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Existence and Estimates of Green’s Function
for Degenerate Elliptic Equations

S. CHANILLO - R.L. WHEEDEN

1. - Introduction

In this paper, we study the Green function for equations Lu = 0 in a
bounded open set 0 in &#x3E; 2, in case L has divergence form

and the coefficient matrix A = satisfies

Here,  ~, ~ &#x3E; denotes the usual dot product in Rn and w and v are

nonnegative functions which will be further stipulated.
More specifically, we show that a Green function exists and derive interior

estimates for its size. By "Green function for 0 with pole y" we mean a function
C (x, y) = Gy ~ x~ , x, y E fl, which solves LGy = 6y in the weak sense, i.e.

if

where denotes the class of Lipschitz continuous functions supported
in 0. Moreover, Gy vanishes on (90 in the sense that it is the limit, in an

appropriate norm, of functions supported in 0. It is also possible to represent
the solution u of

with

i.tx terms of a potential of f which has G as its kernel. This representation will
be discussed below.

Research partly supported by NSF Grant DMS 86-01119 for the first author and DMS
85-03329 for the second one.

Pervenuto alla Redazione il 17 Febbraio 1987.
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In order to state our main result, we need to introduce some notation. We
shall assume throughout that w E A2, i.e. that

for all balls

although this condition can be somewhat relaxed as indicated at the end of
the paper, and that v satisfies the doubling condition: v(2B)  cv(B), where

and 2 B denotes the ball with the same center as B which
B

is twice as large. We write v E D°° for such v. The assumption that w E A2
ensures that w E D°°. We write Bh (X) for the ball with center x and radius h,
and assume that v and u~ are related by

for some q &#x3E; 2. We shall consistently use the notation a = q/2, so that a &#x3E; 1,
and we set so = 2al(or + 1). Thus, 1  so  2. In the classical strongly elliptic
case (~ and w identically equal to positive constants), the value of q is 2n/(n-2)
so that a= n/ (n - 2) and so = n / (n - 1).

For we let

and we write simply LP in the case of Lebesgue measure.
Similarly, Ll loc stands for the class of functions which are locally integrable

with respect to Lebesgue measure. We use the notation X = Xt.8 for the Banach
space which is the closure of Lipo (fl) with respect to the norm

If 1  s  oo, defines’ 
" s -

We can now state our main result. Since we consider only interior

estimates, it will be convenient to think of fl as contained in a large ball
and derive the existence and estimates of the Green function for an open ball
B when the pole lies in the middle half of B.
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THEOREM (1.3). Suppose that w E A2, v E D °° and (1.2) holds. Let A
be a symmetric matrix which satisfies ( 1.1 ) and let B = be a ball. For
almost every y E ’I B, there is a nonnegative function G (x, y), x E B, which
satisfies

(i) ~ E for t  a and s  2a/(a + 1), and the sizes of the norms are
uniform in y; thus,

for such t and s ;

for some

if 0  r  R/2 and 0  p  a, with c independent of B, y and r;

if 0  r  R/4, with c and cl independent of B, y and r;

The size of the norm in part (v) may depend on y.The assumption that ( ~ ~ 9 is made only in part (ii) and is not
needed in the other parts of the theorem. This assumption guarantees that the
integral in (ii) converges since

Of course, VG E Lw by (i). There are alternates for (ii) which do notm 
,

require the assumption £1 (B). In order to state these, we need
to introduce some more notation.

There are two Hilbert spaces Ho and H naturally associated with the
differential operator L. The properties of these spaces will be discussed in §2.
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Here, we mention only that H~ consists of the elements of H which vanish in
an appropriate sense at 8B, and that the inner product on Ho satisfies

if E Lipo(B). Furthermore, can be defined for H, and
there are then associated functions Ú, ep e (even Lf1°(B)) such that

and

An argument based on the Lax-Milgram theorem shows (see §6) that, if

f /v E Li2D)’ (B) and the assumptions of Theorem (1.3) hold, then it is possible
to solve the problem

with i

in the sense that 3 u E Ho with

We shall refer to u as the Lax-Milgram solution of (1.4).

