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EXISTENCE AND DUALITY THEOREMS
FOR CONVEX PROBLEMS OF BOLZA
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R. T. ROCKAFELLARP)

Abstract. The theory of conjugate convex functions is applied to a fundamental
class of "convex" problems in the calculus of variations and optimal control. This
class has many special properties which have not previously been exploited and for
which the standard methods of approach are inadequate. Duality theorems are
established which yield new results on the existence of optimal arcs, as well as neces-
sary and sufficient conditions for optimality. These results have some relevance also to
the study of "nonconvex" problems.

Introduction. Many problems in the calculus of variations and optimal control
can be formulated as generalized problems of Bolza. We have shown in [9] that if
certain convexity assumptions and mild regularity assumptions (not requiring
differentiability) are satisfied, such a problem has associated with it a dual problem,
which is likewise a generalized problem of Bolza. The dual of the dual problem is
the original problem.

The main result of this paper, Theorem 1 (formulated in §1), relates the extremal
values in a dual pair of problems of Bolza and gives conditions under which optimal
arcs exist. This theorem also provides a condition for the weak compactness of
certain subsets of the (nonreflexive) Banach space of all absolutely continuous arcs
x: [0, T]^~Rn. It establishes (Corollary 1) a class of problems for which the
generalized Euler-Lagrange equation (or Hamiltonian equation) and transversality
condition studied in [9] and [10] are necessary and sufficient if an arc is to be
optimal.

Duality in various forms has already been investigated in optimal control and
the calculus of variations by a number of authors (see the remarks and references
in [9]), but the duality content of Theorem 1 is not immediately comparable with
anything in this literature. The pattern is that of the general duality theorems that
have been developed for convex programs, and the result itself sharpens Theorem
3 in our preceding paper [9]. However, there is an essential difference. The previous
theorems applicable to convex problems of Bolza have hypotheses concerning a
convex subset of the dual of a nonreflexive Banach space : in effect, certain points are

Received by the editors August 31, 1970.
AMS 1970 subject classifications. Primary 49A10, 49B10; Secondary 46E15.
Key words and phrases. Optimal control, problem of Bolza, dual minimization problems,

convex Lagrangian functions, Hamiltonian functions, existence of solutions, necessary con-
ditions, conjugate convex functions.

i1) This work was supported in part by grant AFOSR-71-1994.
Copyright © 1971, American Mathematical Society

1

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2 R. T. ROCKAFELLAR [September

assumed to belong to the weak* closure or Mackey interior of this set. Needless
to say, such conditions can be very hard to verify. The chief contribution of
Theorem 1 is to furnish, despite the underlying nonreflexivity, alternative "finite-
dimensional" conditions stated directly in terms of the given Lagrangian functions,
Hamiltonian functions, boundary functions, and their growth properties. Most of
the other theorems and propositions in this paper are aimed at the elucidation of
these conditions and their consequences.

A precise comparison of the existence content of Theorem 1 with other results
on the existence of optimal arcs is difficult. Different authors adopt different basic
models, and much reformulation is necessary in passing from one context to
another. Among recent papers on the subject, those of Cesari [2] and Olech [5] on
problems of Lagrange are the most relevant to the present work. However, the
problems treated in these papers are subjected to stronger assumptions of con-
tinuity and boundedness, yet less restrictive assumptions of convexity, than the ones
treated here. For the class of problems to which all the theories are immediately
applicable, it appears that our existence results are sharper, although not greatly
different in scope.

The principal distinction is that, in the theorems of Cesari and Olech, bounded-
ness conditions (needed in compactness arguments) are introduced through the
specification of a class of "admissible" arcs over which the given functional is to be
minimized. Such conditions do not appear explicitly in Theorem 1. Instead,
boundedness conditions, to the extent that they are present at all, are incorporated
into the growth conditions on the given functions.

In fact, rather than assuming much boundedness, Theorem 1 in its compactness
assertion provides a new criterion for boundedness. This criterion is applicable even
to problems not satisfying our convexity assumptions, and thus it could lead to
further extensions of existence theory. We do not pursue this below, but the idea is
quite simple: If a general Bolza functional (not necessarily convex) majorizes a
convex Bolza functional satisfying all the conditions in Theorem 1(a), then its level
sets are relatively compact in the weak topology, and in particular bounded.

The approach we use to derive the existence of optimal arcs is entirely different
from the usual approach, where it is shown that a minimizing sequence of arcs has
a subsequence converging in some sense to a solution to the problem. We get
existence essentially by invoking a separation theorem. A major complication is the
fact that the separation theorem is invoked in the dual of a nonreflexive Banach
space. It rnust be shown by a lengthy argument that the separating hyperplane can
actually be represented by an element of the original space, rather than the bidual
space. Of course, this approach to existence theory is not possible for problems
not satisfying our convexity assumptions, although, as mentioned above, results
in the convex case can be applied to more general cases indirectly.

The necessary conditions for optimality that we obtain from Theorem 1 have
already been analyzed in detail in [9] and [10], and we do not develop them further
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1971] CONVEX PROBLEMS OF BOLZA 3

here. These conditions, involving subgradients of convex functions, are known
always to be sufficient [9, Theorem 5], a fact which serves to emphasize the special
nature of convex problems of Bolza and the desirability of a separate treatment of
such problems. Particularly in computational work, it is valuable to have conditions
for optimality that are both necessary and sufficient. Thus, hopefully, the results in
this paper could lead to improved algorithms. The necessary and sufficient con-
ditions, as well as the results on existence and duality, may also be helpful in
applications of optimal control to areas like economic growth theory, where
convexity is often very appropriate but the differentiability assumptions typical of
many physical applications are rather unnatural.

Our conditions for optimality depend on strong convexity assumptions, but again
this does not necessarily mean that they do not have a bearing on "nonconvex"
problems. After all, much of variational theory involves notions of local lineariza-
tion or convexification. One may speculate that a well-developed theory of "con-
vexified problems" could lead to further progress along such lines. This, at least,
is one of the motivations for studying convex problems of Bolza.

The detailed plan of this paper is described at the end of §1, after the exact
statement of the main theorem and its corollaries.

1. Statement of the main theorem. To reduce the length of the exposition, we
assume familiarity with the concepts and definitions in our previous paper on dual
problems of Bolza [9]. However, we repeat for easy reference the description of the
problem and the fundamental assumptions.

Let [0, T] be a fixed real interval (0<T< +oo), and let L\ denote the usual
Banach space of (equivalence classes of) summable functions from [0, T] to Rn (the
latter under the Euclidean norm | • |). The norm on LI is denoted by || • ||p. Let A\
be the Banach space consisting of all absolutely continuous arcs x: [0, T] -*■ Rn
under the norm

IWI = |*(0)|+f |*(0|A.Jo

We consider the problem of minimizing over A\ a functional of the form

(1.1) <¡>ttL(x) = l(x(0), x(T)) + f L(t, x(t), x(t)) dt,
Jo

where / and Lt=L(t, -, •) are (everywhere defined) functions on RnxRn with
values in R1 u { + oo}. This is called a convex problem of Bolza if the following
conditions are satisfied, as we henceforth always assume.

(A) Each of the functions I and L(t, -, •) is convex, lower semicontinuous, and not
identically +co.

(B) L is measurable with respect to the a-field in [0, T] x Rn x Rn generated by
products of Lebesgue sets in [0, T] and Borel sets in Rn x Rn, or equivalently [8], L
is a normal convex integrand in the sense of [7].
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4 R. T. ROCKAFELLAR [September

(C) There exist functions p e L", seLl and aeL\ such that

L(t,x,v) ^ (x,s(t)} + (v,p(t)y-a(t).

(D) There exist functions x e L", v e Li andß e L\ such that L(t, x(t), v(t))^ß(t).
These conditions are discussed in [9], where various examples of convex problems

of Bolza are given. They imply in particular that, for every xeL" and veL\,
L(t, x(t), v{t)) is a measurable function of t which majorizes at least one summable
function of t. In fact, <S>,tl is a well-defined functional from A\ to R1 u { + 00} which
is convex and (weakly and strongly) lower semicontinuous [9, Theorem 1]. Con-
ditions (B), (C), and (D) are trivially satisfied if L is independent of t.

Every arc xeA\ such that <S>lL(x)^ +00 satisfies

(1.2) (x(0),x(t))eCh

(1.3) (x(t), x(t)) e DL(t)   for almost every/,

where C, and DL{t) are the (nonempty, convex) effective domains of/ and Lt:

(1.4) Q = {(c0, cT) eRnxR"\ l(c0, cT) < + co},

(1.5) DL(t) = {(x, v)eRnxRn\ L(t, x, v) < +00}.

Thus minimizing í>¡£/ over A\ is equivalent to minimizing <l>lti, subject to (1.2) and
(1.3).

The dual problem of Bolza consists of minimizing

(1.6) <Db,m(p) = m(p(0),p(T))+ f M{t,p{t),p{t)) dt
Jo

over Al, where m and Mt — M(t, -, •) are defined by

(1.7) m{dQ, dT) = l*{d0, -dT) = sup {<c0, d0}-(,cT, dT>-l(c0, cT)},
Co.CT

(1.8) Mt(p,s) = Lf{s,p) = sup{<x, s} + (v,p}-L(t, x,v)}.

(Here < •, • > denotes the inner product in Rn, and the suprema are taken over all of
Rn x Rn.) An asterisk marks the conjugate of a convex function. The dual functions
m and M again satisfy (A), (B), (C), and (D), and their duals are in turn / and L
[9, Theorem 2]. Conditions (C) and (D) are dual to each other, in the sense that
functions s,p, a have the property in (C) if and only if M(t,p(t), s(t))^a(t),
whereas functions x, v and ß have the property in (D) if and only if

M(t,p,s) ^ <,p,v(t)) + <:s,x(t)y-a(t).

Minimizing OmM over all of Al is equivalent to minimizing OmM subject to the
constraints

(1.9) (p(0),p(T))tCm,
(1.10) (p(t), p(t)) e DM(t)   for almost every t,
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1971] CONVEX PROBLEMS OF BOLZA 5

where

(1.11) Cm = {(d0, dT) eRnxRn\ m(d0, dT) < + oo},

(1.12) DM(t) = {{p, s)eRnxRn\ M(t, p, s) < +oo}.

(The convex sets Cm and DM(t) can be determined from the recession functions of /
and Lt; see §4 and [6, Theorem 13.3].)

As shown in [9], one always has the inequality

(1.13) inf <D,,L(x) ̂  - inf <S>m,M(p),
xeAn peAn

and equality holds if and only if the Bolza functionals <51>L and Om M "behave lower
semicontinuously with respect to certain perturbations." Theorem 1, the existence
and duality result below, gives conditions on /, L, m and M for equality to hold in
(1.13) and for the infima to be attained. These conditions are of two types: stronger
forms of (C) and (D) and conditions on the attainability of endpoint pairs in the
sets C, and Cm.

The stronger forms of (C) and (D) are
(C0) For each p e Rn there exist functions s e L\ and oeLj such that L(t, x, v)

^(X,s(t)> + (v,py-a(t).
(D0) For each x e Rn there exist functions veL\ and ß e L\ such that L(t, x, v(t))

Conditions (C0) and (D0) are dual to each other, like (C) and (D): L has the
property in (C0) if and only if M has the property in (D0), and vice versa. We show
in §2 that these conditions can be expressed in an equivalent, but seemingly weaker,
manner in terms of the Hamiltonian function

(1.14) H(t, x,p) = sup{(v,p}-L(t, x, v) | v e Rn}.

The Hamiltonian form of (C0) corresponds to a basic condition employed in
existence theory by Olech [5].

Both (C0) and (D0) hold if and only if H(t, x, p) is finite and summable in t for
every (x, p) e Rn x Rn (§2, Corollary to Proposition 4). In the case where L is
independent of t, (D0) holds if and only if H nowhere has the value — oo, while
(C0) holds if and only if H nowhere has the value +00 (see Proposition 1 in §2). In
essence, (C0) is a growth condition on the convex functions L(t, x, •) resembling
the classical growth conditions of Nagumo and Tonelli (see [2, p. 403] and the
references given there).

