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1. INTRODUCTION 

It is well known that in the absence of dissipation, smooth solution of nonlinear elastic 
materials develop singularities in finite time, while for thermoelastic materials the 
conduction of the heat equation provides dissipation that competes with the destabilizing 
effect of nonlinearity in the elastic response. The level of subtlety of this dissipation 
depends on the boundary condition that the displacement and the thermal difference 
are supporting. Slemrod [I] showed the global existence of smooth solution for small data 
when the boundary is either traction-free and at a constant temperature or rigidly clamped 
and thermally insulated. A similar result was obtained by Zheng [2]. These boundary 
conditions get a simpler damping mechanism because they imply additional boundary 
conditions for u and the thermal difference 8, that is, if an end is clamped then the 
displacement u and the thermal difference 0 satisfy u,, = 0 and 0,, = 0 there respectively. 
So we can make additional partial integrations which led to the desire a priori L2-estimate. 

In case of Dirichlet boundary condition for which the boundary is rigidly clamped and 
held at a constant temperature we lost the value of u,, in that point and instead of it we 
get u, + of& = 0. So this case leads ill behaved boundary terms and it is not possible to 
apply directly the multiplicative techniques to secure global estimate. Recently Racke and 
Shibata [3] proved Global existence of a smooth solution for these boundary conditions. 
To do this the authors showed the algebraic decay of the energy for the linear equation by 
studying the spectral properties of the stationary linearized problem. The rate of decay 
depends on higher regularity of the initial data and therefore the global existence result 
depends on the initial data to be small in Hm(O, L) with m large. One of the authors of this 
paper proved in [4] (see also the work of Kim [5]) that the solution of the linearized 
thermoelastic system decays exponentially as time goes to infinity. This fact allows us to 
get simpler existence result for the corresponding nonlinear equation as was shown in [6] 
for small data (uO, ul) in H3(0, L) x H2(0, L). 

The system in question is written as follows 

Utt - [W,, a, = 09 in IO, L[ X IO, a[ 

(e + tdwo.4, e)i, - ~2(4,e,, a, = 0, in IO, L[ x IO, a[ 

(1.1) 

(1.2) 
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with the initial datas given by 

u(x, 0) = u,(x); 

and boundary conditions 

u,(x, 0) = u,(x); &x, 0) = r%(X) (1.3) 

U(0, t) = U(L, t) = fqo, t) = B(L, t) = 0. (1.4) 

We are denoting by u the displacement, by 8 = T, - r. the thermal difference, where T, 
is the absolute temperature and r. is the reference temperature which we will assume to be 
constant. Finally, by S we will denote the stress tensor of Piola-Kirchoff, Nstands for the 
specific entropy and by Q the heat flux. 

We would like to remark that the dissipation given by the thermal difference is not strong 
enough to prevent development of singularities. The work of Hrusa and Messauodi showed 
that for a special class of nonlinear thermoelastic materials which occupy the whole line, 
there are smooth initial data for which the solution will develop singularities in finite time. 

The main result of this paper is to improve the work in [6] by taking initial data (u. , ul) 
small in H’(0, L) x H’(0, L)-norm. This fact allows us to choose large data (u. , ul) in the 
H3(0, L) x H’(O, L)-norm. The approach we use here is different from others, we explore 
the dissipative properties to construct a Liapunov functional whose derivative is negative 
proportional to itself and we look for estimates of the nonlinear terms in functions of the 
dissipative terms associated to the thermoelastic system. The fact together with the local 
existence result (see [l]) give the estimate we need to get the global existence of smooth 
solutions. 

2. EXISTENCE AND ASYMPTOTIC BEHAVIOUR 

In this section we will assume that the functions S, N, Q are in C4 satisfying the 
following hypotheses 

$(O,O) = 1; 
X 

$ (0,O) # 0; $0, 0) # 0; 
x 

(2.1) 
$$o, 0) > 0; 2 (0, 0,O) = 0; 

x 
$J (0, 0,O) = 0. 

To simplify notations we will introduce 

-$(O, 0) =: a; 
afyae, 

(e + t,)(aN/ae) 
(0, 0,O) = k > 0; g$ (0, 0,O) = p. 

