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1. INTRODUCTION

It is well known that in the absence of dissipation, smooth solution of nonlinear elastic
materials develop singularities in finite time, while for thermoelastic materials the
conduction of the heat equation provides dissipation that competes with the destabilizing
effect of nonlinearity in the elastic response. The level of subtlety of this dissipation
depends on the boundary condition that the displacement and the thermal difference
are supporting. Slemrod [1] showed the global existence of smooth solution for small data
when the boundary is either traction-free and at a constant temperature or rigidly clamped
and thermally insulated. A similar result was obtained by Zheng [2]. These boundary
conditions get a simpler damping mechanism because they imply additional boundary
conditions for u and the thermal difference 6, that is, if an end is clamped then the
displacement u and the thermal difference # satisfy »,, = 0 and 6,,, = 0 there respectively.
So we can make additional partial integrations which led to the desire a priori Z2-estimate.

In case of Dirichlet boundary condition for which the boundary is rigidly clamped and
held at a constant temperature we lost the value of u,, in that point and instead of it we
get u,, + af, = 0. So this case leads ill behaved boundary terms and it is not possible to
apply directly the multiplicative techniques to secure global estimate. Recently Racke and
Shibata [3] proved Global existence of a smooth solution for these boundary conditions.
To do this the authors showed the algebraic decay of the energy for the linear equation by
studying the spectral properties of the stationary linearized problem. The rate of decay
depends on higher regularity of the initial data and therefore the global existence result
depends on the initial data to be small in H™(0, L) with m large. One of the authors of this
paper proved in [4] (see also the work of Kim [5]) that the solution of the linearized
thermoelastic system decays exponentially as time goes to infinity. This fact allows us to
get simpler existence result for the corresponding nonlinear equation as was shown in [6]
for small data (u,, 4,) in H3(0, L) x H*(©0, L).

The system in question is written as follows

Uy — [S(uxa 0)]x = 0, in ]0’ L[ X ]0’ w[ (11)
(6 + )Ny, D], — [Q,, 6,, ), =0, in]0,L[X]0, o[ (1.2)
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with the initial datas given by
u(x, 0) = uy(x); u,(x, 0) = uy(x); 0(x, 0) = (%) (1.3)

and boundary conditions
u©,0) =u(L,t)=60,¢) =06(L,t) = 0. (1.4)

We are denoting by u the displacement, by § = T, — 7, the thermal difference, where T,
is the absolute temperature and 7, is the reference temperature which we will assume to be
constant. Finally, by S we will denote the stress tensor of Piola-Kirchoff, N stands for the
specific entropy and by Q the heat flux.

We would like to remark that the dissipation given by the thermal difference is not strong
enough to prevent development of singularities. The work of Hrusa and Messauodi showed
that for a special class of nonlinear thermoelastic materials which occupy the whole line,
there are smooth initial data for which the solution will develop singularities in finite time.

The main result of this paper is to improve the work in [6] by taking initial data (u,, 4,)
small in H%(0, L) x H'(0, L)-norm. This fact allows us to choose large data (i, u,) in the
H*0, L) x H*0, L)-norm. The approach we use here is different from others, we explore
the dissipative properties to construct a Liapunov functional whose derivative is negative
proportional to itself and we look for estimates of the nonlinear terms in functions of the
dissipative terms associated to the thermoelastic system. The fact together with the local
existence result (see [1]) give the estimate we need to get the global existence of smooth
solutions.

2. EXISTENCE AND ASYMPTOTIC BEHAVIOUR

In this section we will assume that the functions S, N, Q are in C* satisfying the
following hypotheses

as as aN
—0,0=1 (O, ;i —(0,0 ;
aux( ) 60(0 0=0 6u,,(0 ) # 0
N a0 ETo) @D
— : _— 0 = M —_— = .
20 0,0 > 0; ” 0,0,0) = 0; 30 0,0,00=0
To simplify notations we will introduce
as 8Q/a0 AN/ du
— 0’0 =: = x 0’ \ = : X ,0, = 8.
20 OO =% G N @O0 =k>0 S 0.0.0 =4

Where the product off > 0. For the initial data we will impose
uoe H*O,L); u, e H¥O,L); u,e H'(0,L); 6, € H*O,L); 6, H*(0,L). (2.2)
By u, and 8, we are denoting
uy =1 [S(y, O)ili=o 2.3)

. aN/aux u | + Q(ux’ oxy 0)X
PTTAN/80 0T (0 + 1o)(ON/36) |- o

satisfying the compatibility conditions

2.4

Ugy=uj=u,=6,=60,=0 atx =L, x=0. 2.5
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With this hypotheses we can show that there exists only one local solution for system
(1.1)-(1.4) (see [7]), defined in the maximal interval [0, 7,,[. So, to get global smooth
solution we will show that

lec-, t)||H3(o,L) + flu(-, t)||H3(0,L) = ¢ vtz 0.