Observe that (D0) precludes the presence of "implicit state constraints" in the
problem of Bolza for / and L, since it implies that for every t e [0, T] and x e Rn
there is at least one admissible choice of v, that is, at least one v e Rn such that
L(t, x, v)< +00. Similarly, (C0) precludes the presence of "implicit state con-
straints" in the problem of Bolza for m and M. More is said about this below.
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6 R. T. ROCKAFELLAR [September

We call an endpoint pair (c0, cT) e RnxRn attainable for L if there is an arc
xe Al such that

(1.15) x{0) = c0,   x(T) = cT   and L(t, x(t), x(t)) dt < +00,

and weakly attainable for L if there is an arc x e Al such that

(1.16) x(0) = c0,   x(T) = cT   and   (x(f), jc(?)) e cl DAJ)   a.e.

Relationships between these concepts are treated in §4 (Corollary 4 of Theorem 3),
but the weaker concept is the one used in stating Theorem 1.

The set of all weakly attainable pairs (c0, cT) for L is denoted by CL. Similarly,
CM denotes the set of all (d0, dT) e Rnx Rn for which there exists an arc/7 e Al such
that

(1.17) p(0) = do,   p(T) = dT   and   (p(t), p(t)) e cl DM(t)   a.e.

Obviously CL and CM are convex. Furthermore, if <I>, ¿^ +00 we have C¡ n CL^= 0,
while if Om-M^ +00 we have CmnCM/0.In Theorem 1 it is required that these
intersections remain nonempty if the sets are replaced by their relative interiors.

We denote by aff C the affine hull of a set C (the smallest affine set containing C,
an affine set being either the empty set or a translate of a subspace). If C is convex,
we denote by ri C the relative interior of C (the interior of C relative to aff C).

Theorem 1. (a) If condition (C0) holds and ri Cm n ri CM # 0, iAen

(1.18) min <D1>L(x) = - inf <Dm,M(/0 > -00.

If in addition aff (Cm U CM) = Rnx Rn, then the convex level sets

(1.19) {«iJIMï)^}.       f»6jP.
are weafc/y compact in Al.

(b) //■ condition (D0) Ao/dj ana" ri C¡ n ri CL ̂  0, í/íe«

(1.20) inf O^ix) = -min<Dm,M(/0 < +co.

7/" in addition aff (C¡ u CL) = Rnx Rn, then the convex level sets

(1.21) íí^íl*»»^},       /*e*\
are weakly compact in A\.

Here we use the convention of writing "min" in place of "inf" to indicate that
an infimum is attained. Thus (a) asserts in particular that an optimal arc exists for
the problem of Bolza for / and L, unless there is no feasible arc at all, which corre-
sponds to the case where Om M is not bounded below. Similarly, (b) asserts that an
optimal arc exists for m and M, unless there is no feasible arc at all, which corre-
sponds to the case where <!>, L is not bounded below.
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1971] CONVEX PROBLEMS OF BOLZA 7

Note that parts (a) and (b) of Theorem 1 imply each other by duality. Therefore
in developing the proof of Theorem 1 we concentrate on (b) and state many results
for this case only, although such results could easily be dualized. However, we
treat the assumptions in (a) in considerable detail, since it may be desirable to use
(a) to deduce the existence of optimal arcs for / and L without explicitly determining
the dual functions m and M. To this end, one can apply to / and L other versions
of the conditions in (a) which we establish below.

In particular, it is shown in §4 (Corollary 1 to Theorem 3) that, in the case where
(C0) is satisfied and <¡>1¡L is not identically +oo on Ai, one has

(1.22) ri Cm n ri CM # 0    and   aff (Cm u CM) = RnxRn

if and only if there is no arc z e A\, other than z = 0, such that <bKL(x + Xz) is a
nonincreasing function of A e R1 for every x e A\. The latter condition can itself
be expressed in terms of the growth properties of the convex functions / and Lt
themselves (Proposition 6) : Oi.lC* + Az) is nonincreasing in A for every x if and only
if z satisfies

/(z(0), z(T)) + jT L(t, z(t), z(t)) dt á 0,

where / and Lt are the recession functions [6] of / and Lt. The condition on OiL
equivalent to (1.22) is obviously satisfied, for example, no matter what the choice
of /, if there exist real numbers p and p., such that there is at least one arc x e A\
with <D;>L(x)^/x, and every such x has \x(t)\£p, O^t^T. Thus (1.18) holds in
particular if (C0) holds and there is a unique optimal arc x for / and L, or the set of
optimal arcs is merely known to be bounded. Example 6 of [9] is also contained as
a special case.

Another major class of problems for which the assumptions in Theorem 1(a)
are satisfied is described in Corollary 3 of Theorem 3 in §4.

Without any condition at all on the sets Cm and CM, a compactness result
generalizing the one in Theorem 1(a) is still obtainable. We prove in §3 that,
whenever (C0) holds, the level sets (1.19) of Oljt are locally compact relative to the
weak topology on A\ and in particular have the property that every bounded
subset is weakly relatively compact. (This is asserted by the dual of Corollary 6 of
Theorem 2.)

Although the existence result in (b) concerns the dual problem of Bolza, rather
than the original problem, it is also of direct interest, because it yields a necessary
and sufficient condition for optimality in the original problem. The following
corollary is immediate from Theorem 5 of [9].

Corollary 1. Assume that (D0) holds and that ri C¡ n ri CL/ 0. Then, in order
that x e A\ be an arc minimizing <£,.£, it is necessary and sufficient that x be an
extremal arc for I and L, or in other words, that x satisfy the generalized Euler-
Lagrange equation (or Hamiltonian equation) and transversality condition in [9, §9].
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8 R. T. ROCKAFELLAR [September

This fact gives some insight, incidentally, into the role of (D0) in excluding
"implicit state constraints". The dual extremal arc p in the necessary condition
referred to in Corollary 1 belongs to A\ (it minimizes <I>m,M). However, if state
constraints were present, one would expect from well-known results in control
theory and the calculus of variations that p would be discontinuous, or at least
could not be guaranteed to be absolutely continuous. The methods in this paper
could in fact be used to attack this more general situation, but A\ would have to be
replaced by a larger space (allowing for "idealized solutions" to a problem of
Bolza), and the corresponding duality theory would not be as symmetric. Actually,
there is another method whereby necessary and sufficient conditions for optimality in
many problems with state constraints can be derived directly from Theorem 1 and
general theorems about subgradients. This is treated in [12]. Thus, in the long run,
condition (D0) does not really impose a serious restriction on the applicability of
the present theory, but acts more to normalize, for technical convenience, the class
of problems under consideration at a particular stage.

Another corollary of Theorem 1 may be obtained by specializing the problems
of Bolza to problems of Lagrange. If we take / to be the indicator of a point pair
(c0, cT) e RnxRn (that is, the function which vanishes at (c0, cT) and has the value
+ 00 everywhere else), then minimizing <ï>,>r, over A\ is equivalent to minimizing
the integral

(1.23) f L(t, x(t), x(t)) dt

over all arcs x with the fixed endpoints c0 and cT. In this case, the dual problem
consists of minimizing

(1.24) <c0> p(0)> - <cr, p(T)} + £ M(t, p(t), p(t)) dt.

Moreover Cm = RnxRn in the dual problem, so that the intersection condition in
(a) is satisfied if and only if CM # 0.

Let FL and FM be the extended-real-valued functions on Rn x Rn defined by

(1.25) FLic0, cT) = inf (F Lit, x(/), i(0) dt  x e A*n, x(0) = c0, xiT) = cT\,

(1.26)    FMid0, dT)= inf (J* Mit,pit),pit)) dt p e Al, p(0) = d0, piT) = dT

It is obvious from the convexity of Lit, -, ■) and Mit, -, •) that FL and FM are
convex. The preceding observations (and the dual observations) yield modified
conjugacy relations between FL and FM.

Corollary 2. (a) Suppose that (C0) holds, and that CM ̂  0. Then the convex
function FL is lower semicontinuous and nowhere — oo, and for every choice of
endpoints c0 and cT, the infimum defining FLic0, cT) is attained. Moreover, one has

(1.27)    FLic0, cT) = FJHi-Co, cT) =  sup {<cr, dT}-(c0, d0}-FMid0, dT)}.
d,Q,d.T
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1971] CONVEX PROBLEMS OF BOLZA 9

(b) Suppose that (D0) holds, and that CL ̂  0. Then the convex function FM is
lower semicontinuous and nowhere — co, and for every choice of endpoints d0 and dT,
the infimum defining FM(d0, dT) is attained. Moreover, one has

( 1.28)    FM{d0, dT) = F*( - 4, dT) = sup {<cr, dT> - <c0, </0> - FL(c0, cT)}.

The asserted lower semicontinuity properties are immediate from (1.27) and
(1.28).

The condition CM# 0 in part (a) of Corollary 2 is equivalent to the following,
unless CL= 0, in which event FL would be identically +co (see §4, Corollary 2 to
Theorem 3): there is no arc z, other than z = 0, with the property that z(0) = 0 = z(r)
and the integral

(1.29) f L(t, x(t) + Xz(t), x(t) + Az(i)) dt

is nonincreasing as a function of A e R1 for every x e Al. Again, the latter condition
can be expressed in terms of recession functions.

Corollary 2 leads to a refinement of Theorem 1 in certain cases where the boun-
dary functions / and m are polyhedral (i.e. have'epigraphs which are polyhedral
convex sets; see [6, §19]). This is seen from the fact that, in terms of the function
FL, the problem of Bolza for / and L can be regarded as the finite-dimensional
problem of minimizing

(1.30) l(c0,cT) + FL(c0,cT)

over Rn x Rn. Fenchel's Duality Theorem [6, Theorem 31.1] can be applied to this
type of problem, the dual problem being equivalent, as one would expect, to the
problem of minimizing

(1.31) m(d0,dT) + FM(d0,dT)

over RnxR'1 if (1.28) holds. From this theorem, one obtains the fact

(1.32) inf(l+FL)= -min (m + FM),

if / is polyhedral and C¡ meets the relative interior of

(1.33) {(c0, cT) | FL(c0, cT) < +co}.

It is proved below in §4 (Corollary 4 of Theorem 3), however, that the convex set
(1.33), which consists precisely of the attainable endpoint pairs for L, has the same
relative interior as CL. Thus:

Corollary 3. (a) If(C0) holds, I is polyhedral, and Cm n ri CM# 0, then

(1.34) min */>t(x) = - inf <Dm,M(/>).
xeA\ pe/lj

(b) If (D0) holds, I is polyhedral, and C, n ri CL+ 0, then

(1.35) inf a>,,L(x) = -min <bm,M{p).
xeAl v<=A\
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10 R. T. ROCKAFELLAR [September

Note that here there is no compactness assertion of the kind in Theorem 1.
Of course, Corollary 1 is still valid under the hypothesis of Corollary 3(b), when /
is polyhedral, since it follows directly from equation (1.35) and Theorem 5 of [9].
Applied to problems of Lagrange, Corollary 1 asserts that, under the hypothesis
of Corollary 2(b), the arcs x for which the infima in the definition of FL are attained
are precisely the extremals of L (that is, the arcs which satisfy the generalized Euler-
Lagrange equation for L; see [9, §9]).

The plan of the rest of the paper is as follows. §2 is of a preliminary nature; it is
devoted to a discussion of equivalent and stronger forms of conditions (C0) and
(D0). The proof of Theorem 1 really begins in §3 with the establishment of Theorem
2 and its corollaries, concerning "perturbations" of the two problems of Bolza.
These results are the crucial consequences of conditions (C0) and (D0). They include
(embodied in Corollaries 5 and 6) an existence and duality theorem with the same
conclusions as Theorem 1, but with hypotheses that are less direct. Theorem 3 in
§4 translates these hypotheses into the ones in Theorem 1 concerning the convex
sets C¡, CL, Cm and CM. The proof of Theorem 1 is thereby effected.

