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Abstract

In this paper, the flow dynamics of gravity currents on a horizontal plane is investigated from a theoretical point of view by seeking similarity

solutions. The current is generated by unleashing a varying volume of heavy fluid within an ambient fluid of much lower density. Unlike earlier

investigators, we assume that the ambient fluid exerts no significant resisting action on the current, and therefore the flow depth is expected to

drop to zero at the front in the absence of friction. In this context, the shallow-water equations are highly appropriate for computing the mean

velocity and flow depth of the current. The boundary condition imposed at the front leads to technical mathematical difficulties. Indeed, unlike in

the Boussinesq case, no regular solution to the shallow-water equations satisfies the downstream condition, but when the flow is supercritical at

the channel inlet, it is possible to construct a piecewise solution by patching a regular solution to an exceptional solution, which represents the

head behavior. To better understand this result and make sure that the result is physically relevant, we consider the Navier–Stokes equations within

the high-Reynolds-number limit. Approximate similarity solutions can be worked out, which support our earlier analysis on the shallow-water

equations. While the flow body is self-similar and weakly rotational, the head is not self-similar, but tends toward a self-similarity shape at long

times. It is characterized by a strong vorticity, a straight free surface, and a nonuniform velocity profile, which becomes flatter and flatter with

time.

c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Lubrication theory has been extensively used to model

industrial and natural flows such as coating films [49,64],

water waves [60], atmospheric flows [59], snow avalanches,

and debris flows [3,37]. Within this theory, the equations of

motion take the form of a set of hyperbolic partial differential

equations, which govern the spatial and temporal variations in

the flow depth and mean velocities. These governing equations

are usually derived by taking the flow depth average of the

local mass and momentum balance equations and by assuming

that the streamwise length scale outweighs the vertical scale.

Typical examples of governing equations derived within this

framework include the shallow-water equations [56], the
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nonlinear diffusion equation for creeping Newtonian and

non-Newtonian flows [5,34,41,48,50], and the Savage–Hutter

equations for fast-flowing granular materials [57].

A particularity of many free-surface flows is that they have

a front, where one would ideally like to impose a vanishing

flow depth. Fig. 1(a) shows a typical example of a gravity

current with a front. The existence of a front implies a number

of difficulties from the physical and mathematical points of

view, which have led to several paradoxes. For instance, for

lubrication films, taking into account surface tension in the

governing equations makes the stress distribution singular at the

front point; furthermore, the no-slip condition imposed along

solid boundaries conflicts with the need for the fluid edge to

advance. To avoid these issues, a more refined description of

the physical processes involved in the contact-line problem may

be needed, but has the disadvantage of significantly increasing

the level of complexity. Instead, computational tricks are often

preferred. A classic method is to assume that the plane along
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Fig. 1. (a) Front of a gravity current produced by unleashing a brine solution

in a water tank. (b) Idealization of a gravity current. Point A lies within the

current of heavy fluid, while point B is located along the streamline formed

by the interface between the current and the surrounding fluid, in the close

neighborhood of A.

which the fluid spreads out is pre-wetted by a thin layer of

fluid so that the flow depth drops not to zero at the front, but

to a small value ε. Yet even with this change in the boundary

condition at the front, there are severe technical mathematical

difficulties that arise when ε → 0 and make the solution

nonphysical [61].

Another example is provided by gravity currents such as

the one shown in Fig. 1(a). A gravity current is produced by

releasing fluid within an ambient fluid of lower density ρa . At

sufficiently high Reynolds numbers, the viscous dissipation is

negligible and the current dynamics is controlled by the balance

between buoyancy and inertia. For this case, van Kármán [62]

and Benjamin [7] showed that a steady current of uniform flow

depth h is preceded by a leading edge, the velocity of which is

constant and given by

u
√

g′h
= Fr, (1)

where Fr is the Froude number, g′ = 1ρ/ρa is the

reduced gravity, and 1ρ is the density contrast between the

current and the ambient fluid. This condition was derived by

van Kármán [62] by considering an inviscid gravity current

moving at constant velocity in a stagnant, infinitely deep

medium of density ρa [see Fig. 1(b)]: in a coordinate system

moving at the same velocity as the head, the surrounding fluid

arrives from the right at velocity −u. Van Kármán applied

the Bernoulli equation to a streamline OB and an equilibrium

condition at point A. Note that the streamline and the interface

coincide in a steady state. Both conditions can also be applied to

the stagnation point O, where the velocity vanishes. We refer to

PA, PB, and PO as the dynamic pressures at point A, B, and O,

respectively. Van Kármán obtained the relations PB +ρau2/2+
ρagh = PO and PA + ρgh = PO. Then, using the pressure

equilibrium condition at the interface PA = PB, he derived

Eq. (1). His derivation was not without criticism [e.g., see

[39] for an overview], but the result was widely recognized as

valid.

Since the front velocity can also be defined as the time

derivative of the front position u = ẋ f , Eq. (1) is equivalent

to imposing a finite flow depth at the front, which adjusts to the

front velocity

h =
ẋ2

f

g′Fr2
. (2)

This result, primarily derived for steady uniform currents, was

then applied to all flow conditions by considering that Eq. (1)

provides the boundary condition at the front. There are still

avid debates on the relevance and physical meaning of a

Benjamin-like boundary condition (1), especially when it is

applied to time-dependent flows [39,44]. Eq. (1) means that to

a large extent, the current dynamics is controlled by the leading

edge whatever the flow regime [33,35]. With a Benjamin-like

relation as the downstream boundary condition, the shallow-

water equations exhibit a wide class of similarity solutions

[21,25,32,35,53]. There are, however, very few experimental

investigations that quantitatively checked the reliability of these

solutions [44,45]. A major source of difficulties stems from

the complexity of the flow in real gravity currents at high

Reynolds numbers. As shown in Fig. 1 in the case of a

laboratory experiment, the flow depth profile is irregular and

unsteady because of the intense mixing, density stratification,

and free-surface instabilities occurring within the leading edge.

By systematically comparing the theoretical and experimental

flow depth profiles, Marino et al. [44] concluded that for a

gravity current in a similarity phase, the Froude number in

Eq. (1) is not constant, but varies with the head Reynolds

number.

The objective of this paper is to examine the existence and

features of similarity solutions for gravity currents, which are

in the high-Reynolds-number limit and characterized by large

density differences with the ambient fluid. This flow regime is

often referred to as the non-Boussinesq regime and shallow-

water equations can be used to describe it. The previous

arguments supporting the idea of a finite flow depth at the

front no longer hold for a non-Boussinesq regime since the

resisting effect of the ambient fluid becomes negligible. A direct

consequence is that the downstream boundary condition is now

given by

h = 0. (3)

A number of natural and non-natural flows such as flash floods

induced by a dam break [14,28,52], snow avalanches [2],

and pyroclastic clouds [17] provide typical examples. In the

laboratory, non-Boussinesq currents are usually generated by

suddenly releasing a homogeneous fluid of low viscosity or

a suspension of particles in the air. Experiments of this kind

remain difficult to carry out and require very long flumes.

Surprisingly, numerical solutions are also extremely difficult

to compute because of the difficulties induced by the free

surface and front (e.g., front tracking, instabilities, contact line,

mass conversation with some numerical techniques) [16,18].

In this context, seeking analytical solutions is of paramount

importance both for gaining insight into the flow dynamics
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and for testing numerical models. Various solutions have

been worked out using different techniques: the method of

characteristics [14,52,66], the hodograph transformation [13,

20], and self-similar solutions [25,26]. Similarity solutions are

here of particular relevance in the present context since they

embody the inertia–buoyancy balance, which is anticipated

to be the driving mechanism in the flow dynamics when the

influence of the initial conditions becomes negligibly small.

Earlier investigations concentrated on the similarity solutions

for the Boussinesq regime. Gratton and Vigo [25] stated that

the non-Boussinesq boundary condition (3) is retrieved by

making the Froude number Fr tend to infinity in Eq. (2). In a

recent paper [4], however, we have shown that this asymptotic

limit poses severe mathematical difficulties since the only

regular self-similar solution to the shallow-water equation is

the trivial solution h = 0 for the entire domain of flow. An

exceptional solution may, however, be worked out on some

occasions.

In this paper, we further examine this issue by systematically

seeking similarity solutions to the shallow-water equations.

After briefly recalling the physical setting and related equations

of motion in Section 2 and the boundary value problem for

Boussinesq and non-Boussinesq currents in Section 3, we

address the specific problem of the existence of similarity

solutions in Section 4. In these sections, emphasis is given to

the understanding of the solution behavior; the mathematical

details are thus deferred to appendices. We shall see that

similarity solutions exist solely when the current is abundantly

supplied in fluid by a source and the fluid flows sufficiently fast

for the flow body to be in a supercritical regime (i.e., Froude

number in excess of unity). These existence conditions contrast

substantially with those obtained by Gratton and Vigo [25] for

the Boussinesq regime. In order to elucidate this point, we will

refine our analysis by working out similarity solutions to the

Navier–Stokes equations in the high-Reynolds-number limit.