Where the product cq3 > 0. For the initial data we will impose 

Ug E N3(0, L); Ui E N2(0, L); u2 E fP(o, L); e, E ~~(0, L); e, E w3(o, L). (2.2) 

By u2 and 8, we are denoting 

u2 =: ]s(u,, e)]xlr=o (2.3) 

e =. ah-4 Q(ux 9 4, (3, 
1 * ,,,u1,xlt=o + (e + ~,wwae) ,= o 

satisfying the compatibility conditions 

(2.4) 

u. = u1 = u2 = 8, = e, = 0 at x = L, x = 0. (2.5) 
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Let us multiply equation (2.8) by U, and (2.9) by (ar//3)w and summing the product result 
we have 

Assuming regular data, and since U, and v/~ have the same boundary conditions, we get 

-$E#; U, w) = -k; 

To get the above identities we use essentially the fact that U, and vt have the same 
boundary conditions as U and I,U. But this is not the case for U, and wX. It is in this point 
that the typical difficulty for boundary conditions of type Dirichlet-Dirichlet appears. 
Let us see in detail this fact. Multiplying equation (2.8) by - U,,, and (2.9) by -(cx//~)w,, 
and summing up the product result we have 

-$E&; U,ty) = -k; 
s 

L & dx + w,(x, OUAx, 0;:: 
0 

(2.11) 

The derivative of E3 has a pointwise term involving second order derivatives. Which is 
not possible to bound using directly the Sobolev inequalities. To overcome this fact we 
will use the following lemma. 

LEMMA 2.1. Let us take (uo, vi ,f) E Hi(O, L) fJ H2(0, L) x &(O, L) x H’(0, T; L*(O, L)) 
and let v be the solution of 

4r - UXX = .f(X, 0 in IO, L[ x IO, T[ 

4% 0) = uow ; w, 0) = Ul(x) in IO, L[ (2.12) 

u(0, t) = u(L, t) = 0 on IO, T[ 

then the following identity holds 

Proof. Multiplying (2.12) by (x - L/2)4 and integrating over [0, L] we have 
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(2.14) 

Since u,(O, t) = o,(L, t) = 0, direct calculations yields 

On the other hand 

From (2.13) to (2.15) our result follows. ??

Motivated in Lemma 2.1 we introduce the following functional 

Using equation (2.8) and Lemma 2.1 we easily get 

(2.16) 

Finally, we define the following functions 

L 

E,(t) = s L 

4*ww Es(f) = 
s 

v;t~xh 
0 0 

c L 

w; U,v) = WA2 + Wt12 + Wxx12 + M,12 + Iv/l2 + lvr12 + lv/x121~ 
Jo 

wt; u, WI = Lwxx12 + L12 + Iwx12 + lvxt12 + lvxx12w. 5 0 
We will prove in the following lemma that there exists a linear combination 

functions Ei (i = 1, . . . , 6), we will denote by K, that is 

K(t; u, v) = /clE, + /c2E2 + FE3 + :E4 + Es + ;E6, 

of the 

which is a Liapunov functional. This is shown more precisely in the following lemma. 
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LEMMA 2.2. There exist positive constants q (i = 1,2) and co, cl such that the derivative 
of K(t; U, I& defined above satisfies 

where 

- $J..t(O, a2 + IWL o121 + w ; u, WI, (2.17) 

and 

Proof. Using (2.8)-(2.9) we obtain that 

(2.18) 

(2.19) 

similarly, using (2.8) we get 

$w = s L Iux,12dx - 
s 
L luxx12dx + a 

0 0 s 
L u,,y/,dx - 

s 
Lsuxxdx. (2.20) 

0 0 

From (2.19) and (2.20) we easily obtain 

$ I E,(t) + f&(1) 1 s = - f LIuxt12dy-~ jLluxx12dx+~jLuxx~sdx 
0 0 0 

On the other hand using (2.8) it is not difficult to see that 

s 
L Iu,,IZdX 5 3 L[IuXX12 + cX2(y/,12 + 1512Jdx. 
0 j 0 

(2.21) 
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From (2.16) we get 

Relation (2.21) together with (2.22) yields 

(2.22) 

(2.23) 

Note that 

and 

Substitution of (2.24) and (2.25) into (2.23) yields 

s 
=wx,12 + IG12)~ + c2 
0 

(2.26) 
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From the Gagliardo-Nirenberg inequality we get 

for a positive constant c3. Using (2.11) we get 

Our result follows from (2.26) and the last inequality for ~~ and ~~ satisfying 

K~~/-(++c~) +t and K,=%+%. 

Finally, for K~ and ICY big enough inequality (2.18) holds. The proof is now complete. ??