The last two sections deal with supplementary results. The meaning in a convex
problem of Bolza of the optimal arcs for the dual problem is described in §5 in
terms of the behavior of the primal problem under "perturbations." In §6, some
conclusions are drawn about problems of Bolza in which one minimizes, not over
Al, but over A\ (the space of absolutely continuous arcs x: [0, T] -*■ Rn with
derivative x in Un, l<r^co). In particular, growth conditions are given on
L(t, x, v) which imply that the optimal arcs in the problem of minimizing <&lL over
Al actually belong to A\ for a specified r> 1.

2. Hamiltonian functions and conditions (C0) and (D0). We now treat conditions
(C0) and (D0) in greater detail, with the aim of deriving equivalent or stronger
versions of these conditions which may be easier to verify in some cases.

It is convenient to work with the Hamiltonian function H on [0, T]xRnxRn
given by (1.14). Formula (1.14) says that H{t, x, •) is conjugate to L(t, x, ■), and
therefore L(t, x, •) is in turn conjugate to H(t, x, •):

(2.1) L(t, x, v) = sup {<», />> - H(t, x,p)\pe Rn}.

It is known that H(t, x, p) is convex in p, concave in x and measurable in t. In fact,
H(t, x(t), p(t)) is measurable in t whenever x(t) and p(t) are measurable in t
[10, Proposition 1].

From the definitions of M and H, we have

(2.2) M(t, p, s) = sup {<x, s > + H(t, x,p)\xe Rn).

Thus M(t,p, •) is the conjugate of the convex function —H(t, -,p), so that the
conjugate of M(t,p, ■) is the so-called closure of —H(t, -,p) as a function of
x [6, §7 and §12]. Therefore, if we denote by H the Hamiltonian function which
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1971] CONVEX PROBLEMS OF BOLZA 11

corresponds to M in the same way that H corresponds to L, we have

(2.3) Hit, p, x) = -cl, Hit, x, p),

(2.4) Hit, x,p)= - c\p Hit, p, x)

(cf. [6, §33]). If (D0) holds, then in particular //(?, x, p)> — oo for all (r, x, p), and
the closure operations in (2.3) and (2.4) can be omitted. The closure operations can
also be omitted if (C0) holds, in which event Hit, x,p)<oo for all (i, x, p).

We consider first the case where L is independent of /, because this case is much
simpler, and it motivates the more general results which follow.

A convex function fon Rn is said to be cofinite iff is the conjugate of a convex
function which is everywhere finite on Rn. This is true if and only if f is lower
semicontinuous and proper (i.e. nowhere -oo and not identically +oo), and/
satisfies a growth condition of the form

f(v) ^ i?(|t>|)   for all i; e Ä",

where r¡ is a nondecreasing function from [0, +co) to (-co, +co] such that
limA_+00 ij(A)/A= +00. (This may be seen from [6, Corollary 13.3.1].)

Proposition 1. Suppose that L is independent of t.
(a) In order that (C0) hold, it is necessary and sufficient that Lix, ■) be cofinite for

every x e Rn such that Lix, • ) is not identically + oo, or equivalently

(2.5) Hix, p) < + oo   for all (jc, p)eRnx Rn.

(b) In order that (D0) hold, it is necessary and sufficient that Lix, ■) not be iden-
tically + oo for any x e Rn, or equivalently

(2.6) Hix, p) > - oo   for all ix, p)eRnx Rn.

Proof. Assertion (b) is an immediate consequence of (D0) and the fact that the
convex functions Lix, ■) and Hix, ■) are conjugate to each other. Assertion (a) is
obtained by applying (a) to M and H and using (2.4). The inequality (2.5) says, in
view of the convexity of Hix, ■), that Hix, ■) is for each x either finite everywhere
or identically — oo.

Corollary. If L is independent of t, the following statements are equivalent.
(a) (C0) and (D0) both hold.
(b) The convex function Lix, ■) is cofinite for every x e Rn.
(c) The convex function Mip, •) is cofinite for every p e Rn.
id) H is finite on Rn x Rn.

We now turn to the general case.

Proposition 2. (a) Let X be any open convex subset of Rn sufficiently large that
condition (D) can be satisfied with a function x whose range lies in a compact subset
of X ie.g. X=Rn). Then (C0) holds if and only if for each p e Rn there exists a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 R. T. ROCKAFELLAR [September

real-valued function yp on [0, T]x X such that yp(t, x) is summable in t e [0, T],
concave in x e X, and

(2.7) H(t, x, p) Ú yP(t, x),       V(f, x) e [0, T] x X,

or equivalently

(2.8) Lit, x, v) ^ <v, py-yp{t, x),       V(i, x, v) e [0, T] xXxRn.

(b) Let P be any open convex subset of Rn sufficiently large that condition (C) can
be satisfied with a function p whose range lies in a compact subset of P {e.g. P = Rn).
Then (D0) holds if and only if for each x e Rn there exists a real-valued function yx
on [0, T] x P such that yx(t, p) is summable in t e [0, T], convex in p eP, and

(2.9) H(t, x, p) ^ yx{t, p),       V(i, p) e [0, T] x P,

or equivalently

(2.10) M(t,p,s) ä <x,sy + yx(t,p),       V(t,p,s)e[0,T]xPxR\

Proof. It suffices by duality to prove (b), since (a) can be obtained by applying
(b) to the Hamiltonian H corresponding to M and using (2.3). If (D0) holds, then
for each x we may actually choose yx to be of the form

Yx{t,P) = <v(t),p)-ß(t),       ve LI,   ßeL\.

Thus (D0) is at least as strong as the condition given in (b).
Conversely, suppose that the condition given in (b) is satisfied. Fix any x e Rn,

and let yx be a function on [0, T] with the properties described. The inequality
(2.9) implies in particular that the convex function H(t, x, •) nowhere has the
value -co. Since H{t, x, •) and L(t, x, •) are convex functions conjugate to each
other, and L(t, x, •) likewise does not take on -co, it follows that neither of these
functions is identically + co.

Let W be a compact subset of P containing the range of p, where p is a function
in L™ such that (C) is satisfied for certain functions seLl and â e L\. Observe that

(2.11) H(t, x, p{t)) S äit) - (x, sit)>,       W e [0, T].

Let £ > 0 be sufficiently small that W+ IeB^P, where B is the (closed) unit Euclidean
ball in Rn. Let U be the convex hull of the set p0— W—eB, where p0 is a fixed but
arbitrary element of W. Then U is a compact, convex neighborhood of 0 such that

(2.12) W <= p-u <= P   whenever \p-p0\ ^ e.

Define hx on [0, T] x Rn by

(2.13) hjjt, p) = min Hit, x,p-u) ^ Hit, x, p).

Here hx{t, ■) is for each / a lower semicontinuous, convex function from Rn to
R1 u { + oo}, not identically +co, because Hit, x, •) is such a function and U is a
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1971] CONVEX PROBLEMS OF BOLZA 13

compact convex set; in fact hxit, ■) is obtained by infimal convolution of Hit, x, ■)
and the indicator 8a of U [6, p. 77]. Denoting the conjugate of hxit, ■) by h*it, •),
we have

(2.14) h*it, v) = Lit, x, v) + 8*iv) ^ Lit, x, v),

where 8£ is the (finite) support function of U. Therefore h* is a normal convex
integrand on [0, T] x Rn by (B) and [8, Corollaries 4.2 and 4.5], and consequently
hx itself is a normal convex integrand, since normality is preserved under duality
[7,1].

To establish (D0), we need only show, in view of (2.14), that A*(r, vit)) is sum-
mable in t for some v e LI, and for this it suffices by Theorem 2 of [7, II] to show
that hjjt, p) is summable in t for each pe Rn such that \p— p0\ ^ e.

From (2.12) and the choice of W, we have

hxit, p) ^ inf Hit, x, w) ^ Hit, x,pit)),
»eF

if IP-Pol^. Thus, by (2.11),

(2.15) hxit,p) ^ ait)   whenever \p-p0\ ^ e,

where a is the summable function given by

«(0 = â(0-<^,j(0>-
On the other hand, if \p— p0\ Sswe have

(2.16) hxit,p) £ inf yxit,p-u),
ueu

where the infimum is well defined because/)— U^P by (2.12). Let {plt.. .,pk} be a
finite subset of P whose convex hull includes p—U. (Such a subset exists, because
p— U is compact and P is open; see [6, Theorem 20.4].) Let

(80(0 = max {yAUpJ,.. .,yx(t,pk), 0} ^ 0.

Since each of the functions yx( •, pk) is summable by the assumptions on yx, the
function j80 is also summable. Furthermore, the convexity of yx{t, ■ ) implies that
yxit,p')Sj80(0 for everyp' in the convex hull of{pu..., pk), and thus in particular
for every p' ep—U.

Now choose p > 0 sufficiently small that pB^ U<= p " 1B. If u is an arbitrary element
of U, m/0, we have

p = il-X)p' + Xip-u),       0 < A < 1,   p'ep-U,
where

p' =p + p\u\~1u,       A = pH\u\+p).
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The convexity of yx{t, ■ ) then implies that

Yxit,p) è {Í-X)yx(t,p') + Xyxit,p-u),

where

(l-A)y*(/,/)^(l-A)ft,(i)^|So(0,
and consequently

yxit,p-u) ^ \-1[yxit,p)-ß0{t)] ^ lpl{p-1 + P)]-1[yxit,p)-ß0{t)].

Denote the last expression by /?(/). Then ß is a summable function such that

yxit,p-u)^ßit),       VueU,

and it follows from (2.16) that hxit,p)^ßit). Since/) was any element of Rn satis-
fying \p—p0\^s, and (2.15) holds, we may conclude as desired that hx{t,p) is
summable in t whenever \p— p0\ ^e.

Corollary 1. Let X be as in Proposition 2(a). Condition (C0) is satisfied if there
exists an extended-real-valued function L° on [0, T] x X x Rn, L°^L, such that
L°it, x, v) is convex in (x, v) for every t, and the function H° on [0, T] x X x Rn
obtained from L° by formula (1.14) is finite and summable in t e [0, T] for every
(x,p)eXxRn.

Proof. Since L°^L on [0, T]x XxRn, we have H°^H on [0, T] x XxR".
Moreover, the convexity of L° in (x, v) implies that H°{t, x, p) is concave in x, as
well as convex in p [6, Theorem 33.1]. Thus, the condition in Proposition 2(a) is
satisfied with y „it, x) = H°it, x, p) on [0, T]x X for each p.

Corollary 2. Let X be as in Proposition 2(a). Condition (C0) is satisfied in
particular if

(2 17) L(/' *' V) - /(í' x) + -n(\v-Ait)x-cit)\) + (v, dit)}
for every it, x, v) e[0,T]xXxRn,

where the components ofcit) and the matrix AiT) are summable in t, the components
of dit) are bounded and measurable in t, f is a real-valued function on [0, T] x X
such that fit, x) is summable in t and convex in x, and r¡ is a nondecreasing function
from [0, +co) to (-co, +oo] such that

(2.18) lim i?(A)/A = -fco.

iHere any of the functions A, c, d and f could vanish identically.)

Proof. Replacing r¡ if necessary by its convex hull, which has the same proper-
ties, we can assume without loss of generality that r¡ is convex. Denote the expression
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on the right in (2.17) by L°(/, x, v). Then L° is convex in ix, v), and the correspond-
ing Hamiltonian H° on [0, T] x Xx Rn is given by

H°it, x, p) = sup «r, p>-L°it, x, v)}
t)SB"

=   -At, X) + SUp {<V,p- dit)} -r¡i\v-Ait)x-CÍt)\)}
(2.19) = -fit, x) +sup {<.u + Ait)x +cit),p-dit))-vi\u\)}

ueR"

= -fit,x) + <Ait)x + cit),p-dit))+v + i\p-dit)\)

(cf. [6, Theorem 15.3]), where

V + in) = sup {A/i-77(A)},       p.^0.
A60

The growth condition on 7? implies that 7?+ is finite (and nondecreasing). Therefore
H°it, x, p) is finite and summable in t for every {x, p)e Xx Rn, and we may apply
Corollary 1.

Remark. Trivially, the condition in Corollary 2 is satisfied if

Lit, x, v) ä LHf, x, v) + T]i\v-Ait)x-cit)\),

where 77, Ait) and c(i) have the stated properties and L1 satisfies (C).