Similarly, if F is a vector with E L2 (B), it is possible to solve

in B, with

in the sense that 3 u e Ho with

We shall refer to u as the Lax-Milgram solution of (1.6).
The following result gives representations of these solutions in terms Of

G, without assuming W E L1loc for some s’ &#x3E; 2Q / (a -- 1).
THEOREM (1.8). Let v, w and A satisfy the hypothesis of Theorem (1.3). If
L~’ (B) for some t  0- and u is the Lax-Milgram solution of (1.4), then
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Furthermore, if E L.’(B) for some s  2a/(a + 1) and u is the

Lax-Milgram solution of (1.6), then

for a. e.

The proofs of the theorems rely partly on adapting the methods in [7]
for the strongly elliptic case. We also need some facts from [2], including a
mean-value inequality and Harnack’s inequality, as well as Sobolev’s inequality

with c independent of f and B. The value of q in (1.9) is the same as in (1.2),
and the fact that (1.9) is valid, if A2, V E Doo and (1.2) holds, is proved in
[ 1 ] . Some of the required inequalities from [2], together with other background
facts, are given in §2. In §§3-4, estimates for an approximate Green function
are derived. In §5, Theorem (1.3) is proved except for the uniform nature of
the estimates in part (i); this uniformity is proved together with Theorem (1.8)
in ~6. In the case of equal weights (by which we mean the case when v is at
most a constant multiple of w), our results are contained in [3] and [4]. The
classical strongly elliptic case is also treated in [9].

We now state a version of the Wiener test, i.e. a criterion which gives a
condition for a point of an to be a regular point. A proof can be obtained by
modifying the arguments in [5] or [6], p. 206. In order to state the result, we
need a few more definitions. First, we say that v E Ap, 1  p  oo, if for all
balls B

when

when

with c independent of B. We say that v E ~oo if v E Ap for some p.
Next, for any open bounded set 0, the Hilbert spaces H(03A9) and 

can be defined as before. As noted in [2], a simple argument based on the
Lax-Milgram theorem shows that if 0 c the Dirichlet problem Lu = 0
in it, With u == 0 can be solved in the sense that 3 with

= 0 for and u-0 
We can also give a meaning to solving Lu = 0 in 03A9 with u == 1/; on an in

Case 9 is a function which is defined and continuous only ona fl. This can be
done by choosing a sequence (pk ) of polynomials which converge uniformly to
1/; on and solving Luk = 0 in 03A9 with It can be shown from



314

the weak maximum principle (§2) that suS I pk 1. From this inequalitya

and Caccioppoli’s inequality, we can show that converges to a limit u in
for any fl’ with closure in fl and that ao (u, p) = 0 for p E Lipo (fl) . We

say that a point x E i9il is a regular point if

whenever u is a solution, in the sense described above, of Lu = 0 in 03A9. with

u = 1/J on continuous on (90. 
_

Finally, if B is a fixed open ball containing fi and E c B, define the
eapaci ty of E by

The Wiener test can now be stated as follows.

THEOREM (I. 10). Let A be symmetric and satisfy ( 1.1 ) for a pair of weights
v, w for which v c w C A2 and (1.2) holds. Let fl be a bounded open set
and x E .3 fl - There is a positive constant Cl such that if

for some e &#x3E; 0, then x is a regular point.
In passing, we note that if x E an and the complement of fl contains a

truncated cone with vertex x, then

as is easy to see by Sobolev’s inequality. Thus, in this case, x is a regular point
if 

- ~ ..

2. - Preliminaries

As in [2], for a bounded open set fl, let
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where Lip(fi) denotes the class of functions which are Lipschitz continuous in
the closure of fl. By the degeneracy condition (1.1),

It follows that ao (u, p) is an inner product on Lipo (fl) , and therefore that
is a norm on In particular,  

Note also that since A is symmetric,  y &#x3E;   Ax, x &#x3E; a  Ay, y &#x3E; ~ .
We denote the completion of Lipo(n) with respect to this norm by

.~o -- Ho(O). An element u of Ho is thus an equivalence class of Cauchy
sequences u~ E Lipo (~) .