To get global solution we will suppose that the initial data satisfy 

II~oII~2~o,L~ + I141~~~o,L~ + ll~oll~2~o,L~ + I1411~~~o,L~ + ll~211ii2~o,L~ < 2. (2.27) 

Since u, , u2 and 0r satisfy condition (2.2), then there exist a positive constant p such that 

lI~1,&~0,L) + Il~1,&~0.L) + ll~2,xll2~(o,L) < P2, (2.28) 

where E is small (C 1) and p is large (> 1). From (2.27) and (2.28) we have 

x(0, U, e) < c2; ~(0, ~,,a c ~2. (2.29) 

Using the continuity of the solution, it follows 

3t(t,u,e) + F 

t L 

s.T 
fje,,12 + ~ext~2~ dxdr I cc2 vt E [O, toi, (2.30) 

0 0 

wt, u,, 4) + z 
f L 

ss 
0W + 14,,12) dxds < ~1.42 vt E P-x tar, (2.31) 

0 0 

for some to > 0, to I T, , c = 6cJco 2 1, where co, cl are defined by inequality (2.18), 
A = min(k2/2/3, /?/16). Let us define the functions 

s,(t) = m(t; 24, e) + z 
t L 

ss 
ile,,l2 + le,,l7 dwd7; 

0 0 

s,(t) = m(t; u,, et) + z (le,,,l2 + lextt12~ dh. 
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In this conditions there exists t,, for which we have 

6~1 2 
El&) s -& , 

6~1 2 

CO 
92(t) 5 -P 

CO 

vt E [O, tO[. (2.32) 

Denoting by 

r1 = sup 
I 

r1 > 0; Cl,(t) 5 %s2 in [0, ri[ 
1 

, 

t2 = sup 72 > 0; g2(t) 5 2p2 in [o, 70[ , 

and by t3 =: min(t,, t2). We only have two cases: (i) t3 = T,, (ii) t3 < T,. The first one 
implies that the solution is bounded and therefore T, = +a. It remains only to consider 
the case (ii), which will be studied in our final theorem. 

From Sobolev’s embedding theorem and inequality (2.32) we get 

lw, 01 5 Co&, lm, 01 5 Co& V(x, 0 E to, 4 x to, tjt. (2.33) 

It is not difficult to see that there exists a positive constant cl such that 

In fact, we have 

P*(x, 01 5 c&9 V(X, 0 E [O, Ll x to, M. (2.34) 

For E < 1 and p > 1. From the Gagliardo-Nirenberg inequality and (2.35) we get (2.34). 
Therefore, for 6 > 0 there exists E > 0 for which (2.32), (2.33) implies 

l?ril < 6, i = 1,2; IM$l<S, j=l,..., 4. (2.36) 

From the Gagliardo-Nirenberg inequality and (2.32) we easily deduce that 

l%(X, 01 s c2G I~&9 01 5 c2G lw, t)l I ~26 

(2.37) 

V(X, 0 o 10, Ll x [O, a, 

for some c2 > 0. Finally, using equation (2.6), (2.7) and inequalities (2.36), (2.37), we 
conclude that there exists C~ > 0 satisfying 

le,,(x, 01 s c,& Iu,(x, t)] I c2fi in [0, L] X [0, tJ. (2.38) 
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Let us denote by 

V = ,~llle[IdPfli(X)Iy ld'Ff$(X)l; i = 1,2;j = 1,...,4, 1 Ip 541, 

where #’ stands for the partial derivative of order IpI. From (2.6) it follows 

u xxx = uttx - aen - ml - (u,,, exkx - tll uxxx - b2 - (4,, e,)e, - t12exx, 

from this identity we find that 

II~xxxll~~~o,~~ 5 w2 in [OS M. 
Similarly we have 

II ~xxxllZ~~o,L~ 5 ~2; ll~xxtl12~~o,L~ 5 w2 in PX M. 

Finally, we get 

le,,(x, t)12 I c5fi in [0, L] x [0, ts[. (2.39) 

LEMMA 2.3. Let us suppose that the initial data satisfies conditions (2.1), (2.2), (2.3), (2.4), 
(2.5), (2.27) and (2.28), then there exist positive constants Ci for which the following 
inequalities hold 

s 

L 

tl#-4x12 du + C,(fi + 4nt(~; u, WI. (2.40) 
0 

+ 7 w.*r(O9 a2 + w&9 m (2.41) 

s L 

$--jrlytdX 5 C,(6 + 4~pz(t; v, ly). 
0 

(2.42) 

Proof. First we consider the case (U, V) = (u, 0) and 5 = F. From (2.8) it follows that 

L L L 
5,u,,dX = 

s 
hl %xlt~xx dx + 

s 
h2 exit 24, dw. 