Proposition 3. Condition (D0) implies the following iseemingly much stronger)
property : given any bounded set X<^ Rn, there exist nxn matrices B{t), vectors
bit) e Rn and scalars ßit), all summable with respect to t, such that whenever x is a
measurable function from [0, T] to X, one has

(2.20) Lit, xit), vit)) ^ ßit)   for vit) = A(/)*(í) + ¿>(0 isummable).

Proof. Let S be an «-dimensional simplex in R" containing X, and let
x0, xu ..., xn be the vertices of S. Condition (D0) enables us to find functions
vt eLl and ft e L\ (/=0,..., n) such that Lit, x¡, í>¡(/))^A(0- For each te[0, T],
let Bit) and bit) be the unique nxn matrix and vector in Rn such that

(2.21) v¡it) = Bit)Xi + bit),       i = 0,l,...,n,

and let
ßit) =   max  ßtit).

i = 0,...,n

Then Bit), bit) and ßit) are summable in t. Suppose now that x is any measurable
function from [0, T] to X, and let vit) = Bit)xit) + bit). Then v eLj. Furthermore,
since xit) e S there exist unique scalars A¡(í)a0 such that

A0(0*o + • • • + An(/)xn = *G0,       A0(0 + • • • + An(i) = 1.
Relation (2.21) implies that

A0('K(0+ • • • +An(iK(0 = vit).
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Thus by the convexity of Lit, -, •) we have

Lit, xit), vit)) ï 2 Ai(0¿(í, *•(*), »i(0) ̂  ß(t),
i = 0

as claimed.
Remark. Proposition 3, or rather its proof, shows that (D0) is also equivalent to

the following, seemingly weaker property : there exists a function xeL™ such that
for every y e Rn one can find functions veL\ and ß eL\ with L(i, *(?)+>>, vit))
á/3(r). (The latter property implies the property in Proposition 3 by an easy ex-
tension of the same argument.)

The next proposition gives other strong forms of (C0) and (D0).

Proposition 4. (a) Condition (C0) holds if and only if for each bounded set
P^Rn there is a function L° from [0, T]xRnx Rn to R1 u { + 00} satisfying (A),
(B), (C) and (D), such that L°^L, and the function H° obtained from L° by formula
(1.14) is finite and summable in t e [0, T]for every (x, p) e Rnx P.

(b) Condition (D0) holds if and only if for each bounded set Jc Rn there is a
function L° from [0, T]xRnx Rn to R1 u { + 00} satisfying (A), (B), (C) and (D),
such that L°^L, and the function H° obtained from L° by formula (1.14) is finite and
summable in t e [0, T] for every ix, p) e Xx Rn.

Proof. It suffices by duality to prove (b). Suppose that the stated condition is
satisfied; we shall show that (D0) holds. Given any x e Rn, let X={x} and select a
function L° of the type described. The function fit,p) = H°it, x,p) is then finite
and summable in / ë [0, T], as well as convex in p e Rn. Therefore by [7, II,
Theorem 2] there exists a function veLl such that/*(/, vit)) is summable in t,
where/*(i, •) is for each t the conjugate of fit, •). We have

Pit, vit)) = L°it, x, vit)) ä Lit, x, vit)),

so that (D0) is obtained by setting ßit)=f*it, vit)).
Conversely, suppose that (D0) holds. In proving that this implies the condition

in (b), we can limit attention to the case where X is a nonempty, compact, convex
set. For such a set Iwe may take elements Bit), bit) and ßit) with the properties in
Proposition 3 and define

L°it, x, v) = ßit)   if x e X and v = Bit)x + bit),
= +00  otherwise.

Then L° satisfies (A), (C) and (D) trivially. It also satisfies (B), as may be seen by a
direct application of the definition of "normal convex integrand." (If Z is any
countable dense subset of X, the countable collection of functions from [0, T] to
Rn x Rn of the form

t -> ixit), vit)) = (z, Bit)z + bit)),       zeZ,
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meets the requirements of the definition.) Furthermore, we have L°<±L by (2.20).
For any xelwe have

H°it,x,p) = CB(0x + ¿>(0,/>>-|3(í),
so that H°{t, x, p) is summable in t. Thus L° has the properties specified in the
condition in (b).

Corollary. Conditions (C0) and (D0) both hold if and only if Hit, x, p) is a
finite, summable function of te [0, T] for every (x, p) e Rnx Rn.

Remark. If H is any real-valued function on [0, T]xRnx Rn such that Hit, x, p)
is summable in t, concave in x, and convex in p, then H is the Hamiltonian corre-
sponding to the function L given by (2.1) [6, Theorem 33.1]. Then L satisfies not
only (A) and (B), but also (C0) and (D0) by the preceding corollary. (The fact that
L satisfies (B) can be seen from the representation

(2.22) Lit, x, v) =   sup   {(v,pky-Hit, x,pk)},
lSk<oo

where {pu />2, . . .} is a countable, dense subset of Rn. For each index k, the function

Lkit, x, v) = (v,pky-Hit, x,pk)

is finite, convex in (x, v) and measurable in t, and consequently Lk is a normal
convex integrand [7, I, Lemma 2]. Since L is the pointwise supremum of the
functions Lk by (2.22), L is itself a normal convex integrand [8, Corollary 4.1].)

3. Perturbations of the Bolza functionals. The duality between the problem of
minimizing ®¡?t and the problem of minimizing OffliM has been explained in [9, §8]
in terms of certain perturbations of 4>¡i£ and <J>m>M. A more detailed study of such
perturbations yields, not only Theorem 1, but also, as shown in §5, a dual inter-
pretation of optimal arcs for either problem in terms of "Lagrange multipliers"
for the other.

As in [9], we identify the dual Al* of the Banach space AI with Rn © L™ under
the pairing

(3.1) <{a,y),p> = <a,pi0)} + j* <y{t),pit)> dt,

the norm being

(3.2) \\\{a,y)\\\ = max{\a\,\\yU.

For each ae Rn and yeL™ we denote by <pltL(a, y) the infimum of

(3.3) /(x(0) + a, xiT)) + j* Lit, x(t)+y{t), ¿(0) dt

over all arcs x e A\. The extended-real-valued function <p1L on Al* is well defined
and convex, and the function <p*L on Al conjugate to <p,L is Q>m¡M [9, Theorem 3].
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Similarly, for each b e Rn and qeL% we denote by <pm¡M(b, q) the infimum of

(3.4) mipiO) + b,pit))+  r Mit,pit)+qit),pit)) dt

over all arcs p e A\, and then <pm¡M is a well-defined convex functional on A\*
whose conjugate on A\ is 0lt. One has

(3.5) inf *l>t(jf) = 9lil(0, 0),

(3.6) inf d>m,M(p) = <pm,M(0, 0).
VZA\

Furthermore, unless <1>¡>L and OmM are both identically +oo on A\ and the origin
of Al* does not belong to the weak* closure of either dorn <pl¡L or dorn <pm,M, one has

(3.7) - inf Om,M(/7) = weak*   lim inf  <phAa, >>),
xe/lj (a,y)-(0,0)

(3.8) — inf O, £(x) = weak* lim inf <pm M(£, q).
XeA\       ' (b.a)-.(0, 0)

It is clear from these facts that the equality of the extrema in Theorem 1 can be
established by showing that either <pUL or <pm>M is weak* lower semicontinuous at
the origin of A]* under the stated conditions. Our pattern of proof is as follows.
Assuming condition (D0), we show in this section that the weak* topology on A\*
can be replaced by the strong topology in (3.7), and that there exist points of the
convex set

(3.9) dorn <pltL = {ia, y) e Ai* \ <pKLia, y) < +00}

at which <p,iL is not only strongly lower semicontinuous, but actually strongly
continuous relative to äff (dorn <p¡>£,). In §4, we show that the origin is such a point
if and only if ri C, n ri CL # 0.

While the equality of the extrema in Theorem 1 may be deduced from special
lower semicontinuity properties of <pltL and <pm>M, the attainment of these extrema
may be deduced from differentiability properties. The study of such differentiability
properties also leads to a dual interpretation of optimal arcs in convex problems of
Bolza, as we explain in §5.

Recall that a subgradient of <pliL at a point (¿r, y) in A\* is an element p of the
space A™* such that

(3.10) VlwLia, y) ^ 9u(ä, y) + <(a, y) - (a, y), p),       V(a, y) e A\*.

Here < •, • > denotes the canonical pairing between A$* and A I** ; ifp belongs to A\,
regarded as a subspace of A)**, this pairing is expressed by (3.1). The set of all
subgradients of <p,iL at (â, y) is denoted by d<pi,L(à, y). This is a closed convex
subset of Ai**.

lf<PifLiä, y)= +00, the set 3<p¡,i(a, y) is empty, whereas if <p¡,£(<2, y)= — 00, it is all
of Al**. If <pltLiä, y) is finite, the elements of 8c>¡,t(a, y) can be described in terms

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1971] CONVEX PROBLEMS OF BOLZA 19

of directional derivatives of <p,iL (see §5). They correspond to the "nonvertical"
closed supporting hyperplanes to the epigraph of <pi>L, which is the set

(3.11) epi VlwL = {{a, y,H.)eAl*@R1\n^ Vi.¿fl, ?)}>

at the point (a, y, fi), where fi = <PifLiâ, y). Thus the existence of subgradients can be
deduced from standard theorems about the existence of supporting hyperplanes.

The significance of subgradients for problems of Bolza is apparent from the
following consequence of Theorem 3 of [9].

Proposition 5. An arc p e Al belongs to d<pLA[0, QD if and only if it satisfies

(3.12) <&m.Mip) = inf 4>m,M = -inf «u.

Dually, an arc x e Al belongs to cfymtM(0, 0) if and only if it satisfies

(3.13) <Di>L(x) = inf (D,,L = -inf <Dm,M.
A1 A1

Proof. The definition of "subgradient" implies that p belongs to 8<p¡L{0, 0) if
and only if

-<Pi.l(°> °) ä sup {<(a, y), py-<p,,L{a, y) | {a, y) e Al*}

= <P*ÁP)  =   Qm.MÍP)-
This inequality is equivalent to (3.12), in view of (1.13) and (3.5). The dual assertion
is proved similarly.

In the study of continuity and the existence of subgradients, the following known
facts (which hold for any convex function) are basic. There exist points of dorn <p,,L
at which <p¡¡L is (strongly) continuous relative to aff (dorn <pLL) if and only if epi <pi-t
has a nonempty relative interior. If the latter is true, then the points of dorn <p1>L at
which <phL is continuous relative to aff (dorn <p(L) are precisely the points of
ri (dorn <p¡,¿), which is the projection of ri (epi <p,L) on Al*. Furthermore, then <p,jt
is subdifferentiable at every point (a, y) of ri (dorn <piL), i.e. the set d<pltAa, y) is
nonempty in Al**. These facts are usually stated in terms of continuity relative to
the whole space, but the generalization to the case of continuity relative to
aff (dorn <plL) is obvious. (In proving the subdifferentiability assertion, one uses
the Hahn-Banach Theorem to extend a continuous affine function on aff (dorn <p,L)
majorized by <plti to a continuous affine function on all of Al*.)

The usual limitation of the facts just cited, if they can be applied at all, is that
they lead to conclusions involving Al**, rather than Al. In particular, they only
furnish the existence of subgradients of <pl¡L in Al**, whereas, if Proposition 5 is
to be of use, one needs the existence of subgradients in Al. The chief virtue of
condition (D0) is that it enables one to surmount this difficulty.

Theorem 2. Assume that (D0) holds. Then the conjugate convex function <p*L
= ®m*M on Al** is just ^m.M on Al, in the sense that it agrees with <I>m_M on Al ithe
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latter space regarded canonically as a subspace ofAl**), whereas it has the value + oo
everywhere outside of A\.

Furthermore, then äff (dorn <pl¡L) is closed and of finite codimension in A\*,
ri (dorn <pJ)L) is nonempty, and <pi>L is continuous relative to aff(dom ç>!iL) at every
point of ri (dorn <p¡,L).