If .Ho With U = and V = (Pk 1, Uk, E Lipo (0), it is easy
to see that converges, and we define

It follows that = ao (u, u) 2 is a nonn on Ho.
We now show that it is possible to associate with each p E Ho a unique

pair so that if p = then in L2 (fl) (even in 
and Vpk ---~ in We shall refer to (Ø, as the pair of functions
associated with ~. To see this, note that since pk e Lipo(n), Vk can be
extended to a function in by setting pk = 0 outside fl. In particular,
if BR is any ball containing n, for this new Pk E Lipo(BR), and by Sobolev’s
inequality (1.9),

Thus, is a Cauchy sequence in Also, by the last inequality,
is a Cauchy sequence in Let §5 and ~~ denote the limits,

respectively, and observe that these are independent of the particular sequence
representing ~. Of course, if p E Lipo (fl), then §5 = p 
Since w-1 E it is easy to see that is the distributional gradient

of lsl in fact, by Schwarz’s inequality, it follows that pk - §5 in £1 (fl) and
VO in (since also v-1 E j~(H)), and therefore if 0 c 



316

We will also have to consider the Hilbert space H = H(f1) which is the
completion of Lip (ii) under the inner product

Facts about H are given in [2]. In particular, Ho c H continuously by
Sobolev’s inequality, and if u E H, u --~ jukl, uk E Lip (’0), then uk

converges in L~ to a function ic and VUk converges in L~ to a vector Vf4.

Furthermore, if = the limits a ( u, ~~ - lim and

ao (u, cp) = lim ao (uk, exist and satisfy

and a (u, p) is an inner product on ~I.
It will be useful to have a representation for ao ( u, cp) in terms of and
This is given in the following lemma.

LEMMA (2.3). Let u, cp E H and let and be the associated

gradients, respectively. If u = ~ uk } and cp = ~ ~~ ~, then

In particular,

PROOF. Let hk = &#x3E;. It is easy to see that is a Cauchy
sequence in by using the inequality _

Thus, hk - h in L1 (0) for some h. Consequently, f h. Since also
0 n

ao (u, ~), we obtain ao (u, V) 1J-. The lemma will
0 0therefore be proved if we show that h =  &#x3E; a.e. Since in

L1 and both ~ u in L~, this follows easily by selecting
subsequences which converge pointwise a.e.

An element u E H is called a solution of Lu = 0 if ao (u, tp~ - 0 for all
p e Ho. Also, if u e H, we say u &#x3E; 0 in 0 if u can be represented by a
sequence {Uk}, ux E Lip(3), with Uk 2: 0 in f1. If u &#x3E; 0 in ~, then clearly

0 a.e. in f~. We will need the following two facts from [2] about solutions.
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These facts are valid assuming ( 1.1 ) with w E A2, V E D°° and (1.2). First, a
solution u in H(2B) satisfies the mean-value inequality

- Moreover, if also u &#x3E; 0, it satisfies Harnack’s inequality

The next two lemmas may be viewed as maximum (or minimum)
principles. The first one is an adaptation of a similar result in [11] or [8].

LEMMA (2.6) (Weak Maximum Principle). Let u be a supersolution in
F(n). i.e., u E E 2:: 0. Let
u " Uk E Lip (IT) , and assume that 0 in some neighborhood
(depending on k) of 811. Then fi 2:: 0 a.e. in O.

PROOF. Consider t~ = - min I uk, 01. Note that u k ~ Lipo(fl) since
0 near an. Since juk) is bounded in H it is easy to see that is

bounded in Ho. We may then select a subsequence uj which converges weakly
in Ho to 0 E Ho. Thus, 

’

since u is a supersolution. Thus,

i.e.

Therefore, ~~~w -~---&#x3E; 0. Extending to a large ball containing 0

(uk, J has support in fl) and applying Sobolev’s inequality, we see IlUk-, JIL2 -+ 0.
But U k, - u in L 2, so u~ --; (i~) - in L2. Thus (ii) -- 0~ a.e. in fl and the

proof is complete. 
k ,

LEMMA (2.7). Let B1, B2 and B3 be balls with a common center and radii
rl, r2, r3, respectively, satisfying fl  r2  r3- If V E and i a.e.
in then given L &#x3E; i, there exists cpk E Lip ( B2 ) such that y.~ in

H(B2) and L in some neighborhood of 8B2. Moreover, if u is a solution
in H(B2), U and if uk S pk near 8B2 for these then 11  L a.e.
in B~ .
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PROOF. The second statement follows from the first by applying the weak
maximum principle to the solution L - u in B2 : since L - uk &#x3E; L - ~pk ~ 0
near a B2, we obtain L - u &#x3E; 0 a.e. in B2.