Because of the curvature of the free surface, we shall consider

the body and the head separately. In Section 5, we shall see

that for the body of supercritical flows, similarity solutions

can be constructed, which are in fairly good agreement with

those obtained for the shallow-water equations. Unfortunately,

these similarity solutions are not valid within the leading edge

and this region is strongly resistant to similarity analysis.

Approximate analytical methods will be used in Section 6 to

derive the salient features. By expanding the velocity into a

time series, we will notably show that at long times, the leading

edge is characterized by a straight free surface and a significant

source of vorticity.

2. Physical setting and governing equations

2.1. Flow geometry

Let us consider a shallow layer of fluid flowing over a

rigid horizontal impermeable plane. The fluid is incompressible

and homogeneous (i.e., no density stratification); its density is

denoted by ρ. Its dynamic viscosity is denoted by µ. A two-

dimensional flow regime is assumed, namely any cross-stream

variation is neglected. The depth of the layer is given by h(x, t)

(see Fig. 2). The flow is generated by a source of fluid: at t = 0,

the sluice gate at the inlet is raised with a given aperture rate

h0(t), specified below. Ahead of the front, there is a dry bed.

The surrounding fluid (assumed to be air) is taken to be inviscid

and of low density, and therefore dynamically passive. Surface

tension is neglected.

2.2. Flow depth averaged equations

The local governing equations are given by the shallow-

water equations, the dimensionless form of which is [60,66]

∂h

∂t
+ ∂hū

∂x
= 0,

∂hū

∂t
+ ∂hu2

∂x
+ h

∂h

∂x
= 0,

where the bar refers to flow depth averaged values: ū(x, t) =
h−1

∫ h

0 u(x, y)dy, where u(x, y, t) denotes the horizontal

velocity field. The dimensionless velocity, flow depth, distance,

and time were defined as ū = û/U∗, h = ĥ/H∗, x =
x̂/L∗, and t = t̂U∗/L∗, respectively. In these equations, the

hat refers to dimensional variables, whereas the star refers to

typical scales: H∗ and L∗ are the vertical and horizontal length

scales; U∗ =
√

gH∗ is the velocity scale. By introducing

the Boussinesq coefficient γ , we can relate the mean square

velocity to the square of the mean velocity: u2 = γ ū2. The

Boussinesq coefficient reflects the shear in the vertical profile

of the horizontal fluid velocity. When γ = 1, there is no shear

in the vertical profile of the streamwise velocity, whereas γ > 1

means that there is shear. Assuming that γ is a known free

parameter, we obtain a closed set of equations for h and ū:

∂h

∂t
+ ∂hū

∂x
= 0, (4)

∂ ū

∂t
+ (2γ − 1)ū

∂ ū

∂x
+ ū2 ∂γ

∂x
= −∂h

∂x

(

1 + ū2

h
(γ − 1)

)

. (5)

When γ is set equal to unity in the momentum balance

equation (5), we retrieve the usual form of the shallow-water

equations [60]. When γ is constant and in excess of unity,

the convective acceleration term is weighted by the shape

factor 2γ − 1, while a Chézy-like term affects the pressure

gradient.

2.3. Boundary conditions

At the source x = 0, the boundary conditions are given by a

flux condition in the form

ūh = n Atn−1, (6)

with n a prescribed coefficient and A a constant, and a condition

on the sluice-gate aperture

h = h0(t) = βtm, (7)

where m = 2
3 (n − 1) and β is another constant. According to

Gratton and Vigo [25], n must lie within the range 0 ≤ n ≤ 4;
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Fig. 2. The configuration of the flow.

this condition on n is needed for the shallowness assumption

to be consistent. Note that the boundary condition (6)

is equivalent to imposing the volume growth rate at the source:

V =
∫ x f

0 h(x, t)dx = Atn , and a constant Froude number

Fr0 = ū√
h

= α, (8)

where α is a constant satisfying αβ3/2 = n A.

The other boundary conditions are prescribed at the front.

For a gravity current in a non-Boussinesq regime, the front

position x f is the point where the flow depth drops to zero:

h f (t) = h(x f , t) = 0. (9)

Moreover, the front velocity is

ū(x f ) = ẋ f , (10)

where the dot denotes the time derivative.

2.4. Jump conditions

The solutions to the system (4) and (5) may admit

discontinuities (called shock or hydraulic jumps in the

hydraulic literature). The flows either side of a discontinuity

are connected by jump conditions, which express conservation

of mass and momentum across the moving discontinuity.

Denoting the shock speed by s, we can write these jump

conditions associated with the conservative form of Eqs. (4) and

(5) as follows [66]:

[[hū]] = s[[h]], (11)

[[γ hū2 + h2/2]] = s[[hū]], (12)

where the [[·]] denotes the difference upstream and downstream

of the shock.

3. Similarity solutions for gravity currents

3.1. Similarity variables and functions

To gain insight into the behavior of solutions to the shallow-

water equations, a classic approach is to seek similarity

solutions. Ritter [52] worked out a similarity solution for the

so-called dam-break problem, where an infinite volume of fluid

is suddenly released on a smooth horizontal plane. Grundy and

Rottman [27] showed that the shallow-water equations admit

stable similarity solutions and used the phase-plane formalism

to construct solutions that are more general than Ritter’s

solution. Gratton and Vigo [25] elaborated on this method to

take shock occurrence and upstream boundary conditions into

account. Following these authors, we impose

ū = δξ tδ−1V (ξ), (13)

h = δ2ξ2t2(δ−1)Z(ξ), (14)

with ξ = x/tδ the similarity variable. The rationale for these

expressions is outlined in Appendix A. The boundary condition

at the source (6) implies that the parameter δ is related to the

volume-growth-rate exponent n

δ = 2 + n

3
.

Note that for δ > 1, the front (ξ f = ξ f tδ) accelerates, whereas

it decelerates for δ < 1. The particular case δ = 1 corresponds

to a constant inflow and the corresponding solution is usually

referred to as the dam-break solution since it coincides with the

solution derived by Ritter [52].

We substitute the forms (13) and (14) into the governing

equations (4) and (5) to end up with a single first-order ordinary

differential equation

dZ

dV
= F(V, Z)

G(V, Z)
, (15)

where F(V, Z) = −Z(2Zδ + V (−2V δγ + 4γ + 3δ − 3)− 2)

and G(V, Z) = Z(2 − (V + 2)δ) + V (V (2γ + ((V − 4)γ +
3)δ − 3)+ 1). The full derivation of this equation is recalled in

Appendix A.

3.2. Boussinesq regimes

The early papers were devoted to planar inviscid Boussinesq

gravity currents, i.e., currents for which the Reynolds number

is sufficiently high for the viscous dissipation to be negligible,

while the resistance action of the ambient fluid implies a

Benjamin-like condition

Z = Z f and V = 1, (16)

at the front (ξ = ξ f ) [25–27]. These conditions have been

derived from Eqs. (9) and (10), the only difference being that

now at the front, the flow depth is finite (Z = Z f > 0) and

the corresponding Froude number Fr f = V/
√

Z = 1/
√

Z f

remains constant.

In this case, Gratton and Vigo [25] demonstrated the

existence of similarity solutions for a wide range of Z f . For

Boussinesq gravity currents, the main issue lies in the proper

determination of the front depth [44]. The similarity solution

may admit discontinuities because near the source, the flow can

be either supercritical (Fr0 > 1) or subcritical (Fr0 < 1), while

close to the front, the flow is subcritical or transcritical.
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Fig. 3. Integral paths (solid lines) in the close neighborhood of the front point P.

The thick solid line represents the separatrix SAB of equation Z = 5/12+8(V −
5/3)/7+843(V −5/3)2/1372+6966(V −5/3)3/420 175+ O(V 3). The thick

dashed line represent the special solution Z = (9 − 8γ )V 2/4. Computations

made for n = 5/2 and γ = 1.05.

3.3. Non-Boussinesq regimes

The case of non-Boussinesq gravity currents has received far

less attention. When a current is in a non-Boussinesq regime

and at high Reynolds numbers, the density mismatch between

the current and the ambient fluid is so weak that the resisting

effect of the ambient fluid becomes negligible and one expects

the Benjamin-like condition (16) at the front to no longer hold

and to require replacing with

Z = 0 and V = 1, (17)

which is the equivalent of Eqs. (9) and (10) in terms of similar-

ity variables. In their analysis, Gratton and Vigo [25] stated that

the non-Boussinesq boundary condition (i.e., vanishing flow

depth at the front) can be retrieved from the Boussinesq case by

making the Froude number at the front tend to infinity. How-

ever, from a purely mathematical point of view, the boundary

value problem remains ill-posed since the only regular simi-

larity solution that vanishes at the front is the trivial solution

(i.e., flow depth zero everywhere).

To understand the situation, let us take a closer look at Fig. 3,

which shows a few integral paths in the phase plane V –Z in

the vicinity of the front. On this figure, point P (V = 1, Z =
0) represents the front. The integral paths were obtained by

numerically integrating Eq. (15) for various initial conditions.

They are represented by thin solid lines oriented with arrows

showing the direction of increasing ξ . No curve passes through

point P, except for the trivial solution Z = 0. Also on this figure,

we reported two thick (solid and dashed) lines, which represent

special solutions. These curves intersect at point Aγ , which is

a singular point (node); we will return to these special curves

later on.