To do this we will regard system (1.1)-(1.4) as

U, — U, +ab, = F, in 16, L[ x 10, T,,[ (2.6)
0, — kO, + Bu, =G, in]0,L(X]0, T,[. Q.7
Where
as as
F = {a_ux(ux, 0) - l}uxx + {a_e'(uxy 0) + a}ex

(6 + 1,)(ON/36) aN/30

L Q6w 30/30
(0 + ©)(ON/368) 7 (6 + 10)(ON/38) *’

G- { 00/, k} 6, - {BN/au, ,3} ",

For simplicity we will put

as as
n = a—%(ux,e) -1; M= @(ux,ﬂ) + a;

B 3Q/a6, _ ON/du, 5
Y70+ t)@N/ae) 27 aN/ee T
_ 3Q/0u, W — 30/36
37 (6 + 1)(dN/36)’ 47 (0 + 1)(0N/36)
To facilitate our analysis let us introduce the linear system
Ui — Uy +ay,=F, in]0,L[x]0, Tl 2.8
Y, — kax + ﬁUxt = g’ in ]OyL[ X ]0: Tm[ (29)

Ulx, 0) = Uy, Ux,0=U;, wlx0) =y,
U,n=UL,t) = w0,0) =wlL,1t) =0.

From now on and without loss of generality we will assume that « and £ are positive real
numbers. First we will study the asymptotic behaviour of the linearized equation
(2.8)-(2.9). To do this we define the following functionals

L

1 o
B =3 | {10 + 1o+ S1vP ox

0

L
Byt U, ) = S@mﬁﬂwﬁ+?wﬂu

E3(t; U) V/) =

N = N =

0

L 63
S@wﬁﬂwﬁ+4mﬂu

0 B
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Let us multiply equation (2.8) by U, and (2.9) by («/f)w and summing the product result
we have

d . .« L 2 L o
d_tEl(t’ U) W) = _kE 50 |le dx + 50 {gUt + EQV/} dx.

Assuming regular data, and since U, and ¥, have the same boundary conditions, we get

o
— Gy, ! dx. 2.10
BQ '//} (2.10)

To get the above identities we use essentially the fact that U, and y, have the same
boundary conditions as U and . But this is not the case for U, and , . It is in this point
that the typical difficulty for boundary conditions of type Dirichlet-Dirichlet appears.
Let us see in detail this fact. Multiplying equation (2.8) by —U,,, and (2.9) by —(a/B)¥,,
and summing up the product result we have

d o L L
—Ey)t; U, w) = —k— S | Wyl dx + j {SF,U,, +
dt B Jo 0

d L
d_tEa(t; U’W) = _k% § Wixdx + a'//x(x’ t)Uxt(x9 t)‘;:(l)‘
0

L
—§ {wm + ngxx} dx. @.11)
0 B

The derivative of E; has a pointwise term involving second order derivatives. Which is
not possible to bound using directly the Sobolev inequalities. To overcome this fact we
will use the following lemma.

LEMMA 2.1. Let us take (vy, vy, f) € HyO0, L) N H*0, L) x HX0, L) x HY0, T; I*(0, L))
and let v be the solution of
Uy — Uy = fx,8)  in]0,L[x]0, T

v(x, 0) = y(x);  v(x,0)=0v,(x) in]O, L[ (2.12)
v0,)=uv(L,t) =0 on ]0, T'[

then the following identity holds
2

£ L
|, G e

Proof. Multiplying (2.12) by (x — L/2)v, and integrating over [0, L] we have

L L L L L
jo (x - 5>v,,vxdx - So <x - E)v,,vxdx = L (x - é‘—)fv,ﬁx. (2.13)