Proof. We deduce the assertion about <p*L from a more fundamental result in
[7, II] for conjugates of integral functionals on the space L". Only the values
°f <P*l outside of A\ need to be dealt with, since we already know that Om M is the
function on A\ conjugate to <pKL with respect to the pairing between A\ and A$*.
Each element of A\**\Al corresponds to a linear functional on A]* of the form

ia,y)^(a,b) + siy),       b e R\   seLS*\L\.

Thus our task is to prove under (D0) that, for any b e Rn and s e L™*\Ll, one has

(3.14) sup{<a,b) + siy)-<phLia,y)\aeR\y6LZ} = +co.

According to the definition of <pl¡L the supremum (3.14) is the same as the supremum
of

<«, b}+siy)-lixiO) + a, xiT))-jTLit, x(/)+.K0, *(0) dt

over all a e Rn, yeL™ and x e A\, and hence it equals

sup {<co-x(0), b}+siu-x)-lic0, xiT))
(3.15) ^ r ,-     Lit, uit), xit)) dt \ c0 e Rn, u e L™, x e Al V.

The continuous linear functional x -> <x(0), b) +i(x) on A\ can also be represented
in the form

x^<xiT),dy-^\xit),rit)ydt

for certain elements de Rn and r eL™ uniquely determined by b and s. Then (3.15)
can be re-expressed as

sup |<c0, ¿>>-<x(7), d)+siu)+ f  a(0, K0> *

-/(c0, x(7))-f  L(i, h(í), jKO) * I co e Ä", u e Lg,x ë ¿A

= sup |<c0, ¿>>-<cT, </>+.$(«) +j   (vit), rit)) dt

- /(co, CT) - f  ¿(í, «M, vit)) dt | (c0, cr) eR»xR\ueL%,ve iA

= m(b, d)+ sup ¡siu)+ sup { |   (vit), rit)) dt- \   L(í, uit), vit)) dt\\.
ue¿£    L »e¿¿    Uo Jo J J
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We claim that the inner supremum in the latter expression is

(3.16) ^Hit,uit),rit))dt,

so that our task reduces to showing that

(3.17) sup ís{u) + f  H{t, uit), rit)) dt \ u eL%\ = +co.

To see that the inner supremum equals (3.16), consider (for any fixed u eL") the
function

(3.18) fit, v) = L{t, u{t), v),       it, v) e [0, T] x R\

Condition (D0) implies in particular that/(i, •) is not identically +oo on Rn for
any t e [0, T], and it follows then from [8, Corollary 4.5] and conditions (A) and
(B) on L that/is a normal convex integrand on [0, T] x Rn in the sense of [7], [8].
The normal convex integrand conjugate to/is

f*it,p) = Hit, uit), p)
by (1.14). There exist by Proposition 3 functions veLl and ßeL\ such that
Lit, uit), vit))-¿ßit). On the other hand, since (C) holds there exist functions
p e Ln, se LI and à e L\ such that

Lit, uit), v) ̂  <w(í),í(0> + <^p(0>-«(0-
We then have

Hit, uit), p) ^ <vit),P>-ß(t)
and

Hit, uit), pit)) ^ «(f) - <«(*), *(0>

by (1.14). Thus fit, vit)) and /*(r, pit)) are summable in t. This implies by [7,
I, Theorem 2] that the functional

'/(»)=      f{t,vit))dt=      Lit, uit), vit)) dt, ve LI,
Jo Jo

If-(P) = ['pit, PÍO) dt =  f Hit, uit), p{t)) dt,       peL™,
Jo Jo

are conjugate to each other, and hence in particular

/r(r) = sup IJJ (vit), r(í)> dt-Ifiv) \veLlj
as claimed.

We show now by a similar argument that (3.17) holds for any reL™, assuming
of course that s e L„*\Ll. As above, let p, s, and â be functions satisfying (C), so
that

(3.19) Hit, x, pit)) ^ dit) - <x, s{t)y,       V(i, x) 6 [0, T] x R\
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Let p be a real number larger than \\p\\œ and ||r ||«,, and define g on [0, T] x Rn by

(3.20) git, x) = -min {Hit, x,p) | \p\ ^ P} ̂  -Hit, x, r(t)).

(The minimum is attained, because Hit, x, p) is lower semicontinuous in p by
(1.14).) The concavity of Hit, x, p) in x implies that g{t, x) is convex in x. Moreover,
git, x) is measurable in t by [8, Corollary 4.3], because H{-,x, ■) is a normal
convex integrand on [0, T] x Rn for any x e Rn (take w(i) = x in the above argument
concerning (3.18)). In fact git, x) is summable in t for each x: we have

git,x) ^ -Hit,x,p{t)) ^ <x,J(0>-«(0

by (3.20) and (3.19), while if v eLl and ß eL\ are functions such that Lit, x, vit))
^ßit) (and such functions exist by (D0)) we have

Hit,x,p)z <vit),Py-ß{t),

so that

git,x) ^ -ini{(vit),Py-ßit) | \p\ á p] = P\vit)\+ßit).

Inasmuch as git, x) is convex in x and summable in /, we may conclude from
[7, II, Theorem 2] that the convex functional

/*(") = fQg{t,uit))dt
is well defined on L" and that, since s eL™*\Ll, we have

sup ji(w)- f git, uit))dt\= I*is) = +CO.
ueL^   K Jo J

This yields the desired relation (3.17), because (3.20) implies

-git, uit)) g Hit, uit), rit)).

The second paragraph of Theorem 2 still must be verified. If a convex set C in
some locally convex space has the property that aff C is closed and of finite co-
dimension, and ri C# 0, then every convex set C containing C has the same
property. Thus it suffices (by the remarks preceding the theorem) to show that
epi <pI>L contains a convex set C such that aff C is closed and of finite codimension,
and ri C^ 0.

Let X be any bounded subset of Rn with a nonempty interior, and let Bit), bit),
and ßit) be as in Proposition 3. For each y e L„ let xy denote the unique arc in Al
satisfying the differential equation

(3.21) x^i) = B{t)[xyit)+yit)],       xviT) = 0,

and let

(3.22) N - {{a, y)eAl*\a= -x„(0)}.
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Then N is a closed subspace of A\* of finite codimension. Choose any x e int X
and any (c0, cT) such that /(c0, cT) < + co, and let (a0, y°) e A}* and x° e A\ be the
unique elements such that

x°iO) + a° = c0,       x°iT) = cT,
(3.23) x°it)+y°it) = x,        x°it) = Bit)x + bit).

It is possible to choose an s > 0 such that

[xyit)+yit) + x]eX

for almost every te[0,T], whenever ¡jH^e. Then for any ia,y)eN with
Il y || oo ̂ £ we have

lix°iO) + xyiO) + a° + a,x°iT) + xyiT)) = /(c0, cT),

Lit, x°it) + xyit)+y°it)+yit), x°it) + xyit))

= Lit,xyit)+yit) + x,Bit)[xyit)+yit) + x] + bit)) ^ ßit),
so that by definition
(3.24) <pl¡Lia° + a,y°+y)ú l(c0, cT) + £" jS(i) Ä.

Denote the right side of (3.24) by a (a real number). We then have

(3.25) <piiLia° + a, y°+y) è «   whenever (a, y) e N, ||j||w è e.

Thus epi <p¡r, contains a translate C of the convex set

Ü = {ia,y,rieAl*®Rí\ia,y)eN, \yf'm á£,^ 0}.
Obviously aff C= N © i?1, which is closed and of finite codimension, and ri <?# 0.
Hence affC is closed and of finite codimension, and ri C^ 0.

Corollary 1. 7/"(D0) holds, then every continuous affine function on A^* major-
ized by <pl>L corresponds to an element of A\, rather than a more general element of
Ai**. In particular, for every (a, y) e Aj¡* such that <p¡iLia, j)# — oo, the subgradient
set d<plLia, y) is actually contained in A\.

Proof. By definition, the continuous linear functions on A\* corresponding to
affine functions majorized by yUL are the elements of A]** for which the value
of <p*_L is not +00. Theorem 2 says that there are no such elements other than
elements of A\.

Corollary 2. If (D0) holds, then every continuous linear function on A\*
bounded above (or below) on dorn <pl¡L can be identified with an element of A\, rather
than a more general element ofAl**.

Proof. Define Io and L° by

(3.26) /°(c0, cT) = max {/(c0, cT), 0},

(3.27) L\t, x, v) = max {Lit, x, v), 0}.
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Then Io and L° satisfy (A), (B), (C) and (D0), and q>i°,L° ä 0. If h is a continuous
linear function on Al* whose supremum a over dorn <pl¡L is finite, then

ç>,oito ~¿.h — a.

Hence by Corollary 1, applied to /° and L°, h corresponds to an element of A\.

Corollary 3. If(D0) holds, then the limit

(3.28) lim inf q>itAa, y)
(a, y)->(a,S)

is the same whether it is taken with respect to the weak* topology or the strong
topology on Al*. In particular, under (D0) one has

(3.29) - inf $m>M(/?) = strong lim inf <pltL(a, y),
psA\ <a,i/)-»<0,0)

unless O, t and Q>m,M are identically +oo on Al and the origin of Al* is not in the
weak* closure of either dorn <pl¡L or dorn <pm¡M-

Proof. The limit (3.29) is the same in both topologies for every (ô, y) if and
only if the closure of the epigraph of <p¡tL in Al* © R1 is the same for both topolo-
gies. Since the epigraph is convex, its closure for a particular topology is the
intersection of the half-spaces which contain it and are closed for that topology.
Corollaries 1 and 2 imply that, if (D0) holds, the half-spaces in question in Al* © R1
are the same, whether one is considering Al* in the weak* topology or the strong
topology. Formula (3.29) follows from (3.7).

Corollary 4. Assume that (D0) holds. If q>i,L nowhere has the value -co, then
®m,M IS not identically +co, and the conjugate convex function 0*M on Al* agrees
with <p¡jL except perhaps at relative boundary points of dorn <pltL. On the other hand,
if <Pi,l nas the value -co somewhere, then <pKL is identically -co on ri (dorn q>i,L),
while 0>m,M is identically -co on Al* and hence agrees with <p¡¡L on ri (dorn <p¡>L) ibut
does not agree with cplL outside of dorn <pltL, since there <p¡>L is identically +co).

Proof. This is obtained from Corollary 3 and the fact in Theorem 2 that
aff (dorn cpifL) is closed, and <pl¡L is continuous relative to aff (dorn c>¡>L) except
perhaps at boundary points of dom <p,_L relative to aff (dorn <pLL). In general, since
Om M is the conjugate of <p1>L on Al, 0*pM(ä, y) is given by the limit (3.28) unless
(â, y) is not in the weak* closure of dom <pLL and OmM is identically +00 [3].

The next two corollaries are major steps in the direction of Theorem 1.

Corollary 5. If{D0) holds and (0, 0) e ri (dom <pl¡L), then

inf <J>ij£,(x) = -min <Dm,M(/)) < +00.
xsA\ P£Ai

Proof. Theorem 2 asserts that cpUL is continuous at (0, 0) relative to aff (dom <p¡yL),
and therefore ^¡.¿(O, 0) is not empty. In fact <V¡>t(0, 0) is contained in Al according
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to Corollary 1, except in the trivial case where 8rp¡ L(0, 0) is all of A]**. Thus
<puh has at least one subgradient p e A\ at (0, 0), and the result follows from
Proposition 5.

Corollary 6. Assume that (D0) holds, and that <£m,M is not identically + oo on
A\. Then each of the closed, convex level sets

(3.30) {p ë Ai | <Dm,M(/7) ^p.},       ¡xe R\

is a locally compact space relative to the weak topology on Ai and in particular has
the property that every bounded subset is weakly relatively compact. The sets (3.30)
are themselves bounded iand hence weakly compact) if and only if

(3.31) (0, 0) e int (dom <pltL).

Proof. In general, for each real number p. greater than the infimum of <p,,L on
Ai, the convex level set (3.30), regarded as a subset of Ai**, has as its closure in the
weak** topology (the weak topology induced on Ai** by Ai*) the corresponding
level set of the function 0*,*M on Ai**. These level sets are the same according to
Theorem 2 if (D0) holds, so that the set (3.30) is weak** closed in Ai**. Then
bounded subsets of (3.30) are weak** compact in Ai**, or in other words weakly
compact in Ai. A basic theorem about convex functionals [11, Theorem 7A] asserts
that (3.30) is bounded in Ai for every real p. if and only if the origin belongs to
int (dom 0*>M) in Ai*. The latter condition is equivalent to (3.31) by Corollary 4.
Thus the set (3.30) is weakly compact for every p. if and only if (3.31) holds.