More recently, Ruo and Chen [54] suggested that the

boundary condition at the front for non-Boussinesq currents is

a part of the problem to be solved, but they were able to derive

this condition solely for constant-inflow currents. Montgomery

and Moodie [47] modified the governing equations to transform

them into an initial value problem, but they did not provide

similarity solutions.

4. Existence of similarity solutions for non-Boussinesq

currents

We want to determine the solution to Eq. (15) for non-

Boussinesq currents, i.e., we consider that the boundary

conditions at the front are given by Eq. (17). The boundary

conditions at the source are given by Eq. (9) for the physical

variables. Translated to a form in terms of similarity variables,

these conditions imply that at the source, we have

Z ∝ β

δ2ξ2
and V ∝ α

√
β

δξ
when ξ → 0. (18)

These relations mean that in the phase plane, the source point

S lies at infinity on a parabola of equation Z = (V/α)2, while

the front point P is a fixed point of coordinates (1, 0). Solving

Eq. (15) with these boundary conditions boils down to finding

an integral path or a piecewise integral path (i.e., made up of

pieces borrowed from different paths), which links point S to

point P.

Here, we explain how to construct similarity solutions by

exploiting the topological features of the integral curves close

to the front point.

4.1. Topological features of the phase plane

Here we wish to plot and describe the integral paths, which

represent the solutions to Eq. (15) in the first quadrant (V ≥ 0,

Z ≥ 0). The topological features of these curves are dictated by

three elements: (i) the position and shape of the critical curves

F = 0 and G = 0, (ii) the position and nature of the singular

points, and (iii) the position of the separatrices and exceptional

solutions emanating from the singular points. We will review

these different features to better understand the behavior of the

solution curves in the close neighborhood of the front.

The equation F(V, Z) = 0 gives rise to two curves: the

V -axis (Z = 0) and a parabola called CF of equation

Z = 2γ δV 2 + (−4γ − 3δ + 3)V + 2

2δ
,

which is called the nullcline. When an integral path crosses CF ,

its tangent at the point of intersection is horizontal. Similarly,

the equation G(V, Z) = 0 provides a rational function of V

Z =
V
(

γ δV 2 + (−4δγ + 2γ + 3δ − 3)V + 1
)

(V + 2)δ − 2
,

which defines the curve called CG .

When an integral path crosses CG , its tangent at the point of

intersection is vertical. Fig. 4 reports the curves F = 0 and G =
0 for the particular case δ = 5/2 and γ = 1.05. We have also

reported a third critical curve C I , which is the locus of points

at which V ′(ξ) and Z ′(ξ) diverge; for simplicity, since this

curve is not indispensable to understanding the fundamental

features of the phase plane, we defer its analysis to Appendix B.

Still in Fig. 4, we have drawn two integral paths to show their
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Fig. 4. Position of the critical curves C I (dotted line), CG (dashed line), and

CF (bold line). Point P (front) is represented by a black rectangle. The singular

points Aγ , Bγ , Cγ , Dγ , and O are also represented (labeled dots). The two thin

solid lines represent integral paths. Computations are made for n = 5/2 and

γ = 1.05.

behavior when they cross the critical curves. Note that for

V > 1, the critical curves CF and CG are relatively close,

which implies that in this region of the phase plane, the integral

paths experience significant changes in their shape.

In the phase plane, the singular points are the points at

which G and F vanish simultaneously [6]. The equation

F = G = 0 yields five finite singular points referred to as

O (origin point), Aγ , Bγ , Cγ , and Dγ . Appendix B recalls

the fundamental properties of singular points. Fig. 5 reports

the five singular points for the particular cases δ = 3/2

(accelerating front, n = 5/2) and δ = 5/6 (decelerating

front, n = 1/2). Table 1 summarizes their properties. These

properties change significantly with δ. On the whole, we have to

separately consider the cases δ > 1 (accelerating front), δ < 1

(decelerating front), and δ = 1 (front at constant velocity).

With each singular point, we can associate two specific

curves called separatrices, which can be interpreted as special

or exceptional solutions to Eq. (15) and local symmetry axes

in the phase plane. Given the density of singular points in the

lower left corner of the first quadrant, the singular points can

share the same separatrices and this can be used as a convenient

way to label these curves. For instance, separatrix SAB is the

curve that relates the singular points Aγ and Bγ . In Fig. 5, the

separatrices are plotted as dashed curves. For δ > 1, separatrix

SAB is the asymptotic curve toward which all the curves passing

through the node Aγ tend when approaching this point; the sole

exception is the separatrix SAD (see Appendix B). Separatrix

SAB is also the only nontrivial integral path passing through the

saddle point Bγ [see Fig. 5(a)]. For δ < 1, the roles of Aγ
and Bγ are interchanged: SAB is the asymptotic curve for the

node Bγ , while it is an exceptional solution for the saddle point

Aγ [see Fig. 5(b)]. A similar interpretation can be made for

separatrices SBC and SCD and thus is not repeated here.

Once the critical curves, the singular points, and the

separatrices are established, we can outline the behavior of

solutions within the tip region. Numerically integrating Eq. (15)

with various boundary conditions makes it possible to plot a few

integral paths, which illustrate the rich behavior of solutions in

Fig. 5. Positions of the singular points Aγ , Bγ , Cγ , Dγ , and O (block dots)

and their separatrices (dashed lines). Thin solid lines represent integral paths.

The singular points are presented by labeled dots. Point P (front) is represented

by a black rectangle. Computations made for γ = 1.05 with (a) δ = 3/2 and

(b) δ = 5/6.

the immediate neighborhood of the front. Fig. 6 shows different

phase portraits corresponding to an accelerating front (δ = 3/2

or n = 5/2), a front at constant velocity (δ = 1 or n = 1), and a

decelerating front (δ = 5/6 or n = 1/2) for the particular case

γ = 1.05. For completeness, all the special curves, which have

been discussed earlier (i.e., critical curves and separatrices)

have also been plotted in the phase planes. The same exercise

is repeated in Fig. 7 when the Boussinesq coefficient drops

to unity. On the whole, there are small differences. The most

noticeable feature is the front point P becoming singular when

γ = 1: it coincides with either Bγ or Cγ .

4.2. Construction of physically admissible solutions for non-

Boussinesq regimes

When γ > 1, i.e., when there is shear in the vertical

direction of the horizontal velocity field, point P is a regular

point. Apart from the trivial solution Z = 0, no regular solution

or exceptional solution passes through it. As seen in Fig. 6 for

various δ values, a bundle of paths approach point P, but never

reach it. We conclude that there is no continuous similarity

solution to Eq. (15) when γ > 1.

When γ = 1, i.e., the velocity profile in the vertical is

uniform, point P is singular and coalesces with point B1 for



38 C. Ancey et al. / Physica D 226 (2007) 32–54

Table 1

Positions and properties of the finite singular points of Eq. (15) in the first

quadrant of the phase plane

Singular points Coordinates Case Type

O (0, 0) Node

Aγ

(

2
4γ−3 ,

9−8γ

(4γ−3)2

)

0 < δ ≤ (4γ − 3)/3 Node

(4γ − 3)/3 < δ < 1 Saddle

1 ≤ δ Node

Bγ

(

K+
√

K 2−4γ δ+3

2γ δ , 0

)

0 < δ ≤ 1 Node

δ > 1 Saddle

Cγ

(

K−
√

K 2−4γ δ+3

2γ δ , 0

)

0 < δ < 1 Saddle

δ ≥ 1 Node

Dγ

(

2
3δ ,

9−8γ

9δ2

)

0 < δ < (4γ − 3)/3 Saddle

(4γ − 3)/3 ≤ δ ≤ 1 Node

δ > 1 Saddle

We introduced K = 4δγ − 2γ + 3δ − 3.

δ > 1 or C1 for δ < 1 (see Fig. 7); for δ = 1, the three

points P, B1, and C1 coincide. For both δ > 1 and δ < 1,

point P is a saddle and apart from the trivial solution Z = 0,

the only integral path arriving at P is the separatrix SAB for

δ > 1 [see Fig. 7(a)] or SCD for δ < 1 [see Fig. 7(c)]. This

means that for γ = 1, it is possible to find a solution to Eq. (15)

and this solution is necessarily an exceptional solution, which

cannot be obtained by direct numerical integration techniques

(see Appendix B).

For the separatrices to be full solutions to our boundary

value problem, they must also satisfy the boundary conditions

at the source (18). Dominant-balance analysis shows that when

Z and V tend together toward infinity, the regular integral

paths behave as Z ∝ V 2 and so the exceptional solution SAB

does too. This means that it is possible to find an α value

such that the curve SAB asymptotically patches onto a parabola

of equation Z = (V/α)2, which shows that it satisfies the

boundary conditions (18). In contrast, when Z tends toward

infinity while V comes close to zero, the integral paths behave

as Z ∝ V −1, which implies that the separatrix SCD cannot

satisfy the boundary conditions (18).

Using the properties of the phase plane, it is possible to

construct piecewise solutions. Indeed, whenever an integral

path reaches a node, we can take another integral path, which

means that every piece of integral path between nodes is

a potential local solution to our boundary value problem.