L L
%[vi(L,t)+vi(0,t)1=ad—§ (x—é)v,vxdx+1j (2 + v})dx
t Jo 2 )o
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Since v,(0, f) = v,(L, t) = 0, direct calculations yields

L L d [~ L L L
S (x - E)v“vxdx =% L ( - E)v,v,dx - So <x - E)v,v,tdx

o

L L

=d£t S <x—%)v,v,dx+%§ v? dx. (2.14)
0 [}

On the other hand
L L' 1 L L
I (e S)pmores =3 [ (= e
L 1 (%
= <[}, ) + V20, 0] - 5 g V2 dx. (2.15)

4 2 ),

From (2.13) to (2.15) our result follows. W

Motivated in Lemma 2.1 we introduce the following functional

£ L
E\n) = "X <x - E)UxtUttdx'

0

Using equation (2.8) and Lemma 2.1 we easily get

d L 1 {Z
—E 0 = =2 {lUx (0, > + |Up L, ) + 5 | {UL* + U/ dx
dt 4 2 Jo
L L L L
+ S <x - —)w,, U, dx — X <x - —)s, U, dx. (2.16)
0 2 0 2

Finally, we define the following functions
L

L
Uswdx;  Egt) =§ U,U,dx,
0

0

Es(t) = S

L
9Ut; U, ) = § QUL + UL + (UL + Ul + 0l + Jul® + I dx
0

L
(e U, y) = g (U + U + [wsl? + lwl? + yel?y d.
[\

We will prove in the following lemma that there exists a linear combination of the
functions E; (i = 1, ..., 6), we will denote by K, that is

10k
K(t;u, W) = KIEI + K2E2 + 7E3 + §E4 + E5 + §E69

which is a Liapunov functional. This is shown more precisely in the following lemma.
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LemMmaA 2.2. There exist positive constants «; (i = 1, 2) and ¢,, ¢, such that the derivative
of K(¢; U, w) defined above satisfies

d . k2 £ 2 2 2 ﬂ 2 2
aK(t; Ur W)S_E ”le + |Wxt| + |l//xx' dx__ ”Uxtl + lUxxl }dx
0

- %{lUx:(O, OI* + (UL, )12} + R(t5 U, w), @.17)

where

L
R(t§U,'I/)=K1j {fo,+%QW}dx+K2j { Ue + - gt'//t}
0
E
6

1 L
- ﬂc FUpy + gglex - X = £ F U, dx
o 0 ﬁ 2

£ B Bt 2
- {sh//x - ngt} dx — = EFUxxdx + = |£F| dx
0 2 ] 4 0

and
I U, w) =K@ U, p) < ¢, U, w). (2.18)

Proof. Using (2.8)-(2.9) we obtain that

d L L L
_ES(t) = _ﬂ§ |Uxt|2dx+ag Ilezdx+ kj\ V/xxetdx
dr 0 0 0

L L
- g Wy Uxxdx - S {EF'//x - gUxt] dx, (2.19)
0 0

similarly, using (2.8) we get

d L L L L

aE6(1) = X |Uxt[2 dx — j 'Uxxlzdx +a j Uxxdex - S gUxx dx. (220)
0 0 0 0

From (2.19) and (2.20) we easily obtain

L L L
a0+ fe0) < 5| e - 2| b o+ 2 v,
¢ 0 2 Jo 2 Jo

L

L L
O‘S |lezdx+k§ Wxxetdx_j U dx
0 0

0
ﬂ L L
- 5§ FU,, dx — g {Fyw, — GU,}dx. 2.21)
V] 0
On the other hand using (2.8) it is not difficult to see that

L L
L U ax < 3 j (U + all? + |52 .
0
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From (2.16) we get

d “ L 3 (L
5E4(t) < —Z{IUX,(O, DI* + [Un(L, D13 + 3 X (Uul® + |Upl? dx
0

3 2 L L L
+%§ walzdx+ag < —5>wx,Uxtdx

0

L L 3 L
- S (x - —>§,Ux,dx +2 S |2 dx. 2.22)
0 2 2 Jo

Relation (2.21) together with (2.22) yields
d
o {ﬁ Et) + Extt) + 5 Es(t)}

I L
=< —%{lvx,(o, D> + Uy, O} - § § UUal? + Unl ax
0

2 L La L
B a2 v+ (o) | v
4 | 12 1, 2 0

L L L
aj walzdx+kj Wxxetdx_j {Fy, — GU,Jdx
0 0

L L L
- g j ( 2>EF,U,,,dx += j |F|? dx g S FU,, dx. (2.23)
0 0
Note that
_zig jo |Wxt xtl dx + kg |Wxxet| dx
ﬂ ) 2 Zﬁ ) 4k2 L )
dx + — dx 2.24
8 |Uxt| dx + — 36 0 | xtl ﬂ o |Wxx| ( )
and