0 0 0 

On the other hand 
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We then have from (2.33), (2.36) and (2.38) 

s L 

[VI u,,],u** dx I Cl vmK(t; u, e) + ; it s L 

ttlld dx. 
0 

o 

so from the last three inequalities relation (2.40) follows. Let us consider the case 
(V, w) = (u,, 0,) and 5 = Ft. So we have 

Using the identities 
s L L 

s,u,,dx = 4, uxxt dx. 
0 0 

4, = rl 1,ttU** + 2rl1,tuxxt + 53 kt + t12d4 + 2tf2,rext + t/2 extt (2.43) 

tl 1,tt - - (uxt, etw,,(hty It)7 + wl . (Uxtt9 etth ‘11,t = w . (uxt, et), (2.44) 

we get that inequality (2.40) also holds in this case for an appropriate constant Ci. 
To prove (2.41) we only consider the case (V, w, 5) = (u,, et, Ft). The other is simpler. 
so 

using (2.34), (2.36), (2.37) we then have from (2.43) and (2.44) that 

- F,, U;,, dx I c2(6 + fi)m(t; u,, et) - 

Integrating by parts and using (2.36) we obtain 

L L 
- SC > 

L 

x - - tl1uxxttuxtt~ 5 
0 2 s( > 

x - g vtl, . oh, 8,~1~,,,I~~ 
0 

+ y Wxt(O, a2 + IGW, 012)9 

so (2.41) follows. Finally, to prove (2.42) we only prove for (V, v) = (u,, 0,) and 5 = Ft , 
6 = G,. Then we have 

s 

L 

s 

L 

GtWt dx = Gt 4, S-G 
0 0 

where 

G = W,o,, - W,U,, + W3Uxx + W4&. 
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We will prove that 

s 

L 

tw,e,,),,et,~ 5 w + ww; 4% et). 
0 

The other terms are proved in a similar way. 

+ 

+ 2 
3 0 

A rL 

Since 

s L L 

w,e,,,e,,dx = - 
s 
L VW, . oh,, e,,, e,)e,,,e,,dw - 

s 
w,le,,l2~ 

0 0 0 

I CV& + sy3qt; u,, et). 

Therefore our result follows. w 

LEMMA 2.4. Under the same hypothesis as in Lemma 2.3, there exists positive constants C 
for which the following inequality holds 

R(t; u, ly) I $ qt; u l/l) + !g tl UXAO, a2 + IG(L o121 

+ C(6 + 4G)m(t; u, ly), 

s 
L 

- ct!K2 L p/3x. 
0 s 0 

Proof. Using Lemma 2.3 and recalling the definition of R our conclusion follows. 

THEOREM 2.1. Let us take S, IV, Q in C’ satisfying (2.1)-(2.3) and with the same hypotheses 
as in Lemma 2.3, then there exists only one global solution of system (1 .l)-(1.4) which 
decays exponentially as time goes to infinity. 
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Proof. We will suppose that S, N, Q are in C4 and the initial data belongs to H4(0, L) 
satisfying the compatibility condition as in Theorem 5.1 of [l]. Our result will follow 
using the well known density arguments. From Lemmas 2.3 and 2.4 we get 

I $ S(t; U, v) - min 
’ 

(2.45) 

provided E and 6 are small enough. Let us denote by 

$0; u, w) = KG; v, w) - S(C; u, w). 
From (2.18) we get 

2 3qt; u, v) I Jqt; u, I//) I ; Cl x(t; u, w), (2.46) 

provided E and 6 are small enough. Inequalities (2.45) and (2.46) imply 

for some positive constant c, which together with (2.46) yields 

z%(t; U, t& I C(t; U, ty) 5 C(0; U, v)e+ 5 2%(0; U, v)e+, (2.47) 

for a positive constant y. On the other hand, for (2.45) and recalling the definition of 
C(t; U, u/) we obtain 

.A?@; U, v) + 1 
s 

t 9lZ(t; U, w) dr I .e(O; U, I&. (2.48) 
0 

Where A = min(k2/2/3, /I/16]. From (2.48), we get 

5 ’ ss L lcvxx12 + tvxt12bd 7 s z C(0; u, u/) I 2 X(0; u, I&. (2.49) 
co 00 

From (2.29), (2.46), (2.48) and (2.49) we easily obtain 

cl,(t) c ?e"(e+ + l), 

so, letting t + t, we get 

g,(1) < $P”(e+ + l), 

9,(t,) 5 --E 3c, 2 (e 6~1 2 
co 

-yt3 + 1) < -&& , 

9,(t,) 5 $p’(e --yf3 + l) < 7 6~1 2 * 
(2.5 1) 

Since t, = t, or t3 = t2 inequality (2.50) or (2.51) is contradictory to the maximility of t1 
or t2 respectively. Then it follows that t2 = T, = 00 therefore the solution must be global 
and inequality (2.47) holds for any t > 0, thus the exponential decay follows. The proof 
is now complete. ??
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