∗(Ω)dτ. (4.8)

By using Cauchy-Schwarz and Young’s inequalities, we estimate the third term

J2 =
∫ t

0

g(t− τ)(u(t), u(τ))H2
∗(Ω)dτ,

for any η > 0, as follows

J2 ≤
∫ t

0

g(t− τ)‖u(t)‖H2
∗(Ω)‖u(τ)‖H2

∗(Ω)dτ

≤ 1
2
‖u(t)‖2H2

∗(Ω) +
1
2

(∫ t

0

g(t− τ)(‖u(t)− u(τ)‖H2
∗(Ω) + ‖u(t)‖H2

∗(Ω))dτ
)2
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=
1
2
‖u(t)‖2H2

∗(Ω) +
1
2

(∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ

)2

+
1
2

(
∫ t

0

g(t− τ)‖u(t)‖H2
∗(Ω))dτ)2

+
(∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ

)(∫ t

0

g(t− τ)‖u(t)‖H2
∗(Ω)dτ

)
.

By using Lemma 4.2, we obtain

J2 ≤
1
2

(1 + (1− l0)2)‖u‖2H2
∗(Ω) +

1
2

(1− l0)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

+
η

2
(
∫ t

0

g(t− τ)‖u(t)‖H2
∗(Ω)dτ)2 +

1
2η

(
∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ)2

≤ 1
2

(1 + (1− l0)2(1 + η))‖u‖2H2
∗(Ω)

+
1
2

(1− l0)(1 +
1
η

)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ.

(4.9)
Now, substituting (4.9) in (4.8), we obtain

Ψ′(t) ≤
∫

Ω

u2
t +

1
2

((1− l0)2(1 + η)− 1)‖u‖2H2
∗(Ω)

+
1
2

(1− l0)(1 +
1
η

)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ, ∀η > 0.

(4.10)

We choose η = l0
1−l0 and obtain the result. �

Lemma 4.5. Assume conditions (A1) and (A2) hold. Then the functional

χ(t) = −
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ))dτ dx dy (4.11)

satisfies, along the solution of (1.1),

χ′(t) ≤
(δ

2
−
∫ t

0

g(s)ds
)∫

Ω

u2
t +

δ

2
(1 + 2(1− l0)2)‖u‖2H2

∗(Ω)

− Ceg(0)
2δ

∫ t

0

g′(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

+ (1− l0)(δ +
1
δ

)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ, ∀δ > 0.

(4.12)
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Proof. By differentiating (4.11) and using (3.14), with u instead of w, we obtain

χ′(t) = −
(∫ t

0

g(s)ds
)∫

Ω

u2
t −

∫
Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ)) dτ dx dy

−
∫

Ω

utt

∫ t

0

g(t− τ)(u(t)− u(τ)) dτ dx dy

= −
(∫ t

0

g(s)ds
)∫

Ω

u2
t −

∫
Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ))dτ dx dy

+
(
u(t),

∫ t

0

g(t− τ)(u(t)− u(τ))dτ
)
H2
∗(Ω)

−
∫ t

0

g(t− τ)
(
u(τ),

∫ t

0

g(t− τ)(u(t)− u(τ))dτ
)
H2
∗(Ω)

dτ.

(4.13)

By using Cauchy-Schwarz inequality, Young’s inequality and Lemma 4.2 for −g′
instead of g, we estimate the terms in the right-hand side of (4.13). Thus, for the
term

J3 = −
∫

Ω

ut

∫ t

0

g′(t− τ)(u(t)− u(τ))dτ dx dy,

we have that for any δ > 0,

J3 ≤
δ

2

∫
Ω

u2
t +

1
2δ

∫
Ω

(∫ t

0

−g′(t− τ)(u(t)− u(τ))dτ
)2

dx dy

≤ δ

2

∫
Ω

u2
t +

1
2δ

∫
Ω

(∫ t

0

−g′(s)ds
)(∫ t

0

−g′(t− τ)(u(t)− u(τ))2dτ
)
dx dy

≤ δ

2

∫
Ω

u2
t −

Ceg(0)
2δ

∫ t

0

g′(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ.

(4.14)
For the term

J4 = (u(t),
∫ t

0

g(t− τ)(u(t)− u(τ)dτ)H2
∗(Ω),

we have

J4 ≤ ‖u(t)‖H2
∗(Ω)

∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ

≤ δ

2
‖u(t)‖2H2

∗(Ω) +
1
2δ

(
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ)2

≤ δ

2
‖u(t)‖2H2

∗(Ω) +
(1− l0)

2δ

∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ.