) Lot (4] Lo
<7 - 1> SO (]xx‘//xdxS 8 S(} |Uxx| dx + ﬂ 2 1 0 l'//x‘ dx. (2'25)

Substitution of (2.24) and (2.25) into (2.23) yields

:ljt ['BEA!) + Es(f) + BEA’)}

< 2100, 0F + 10, 0P - £ | 110 + w1 ar 4 e | il ax
0

v0

4k2 L L2 2 L L
+ — S |Wxx|2dx + > ﬁ lWxt‘zdx - {E;Wx - gUxt}dx
B Jo 36 Jo 0

L L L
_8 x—Ii EF,U,,dx+—ﬂ |€F|2dx——ﬁS FU,, dx. (2.26)
6 1o 2 4, 2 ),
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From the Gagliardo-Nirenberg inequality we get

L 1/4 L 1/4
awxux,lzzsszacoﬂ lw,de} U |w,|2+|w,x|2dx} (U0, D2 + UL,
0 1]

L
2 ka 2 2 2
sos | Inax s 52 |l ar + 20 10,00, 0F + U, 0P

for a positive constant c;. Using (2.11) we get
d ko L
aE3(t) = - Zﬂ j' |Wxx| dx + C3 j IWszdx

L
- 2 2
L {wm + ﬂgw,x} dx + 208 (100, 0 + UL, 0P

Our result follows from (2.26) and the last inequality for x, and x, satisfying

2 2
B <1Okc3 . c2> k L’apf
41

+— and Ky = —r— + -
ko a

K1 = 6k o

Finally, for x, and x, big enough inequality (2.18) holds. The proof is now complete. W

To get global solution we will suppose that the initial data satisfy
||uo||}12(o,L) + ”uIH%I'(O,L) + "90”%12(0,0 + "01"%{1(0,” + ||u2"§12(o,1.) <& (227
Since u,, u, and 6, satisfy condition (2.2), then there exist a positive constant # such that
le1 sl Z20,) + 161, 07200, + ez, 320, 2y < 442, (2.28)
where ¢ is small (< 1) and g is large (> 1). From (2.27) and (2.28) we have
NO, u,0) <& NEO,u,0) <y (2.29)
Using the continuity of the solution, it follows

21 t L
N(, u, 0) + - j j {10 + |64/ dxdr < ce* vt el0, 1], (2.30)
0 JOJO

24 t "L
N, u,, 6, + . j j’ UOpeel® + 10,y dxds < > VIE[0,5[, (2.31)
0 Jo Jo

for some ¢, > 0, 7, < T,,, ¢ = 6¢,/cy = 1, where ¢, ¢, are defined by inequality (2.18),
A = min{k?/28, B/16). Let us define the functions

t

24 L ) )
9,(t) = M(¢; u, 6) + {10l* + |6, dx dr;
o

0

9(1) = M(t; uy, 0,) + — j j UOeeel® + 18,0l dx .
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In this conditions there exists #, for which we have

6 6
9,0 <2 g =Lu2 vielo, 4l (2.32)
o o

Denoting by

6¢
7, = sup{fl > 0; 9,() < —c—lez in [0, tl[} ,
0

6
L= S“P{‘fz > 0;9,() < %#2 in [0, To[} s
)

and by ¢, =: min{#,, t,}. We only have two cases: (i) t; = T,,, (ii) #; < T,,. The first one
implies that the solution is bounded and therefore 7, = +. It remains only to consider
the case (ii), which will be studied in our final theorem.