To illustrate this technique, let us start with the Ritter-

like solutions, which can be derived fully analytically (see

Appendix D).

The Ritter-like solutions are the solutions pertaining to

δ = n = 1 (constant-velocity front). As shown in Fig. 8, a

remarkable trait of the phase portrait is that the three critical

curves CF , CG , and C I , together with the two separatrices

SAB and SCD, coincide and form a parabola, the vertex of

which lies at the front point P. This means that any piece of

this curve may be a part of the solution sought since it is the

only nontrivial solution passing through P. Another noticeable

Fig. 6. Phase portraits for γ = 1.05, (a) δ = 3/2 (n = 5/2), (b) δ = 1 (n = 1),

and (c) δ = 5/6 (n = 1/2). For each figure, we took γ = 1.05. The solid line

CF (bold line) represents the locus of points where F = 0, while the curve

CG (dashed line) is given by the equation G(V, Z) = 0. The critical curve C I

(dotted line) is also plotted. The thin lines represent the integral paths, while

the thin dashed lines represent the separatrix of the singular points.

feature is the singular points B1 and C1 coinciding with P.

We have to distinguish flows with supercritical and subcritical

flow conditions at the source. In the former case (α > 1), the

solution curve is made up of two pieces in the phase plane.

Indeed, any integral path emanating from the source point S

goes toward the origin point O without passing through P, but

it intersects the parabola C I at point E (see Fig. 8). The path

E → P on C I is thus the second piece of the solution. See
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Fig. 7. Phase portraits for γ = 1, (a) δ = 3/2 (n = 5/2), (b) δ = 1 (n = 1),

and (c) δ = 5/6 (n = 1/2). The key is the same as for Fig. 6.

Appendix D for the mathematical proofs. In the latter case

(α < 1), we might be eager to use the same method to construct

a solution, but in that case, this solution is nonphysical. Indeed,

the integral path coming from the source S′ intersects C I at E′

(see Fig. 8) on the left of P; the path E′ → P on C I points in

the direction of decreasing ξ , which is physically inconsistent.

For δ < 1, we systematically meet the same difficulty as

earlier with δ = 1 and α < 1. Indeed, the only integral path

reaching P is the separatrix SCD, as shown in Fig. 7(c). Since

any path on this separatrix pointing toward P is associated with

decreasing ξ , we cannot build physical solutions.

More interesting, for δ > 1 and supercritical flow conditions

at the source (α > 1), we can construct similarity solutions

Fig. 8. Phase portraits for δ = 1 (n = 1). The bold line represents the coalesced

curves C I , CG , CF , SAB, and SCD. The thin lines represent two pieces of

integral path between the source point and the point of intersection with C I ,

referred to as E (α > 1) and E′ (α < 1).

with discontinuities as follows. As earlier for δ = 1, we start

from the source point and follow an integral path. Since the

integral paths cross the critical curve C I , a shock occurs. In

the phase plane, the point where this shock occurs is called

point E. As shown in Fig. 9(a), from this point, we can draw

two shock curves corresponding to the shock conditions (11)

and (12) [see also Eqs. (A.7) and (A.8) and further comments

in Appendix A], but a single one is physical: the dashed line

pointing to the left is associated with an energy loss, as expected

in a hydraulic jump. This shock curve maps point E onto

another point on separatrix SAB, which is referred to as point

E′. Between E′ and P, the integral path follows the separatrix

SAB. This construction does not make sense when the flow

is subcritical at the source (α < 1) since no jump occurs.

Fig. 9(a) and (b) show the flow depth and velocity profiles as

a function of the similarity variable ξ for the particular case

n = 5/2 (δ = 3/2), α = 3, β = 1, and γ = 1 (dashed lines).

It is worth noting that for δ > 1 and α > 1, we may

also hypothesize that within the body, there is shear in the

vertical direction (i.e., γ > 1), whereas within the tip region,

the Boussinesq coefficient drops to unity since the hydraulic

jump leads to profoundly altering the velocity profile [4]. With

these assumptions, we can construct solutions where the flow

conditions are supercritical at the source and the velocity profile

is sheared. A typical example is reported in Fig. 9 (dashed line)

for the particular case γ = 77/72. As seen in this figure by

comparing the dashed and solid curves, small changes in γ lead

to noticeable changes in the flow depth and velocity profiles.

4.3. Summary

A thorough analysis of the phase portraits has shown that

unlike in the Boussinesq regime investigated by Grundy and

Rottman [26] and Gratton and Vigo [25], the shallow-water

equations for non-Boussinesq regimes do not systematically

admit similarity solutions. For these similarity solutions to

exist, the front point P must be a singular point of the phase

portrait. This condition is met solely when γ = 1 (at least in

the immediate vicinity of the front) and δ ≥ 1, that is, there
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Fig. 9. (a) Phase plane in the vicinity of A1: the specific curves C I (solid

line), CF (dashed line) together with the separatrix SAB (dotted line) are

reported. The singular point A1 is plotted together with the front point P. The

long dashed lines represent the shock curves given by Eqs. (A.7) and (A.8)

and emanating from point E. (b) Flow depth variation with ξ : the solid line

represents the solution obtained when γ = 1 throughout the flow, while the

dashed curve stands for the solution derived when γ = 77/72 within the body

and γ = 1 within the head. (c) Velocity variation with ξ : the same key as for

(b). Computations made for n = 5/2, α = 3, β = 1 (A = αβ3/2/n = 1.2).

must be no shear in the velocity profile within the tip region

and the total surge volume must increase vigorously with time:

V ∝ tn , with n = 3δ − 2 ≥ 1. Furthermore, the flow must

be supercritical at the source, which implies the existence of

discontinuities in the flow depth profiles (when δ > 1) or in the

Table 2

Summary of the solutions depending on the Froude number (α) at the source,

the Boussinesq coefficient γ , and the exponent δ

δ γ α ≥ 1 α < 1

δ > 1
γ = 1 Discontinuous solution (jump) No solution

γ > 1 Discontinuous solution (jump + change

in the velocity profile)

No solution

δ = 1
γ = 1 Continuous solution with discontinuous

gradient (Ritter-like solutions)

No solution

γ > 1 Discontinuous solution (jump + change

in the velocity profile)

No solution

δ < 1 γ ≥ 1 No solution No solution

depth-gradient profiles (when δ = 1). Table 2 summarizes the

conditions of existence depending on the values of α and β.

5. Body dynamics

To further investigate the behavior of non-Boussinesq

gravity currents, the next step is to consider the Navier–Stokes

equations and to rescale them to obtain simplified governing

equations. Essentially, two approximations help simplify the

problem. First, when working at high Reynolds numbers Re =
U∗ H∗/ν with ν the kinematic viscosity, the viscous effects

become negligible compared to inertia terms. Second, after

introducing the aspect ratio ǫ = H∗/L∗ and assuming that the

flow is shallow ǫ ≪ 1, we can get rid of a number of terms in

the Navier–Stokes equations by keeping only the terms whose

order of magnitude is O(ǫ0) (see Appendix E). Obviously, such

an approximation no longer holds in the vicinity of the front

because of the curvature of the free surface (ǫ ∼ 1). This means

that we have to consider the body and the front separately.

In this section, we focus our attention on the body, while in

Section 6, we will tackle the front dynamics. Fig. 10 shows

the decomposition of the flow domain into two parts. We will

show that the body solution is valid between the source and a

point referred to as M(0 ≤ x ≤ xm), while the head solution is

valid for x ≤ xa . Patching the two solutions is difficult because

of significant changes in vorticity between the body (nearly

irrotational flow) and the head (rotational flow). Our patching

strategy is based on mass balance conservation arguments (see

Section 7.2).

5.1. Local governing equations in the high-Reynolds-number

limit

For the body of shallow flows in the high-Reynolds-number

limit, we end up with the same governing equations as were

obtained for inviscid shallow waves [10]:

∂u

∂x
+ ∂v

∂y
= 0, (19)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂h

∂x
, (20)

where u(x, y, t) and v(x, y, t) denote the horizontal and

vertical components of the velocity field. These equations
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Fig. 10. Decomposition of the flow domain into a body and head. The dashed

box represents the integral volume used to compute the characteristics of the

nose.

are an approximation of the Euler equations when pressure

is hydrostatic, i.e., the vertical component of the momentum

balance equation (E.3) has been integrated to yield p = h − y.

These equations are usually referred to as the shallow-wave

equations.

The boundary conditions are the following:

at x = 0, hū = n Atn−1, h(0, t) = βtm and

Fr = ū√
h

= α,
(21)

at y = 0, v = 0, (22)

at y = h, v = Dh/Dt, (23)

with m = 2(n −1)/3, D/Dt = ∂t +u(x, h, t)∂x , and ū(x, t) =
∫ h

0 u(x, y, t)dy. Following Blythe et al. [10], we will use the

change of variables below:

z = y

h
and w = Dz

Dt
= 1

h
(v − z(ht + uhx )), (24)

which makes it possible to simplify the formulation of the

boundary conditions and introduce the flow depth solely in the

governing equations. We finally obtain [10]

ht + uhx + h(ux + wz) = 0, (25)

ut + uux + wuz + hx = 0, (26)

with w = 0 at z = 0 and z = 1. This change of variables is

relevant only for the body since it would become singular for

the front point.