(4.15)

Similarly, for the term

J5 = −
∫ t

0

g(t− τ)(u(τ),
∫ t

0

g(t− τ)(u(t)− u(τ))dτ)H2
∗(Ω)dτ,
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we obtain

J5 ≤
(∫ t

0

g(t− τ)‖u(τ)‖H2
∗(Ω)dτ

)(∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ

)
≤ δ

2

(∫ t

0

g(t− τ)(‖u(t)− u(τ)‖H2
∗(Ω) + ‖u(t)‖H2

∗(Ω))dτ
)2

+
1
2δ

(∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ

)2

≤ δ

2

(∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ

)2

+
δ

2

(∫ t

0

g(t− τ)‖u(t)‖H2
∗(Ω)dτ

)2

+ δ(
∫ t

0

g(t− τ)‖u(t)− u(τ)‖H2
∗(Ω)dτ)

(∫ t

0

g(t− τ)‖u(t)‖H2
∗(Ω)dτ

)
+

(1− l0)
2δ

∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

≤ (δ +
1
2δ

)(1− l0)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

+ δ(1− l0)2‖u‖2H2
∗(Ω).

(4.16)

By substituting (4.14)–(4.16) in (4.13), we obtain (4.12), for any δ > 0. �

Theorem 4.6. Let (u0, u1) ∈ H2
∗ (Ω) × L2(Ω). Assume g and ξ satisfy (A1) and

(A2). Then, for any t0 > 0, there exist positive constants K and λ such that the
solution of (1.1) satisfies

E(t) ≤ Ke−λ
R t

t0
ξ(s)ds

, ∀t ≥ t0. (4.17)

Proof. Since g is positive, continuous, and g(0) > 0, then for any t ≥ t0 we have∫ t

0

g(s)ds ≥
∫ t0

0

g(s)ds = g0 > 0.

Combination of (4.3), (4.7) and (4.12), gives that for any t ≥ t0,

F ′(t)

≤ −
(
ε2(g0 −

δ

2
)− ε1

)∫
Ω

u2
t −

(ε1l0
2
− ε2

δ

2
(1 + 2(1− l0)2)

)
‖u‖2H2

∗(Ω)

+
(1

2
− ε2

Ceg(0)
2δ

)∫ t

0

g′(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

+
(ε1(1− l0)

2l0
+ ε2(δ +

1
δ

)(1− l0)
)∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ.

(4.18)

Now, we choose δ small enough such that

g0 −
δ

2
>
g0

2
,

4δ
l0

(1 + 2(1− l0)2) <
g0

4
. (4.19)

By using (4.19), we easily check that any ε1 and ε2, satisfying
ε2g0

16
< ε1 <

ε2g0

2
, (4.20)
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will make

β1 =
(
ε2(g0 −

δ

2
)− ε1

)
> 0, β2 =

(ε1l0
2
− ε2

δ

2
(1 + 2(1− l0)2)

)
> 0.

Next, we pick ε1 and ε2 small enough such that (4.6) and (4.20) remain valid and
further we have

1
2
− ε2

Ceg(0)
2δ

> 0,
ε1(1− l0)

2l0
+ ε2(δ +

1
δ

)(1− l0) > 0.

Thus, (4.18) becomes

F ′(t) ≤ −β1

∫
Ω

u2
t − β2‖u‖2H2

∗(Ω) + C̃

∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

≤ −βE(t) + C

∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ, ∀t ≥ t0.

(4.21)

Multiplying (4.21) by ξ(t) and using the facts that ξ is decreasing and

g′(t) ≤ −ξ(t)g(t), E′(t) ≤ 1
2

∫ t

0

g′(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ, (4.22)

we arrive at

ξ(t)F ′(t) ≤ −βξ(t)E(t) + Cξ(t)
∫ t

0

g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

≤ −βξ(t)E(t) + C

∫ t

0

ξ(t− τ)g(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

≤ −βξ(t)E(t) + C

∫ t

0

−g′(t− τ)‖u(t)− u(τ)‖2H2
∗(Ω)dτ

≤ −βξ(t)E(t)− CE′(t), ∀t ≥ t0.

This gives

(ξ(t)F (t) + CE(t))′ − ξ′(t)F (t) ≤ −βξ(t)E(t), ∀t ≥ t0.

Consequently,
(ξ(t)F (t) + CE(t))′ ≤ −βξ(t)E(t), ∀t ≥ t0. (4.23)

Let
L = ξF + CE ∼ E, (4.24)

since F ∼ E and 0 ≤ ξ(t) ≤ ξ(0). Then (4.23) and (4.24) lead to

L′(t) ≤ −λξ(t)L(t), ∀t ≥ t0. (4.25)

A simple integration in (t0, t) yields

L(t) ≤ L(t0)e−λ
R t

t0
ξ(s)ds

, ∀t ≥ t0. (4.26)

Again, recalling (4.24), we obtain

E(t) ≤ Ke−λ
R t

t0
ξ(s)ds

, ∀t ≥ t0. (4.27)

This completes the proof. �
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