From Sobolev’s embedding theorem and inequality (2.32) we get

lu (x, )| = ¢qyé, |6(x, )| < coe  V(x,t) €0, L] X [0, t,]. 2.33)
It is not difficult to see that there exists a positive constant ¢; such that

|0x(xs t)l = Cl‘/Es V(x, t) € [Os L] X [Os t3[ (234)
In fact, we have

L L t (L
S |0xx|2 dx = j\ |00,xx|2 dx + 2 S S OxxoxxthdT
V] 0J0

0

t L 172 t L 172
<&+ 2” S I()xxlzdxdr} U g Iomlzdxdz'} <cen. (2.35)
V] ]

0 0

For ¢ < 1 and 4 > 1. From the Gagliardo-Nirenberg inequality and (2.35) we get (2.34).
Therefore, for § > 0 there exists ¢ > 0 for which (2.32), (2.33) implies

lmil <8, i=1,2; Wil <é, j=1,...,4. (2.36)
From the Gagliardo-Nirenberg inequality and (2.32) we easily deduce that
lu (e, ] = Ve, luue, )l = Ve, |6,(x, )] < ey Ve,
2.37)
V(x’ t) € [O’ L] X [0’ tS]a

for some ¢, > 0. Finally, using equation (2.6), (2.7) and inequalities (2.36), (2.37), we
conclude that there exists ¢; > 0 satisfying

100 0l < esVe;  upx, 0l = Ve in [0, L] % [0, #4]. (2.38)
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Let us denote by

v=sup {|’n,0],10°W;(¥)); i=1,2;j=1,...,4, 1 <p=< 4,

|x} < ce

where 3” stands for the partial derivative of order |p|. From (2.6) it follows
Ugex = Upy — aexx - V- (uxx’ ex)uxx — Nylhyy — VI3 ° (uxx’ Hx)ex - ﬂzoxxs
from this identity we find that
lttgeellZ20,0) < cat® in [0, &[.

Similarly we have

llﬁmlliz(o,m = C4ﬂ2; ”9m"§,2(o,L) = C4ﬂ2 in [0, 4.
Finally, we get

"Q\'t”%z(o,L) < 3eu in [0, t5f; 16, (x, D <ecsVe in[0,L]1X[0,5]. (2.39)

LemMa 2.3. Let us suppose that the initial data satisfies conditions (2.1), (2.2), (2.3), (2.4),

(2.5), (2.27) and (2.28), then there exist positive constants C; for which the following
inequalities hold

L 1d L
j g't Uxxdx = E a_t j ﬂlIUxxlz dx + Cl(‘/—g_ + 6)911([1 U, '//) (2'40)
0 0

L L
S <x - —)SF, U, dx
0 2

< Cy(Ve + O)M(t; U, w)

+ 221000, 0 + UL, O 2.41)
L
j G v, dx = Cy(8 + Ve)I(t; U, w). 2.42)
0

Proof. First we consider the case (U, ) = (u, ) and § = F. From (2.8) it follows that

L L L
S 3:t Uxx dx = j [m uxx]tuxx dx + j\ ['72 gx]tuxx dx.
(1] 0 0

On the other hand

£ 2 1 d r 2
V”l . (uxt, ot)luxxl dx + - = ”lluxx' dx

0

L
\L [”qux]tuxxdx = j 2 dr o

L

1
2
L L
jo ['72 ex]tuxx dx = j V’72 : (uxt’ 0t)oxuxxdx + j n> oxtuxx dx
0 0
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We then have from (2.33), (2.36) and (2.38)

| =

L L
d
j (7, 1), 0ty dx < €, VVEIN(Z; 1, 0) + % S 71t |? dx.
0 0

L
S (7,60, 4 dx < ¢, v(VE + SIMUL; u, 0),
0

so from the last three inequalities relation (2.40) follows. Let us consider the case
U, v) = (4, 6,) and § = F,. So we have

L L
j F, Uxxdx = § Fttuxxt dx.
0 0
Using the identities
Fy = Myt + 201 Bxe + Nythgge + M2, 00, + 2013 (O + 1150, (2.43)
”l,tt = (uxt9 et)gcn,(uxts ’t)f + V'Il ) (uxtn 0!1)9 ']1,1 = V”l * (uxta 0,), (2-44)

we get that inequality (2.40) also holds in this case for an appropriate constant C;.
To prove (2.41) we only consider the case (U, v, F) = (4,, 0,, F;). The other is simpler.