If the set (3.30) is not bounded, it is nevertheless "bounded locally" relative to
the weak topology and therefore locally weakly compact. This local boundedness
property follows by a general argument from the fact that (according to Corollary
4 and the second paragraph of Theorem 2) the convex set

D = dom (D*,M <= Ai*

has aff D closed and of finite codimension, and vi D=£ 0 ; cf. Joly [13].
Here is the argument. Fix any p.e R1 and p e Ai such that Q>m,M(p) = H-, and

denote the set (3.30) by C. We construct a weak neighborhood W of p such that
W n C is bounded in Ai. Let J be a finite-dimensional subspace of Ai* comple-
mentary to aff D. Then each element (a, y) of Ai* can be represented uniquely in
the form

(3.32) ia,y) = ia',y') + (a",y"),       ia',y')eañD,   ia",y")eJ,

and the components (a', y') and (a", y") depend continuously on (a, y). Using the
representation (3.32), we define the convex function </> on Ai* by

(3.33) #*, y) = a>*,M(a', /) + «|||(a", /)|||,
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where a is a real number, a> \\\p\\\. The conjugate of ¡¡4 on Al is then given by

r(p) = ®m,u(P)   if>e^o,
= +co if/>£ W0,

where

Wo = {p\ <p, ia", y")y á «|||(a", /')l!l, Via", y") eJ}.

Note that WQ is a weak neighborhood of the origin of Al, because a-1 W0 is the
polar of the finite-dimensional compact convex set J n U, U being the unit ball of
Al*. Moreover/> belongs to the strong interior of W0, inasmuch as a> [||/?|[|, and
hence W0 is also a weak neighborhood of p. We now choose any element (a, y) of
the (strong) interior of dom <fi in A I* ; such an element exists by the definition of <]>,
because ri D+ 0. Invoking [11, Theorem 7A] as above, we obtain the fact that for
every fi e R1 the set

{p e Al I >f*ÍP)-<P, (fi, P)y uß}=tV0n{peAl\ Om,M(/>) 5¡ </>, (5, j)>+£}
is bounded. Let

W1 ={peAl\<p,iä,y)y + ß^fi},

where p.>p. — (p, (ä, j>)>. Then íFj is a weak neighborhood of p such that

WynC^{peAl\ Om>M(/>) ¿ </>, (ä, y)y+ß}.

It follows that W= W0 n Wx is a weak neighborhood of p such that 1^ n C is
bounded.

4. Support functions and attainable sets. Corollaries 5 and 6 of Theorem 2
reduce the proof of Theorem 1 to the analysis of the conditions (0, 0) e ri (dom <pl¡L)
and (0, 0) e int (dom <p¡>L). These conditions can be related to the conditions in
Theorem 1 on the convex sets C, and CL through a study of supporting hyperplanes
to dom <pltL.

For a start, we derive a formula in terms oî m and M for the support function of
dom 9>,it on Al, that is, the function which for each arc/? e Al gives the supremum
over dom <pl¡L of the linear functional on Al* corresponding to p. This formula
relates the support function of dom <pl¡L to the support functions of the finite-
dimensional convex sets C, = dom / and -DL(/) = dom Lt. It also provides informa-
tion on the relationship between the weakly attainable set CL and the attainable set
dom FL (see Corollary 4 of Theorem 3).

A useful fact in our analysis is the result that the support function of the effective
domain of a convex function is the recession function of the conjugate convex
function (provided that the conjugate is not identically infinite); see [11] and
[6, §8 and §13]. If </> is a lower semicontinuous convex function (not identically +00)
from a locally convex space £ to R1 u {+ 00}, the recession function of i/>, which
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we denote here by <ji, is given by the formula

(4.1) ipiw) =   lim   [0(w' + Aw) — íi(w')]/A,       w'edomi/i.

(The limit is the same no matter which w' is chosen in dom </>.) It is known that <p
is again a lower semicontinuous, convex function from E to R1 u { + oo}, and that

(4.2) 4>iXw) = A«/<w),       A ̂  0.

In particular, we shall use the fact that the recession functions I and m satisfy (in
view of the modified conjugacy relation (1.7))

(4.3) mid0, dT) = sup {<c0, d0) - <cr, dT) | (c0, cT) e C,},

(4.4) /(c0, cT) = sup {<c0, d0) - <cr, dT) \ id0, dT) e Cm},

while the recession functions Lit, -, ■) and Mit, -, ■) of Lit, -, ■) and Mit, -, •)
satisfy (in view of (1.8))

(4.5) Mit, p, s) = sup {<x, s) + (v, p) | ix, v) e DAt)},

(4.6) Lit, x, v) = sup {(x, s) + <t>, p) | (/>, s) e Z)M(i)}.

Proposition 6. The recession functions I and L satisfy conditions (A), (B), (C)
and (D), and so do m and M. The Bolza functionals 4>;,¿ and Q>a,m ore thus well
defined on Ai, and in fact 0;_£ is the recession function of <D¡iL (//" í>ít# +oo), and
Q>a.m is the recession function of<t>m¡M (í/Om M^á +oo). Moreover, $>a,m m ^ support

function of dom <p,jZ,, w«/7e <J>/¿ is //¡e support function of dom <pm>M.

Proof. Clearly / and Z, satisfy (A), while (D) is trivially satisfied because
¿(?, 0, 0)=0. If p, s and a are functions having the property in (C) for L, then/?, s
and 0 have the same property for L; thus L satisfies (C). Since L satisfies the
measurability condition (B) and L can be expressed by definition (see (4.1)) as a
limit of difference quotients of L, L likewise satisfies (B) (the limit of a sequence of
measurable functions being measurable). If x is an arc such that <D1-L(;c)< +oo, we
have

lim   [<D¡iL(x + Az) - ®,,L(x)]lÁ
A-> + oo

(4.7) =   lim   [/(x(0) + Az(0),x(r) + Az(r))-/(x(0),x(r))]/A
\— + oo

+ lim    |   i[Lit,xit) + Xzit),xit) + Xzit))-Lit,xit),xit))]IX)dt.
A- + 00 J0

The last limit can be exchanged with the integral, because the difference quotient
is nondecreasing in A (due to the convexity of Lit, -, ■)). Therefore

(4.8) (î),,£(z) = /(z(0), ziT)) + f Lit, zit), ¿it)) dt = <Di>£(z)
Jo

as claimed. It follows that <&n is the support function of the convex set dom <bfL
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in Al* [11, Corollary 3D]. But dom i>,*L and dom <pm>M have the same weak*
closure in Al*, because <¡>i,l = 9Z,m and <bUL^ +00. Hence <t>u is also the support
function of dom <pm,M-

Unfortunately, this argument does not yield the useful fact that <5>n is the support
function of dom <pm,M even in the case where <I>,iL is identically +00. However, to
cover the latter case we can replace m and M by

m°id0, dT) = max {m(d0, dT), 0},       M°(i, p, s) = max {Mit, p, s), 0},

taking Io and L° to be the functions dual to m° and M°. Then (A), (B), (C) and
(D) are satisfied. The function 9V,M° is nonnegative, so that its conjugate 0,oLo
on Al is finite at the origin, and the result already proved can be applied. Since
Cmo=Cm and DMo{t) = DMit), we have /" = / and L°=L (see (4.4) and (4.6)). The
recession function of O,o¡Lo, which is the support function of dom <pmo_Mo, is there-
fore <!>,-,£. But dom 95mûMo is the same as dom <pm¡M, and the proof is now complete.

We call an arc ze Ala. lineality arc for / and L if there exist real numbers a0 and
aj(/) (for almost all t) such that

(4.13) /(c0 + Az(0), cr + Az(i)) = /(c0, cT) + A<x0 for all c0, cT, A,

(4.14) Lit, x + Az(f), v + Az(r)) = L(r, x, v) + Xa^t)   for all x, v, X,

or equivalently if

(4.15) /( - z(0), - z(T)) = - /(z(0), z{T)),

(4.16) L{t, -z{t), -¿it)) = -Lit, z(t), z(0), a.e.

It is not difficult to verify (using the convexity and positive homogeneity of / and
L{t, -, ■)) that z has this property if and only if

(4.17) fyj-z) = -<t>u{z).

If Ol>t is not identically +00, so that <&-hz is the recession function of <5,iL (Proposi-
tion 6), property (4.17) characterizes the lineality arcs for / and L as the arcs z e Al
for which there is a constant a such that

(4.18) í>¡>i(x+Az) = 0,>L(x) + Aa   for all x e Al, X e R1.

Lineality arcs for m and M are defined analogously.
Ordinarily one would not expect to encounter nonzero lineality arcs in a well-

formulated problem of Bolza, but they might occur in certain derived problems,
such as the dual problem. Their theoretical role is explained by the next result.

Proposition 7. Assume that (D0) holds. Then a continuous linear functional on
Al* is constant on dom <pliL if and only if it corresponds to an element of Al which is a
lineality arc for m and M. The lineality arcs for m and M thus form a subspace of Al
whose dimension is the i finite) codimension of aff (dom <pl>t) in Al.
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Moreover, it is possible to find matrices Ait) inot necessarily unique) whose com-
ponents are summable in t, such that every lineality arc zfor m and M is a solution
to the differential equation

(4.19) ¿it) = Ait)zit),       (z(0), - ziT)) e Nt

ibut not necessarily conversely). Here N¡ is the orthogonal complement in Rn x Rn
of the subspace parallel to aff C¡.

Proof. Since (D0) holds, every continuous linear functional which is constant
on dom <pliL corresponds by Corollary 2 of Theorem 2 to an element of Ai. The
first part of the proposition is then apparent from the fact that Q>a,m is the support
function of dom <pUL (Proposition 6) on Ai, together with the characterization of
lineality arcs for m and M as the arcs z with the property that

(4.20) <t>AMi-z)= -OrfwKz).

To prove the second part, we take any nonempty, bounded, open set X in Rn
and select Bit) and bit) as in Proposition 3. If z is a lineality arc for m and M, then
properties (4.15) and (4.16) (with / and L replaced by m and M) imply via (4.3)
and (4.5) that the linear functions

(Co, cT) -> (c0, z(0)> + (cT, - z(r)>,       (*, v) -> (x, ¿it)) + (v, z(0>,

are constant on C, and D¡it), respectively. Therefore (z(0), — z(i)) belongs to N¡,
and the expression

(x,z(t)) + (Bit)x + bit),zit)),       xeX,

is for each t a constant independent of x. Since X has a nonempty interior, the
latter fact implies that z(í) = /4(í)z(í) for almost every t, where Ait) is the transpose
of Bit).

Corollary 1. Assume that (D0) holds. The convex set dom <pl¡L has a nonempty
interior iso that int dom <piL and ri dom <pl¡L are the same) if and only if there are no
lineality arcs for m and M other than the zero arc.

Proof. This follows from the properties of dom ç>,iL established in Theorem 2.

Corollary 2. Assume that (D0) holds. If z is a lineality arc for m and M such
that zit) = 0for some t e [0, T], then z must be the zero arc.

Proof. This is true because z satisfies the linear differential equation (4.19).

Corollary 3. If (D0) holds, the codimension of affdom<p,iL in Ai* does not
exceed n, and it is not greater than the codimension of aff C( in Rn x Rn.

Proof. The codimension in question cannot exceed the dimension of the space
of solutions to (4.19). Of course, the dimension of N¡ is the codimension of aff C,.

We are ready now to prove the main result of this section.
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Theorem 3. If (D0) holds, the following statements are equivalent:
(a) The origin of Al* belongs to ri dom <pttL.
(b) riC,nriCL#0.
(c) There are no arcs z e Al, other than lineality arcs for m and M, with the

property that

(4.21) w(z(0), ziT)) + f Mit, jt(i), ¿(0) dt ú 0,
Jo

and for every such arc equality holds in (4.21).
The following statements are also equivalent under (D0):
(a') The origin of Al* belongs to int dom <p¡iL.
(b') ri d n ri CL # 0 and aff (C, u CL) = Rn x Rn.
(c') There are no arcs z e Al, other than z = 0, such that (4.21) holds.