5.2. Similarity solutions

Similarity transformations of different kinds have been

proposed to gain insight into the behavior of the solutions

to Eqs. (25) and (26) [10,24,42,43,55], but none of these

transformations provide similarity forms that are consistent

with the treatment given in Section 4 for the shallow-water

equations.

The first idea that comes up to mind is to assume that

the velocity profiles must be self-similar, which allows us to

decouple the dependence on x and z, e.g., by posing u =
taU (ξ)A(z), v = tbW (ξ)B(z), h = tc H(ξ), and ξ = x/td .

Substituting these forms into the mass and momentum balance

equations (25) and (26) and taking the boundary conditions (21)

into account leads to: a = δ − 1, b = −1, c = 2(δ − 1),

d = δ. By doing this, we also obtain a set of two equations

for U , W , A, and B. Solving these equations leads to finding

that U (z) = 1 and B(z) = z, which is nothing but the velocity

profile that was assumed in the derivation of the shallow-water

equations when the Boussinesq coefficient was set to unity. In

short, with these similarity forms, we will learn nothing more

than we already know.

This prompts us to seek more complex similarity forms,

but still keeping in mind that they must be consistent with

the similarity forms (13) and (14) used for the shallow-water

equations. Taking a closer look at the phase portrait drawn

for the shallow-water equations provides interesting hints. In

Section 4, dominant-balance analysis demonstrated that close

to the source, V ∝
√

Z ; numerical simulations showed that this

approximation held over a large part of the integral paths, but

broke in the immediate vicinity of the front. Since V ∝
√

Z is

equivalent to ū ∝
√

h, this impels us to impose

u(x, z, t) =
√

h(x, t)U (z), (27)

w(x, z, t) = 1√
h(x, t)

∂h(x, t)

∂x
W (z), (28)

h(x, t) = t2(δ−1)H(ξ), (29)

ξ = x

tδ
. (30)

Since the shallowness approximation breaks within the tip

region, we cannot use the governing equations (25) and (26)

to compute the flow features over the whole domain; the

similarity forms (27)–(30) hold only for the body. Note that

the structure of the similarity expression (28) was dictated by

the continuity equation (19). The structure of the horizontal

velocity expression (27) shows that u is a function of x and

t through its dependence on the flow depth h(x, t); this means

that on average, the fluid velocity adapts instantaneously to any

change in the flow depth.

Another implication is that integrating the continuity

equation (19) leads to

ht + c(h)hx = 0, (31)

or equivalently

ūt + c(h(ū))ūx = 0,

with c(h) = ū + hū′ = 3ū/2, where ū′ denotes the h derivative

of the mean velocity. This shows that the solution sought

belongs to the family of ‘simple’ kinematic waves (see [40] for

an introduction to simple kinematic waves).

We substitute the similarity forms (27)–(30) into the

governing equations (25) and (26) and obtain

4(δ − 1)H3/2 +
(

3U H + 2W ′ H − 2δξ
√

H
)

H ′ = 0,

2U H(δ − 1)+
(√

H(U 2 + 2)− Uδξ + 2W
√

HU ′
)

H ′ = 0,
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which can be transformed into expressions that are easier to

interpret:

2(δ − 1)H + 1

2

√
H H ′(3U + 2W ′)− δξH ′ = 0, (32)

U 2 + U
2H(δ − 1)− H ′δξ√

H H ′ + 2WU ′ + 2 = 0. (33)

Since U and W are functions of z alone while H depends solely

on ξ , we derive the following conditions:

3U + 2W ′ = 2c1 and
2H(δ − 1)− H ′δξ√

H H ′ = c2,

where c1 and c2 are two constants to be determined. Comparing

these conditions with Eq. (32) leads to c2 = −c1. Eliminating

W from Eq. (33) by differentiating this equation with respect

to z, we deduce that the function U satisfies the second-order

differential equation

U ′′(2 + U (U − c1))+ U ′2(U − c1) = 0, (34)

while the function W is a solution of

2W ′ = 2c1 − 3U, (35)

and the flow depth H satisfies

2(δ − 1)H + H ′(c1

√
H − δξ) = 0. (36)

5.3. Velocity profiles

Eq. (34) can be transformed into a linear second-order

differential equation by using an inverse transformation

(U − u1)(U − u2)
d2z

dU 2
+ (c1 − U )

dz

dU
= 0,

where u1 = (c1 −
√

c2
1 − 8)/2 and u2 = (c1 +

√

c2
1 − 8)/2

are the two roots of U (c1 − U ) − 2 = 0. For the roots to be

real, the parameter c1 must satisfy c1 > 2
√

2. When c1 < 2
√

2,

a nonphysical behavior (i.e., negative streamwise velocity) is

obtained.

Using the change in variable σ = (U − u1)/(u2 − u1), one

obtains

σ(1 − σ)
d2z

dσ 2
+ (σ − σ1)

dz

dσ
= 0,

with σ1 = 2(2−u2
1)

−1. The solution to this differential equation

can be expressed in terms of the incomplete Beta function [1]:

z = Be(σ, 1 + σ1, 2 − σ1)

Be(1, 1 + σ1, 2 − σ1)
. (37)

We now determine the constant c1 (and hence u1, u2, and σ1) by

computing the flow depth averaged horizontal velocity ū. Using

the relation Be(p + 1, q) = p
p+q

Be(p, q) holding for any pair

of reals (p, q), we find

∫ 1

0

U (z)dz = (u2 − u1)
1 + σ1

3
+ u1 = 2

3
c1,

Fig. 11. Velocity profiles: (a) horizontal velocity U ; (b) scaled vertical velocity

W (solid line) and physical vertical velocity V (dashed line). Computations

made in the particular case α = 3.

or equivalently

ū(x, t) = 2

3
c1

√

h(ξ).

The boundary condition (21) implies that c1 = 3α/2. The

condition for existence of real solutions is then that the Froude

number at the source satisfies

α >
4

3

√
2 ≈ 1.88. (38)

The function W (z) is directly derived from Eq. (33)

W = −2 + U (U − 3α/2)

2U ′ .

Fig. 11 shows the velocity profiles U and W for α = 3

and n = 5/2. We can also plot the variations in the vertical

velocity. Indeed, using the change of variable (24) backwards

together with Eq. (25), we can express the dimensionless

vertical component of the velocity as

v(x, y, t) = h(w − zux − zwz) = h1/2(ξ)hx (ξ)V (z), (39)

with V (z) = W (z) − zU (z)/2 − zW ′(z). Note that the

streamwise component of the bottom velocity is low, but non-

zero: the slipping velocity is U (0) = u1. In Fig. 11, it is seen

that the streamwise component of the velocity has a profile

close to a parabolic shape. The vertical component of the



C. Ancey et al. / Physica D 226 (2007) 32–54 43

velocity (v) is negative because of the curvature of the free

surface.

5.4. Flow depth profile

Similarly, we can derive the flow depth profile analytically.

By setting H = ξ2Ω2 in Eq. (36), we obtain a homogeneous

(i.e., separable) first-order differential equation

ξ
dΩ

dξ
= Ω

3αΩ − 2

3αΩ − 2δ
, (40)

which when integrated provides

ln(c3ξ) = ln

∣

∣

∣

∣

(3αΩ − 2)δ−1

Ω δ

∣

∣

∣

∣

, (41)

with c3 > 0 a constant of integration. When n > 1, this

equation can also be put in the implicit form

ξ = −1

3
c

1/(δ−1)
3 H s + 3α

2
H1/2, (42)

with s = δ/(2δ − 2) = (2 + n)/(2n − 2) > 1/2 for n > 1.

For ξ = 0, this equation provides the constant of integration as

a function of the initial flow depth

c3 = 1√
β

(

9α

2

)δ−1

.

Taking a closer look at the ξ variation with H [see Eq. (42)]

shows that the function ξ(H) is a bell-shaped curve, which

takes it maximum at a point M (see Fig. 12):

ξm = 3

2
α
√

β(δ − 1)δ−1δ−δ and Hm = β

(

δ − 1

δ

)2(δ−1)

.

(43)

It is easily seen from Eq. (42) that the flow depth vanishes

at ξ = 0 only. When n = 1 (δ = 1), Eq. (36) reduces to

H ′(c1

√
H − ξ) = 0, which provides two solutions: H = β or

H = (ξ/c1)
2. Since the latter does not satisfy the downstream

boundary condition, the solution is H = β, which is consistent

with what we can anticipate for a steady inflow.

6. Front dynamics

Close to the front, the shallowness approximation (ǫ ≪ 1)

is no longer valid because of the significant increase in the

free-surface curvature. In order to compute the main features

of the front, we will first use an integral method similar to

the treatment proposed by Whitham [65] in his calculation

of the drag-resistance effect on the front propagation of a

wave induced by a dam break. Then we will examine the full

Euler equations to further characterize the front behavior and

determine its structure.