To prove the first statement, note that since p E N(B3), B hk E Lip(B3)
with h k --; p in Thus, hk - §5 in and by ~using a subsequence,
we may assume that a.e. in B3. By hypothesis,~  l a.e. in 
so by Egorov’s theorem, given L &#x3E; i and 6 &#x3E; 0, 3 and ka such
that  6 and hk  L on E if k &#x3E; ko. Make a smooth partition
of unity X1 + x 2 + X 3 - 1 on B3 such that X 2 is supported on where

B is a ball with the same center as Bl and radius r satisfying r2  r  r3,

and X1 m 1 on Bl and is supported on a slight enlargement of B1. Then
hk - hkXl_+~ hkX2 + hkX3, and we define Sp~ - + (hkX2,L). Clearly,
Vk E and L near It remains to show that in

~(~2). We will do this by showing (see (2.2))

We have

Since hk --&#x3E; ~ in also ~X2 in this norm; moreover,

in this norm since

for any

Since 0  ~ on it follows that both hkX2 and converge in

to the same limit, and so - o.

The second term in (2.8) equals 
’

if k &#x3E; since then hk  L on E. The integrand in the last integral is
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nonnegative and equals

Thus, using Schwarz’s inequality and the fact that 0  ~2  1, we see
that the last integral is bounded by

Since hk converges in L~ , converges in Furthermore, by lemma (2.3),
"  &#x3E; converges in L1. Thus, since the domain of integration in both

integrals above has small measure ( 6), the integrals are small uniformly in k
for large k, and the lemma follows.

We shall need the following compactness result.

LEMMA (2.9). Let 0 be a bounded open set and w e A2. Let E be a ball
be a sequence of functions each supported in n with

uniformly in j. a subsequence such that is any enlargement
of converges in 

PROOF. Let be a smooth function supported in I x ~ 1 with f t? = 1,
and let 7),(x) == for t &#x3E; 0. If g(x) is defined in JRn, let

Note that the definition of only involves values of g(y) with y_E 
Also, if E* and n* are neighborhoods of 1 and fi, resp., and if x and
t is small, then Bt ( x ~ Thus, for such x and t,



320

and

Moreover,

By Lemma (1.4) of [3], this is bounded by

If x and t is small, we may rewrite (2.10) after multiplying and dividing
by t as ,

’ 

I

which is at most ct where M denotes the Hardy-Littlewood
maximal operator. Since w E A2, it then follows from [10] that for small t,

Since the Ij are supported in fl, we may think of them as defined on all
of Rn by just setting fj = 0 outside il. Then

Hence, by above, 3 c independent of j such that if x and t is small,

and

The rest of the proof follows from (2.11 ) by applying Ascoli’s theorem to the
first two inequalities in {2.11 ) for each fixed t. We shall not give the details
but instead refer to [6], p. 167.

COROLLARY (2.12). The previous lemma holds as stated if we replace the
hypothesis that the Ij have support in f) by the hypothesis that 3 fjk supported
in fl such that ,f~ ~ f - and V f~ --+ V f~ in L’ (fJBE) as k - oo.
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This follows easily by applying the previous lemma to the 
where for a given j we choose ki so that the norm of both Ii - fl’
and tend to 0.

REMARK (2.13). (i) Lemma (2.9) has an analogue for L~ norms,
1 S p  00, if w E Ap. Similarly, there are versions for Lw (~) norms, i.e. for
all of 03A9 without deleting 03A3* . In case 1  p  oo, the proof is the same as when
p = 2 except that L; norms are replaced by L~§ norms. In case p = 1, a small
change is needed when estimating (2.10). Instead of majorizing (2.10) by the
maximal function, we simply integrate over HBE* and use Fubini’s theorem to
obtain

since the part of the integrand in curly brackets is at most cw(y)
due to w E A 1.

(ii) We note that other variants of Lemma (2.9) can be obtained by altering
its proof. For example, the conclusion holds for instead of 
if we still assume that the fj are supported in 0 and and are

bounded in L2 (f]BE) but replace the hypothesis that A2 by the weaker
hypothesis that w -1 is integrable over a neighborhood of 03A9 and

This last condition is valid if w (E A2 since then w-l E ~42 and the integral in
(2.15) is at most

which tends to 0 with t. The only real change in the proof of the lemma comes
in estimating ||ftj -fj|| L1w - which by the first inequality in (2.14) is at

most 
3 ’°

most 
N, ,

By Schwarz’s inequality, this is bounded by

and the result follows as before if (2.15) holds.
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3. - Estimates for Gp

Fix yEn and p &#x3E; 0 with B p = Bp(y) c O. Ho, let §5 be the
associated function in L2. The mapping

is a continuous linear functional on Ho: see, e.g. the argument in §2 showing
how to associate ~ with cp. Since the bilinear form is continuous and

coercive on Ho, the Lax-Milgram theorem implies there is a unique GP e Ho
such that

6P will be called the approximate Green function for fl with pole y.