Proof. We demonstrate first that (a) and (c) are equivalent. Since ri dom <p,pL is
nonempty and affdomç),^ is closed (Theorem 2), the origin fails to belong to
ri dom cpl¡L if and only if it can be separated properly from dom <pl¡L by some
continuous linear functional on Al*. Such a linear functional necessarily corre-
sponds to an arc z in Al by Corollary 2 of Theorem 2, and its supremum over
dom <pl¡L is therefore $>a.mÍz) by Proposition 6. It is constant on dom <pLL if and
only if z is a lineality arc for m and M (Proposition 7). Thus (a) holds if and only if
every arc z e Al satisfying <5Aii¡í(z)áO is a lineality arc for m and M such that
<I)a.m(z) = 0. In other words, (a) holds if and only if (c) holds.

If (a) holds, we have <p/,£.(0, 0)< +co, so that í>¡it is not identically +co and
there exists at least one arc x satisfying (1.3). Therefore, in proving the equivalence
of (b) with (a) and (c), it can be assumed that CL+ 0. Then (b) holds if and only if
the convex sets C, and CL cannot be separated properly [6, Theorem 11.3]. In other
words, if we define F on Rn x Rn by

(4.22) Fido, dT) = inf {<c0, </„> - <cT, dTy | (c„, cT) e CL}

and make use of (4.3), we can express (b) equivalently as the condition that

(4.23) mido, dT) — Fid0, dT) ¿ 0 implies mi — do, —dT) — F{ — d0, —dT) á 0.

To prove that (4.23) is equivalent to (c), it suffices to demonstrate that

(4.24) -F{d0, dT) = min { f   M(í, z(i), ¿it)) dt

Fix any {dQ, dT) e Rnx Rn, and define

/°(c0, cT) = <c0, d0y-(cT, dTy,

(4.25) L°it, x, v) = 0        if (x, v) e cl DAt),
= + co   if (x, v) $ cl DL{t).

z e Al, z(0) = d0, ziT) = dX
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These functions again satisfy (A), (B), (C) and (D0), and the functions dual to them
are

m°id'0, dr) = 0 if d'o = d0 and d'T = dT,
(4.26)

= + co    if d'o ¥" d0 or d'T ̂  dT,

(4.27) M°it,p,s) = Mit,p,s)
(the last by (4.5)). In terms of these functions, the relation (4.24) that we want to
prove can be written as

(4.28) - inf {*,o.to(x) | x e Ai} = min {<Dmo>Mo(z) | z S Ai}.

This holds by Corollary 5 of Theorem 2 if

(4.29) (0, 0) e ri dom <p,o to.

Since (a) and (c) have already been shown to be equivalent, we can apply this fact
to Io and L° to express (4.29) as condition (c) for m° ( = S(0,0)) and M° i = M). In
this way we reduce the argument to showing that there are no arcs z, other than
z = 0, with the property that

(4.30) z(0) = 0,   ziT) = 0,    and    f   Mit, zit), ¿it)) dt ^ 0.
Jo

(A lineality arc for m° and M° satisfying (4.30) must be the zero arc by Corollary 2
of Proposition 7.)

Assume that z e Ai satisfies (4.30), but that z is not the zero arc. We argue from
this to a contradiction. Since Ct# 0, there is at least one arc jc° e Ai such that

(4.31) ix°it), x°it)) e cl DLit)   a.e. on [0, T].

From (4.5) we see that

Mit, zit), ¿it)) ä (x°it), ¿it)) + (x°it), z(i)>

= (dldt)(x°it), zit))

for almost every t, where equality holds if and only if

(4.33) (x- x°it), ¿it)) + (v- x°it), zit)) í 0,       V(x, v) e DLit).

Subtracting the right side of (4.32) from the left side and integrating over [0, T],
we obtain from (4.30) that

0 S  f  Mit,zit),¿it))dt + (x°iO),0)-(x°iT),0) ^ 0.
Jo

This implies that equality must in fact hold in (4.32) for almost every t, so that
(4.33) is true for almost every t. Since z is not the zero arc, we can find numbers tQ
and tí i0ut0<t1^T) such that z(i0) = 0, but z(r)#0 for /e(i0, fi]. For each

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



32 R. T. ROCKAFELLAR [September

t e (/0, ty\, let Kir) denote the set of all vectors c e Rn such that there exists an
absolutely continuous arc x: [t0, t] -> Rn with

(4.34) x(t) = c   and   (x(i), x(i)) e cl DLit)       a.e. on [r0, r].

Clearly A^(t) is a convex set containing x°(t). If x is any arc satisfying (4.34), the
inequality (4.33) implies that

o ̂  <x(o - x°(o, ¿(o>+<m - *°(o, z(o>
= id¡dt)(xit)-x\t),zit)y.

Thus <x(i) — x°{t), z(0) is nonincreasing as a function of t e [t0, t], so that

<C-X°(r),z(r)> = <x(t)-X°(t)^(^)> ^  <x(i0) - X°(?0), z(i0)> = 0.

Therefore z{t) is a (nonzero) normal to Kir) at x°(t) for i0< TS='i- To contradict
this, we show that x°(t) is actually an interior point of K{r) if t is sufficiently near
to /0- Let X be any bounded, open neighborhood of x°(/0) in Rn, and take Bit)
and ¿>(i) as in Proposition 3. For each point a e Rn, the differential equation

(4.36) x(r) = 5(i)x(/)+/>(/),       *('(>) = «>

has a unique solution on [0, T], and if a e X one has x(i) e X (and hence
(x(/), x(0) 6 A.(0 by the choice of 5(/) and />(/)) for t sufficiently near to t0. Thus,
if the solution to (4.36) is written in the form x(f)= W¡(a), we have Wzia) e Ä"(t)
whenever ae X and r is sufficiently near to t0 (t>/0)- Let U and V be compact
subsets of X such that x°(?0) e int U and i/cint V. Then there exists a t, /0 < t < r1;
such that

x°(/) e int U c H/((K) c JST,       ?0 ̂  í ^ t.
These relations imply that

x°(r)eint W¿V)<=K(t),

so that x°(t) is an interior point of Kir). This completes the proof of the equivalence
of (b) with (a) and (c).

The equivalence of (a') and (c') is obvious from Corollary 1 of Proposition 7
and the equivalence of (a) and (c). The equivalence of (b') and (c') follows, like the
equivalence of (b) and (c), from the support function formula (4.24) established
above. Theorem 3 is now established.

Corollary 1. Assume that (C0) holds. Then one has ri Cm n ri CM ̂  0 if and
only if there are no arcs z e A\, other than lineality arcs for I and L, such that

(4.37) /(z(0), ziT)) + f L{t, zit), ¿it)) dt S 0,
Jo

and for every such arc equality holds in (4.37).
One has both ri Cm n ri CM + 0 and aff (Cm u CM) = RnxRn if and only if there

is no arc z, other than z = 0, satisfying (4.37).
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Corollary 2. Assume that (C0) holds. Then one has CM+ 0 if and only if there
is no arc z e Ai, other than z = 0, such that

(4.38) z(0) = 0,   z(J) = 0,   and    f  Lit, zit), ¿it)) dt ^ 0.
Jo

Proof. Invoke the equivalence of (b') and (c') for the dual functions in the case
where / is the indicator of the origin, so that m is identically 0.

Corollary 3. Suppose that

(4.39) Lit, x, v) 2: L\t, x, v)+git,v- Ait)x),

where L1 satisfies (A), (B) and (C), g is a normal convex integrand on [0, T] x Rn
whose conjugate g* has the property that g*(i, p) is finite and summable in tfor every
p e Rn, and Ait) is an nxn matrix whose components are summable functions of t.
Suppose further that the differential equation

(4.40) ¿it) = Ait)zit)   for almost every t e [0, T]

has no solutions z, other than lineality arcs for I and L1, such that

(4.41) /(z(0), ziT)) + f L\t, zit), ¿it)) dt g 0,
Jo

and that for every such solution equality holds in (4.41).
Then (C0) holds and ri Cm n ri CM^ 0, so that the hypothesis of Theorem lia)

is satisfied. If in fact there is no nonzero solution z to (4.40) which is a lineality arc
for I and L1, then also aff (Cm u CM) = Rnx Rn.

Proof. Since L1 satisfies (C), there exist functions s eLi, p eL™ and a e L\ such
that

(4.42) Lit, x, v) ^ (x, sit)) + (v,pit))-ait) + git, v-Ait)x).

Let L°(i, x, v) denote the right side of (4.42). The Hamiltonian H° corresponding
to L° is

(4.43) H\t, x,p) = ait)-(x, sit)) + (Ait)x,p-pit))+g*it,p-pit)),

and this is summable in t for every x and p (apply [7, II, Corollary 2A] to g*,
using the hypothesis that g*it,p) is summable in t for each p). Corollary 1 of
Proposition 2 implies in this case that (C0) holds. The inequality (4.39) implies at
the same time (from the definition of the recession function of a convex function)
that

(4.44) Lit, x, v) ä L\t, x, v) + git, v-Ait)x),

where git, ■) is the recession function of git, ■). But git, ■) is cofinite; hence

git, u) = 0 if u = 0,
(4.45)

= +00    ifw^O.
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It follows that if z e Ai is any arc satisfying (4.37), then (4.40) and (4.41) hold, and
the conclusions of the corollary are apparent.

Remark. The assumptions in Corollary 3 concerning the differential equation
(4.40) are satisfied if

(4.46) /(c0, cT) < +00 implies that c0 = 0 or cT = 0,

as is true in particular if C, has a bounded image under either of the projections
(c0, cT) -> c0 or (c0, cT) -*■ cT. Indeed, in this case an arc z satisfying (4.40) and
(4.41) has either z(0) = 0 or z(T) = 0, and consequently z is the zero arc.

Corollary 4. Assume that (C0) is satisfied. Then, for the convex function FL
in (1.25), the convex set dom FL {the set of attainable endpoints for L) is related to
CL {the set of weakly attainable endpoints for L) by

(4.47) dom FL <= C¿ «= cl dom FL.

Thus in particular one has

(4.48) ri CL = ri dom FL.

Proof. The first inclusion in (4.47) is obvious, so we need only show that
dom FL^>ú CL. Let (c0, cT) be any point of ri CL and take

/(c0, cT) = 0 if c0 = c0 and cr = cT,

= + co    if c0 / c0 or cT # cT.

Then (b) is satisfied in Theorem 3, and it follows that (a) is satisfied as well, so that
9>¡,¿(0, 0)< +00. Thus there is at least one arc x e Ai with <¡>¡,Lix)< +co. In view
of the definition of /, such an arc has

*(0) = c0,   xiT) = cT   and L(t, xit), xit)) dt < + oo.
Jo

Therefore (c0, cT) e dom FL.
Proof of Theorem 1. There is nothing left to do, except to combine Theorem 3

with Corollaries 5 and 6 of Theorem 2.

5. Dual interpretation of optimal arcs. The fact that the arcs which minimize
®m,M over Ai correspond to the subgradients (in Ai) of <p¡,¿ at the origin of Ai* has
already been noted in Proposition 5 in §3. Dually, the arcs which minimize Olit
correspond to subgradients of ç>m M at the origin. These facts, in conjunction with
Theorem 2, make it possible to interpret the optimal arcs in a given problem of
Bolza in terms of the differential effect of perturbations on the infimum in the dual
problem of Bolza, and vice versa. Analogous duality results have been developed
by the author in the general theory of convex programs [6, §30].

We denote by <p\,Liä, y; a, y) the one-sided directional derivative of <p,_L with
respect to (a, y) at (a, y):
(5.1) <p'ULiä, y; a, y) = lim [<p¡,Lia+Xa, y + Xy)-<pl¡Liá, y)]¡X.

AlO
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Since <pitL is convex, this is well defined, provided that q>lyL{â, y) is finite. An arc
p e Al belongs to the subgradient set 8q>¡ L{á, y) if and only if

(5 2)      v'i-^ä' y>a'y}- <(a> >)> p> = <a- p®y>+J* <y(t), p(t)y dt
for all (a, y) e Al*.