6.1. Bulk analysis of the head

The immediate vicinity of the front is a special region: the

wave velocity and the material velocity should coincide, which

Fig. 12. Variation of ξ(H): the solid line represents the physical branch, while

the dashed line represents the nonphysical branch. Computations made for

α = 3, δ = 3/2, and β = 1.

imposes that the material velocity is ẋa close to the front, where

the dot refers to the time derivative. In a first approximation,

we shall consider that, within the tip region, the velocity is

uniform and equal to the front velocity, which makes it possible

to derive the governing equations of the front by using an

integral representation of the mass and momentum balance

equations.

For this purpose, let us consider that the head is the flow

domain comprised between points A and B, as shown in Fig. 10:

point A of abscissa xa represents the actual front location. Point

B of abscissa xb corresponds to the junction between the head

and the body; for x ≤ xb, the similarity solution found earlier

holds (see Section 5). We are now writing up the governing

equations for the integral volume between xa and xb. Since the

upstream border of the integral volume moves at a velocity ẋb,

the mass flux through this moving boundary is
∫ hb

0 (ub − ẋb)dy;

the mass balance can then be expressed in a dimensionless form

as

dM

dt
=
∫ hb

0

(ub − ẋb)dy = hb(ūb − ẋb),

where M is the mass of fluid contained in the tip region between

xb and xa , hb is the flow depth at the junction point B, and ūb is

the flow depth averaged velocity at B. The integral momentum

balance equation can be expressed as

dP

dt
= hbūb(ūb − ẋb)+ 1

2
h2

b,

where P is the bulk momentum. The first term on the right-hand

side represents the momentum flux across the moving boundary

at B, the second term is the pressure force exerted by the body

on the volume. In the momentum balance equation, we still

neglect viscous dissipation.

We are now transforming the momentum equation into a

governing equation for ẋa . To that end, we must express all

variables in terms of ẋa . Since the velocity within the tip is very

close to the wave velocity, we use the approximations

ūb = α
√

Hbt (2δ−2) ≈ ẋa and P ≈ Mẋa,
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with Hb = H(ξb). We then derive the expression of Hb as

a function of ẋa : Hb = t−(2δ−2)(ẋa/α)
2. Furthermore, from

Eq. (42), we have ξb = −c
1/(δ−1)
3 H s

b /3 + 3αH
1/2
b /2.

Integrating the mass balance equation leads to

M = Hb

(

α
√

Hb − δξb

) tn

n
, (44)

and we finally deduce

ẍa

(

(

1 − 3

2
δ

)

t
ẋa

n
+ δ

c
1/(δ−1)
3

3n

(

ẋa

α

)2s
)

= 1

2

(

ẋa

α

)2

. (45)

Looking for a long-term asymptotic approximation, we impose

xa = At p. Injecting this ansatz in the governing equation (45),

we find p = δ and

ξa = A = 3−2n/3α
√
β

n + 2





9(n + 2)(n − 1)α2

n
(

34+ 5
n−1 (n − 1)α2 + 3

5n
n−1

)





1−n
3

.

(46)

Using Eq. (42), we then deduce the abscissa of the transition

point B:

ξb = 3δ

2
ξa − 3

2
αβ−3/(2n−2)

(

δ

α
ξa

)2s

. (47)

Numerical solution shows that the asymptotic solution xa =
At p is a fairly good approximation of the solution at short and

long times.

Several comments can be made. The front position A has the

same asymptotic time dependence as the point M, as expected.

We also note that the actual front abscissa xa is not too far from

the position xm computed in Section 5.4. For instance, taking

n = 5/2 (i.e., δ = 3/2), α = 3, and β = 1 gives ξa ≈ 1.648,

ξb ≈ 1.190, and ξm/ξa = 1.05. Fig. 13 reports the variations

of the similarity variables ξa and ξm as functions of the Froude

number α in the particular case n = 5/2. The ratio ξm/ξa is

independent of the aperture β and depends only on the Froude

number α and the growth rate n. We observed that the variables

ξa and ξm are very close, especially at low α values. We failed to

find any physical reason why this should be so. The head length

xa − xb is fairly large at low Froude numbers, which means that

the front cannot be reduced to a thin region. However, its length

progressively decreases with increasing Froude numbers, which

shows that the front is much steeper at high Froude numbers.

The only assumption made in arriving at this result has been

stating that the velocity is fairly constant within the tip, an

assumption that it is not correct, as we will show below, but

provides a satisfactory approximation at long times. On the

whole, the front dynamics is entirely controlled by a balance

between the pressure gradient and the momentum variation

inside the front. As is expected for supercritical flows, the front

exerts no control on the body.

6.2. Refined analysis of the front structure

We now return to the local Navier–Stokes equations (E.2)

and (E.3) made dimensionless, but now with ǫ ∼ 1 because

Fig. 13. Variation of the front position ξa (solid line) and ξb (dashed line) as a

function of the Froude number α (computations made with β = 1 and n = 5/2).

We have also reported the variation ξm (dotted line). ξa , ξb , and ξm are given

by Eqs. (46), (47) and (43), respectively.

of the significant variation in the flow depth within the leading

edge. Introducing the stream function ψ (u = ψy and v =
−ψx ) and taking the curl of the equations to get rid of the

pressure gradient provides the vorticity equation, where ω =
−1ψ is the vorticity

∂

∂t
1ψ +

(

∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)

1ψ = 0. (48)

This equation remains invariant under the transformation

(x, y, t, ψ) → (x + xa(t), y, t, ψ + yẋa), which represents

a nonuniformly accelerated translation [12]. Let us consider a

Cartesian frame of reference fixed with respect to the leading

edge, i.e. positioned at A and moving at the velocity ẋa =
δAtδ−1 with respect to a fixed frame (attached to the bed).

For δ < 2 (n < 4), this frame is nonuniformly accelerated,

but the acceleration term is proportional to ẍa ∝ tδ−2, which

implies that at long times, the acceleration effects are negligible

and we can consider the frame as nearly Galilean. This prompts

us to express the stream function in this frame as a time series:

ψ = ψ0(x, y) + t−1ψ1(x, y) + · · ·. Using this expansion

provides a hierarchy of equations. At order O(t0), we have

(

∂ψ0

∂y

∂

∂x
− ∂ψ0

∂x

∂

∂y

)

1ψ0 = 0. (49)

At order O(t1), we have ψ1,y(1ψ0)x + ψ0,y(1ψ1)x = 0 and

ψ1,x (1ψ0)y + ψ0,x (1ψ1)t = 0.

The boundary conditions are the following: at the bottom

v = −ψ0,x (x, 0) = 0. At order O(t0), the free boundary is a

stationary line that coincides with a streamline. Without loss of

generality, we can set ψ0 = 0 along the free surface. Moreover,

if the free surface is a streamline, this implies that according

to the Bernoulli theorem, the velocity is constant along this

boundary since the pressure is constant at the free surface. The

bottom is also a streamline since a particle is forced to have a

trajectory parallel to the bed line; since this streamline and the

streamline at the free surface intersect at the leading edge, they

have the same value; hence we have ψ0 = 0 along the bottom.

In order to compute the vorticity 1ψ0, we need to know the
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Fig. 14. (a) Notation used in the computation. (b) Vortices within the head.

vorticity in the far field. Using Eqs. (27)–(39), we find that

ω = ∂u

∂y
− ∂v

∂x
= (y(H ′)2V ′)t−δ−1

H3/2
+ U ′t1−δ

√
H

+ ((H ′)2 + 2H H ′′)(−tδ−3)V

2
√

H
,

which implies that at order O(t0), the vorticity vanishes and the

flow is irrotational in the body.

Since the flow is irrotational in the far field, we could first

seek an irrotational solution to Eq. (49), but as shown in detail

in Appendix F, this type of solution is hardly admissible from

the physical point of view unless the front is associated with

a mass sink. We are then looking for a rotational solution

to Eq. (49). Using polar coordinates (r, θ) [see Fig. 14(a)],

we assume that the variables are separable, i.e., the stream

function can be expressed in the form: ψ0 = f (r)g(θ/φ(r)),

where we have further assumed that the free boundary can

be represented by a function θ = φ(r). We also introduce

the shorthand notation: Θ = θ/φ(r). We then have three

functions to determine: f (r), g(Θ), and φ(r). At the free

surface, three conditions must be satisfied: (i) the radial velocity

u = r−1ψ0,θ = f (r)φ−1(r)g′(Θ) must be independent of

r since the pressure is constant at the free surface, (ii) the

free boundary is a streamline f (r)g(Θ) = 0 for Θ = 0 or

Θ = 1, (iii) the orthoradial component of the velocity vanishes

v = ψ0,r = f ′(r)g(Θ) − f (r)φ−2(r)φ′(r)g′(Θ) = 0. In

addition, since the computations are made in the moving frame,

the net mass flux across a surface r = cst spanning the tip

must be zero, which implies that we must look for a piecewise

continuous radial component of the velocity u = g′ that is

alternatively positive and negative such that
∫ 1

0 g′(Θ)dΘ = 0

at any r .