We claim that 0 as an element of Ho, i.e. that 3 Gp c with

0 and Gp --4 GP in Ho. This of course implies that GP &#x3E; 0 a.e. since

G: ---+ GP in L~ and thus 3 a subsequence G§ - 6P a.e. To prove the claim,
let Gp = {G~}, G§ e Lipo(fl). Note is bounded in Ho : in fact,

since (sign G§) VG§ where 0. Hence, a subsequence ---sh
(weak convergence in Ho). Thus,

Since the last expression is clearly nonnegative,

so that , I

for some c with 0  c  1. We have

The right side converges to
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Hence ~ 0. This shows that GP is the limit in ~Io of c )Gt ) &#x3E; 0,
and so establishes the claim. It follows incidentally that c = 1, since by above,

GP in while also G~ -~ 6P in L~: hence, 6P a.e.

and c -= 1. Thus, the argument above shows that if GP Gp 1, then also
for some subsequence.

Consider now the case iI = B = BR (xo). By above, we may assume that
C’ &#x3E; 0. For t &#x3E; 0, define

Then

and pk e Lipo(B). We have

Since this is bounded in k, there is a subsequence --· c~ in Ho. Then

where the second equality follows from weak convergence and the first follows
from the strong convergence of 6~ I to GP in Ho and the boundedness of 
The middle term equals 

’

Therefore,

By the degeneracy condition,
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If we define [log Gp K - log = [log Gpk - log tl-4-, thenk k k

VOk = and Ok E Lipo(B). From the estimate above,
k 

k

so that by Sobolev’s inequality (integration is over B = 

Restricting the integration to {G~ J &#x3E; 2t} gives

We may replace 2t by t without affecting the form of this inequality. Since
6~ 2013~ GP in by using a further subsequence if necessary, we may assume

G  GP pointwise a.e. Thus, x { G p ~ t }  lim inf a.e., and by Fatou’s

lemma, &#x3E; t)  lim inf 
J 

&#x3E; ~ ~ . Therefore, 
’

Here, 6P is the approximate Green function for B = BR (xo). Note that the
constant c in (3.2) is independent of p and y.

Consider now the special case R = r, xo = y, and look at values of 2: in

the annulus r/2  Ix - yl  3r/4. Fix p  r/4. Then B,14(X) c jBrBBp. Note
GP is a solution in since if V e then ao (G-1, v) = 0: this is
because of (3.1) since p is the limit with respect to 11 - Ilo of functions supported
outside Bp. Hence, by the mean-value property (2.4) and the doubling condition
(t~/4~)) ~ w(B,/4(X)) ;z:~ w(B,)),

To estimate the integral, we use (3.2) utith B = r and zo = y together with the
obvious inequality &#x3E; t)  to obtain

provided
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Substituting this estimate above and recalling that x is any point in r/2 
3r/4 gives

Here, GP is the approximate Green function for Br = Br (y) with pole y.
We wish to show that (3.3) holds without the restriction Ix - yl  3r/4

on the left, i.e. that

This will clearly follow from (3.3) by replacing r by 4r/3 and using doubling
provided we show that i§P increases when we enlarge domains, i.e. that if GP
and G*P are defined for 03A9 and 0’ resp., then fl c fl* implies G*p in 0.
This follows from the weak maximum principle applied to 0 and G*p - Gp if
we verify the appropriate hypotheses. Note that G*P - GP E H(O) (not 
and G*" - Gk = 6~ - 0 &#x3E; 0 near for each k ; moreover, as it is easily seen
frorn (3.1), G*P - GP is a solution in fl.

LEMMA (3.5). Let B = BR (xo) 6P is the approximate
Green function for B with pole y and if 0  r  R/2, then

for 0  p  (1. The constant c is independent of R, Xo, y, r and p.