The following result is stated one-sidedly, but needless to say the dual assertions
are also valid, where / and L are interchanged with m and M, and (D0) is replaced
by (C0). These dual assertions characterize the case where there is a unique optimal
arc for / and L.

By a minimizing sequence for OmM, we mean of course a sequence of arcs pk in
Al such that Q>mtM(Pic) tends to the infimum of Om_M over A\. If the level sets of
OmJf are weakly compact as in Theorem 1(b), such a sequence has cluster points,
and every cluster point is an arc/» which minimizes Om M.

Theorem 4. Assume that (D0) holds, and let P denote the {closed, convex) subset
of Al consisting of the arcs p which minimize Om M.

(a) If one of the equivalent conditions (a), (b) or (c) in Theorem 3 is satisfied and
<P,L(0, 0) {the infimum of <&¡¡L) is finite, then for every ae Rn and y e L™, one has

(5.3) <p'hL{0, 0 ; a, y) = sup {<(a, y),p>\pe P).

{Thus <p!,i(0, 0; -, ■) is the support function of P.)
(b) P consists of a single element p {that is, p is the unique optimal arc for m and

M) if and only if<p¡¡L is {finite and) differentiable at (0, 0) in the sense of Gâteaux.
In this event p is the gradient of<plL at (0, 0) in the sense of Gâteaux: for every a e Rn
and y e L™ one has

(5.4) ri.L(0, 0; a, y) = <(a, y), Py = <a, />(0)> + f (y{t), p{t)y dt.
Jo

(c) In the situation in (b), every minimizing sequence for Om,M converges to p in
the weak topology of Al. In order that p actually be the gradient in the sense of
Fréchet, it is necessary and sufficient that every minimizing sequence for OmiM con-
verge to p in the strong topology.

Proof, (a) Theorem 1 and Proposition 5 imply that P consists of the subgradients
of <p1>L at (0, 0) which belong to Al. On the other hand, Corollary 1 of Theorem 2
asserts that <plyL has no subgradients in Al**\Al. Therefore P=8^>¡ L{0, 0). However,
since <p¡¡L is continuous at (0, 0) relative to aff dom <p,L, which is closed (Theorem 2),
•PÍ.iXO. 0; -, •) is the support function of 8<phL{0, 0). (This fact has been stated by
Moreau [3], [4] in the case of a function continuous relative to the whole space,
but the extension to the present case is elementary.) Formula (5.3) is thereby
proved.

If P consists of a single arc p, then condition (c) of Theorem 3 is satisfied, and
the minimum of $m>M is finite. Theorem 1(b) then implies that ^¡,¿(0, 0) is finite,
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and, applying (a), we see that (5.4) holds. Conversely, if <p¡>L(0, 0) is finite and
(5.4) holds, then for every ae Rn and y e L™ it must be true that fi,LiXa, Xy) < +co
for A sufficiently small. Thus aff dom <p,L is all of Ai*, and we may conclude that
(0, 0) is an interior point of dom <p¡¡L. The assumptions in (a) are then met, and
(5.3) shows that/? is the unique element of P.

(c) Since one has (0, 0) e int dom <p,tL in the situation in (b), q?lyL agrees with the
conjugate function <t>*tM in a neighborhood of (0, 0), and neither function takes
on —oo (Corollary 4 to Theorem 2). The assertions are then immediate from the
general results relating the rotundity properties of convex functions to the differ-
ential properties of their conjugates [1, Theorem 1 and corollaries]. This completes
the proof of Theorem 4.

Theorem 4 explains the exact significance of the optimal arcs in the problem of
Bolza dual to a given problem (satisfying the stated conditions). Thus in the
simplest case, where the dual problem has a unique optimal arc p and (5.4) holds,
the initial point piO) gives the directional derivatives of the infimum of <¡>¡tL with
respect to displacements of the form

(5.5) /(x(0), xiT)) -* /(x(0) + a, x(7)),

while the derivatives pit) give the directional derivatives of the infimum of OiZ,
with respect to displacements of the form

(5.6) Lit, xit), xit)) -± Lit, xit) +yit), xit)).

To illustrate further, consider the case where (D0) holds, ri C, n ri CL+ 0, and
an optimal arc x for / and L is known to exist. Corollary 1 of Theorem 1 implies
the existence of arcs/? such that x and/7 satisfy the generalized Hamiltonian equation

(5.7) i-pit),xit))EdHit,xit),pit))   a.e.

(see [9, §9] and [10]). These arcs p are in fact the optimal arcs for the dual problem.
The initial points piO) that may be chosen in (5.7) are thus characterized by Theorem
4 as the subgradients of the convex function

(5.8) <pia) - 9uLia, 0),       a e R\

at a = 0.

6. Minimization over Arn. The preceding results treat minimization over Ai,
but some conclusions may also be drawn concerning minimization over the spaces
A\, where A\ consists of the absolutely continuous arcs x over [0, 7"] such that x
belongs to Un (1 ¿r¿ +oo).

For each (a, y) e Ai*, let <p¡,L(o,y) denote the infimum of the expression (3.3)
over all arcs xeATn. Then <prUL is a convex function on Ai*, <p\,l = <Pi,u and by
definition one has

(6.1) 9>U(0,0)= inf 0;>i.(x).
xsAn
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We shall make use of the following stronger condition than (D0) :
(D0) For  each   x e Rn   there   exist functions   veUn   and  ßeL{   such   that

L{t,x,v{t))eß{t).

Proposition 8. If (D0) holds, then <p'LL agrees with <pltL everywhere on Al*, except
perhaps at boundary points of dom <piyL relative to aff dom <pljL.

Proof. Since <pTUL majorizes <p,.L, the convex set epi <p]yL is contained in epi <pUL.
We shall demonstrate that

(6.2) cl epi <p¡¡L => epi <pUL,

that aff epi cprUL is closed, and that ri epi <prLL is not empty. This will suffice to estab-
lish the proposition, because of the convexity of <p¡jZ, and <pljL.

Suppose that (a, y) e Al* and p. e R1 are such that

(6.3) <pl¡L(a, y) < p..

To prove (6.2) we construct a sequence of elements {ak, yk) converging in Al* to
(a, y) and having the property that

(6.4) limsupcpTUL{ak,yk) < p..
k-* oo

Since (6.3) holds, there exists an arc x e Al such that

(6.5) /(x(0) + a, x{T))+ f L{t, x{t)+y{t), x{t)) dt < p..
Jo

We observe next that Proposition 3 remains valid (by the same argument) if (D0) is
replaced by (D0) and the components of B{t) and b{t) are asserted to be //-summable.
Taking X to be a bounded subset of Rn containing x(t)+y(t) for almost every t,
we apply this generalization of Proposition 3 and for the corresponding B and b set

v{t) = B{t)[x{t)+y{t)] + b{t).

Then v eUn, and L{t, x{t)+y(t), v{t)) is summable in t. For each positive integer
k let vk be the function in L\\ defined by

vk{t) = x{t)   if \x{t)\ ^ k,

= v{t)    if \x{t)\ > k.

Then L{t, x{t)+y{t), vk(t)) is summable in t, and

(6.6) lim   Í  L{t,x{t)+y{t),vk{t))dt = f  L{t,x{t)+y{t),x{t)) dt.
JC-<£>    Jo JO

Now define ak e Rn, yk e Lt and xk e A\ by

(6.7) xk{T) = x{T),       xfc = vk,       ak = x(0) + a-xft(0),       yk = x+y-xk
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Then iak, yk) converges to (a, y) in Ai*. We have

(6.8) <p¡¡Liak, yk) ¿ /(xk(0) + ak, xkiT)) + f L(t, xkit) +ykit), xkit)) dt,
Jo

and from (6.5), (6.6), and (6.7) we conclude that (6.4) holds as desired.
The proof that aff dom <prUL is closed, and ri dom <p¡¡L is nonempty, is a copy of

the proof of the corresponding facts for <pKL in Theorem 2. The only real difference
is that, instead of invoking Proposition 3, one uses the generalization described
above.

Corollary. If condition (D0) holds, then Theorem 2 and all its corollaries are
valid with <pl¡L replaced by <prUL ithat is, with 4>,it and its perturbations minimized over
Arn, rather than An).

Theorem 5. Let 1 úr-¿ +oo.
(a) IfiDr0) holds and ri C, n ri CL# 0, then

(6.9) inf Oiit(x) = inf 0I>L(x) = -min <Dm,M(/>).
xeA* xeATn P^A\

(b) Suppose that the conditions in Corollary 3 of Theorem 3 are satisfied, with the
components of A belonging to L\, and with g of the form

(6.10) g(t,u) = rii\u-cit)\),

where c eL\, and r¡ is a nondecreasing function from [0, +oo) to ( — oo, +co] such
that

(6.11) lim inf 77(A)/Ar > 0.
A-> + 00

(//>= +00, (6.11) is to be replaced by the condition that tj(A)= +00 for X sufficiently
large.) Then every feasible arc x for I and L belongs to Arn, and one has

(6.12) min <Di>t(x) = min <D(pI.(x) = - inf <Dm,M(/>) = - inf 0>m>M(/0.
xeA'n xeA\ PE/îJ PeArn

Proof. Statement (a) is obtained by combining Proposition 8 with Theorem 3
and Corollary 5 of Theorem 2. The assumptions in (b) imply by Corollary 3 of
Theorem 3 that the middle equality holds in (6.12), and they also imply (since L1
satisfies (C)) the existence of functions se Li, peL™ and aeL{, and constants
p > 0 and ß, such that

(6.13) Lit, x, v) ^ (x, sit)) + (v,pit))-ait) + r,ri\v-Ait)x-cit)\lp)-ß,

where

^(A) = (l/r)Ar   for 1 ^ r < +00,

(6.14) 77.0(A) = 0 if 0 Ú X ^ 1,

= +00       if 1 < A < +00.
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If x is an arc in Al such that <P¡>L(x)< +co, it follows from (6.13) that

Vr{\x{t)-A{t)x{t)-c{t)\lP) è P-(t),

where p. e L\. Thus

(6.15) x{t) = A{t)x{t) + c{t) + u{t),

where ueL\\. Since the components of A and c are elements of L\, we conclude
from (6.15) that x e Arn. This proves the assertion in the theorem concerning 0,fIi,
and at the same time it establishes the first equality in (6.12).

Taking conjugates on both sides of (6.13), we see that

(6.16) M{t,p,s) Ú «(t) + (c(t),p-p{t)y+riq{p\p-p{t)\)+ß

whenever

(6.17) s-s{t) + A*(t)[p-p{t)] = 0,

where A*{t) is the transpose of A{t) and (l/r) + (l/a)=l. Define

(6.18) L\t, x, v) = L{t, x, !>)-<*, s{t)y~<v,P(t)y,

so that

(6.19) M°{t,p, s) = M{t,p+p{t), s+s(t)).

Obviously / and L° again satisfy (A), (B), (C), and (D) ; therefore m and M° again
satisfy (A), (B), (C), and (D), and we can apply Proposition 8 to <pm>M° and <prm,M°-
The hypothesis of Proposition 8 is satisfied for these functions, because

(6.20) M°{t,p, -A*{t)p) ¿ a{t) + (c{t),Py+Va{p\p\)+ß

for every p e Rn and t e [0, T] by (6.16) and (6.17). Thus <prn,M° agrees with «jvm0
except at boundary points of dom ymiMo relative to aff dom <pm<M<>. However,
according to (6.19) we have

<Pm,M°(a, y) = <Pm.M(a + fi, y+y),       <Pm,M°(a, y) = 9m.MÍfl+á, y+y),

where
rT rT

y{t) = p(t)+\   s{r)dr   and   ä=      s{t) dt.

Hence <prn¡M agrees with <pm-M except at boundary points of dom <pm¡u relative to
affdom<pm>M. In particular, since (0,0) e ri dom <pm>M by Theorem 3 and its
Corollary 3, we have ?4,aí(0, 0) = <jvm(0, 0), or in other words the third equality
in (6.12).
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