So
L L L L
S <x - —)EF, U,dx = i (x - —->F,, Uy, dx,

using (2.34), (2.36), (2.37) we then have from (2.43) and (2.44) that

L L L L
‘i <x - 5>Ftt Uy dx < G0 + Ve)m(t; u,, 6,) — S ( - 5)771 Ussty Uy X
0 0

Integrating by parts and using (2.36) we obtain

L L L L )
_E ( - E>”luxxtt uxttdx = g <X - '2’> V”l - (uxx’ ex)luxttl dx
0 0

Lo
+ T”Uxt(os HI* + UL, 1%,

so (2.41) follows. Finally, to prove (2.42) we only prove for (U, v) = (4, 6,)and F = F,,
G = G,. Then we have

L L
S Sy, dx = S G0y sx,
0 0

where
G= u’lexx - quxt + W3uxx + de»ox'
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We will prove that

L
j (W10} 0, dx < Cy(0 + ‘[E)Em'(t; U, 6).
0
The other terms are proved in a similar way.

L L
g {W105} 0 dx = g (Usss Ot et)‘,}ch(uxt s Oxrs 0,)76,,0, dx
0

0

L L
+ S VW, (Users Ocres 01)0, 0, dx + g W, 651t 6, dx
o

0

L
+ 2 § VW, (Uers Oxes 01)0yxs O dx
o

L

= C'V%m(t; ug, 6, + S W1 et O dx.
0

Since

L L L
j W1 05006, dx = “E VW, * (tyy, Oy 6,)0y 0, dx — S u’lloxnlzdx
0 0

0
< Ov(Ve + O)MUt; u,, 6,).

Therefore our result follows. 1

Lemma 2.4. Under the same hypothesis as in Lemma 2.3, there exists positive constants C
for which the following inequality holds

BLO

d
R U p) = 86 UY) + —5-4—{|Ux:(0, O + |Un(L, )%

+ C(6 + Ve)In(; U, w),

where

1 10k\ (L 10k (£
St U ) = E(Kz + T) E M| Uxl? dx — o j FU, dx
0 0

L K2 L
—axzj ffwcdx+—2—S |F]2 dx.
0 0

Proof. Using Lemma 2.3 and recalling the definition of R our conclusion follows.

THEOREM 2.1. Let us take S, N, Q in C? satisfying (2.1)-(2.3) and with the same hypotheses
as in Lemma 2.3, then there exists only one global solution of system (1.1)-(1.4) which
decays exponentially as time goes to infinity.
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Proof. We will suppose that S, N, Q are in C* and the initial data belongs to H*(0, L)
satisfying the compatibility condition as in Theorem 5.1 of [1]. Our result will follow
using the well known density arguments. From Lemmas 2.3 and 2.4 we get

iK(t' Uy < 9—8(t° U, ) ~ min k-z E me; U, w) (2.45)
dt ’ b4 W -— dt E] 9 w Zﬂ k) 16 y b W 9 .
provided ¢ and & are small enough. Let us denote by

LU, w) =Kt U, w) — 8¢ U, p).
From (2.18) we get

3
29Ut U, v) = £(5 U, ) = 56,906 U, ), (2.46)
provided £ and J are small enough. Inequalities (2.45) and (2.46) imply
d
d—t£(t; U ) = —c, U U, v)
for some positive constant ¢, which together with (2.46) yields
Co 30 —t
Em(t; Uw=LBUyy=LO;U,p)e™ =< —2—&71(0; Uwe™, (.47

for a positive constant y. On the other hand, for (2.45) and recalling the definition of
£(¢t; U, w) we obtain
t

LG U w) + AS M(z; U, w)dr < £0; U, y). (2.48)
0

Where A = min{k?/28, §/16}. From (2.48), we get
2

Co

t L 2 3
j j Wl + Wyt dxdr = —£0; U, p) < —&m(o; U, . (2.49)
0Jo Co Co

From (2.29), (2.46), (2.48) and (2.49) we easily obtain

9,0) < gﬁaz(e"" +1), 9@®< i‘luz(e-w + 1),
Co Co

s0, letting ¢ — ¢, we get

3 6

9y(ty) < L2 + 1) < —L g2, (2.50)
Co Co

gyt < S e 1 1y < 12 @2.51)
Co Co

Since t, = ¢, or t; = t, inequality (2.50) or (2.51) is contradictory to the maximility of ¢,
or t, respectively. Then it follows that #, = T,, = o therefore the solution must be global
and inequality (2.47) holds for any ¢ > 0, thus the exponential decay follows. The proof
is now complete. H
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