PROOF. We first claim that it is enough to prove the lemma in case y = Xo.
To see this, first note that if y then B c = E, so that G~
in B, , where denotes the approximate Green function for E with pole y.
Hence, if we knew the estimate for balls centered at y, we would have

since by doubling
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Thus, we may consider only balls centered at y. For a &#x3E; 0, let Ba = 
and let Ge denote the approximate Green function for B3 with pole y. Our goal
is to prove that if r  R , p  ’~ and p  (7, then

Pick m = 1, 2, ~ ~ ~ with r

We now estimate the size of each term on the right in (3.7). For the first term,
from (3.4), , -

To estimate the remaining terms, we claim that if p  4 then

If so, it follows from (3.7) and doubling that

which proves (3.6).
The proof of (3.8) uses Lemma (2.7) with cp there taken to be 

u = Gp./2 - GP, B1, B2, B3 taken to be B38/4’ Bs, B38/2 resp. and

Note that by (3.4) with r = 3 s / 2 and doubling, we a.e. in

~3./2B~3./4. Choose (pk) as in Lemma (2.7) for L = 2t. Note that u is

a solution in B, and u = {uk }, uk = pk - yk where CP = (Wk ) with ’f/;k 2: 0 in
B, - Thus pk in B9, so by Lemma (2.7), 21 a.e. in Bs, which proves
(3.8).
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COROLLARY (3.9). With the same notation and hypothesis as in Lemma
(3.5), for a.e. there is a constant c independent of r and p (but
depending on y, R, w, v) such that

PROOF. This will follow from Lemma (3.5). The integral in the conclusion
is at most 

~

with finite for a.e. y. Similarly, since w( ~~  c for

t  1~ by (1.2), the integral in the conclusion of Lemma (3.5) is also majorized
by

4. - Estimates for V(jp

The goal of this section is to obtain an estimate for (B) which
is uniform in p. We shall prove 

~~’

LEMMA (4.1 ). Let B = and 6t’ denote the approximate Green
function for B with pole y. There is a number so, with 1  so  2, such that

03B6 IVGPl8 w is bounded uniformly in p for each s  so and a.e. y c 2 B. The
B 

2

bound depends on s, y, v.

As we shall see, the value of so is 2~l (d + 1).
The first step in proving the lenima is the following Caccioppoli-type

estimate.

LEMMA (4.2). Let B and be as above, and let B, = B,. ( y ) . for r  R
Y E i Band p r/2,2 21
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with c independent of r, p and y.

PROOF. The proof is very similar to that of Lemma (3.1) in [2]. Pick
so that n = 1 outside Br, n = 0 in Br /2 and c/r. The function

belongs to Lipo ( B) and the argument of Lemma (3.1 ) of [2], with
~c and fl there taken to be GP and 1 resp., yields (cf. (3.7) of [2])

with 6k - 0. One small change is needed in the argument in [2]: namely, since
GP is not a subsolution, we must justify (3.3) of [2]. However, is a

subsequence which converges weakly in Ho to ~o, then, as usual,

This serves as a replacement for (3.3) of [2].
From the properties 

The lemma now follows by letting k ~ oc and applying Lemma (2.3).

LEMMA (4.3). Let Band Lemma (4.1), and let B, = B, (y)
’~- ° For 1 B,

with c dependent on y, R, w and v but independent of p and r.

PROOF. We consider first the case p ~ 4 . Combining Lemma (4.2), ( 1.1 )

and Corollary (3.9), we see that for a.e. 
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with c = independent of r and p. Since

for a.e. y, we obtain the desired estimate.
In case p &#x3E; ~ , write

Enlarge the domain of integration in the last integral to B, recall that GI
is supported in B, and apply Sobolev’s inequality to obtain

Since G~ ) --~ ao(GP, GP), Lemma (2.3) gives

Thus,

Multiplying and dividing on the right by rnJo, , letting

and using ( 1.1 ), we obtain

This completes the proof of Lemma (4.3).
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PROOF OF LEMMA ~4.1 ). For any t &#x3E; 0 and r &#x3E; 0,

For r ~ i-, use Lemma (4.3) to estimate the first term on the right, and
use 

r ~ , , , ,

to estimate the second one. Thus, for a.e. such that

Choosing which is less than we get

Since we also have the trivial estimate &#x3E; t)  w(B) for all t, Lemma
(4.1) follows easily.