These equations admit at least one solution: we assume that

there are two real constants χ and c0 such that φ(r) = χ

and f (r) = c0r . Because g(Θ) is assumed to be a nontrivial

solution that vanishes on Θ = 0 and Θ = 1, we can add the

following normalization constraint on the maximum value of g

on [0, 1]: there is at least one angle Θm such that g(Θm) = 1;

the constant c0 in f (r) = c0r must then be adjusted for this

constraint to be satisfied. The free boundary must be a straight

line making an angle χ with the bed line.

We impose Ψ0 = c0rg(θ) (we no longer use the reduced

variable Θ since φ is constant) and substitute it into the

equivalent of Eq. (49) in polar coordinates. We deduce that g

must satisfy

g′(g + g′′)+ g(g′ + g′′′) = 0, (50)

which when integrated produces: gg′′ + g2 + c1 = 0, where c1

is a constant of integration. Multiplying this equation by 2g′/g

and integrating it provides

g′2 + g2 + 2c1 ln |g| = c2,

where c2 is an integration constant. Using the normalization

constraint on g, we find c2 = 1. We failed to find an

analytical solution to this first-order differential equation, but

its behavior can be described by using asymptotic expressions

and numerical approximations. Close to the boundary, g → 0

implies that g′ ∼ ±
√

−2c1 ln |g|, implying that c1 must be

positive since ln |g| < 0. This differential equation can be

integrated to provide

|g| ∼ exp
[

−erf(−1)(1 − θ
√

c1/π)
]

,

for θ → 0, where erf(−1) is the inverse of the error function.

Close to the maximum, g → 1 implies that g′ ∼ ±
√

1 − g2,

i.e.,

|g(θ)| ∼ cos(θ − θm),

for θ → θm . Numerical integration reveals that

|g(θ)| ≈ sin2/3

(

π

χ
θ

)

and c1 ≈ 2π2

3χ2
− 1. (51)

These numerical approximations are accurate to within a few

per cent (less than 3%). Fig. 15 shows a comparison between

the numerical solution to Eq. (50) for χ = π/6 and the

approximate function. Since the mass flux across any surface

spanning the wedge must be zero, the derivative g′ must be first

negative for 0 < θ < χ/2, then positive for χ/2 < θ < χ ;

because of the symmetry imposed on the function g′, there

is a maximum of g located at θm = 1
2χ . The pressure can

be determined by substituting the velocity components in the

polar equivalent of the Euler equations and integrating these

equations. We obtain

p = −c1c2
0 ln r = −

c1c2
0

2
ln((x − xa)

2 + y2),
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Fig. 15. Numerical solution to Eq. (50) for χ = π/6. The solid line represents

the numerical solution, while the dashed line represents the numerical

approximation equation (51).

showing that the pressure is independent of the angle θ , is

not hydrostatic within the tip region, and is singular at the

leading edge; taking into account hydraulic resistance within

the tip region will probably remove this singularity. Note

that the pressure is not constant at the free boundary, but

this does not violate the Bernoulli relation since the radial

velocity becomes infinite along the streamline ψ0 = 0: the

velocity components in the moving frame are u = c0g′(θ)
and v = −c0g(θ). This singularity can be removed by

considering appropriate boundary conditions at the free surface:

as suggested by McElwaine [46], the intrusion of a high-speed

gravity current entails the motion of the ambient fluid, which

means that there is a more complicated relation between the

surge and its environment. As shown by McElwaine [46], the

singularity in the u and p solutions drops out when the stream

function has a highly pronounced dependence on r : typically,

we should impose ψ0 = c0rm g(θ) with m > 2; the case m = 2

corresponds to constant vorticity [23].

From the local components of the velocity in the moving

frame, we deduce the streamwise velocity in the fixed Cartesian

frame

u = ẋa + c0g′(tan(−1) z) cos(tan(−1) z)

− c0g(tan(−1) z) sin(tan(−1) z)+ O(t−1),

with z = y/(x − xa). This equation shows that the velocity

profile is not uniform across the flow depth, but the vorticity

contribution to u becomes less important with increasing time

and, at long times, the assumption of a uniform velocity profile

becomes reliable.

In short, we have found a first-order solution to Eq. (48),

showing that the free boundary is a straight line, at least close

to the front. The flow is rotational with an infinite vorticity at

the leading edge (r = 0) and along the boundaries (g(θ) = 0)

ω0 = −∇2ψ0 = −c0
g′′ + g

r
= c0

r

c1

g(θ)
,

due to the simplified boundary conditions considered here. For

the flow to be irrotational far from the leading edge, we must

contemplate a counter-clockwise vortex in the rear of the head,

as depicted in Fig. 14(b). This vortex has no specific role other

than creating a counter-reaction to the vorticity at the leading

edge.

7. Patching and comparison with the shallow-water

equations

7.1. Patching

An obvious shortcoming of the analysis pursued in

Sections 5 and 6 is that the velocity profiles within the body

and the head do not match, which means that a transitional slice

between these regions associated with a significant increase

in vorticity must exist. The same abrupt change in the flow

behavior was predicted by the shallow-water equations in the

form of a hydraulic jump. Although there is some analytical

work for laminar viscous flows [29,63] and turbulent flows [11,

31], further analyzing the characteristics of the transitional slice

here is beyond the scope of this paper and therefore, for the

comparison with the shallow-water equations, we settle for

patching the two pieces of the solution worked out in Sections 5

and 6.

The position of the head can be approximated using the

integral formulation used in Section 6.1, while its structure is

computed using the results of Section 6.2, where it has been

shown that the head is wedge-shaped. The only unknown is

the wedge angle χ . We assume that the free boundary remains

straight within the head (xb ≤ x ≤ xa). By using the mass

equation (44) and by approximating M ≈ 1
2 (xa − xb)

2 tanχ ,

we infer

tanχ = 2δ3

nα2

ξ2
a

ξa − ξb

t−(n−4)/3, (52)

showing that the wedge becomes increasingly acute with time.

The angle χ is here only imposed by mass balance, whereas in

finite-volume gravity currents investigated by McElwaine [46],

the angle is controlled by dynamic conditions at the interface

with the surrounding fluid.

7.2. Comparison

In order to compare the approximate similarity solution

computed in Sections 5 and 6 with the similarity solution to the

shallow-water equations, we need to compute the Boussinesq

coefficient. After a few manipulations, integrating the velocity

profile equation (37) leads to

γ = 9α2 − 4

8α2
,

showing that the condition γ ≥ 1 leads to α ≥ 2. Note that

this condition provides a stronger constraint on α than Eq.

(38). There is no immediate interpretation of these bounds,

but recalling that the similarity form used for the velocity

profile in Section 5.2 means that the velocity field must adapt

instantaneously to any change in the flow depth, we can

speculate that the flow must be rapid (i.e., supercritical) enough
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Fig. 16. (a) Flow depth profile, (b) velocity profile for the similarity solutions

to the shallow-water equations (dashed line) and the approximate similarity

solution Navier–Stokes equations in the high-Reynolds-number limit (solid

line). Computations made for α = 3, β = 1, δ = 3/2 (n = 5/2), γ = 77/72.

for the information on flow depth changes to be promptly

conveyed; indeed, in a shallow flow, information is transmitted

on average at velocity
√

gh(Fr ± 1) [66].

Fig. 16 shows the two solutions for the particular case

α = 3, β = 1, δ = 3/2, already addressed in Fig. 9, where

the similarity solutions to the shallow-water equations were

reported for two values of the Boussinesq coefficient: γ = 1

and γ = 77/72. As seen in Fig. 16, there is no difference

between the similarity solutions to the shallow-water equations

(4) and (5) and the shallow-wave equations (19) and (20) for

the body, provided the Boussinesq coefficient is prescribed

in advance. Differences arise for the head. Since there is no

true similarity solution for the head velocity, we report the

asymptotic value ẋ f computed using Whitham’s approach in

Section 6.1. The velocity profile computed using the shallow-

water equations is not constant, but rises with increasing ξ ;

the departure from the asymptotic value, however, ẋ f , remains

small since it does not exceed 6%.

8. Concluding remarks

In this paper, we have addressed the existence and features

of similarity solutions to the shallow-water equations for

describing high-speed (i.e., at high Reynolds numbers), non-

Boussinesq flows along the horizontal plane. The velocity

profile in the vertical direction may be nonuniform and in this

case, the Boussinesq coefficient γ = u2/ū2 exceeds unity.

The existence of similarity solutions has been proved for

Boussinesq currents. In that case, the flow depth does not drop

to zero, but to a finite value given by Eq. (2) [25,26]. From

the mathematical point of view, it has also been demonstrated

that the boundary value problem made up of the governing

equations (4) and (5) and boundary conditions (9) and (10) is

well-posed [51]. In Section 4, relying on a thorough analysis of

the phase plane and the topological features of the governing

equation, we have shown that the necessary condition for

finding a similarity solution to the shallow-water equations for

non-Boussinesq currents is that the front point P in the phase

plane is a singular point. Indeed, no regular integral path, which

represents a solution to the shallow-water equations, passes

through P. However, when P is a singular point, there is an

exceptional solution that passes through it. This exceptional

solution is a piece of the solution sought. For P to be a singular

point, the Boussinesq coefficient must drop to unity in the head.