5. - Existence of the Green Function

In §4, we showed that 3 so, 1  so  2, such that VGp ~ L8 w uniformly
in p for s  so and Also, from (3.2),

with c independent of p, y and t. Thus, 6P c L~ uniformly in p and y for t  o~-
Since GP is supported in B and G~ ---4 Gp in and V G~ ~ V§P in L 2 , it

follows that GP belongs to X = Xt.8 uniformly in p for 1  t  d, 1  s  so

and a.e. y c 1 B. Since t, s &#x3E; 1, X is reflexive, so 3 a subsequence which

converges weakly in X to an element G e X. Moreover, by taking sequences
of t and s values increasing to d and so resp. and using a diagonal method,
we may choose G independent of t and s for t  Q, s  so, i.e. :3 and

G such that

for all t and
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We have

It follows by applying Lemma (2.3) to the left side that

The right side of (5.1) converges to v(g) as p - 0. The left side, by (1.1) and
Holder’s inequality, is at most

Since ( ~ )~y’ w ~ ~1 (B~, it follows that the left side of (5.1) defines a continuous
linear functional on X for fixed p, i.e.

is a continuous linear functional on X. Since G in X, we obtain from

(5.1 ) by passing to the limit that

This proves part (ii) of Theorem (1.3). It also proves part (i) except for the

uniformity in y of the sizes of the norms of G and VG. Actually, the uniformity
is shown for the norm of G but not for the norm of VG. In §6, we will establish
the uniformity by using an argument that works equally well for G and VG.

We now wish to show that there is a subsequence of which

converges to G pointwise a.e. Let r  -1 R and B, = B, (y) - By Corollary
(3.9) and Lemma (4.2), for a.e. y c -12B,

,with c independent of p (but depending on r): in fact, the same would be true
if the first summand were replaced by Of course, G§ - Gp in
L~ , so also in and i7§§ - in L 2 Since GP is supported in B, the
hypothesis of Corollary (2.12) holds with f~ taken to be It follows that

there is a subsequence 6PIk which converges in L 2 (B)B,). (The subsequence
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depends on r). We now show that the limit must be G. Given a bounded
function p, tet -

This defines a continuous linear functional on X since

Thus,

But if G~ is the limit in L2(BBB,) of then

for such cp, and consequently, G~ = G a.e. in

Summarizing, we have now shown that Lw for

a subsequence (p~~ ) which depends on r, Pjk -; 0. Hence, there is a further

subsequence, again denoted such that --~ G pointwise a.e. in B~B~..
Letting r --&#x3E; 0 through a sequence and using repeated subsequences and a

diagonal process, we see there is a fixed subsequence - 0 such that

6PJk --&#x3E; G a.e. in B, as desired.
We now obtain (iii) and (v) of Theorem (1.3) from Lemma (3.5) and

Corollary (3.9) by letting IP = Pik --~ 0. Note also that GpJk converges to G

weakly in X, (strongly) in for any r &#x3E; 0, and pointwise a.e.
Finally, to prove part (iv) of Theorem (1.3), recall from Lemma (4.2)

that if GP is the approximate Green function for B2r == B2r (y) Theorem (1.3),
recall from Lemma (4.2) that if is the approximate Green function for

B2r = with pole y, then

Since Gp is a nonnegative solution in B2r BBp, Hamack’s inequality (2.5) gives

Thus, if p  -i
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Now pick cp with 1 in Br, supp(p) c B2r and c/r. If

p  r,

since supp Vp C Combining this estimate with (5.2) gives

Here, GP = Gpr is the approximate Green function for .B2r - with pole
y.

The rest of the proof of part (iv) of Theorem (1.3) will be similar to the
summing procedure used to prove Lemma (3.5). It follows from (5.3) by using
Lemma (2.7) with ~ = - Gp2r (note E H(B3r/2)) that

Thus,

Consequently, by the weak maximum principle,

in B,.

Assume now for simplicity that B = BR has center y. If r  ~ , choose a
positive integer m with  r2m+ 1. In 
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if m = 1, the sum is missing. Thus, a.e. in 

for some c~ &#x3E; 0 by the doubling condition on the weights. The desired result
follows by letting p - 0. In case B is not centered at y, note that y E 2 B
implies B D B R/2(Y) = B’, and apply the estimate above to B’, r  ~ ~.

6. - Theorem (1.8)

In this section, we prove Theorem (1.8) and the uniformity for y E -12B
of the estimates in part (i) of Theorem (1.3).

To prove Theorem (1.8), first note by H61der’s inequality that

defines a continuous linear functional on Ho if L~, (2a)’ (B) since

by

by

Hence, by the Lax-Milgram theorem, there is a unique u E Ho with ao (u, cp) =

j f§5 (cf. (1.4) and (1.5)). Moreover,
B

Taking cp = GP (with pole y), we get

The left side equals
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Note that

Hence, under the hypothesis of the first part of Theorem ( 1.8), the map g - j f g
B

is a continuous linear functional on X for some t  a. Since converges

weakly in X to G(x, y) if y  cr and s  so, it follows that the right
side of (6.1), with p = p, , converges to / This proves

B
the first part of Theorem (1.8). 

The proof of the second part is similar. In fact, since

there is a unique u G Ho with

Also,

Taking ~ = Gp and observing that
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the result follows as before if s  2al(a + 1), i.e., s’ &#x3E; 1).
We now show that the sizes of the norms in part (i) of Theorem (1.3) are

uniform in y for The proof uses the representations in Theorem (1.8)
and an iteration of the Moser type as in [2]. Since many of the details are like
those in the proof of Lemma {3.1 ) of [2], we shall be brief. Let u be the Lax-
Milgram solution of Lu = f, u e Ho, u --~ 0.

Let t  a and 
,

For (3 &#x3E; 1 and k  M  oo, define == 1’/3 - kf1 for r ~ [ k, M I and
== MO - k,9 + /3M~’~(T - At) for T &#x3E; M. Let Oj = u/ + k, and for

fixed M define

As in [2], ~ E Lipo(B) and is bounded. Hence, there is a subsequence,
which we again denote which converges weakly in Ho to cp. Then

and since

and (Lax-Milgram)

we obtain

The left side equals

Writing ~p3 and using G(,r)  TG’ (T) and Oj &#x3E; k, we obtain
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Since the integrand on the left is and the one on the right is
lfl Sobolev’s inequality gives

by Holder’s inequality and the definition of k. As j --· oo, Oj 2013~n~-t-A: a.e.

for a subsequence. Setting q$ = û+ + k, we obtain

Note that (rl1 - and Thus, letting

Since 03C8 &#x3E; k,

Hence, by Minkowski’s inequality,

When 03B2 = 1 and t  a, the integral on the right of (6.3) is finite, then
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Hence, starting with (3 = 1 in (6.3) and assuming a~ &#x3E; t, iteration of (6.3) leads
to 111/;IILD(Ð) :::; ck. Thus,  ck. A similar estimate for û- together
with the representation

given by Theorem (1.8), implies by duality that if t  a,

independent of y

for as desired.

The argument for is similar. In this case, u is the Lax-Milgram
solution of -Lu = div F, i.e. u e Ho and

if p G Ho. We assume that s’ &#x3E; 2a/(a - 1), (&#x3E; 2), and IFB/w E L~(B); then

by Theorem (1.8). Use the same test functions pj as before except that now

The analogue of (6.2) is

Thus, for E &#x3E; 0,
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Taking, 5 == ! and using the fact that 1./J J &#x3E; k, we obtain

by H61der’s inequality with exponents s’ /2 and s’ /(s’ - 2). Now use Sobolev’s
inequality and let j -~ oc and ~l ---~ oo as before to obtain

Thus,

When 03B2 = 1 and s’/(s’ - 2)  03C3, the expression on the right is bounded by a
multiple of k, and iteration leads to  It follows that

independent of y

for The condition 2)  o~ is the same as sl &#x3E; 1),
or s  203C3/(03C3+1).

REMARK. A careful examination of the proof shows that the assumptions
w E A2 and (1.2) can be replaced by assuming w c- DCXJ., Sobolev’s inequality
(1.9), the analogous Poincare inequality in [1], Ltoc and (2.15). Of these,
the last two guarantee a version of the compactness lemma (2.9) with Ll in
the conclusion rather than L2 (see the last part of remark (2.13)), which means
that where we used - G* in earlier, we can use GPJk - G#
in and this makes the argument work.

We also note that (1.2) is necessary for Sobolev’s inequality for doubling
weights; see [1].
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