Another condition is placed on the growth rate of the current

and the initial Froude number: for the similarity solution to be

physically admissible, the current volume must grow as tn , with

n ≥ 1, and the flow must be supercritical at the inlet (Fr > 1).

Except for currents with steady inflow (n = 1), the current head

is separated from the body by a hydraulic jump and is wedge-

shaped. The head is in a subcritical regime (Fr < 1), while

the body is in a supercritical regime (Fr > 1). Since a jump

is associated with a significant change in the velocity profile,

it is also possible to construct solutions where the Boussinesq

solution is unity within the leading edge, but is in excess of

unity within the body [4].

Strikingly, these severe restrictions on the existence

of similarity solutions in the non-Boussinesq case differ

substantially from the Boussinesq case, where Gratton and

Vigo [25] showed that solutions of this kind exist for a

wide range of flow conditions, including subcritical entrance

conditions and low growth rates n < 1. As pointed out

by Gratton and Vigo [25], the non-Boussinesq case could be

considered as a limiting Boussinesq regime when the Froude

number at the front tends to infinity, and in this perspective,

one would expect to retrieve nearly the same solutions. This is

not the case. As for tension-driven coating films, we find that

imposing zero or finite values on the flow depth at the front can

lead to significantly different results.

To make this difference between Boussinesq and non-

Boussinesq currents clear, we have refined our analysis by

seeking similarity solutions to the Navier–Stokes equations in

the high-Reynolds-limit number (Euler equations). A particular

difficulty stems from the shallowness approximation used

in the derivation of the shallow-water equations. Since this

approximation is not valid within the leading edge, we

distinguished the head and body dynamics:

• Similarity solutions were derived for the body and were

fully consistent with those worked out for the shallow-water

equations (27) and (28). This consistency results directly

from our primary choice of the similarity forms (27) and (28)
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used for solving the shallow-wave equations (19) and (20).

Indeed, in these similarity forms, we did impose a constant

Froude number. Physically, this result is in agreement with

experimental [45] and intuitive observations since from a

force balance in the momentum equation, we can interpret

the similarity phase as a flow regime characterized by a

balance between inertia and the pressure gradient

u
∂u

∂x
∼ g

∂h

∂x
,

which leads to finding a nearly constant Froude number.

Similarity solutions to Eqs. (19) and (20) exist provided that

the Froude number is in excess of 4
√

2/3 ≈ 1.88. As for

the shallow-water equations, we retrieve the condition that

flows must be supercritical. There is, however, a significant

difference between the limiting Froude number for a

similarity solution to exist: Fr ≥ 1 for the shallow-water

equations versus 4
√

2/3 for the shallow-wave equations.

One question which was not addressed concerns the flow

stability. Stability analysis of the shallow-water equations

shows that steady uniform flows become unstable for Fr >

2 [67], but since this analysis cannot easily be extrapolated

to transient flows, we do not investigate this question further.

• We failed to find a similarity solution representing the head

behavior, but we found approximate similarity solutions

when the volume growth rate n satisfies n < 4. In this

case, the front acceleration tends to zero when time elapses

so that we can expand the velocity into a time series

and retain the terms at the leading order. Analyzing the

governing equations showed that the flow must be rotational

and that the head is wedge-shaped. The shape is in fairly

good agreement with that computed using the shallow-water

equations. The leading edge is associated with a pair of

vortices, one located at the leading edge and another one at

the rear of the head. This wedge structure, including vortices,

has been observed in experiments on gravity currents in

tanks. In experiments conducted by Simpson [58,59], the

development of the flow patterns was made visible using a

blend of dense fluid and fine aluminum particles: a stretching

vortex occupying the tip region was clearly observed at

the leading edge and produced an intense roll-up of fine

aluminum particles, which makes it possible to visualize the

streamlines and the two vortices; in the upper part of the

head, a counter-clockwise rotating vortex occurred. Our own

experiments on finite-volume gravity currents moving down

a slope also revealed that the particle cloud was composed

of two evident eddies [2]: when the surge involving a

glass-bead suspension in water moved from left to right,

we observed a small vortex ahead of the front, spinning

clockwise, and a large counter-clockwise eddy occupying

most of the surge volume. In his seminal paper, Benjamin [7]

supplemented the earlier heuristical analysis of von Kármán,

demonstrating that a steady front makes an angle of

π/3 with respect to the horizontal: Benjamin provided an

approximate analytical solution describing the shape for the

lock-exchange problem when the flow depth is half the

total depth and again found that the front angle was π/3.

Recently, McElwaine [46] has extended Benjamin’s results

by considering steady finite-volume currents down a steep

slope, which experience resistance from the surrounding

fluid. He also found that the front makes an angle π/3

with the bottom line. Our result contrasts with the earlier

findings: the front angle is not constant, but varies with

time. Therefore, there appear to be significant changes

in dynamics in the front angle between steady and time-

dependent flow conditions. This observation may have a

potential impact since until now, most models have used

a constant-Froude-number boundary condition even though

the flow is not steady.

When hydraulic resistance becomes significant or when

the surrounding fluid exerts a sufficient resistance to the

surge spreading, the shape of the front bulges out. A typical

example of the rising influence of hydraulic resistance and

its consequence on the front shape is provided in the paper

by [30], where the motion of the surge resulting from the

collapse of a fluid volume (dam break) is investigated: when

the surge starts being affected by drag, it becomes blunt-nosed

with H(ξ) ∝ (ξ f − ξ)1/2, rather than adopting a linear profile

close to the front; indeed, the current develops an increased

streamwise pressure gradient to counter the drag force exerted

by the bottom. In this respect, we should expect that at late

times, drag also arises in the particular context investigated here

since the flow becomes increasingly thin: the front angle tanχ

varies as t−2 according to (52).
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Appendix A. Similarity solutions

A.1. Similarity and resulting governing equation

The shallow-water equations admit many symmetry groups

[15,36], including the stretching group that enables us to

derive similarity solutions. A particularly appropriate form for

working out similarity solutions is the following:

ū = δξ tδ−1V (ξ),

h = δ2ξ2t2(δ−1)Z(ξ),

where we have introduced the similarity variable

ξ = x

tδ
,

with δ a positive constant. There are many possible ways

of constructing similarity solutions. In the class of problems

dealt with here, symmetry analysis usually suggests seeking

similarity relations in the form ū = tc1 V̂ (ξ) and h = tc2 Ẑ(ξ),
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where c1 and c2 are two constants [9,19,22]. It is sometimes

more advantageous to write down these relations in the form

ū = tc1ξ c3 Ṽ (ξ) and h = tc2ξ c4 Z̃(ξ), where c3 and c4 are two

other constants, Ṽ (ξ) = ξ−c3 V̂ (ξ) and Z̃(ξ) = ξ−c4 Ẑ(ξ), so

that the governing equations (4) and (5) can be transformed into

an autonomous differential equation [i.e., in Eq. (15), ξ does not

appear], which makes it then possible to use the phase-portrait

techniques. In doing so, we find c1 = δ − 1, c2 = 2δ − 2,

c3 = 1, c4 = 2. Note that it is also advantageous to do the same

with parameter δ and include it in the similarity relations so that

we can get rid of it in the final governing equation (15), which

simplifies a great deal the examination of the critical points of

the phase plane.

Substituting the similarity forms into the governing

equations (4) and (5), we obtain two ordinary first-order

differential equations for Z and V that can be cast in a matrix

form

M(V, Z)
dw

dξ
+ Z

δξ
S(V, Z) = 0, (A.1)

with w = [Z , V ]T,

M =
[

V − 1 Z

(γ − 1)V 2 + Z Z(V (2γ − 1)− 1)

]

, and

S =
[

3V δ − 2

2δZ + V (V (4γ − 3)δ − 1)

]

.

The determinant of the matrix M is det M = δZ(Z − I (V )),

with

I (V ) = 1 + (V − 2)V γ.

In the phase plane, we introduce the curve C I of equation Z =
I (V ). This curve plays a very important role since usually no

continuous integral path can reach or cross it. Very occasionally,

when the cofactor matrix is also zero (see below), crossing or

reaching C I is permitted. In the usual case, when no continuous

path can cross C I , one can sometimes use the Rankine shock

conditions (11) and (12) to work out discontinuous solutions

(see Appendix A.2). Note that along the V -axis (Z = 0), the

determinant is also zero, but its role is less significant since

this line lies on the borderline of the first quadrant (V ≥ 0,

Z ≥ 0) and only the integral paths in this domain are physically

interesting.

In the regions where det M is nonzero, the system of Eq.

(A.1) can be inverted to provide

ξ
dZ(ξ)

dξ
= F(V, Z)

δ(Z − I (V ))
, (A.2)

ξ
dV (ξ)

dξ
= G(V, Z)

δ(Z − I (V ))
, (A.3)

with

F(V, Z) = −Z(2Zδ + V (−2V δγ + 4γ + 3δ − 3)− 2),

G(V, Z) = Z(2 − (V + 2)δ)

+ V (V (2γ + ((V − 4)γ + 3)δ − 3)+ 1).

Instead of solving this system of differential equations, we form

the ratio of the two equations to arrive at a single ordinary

differential equation

dZ

dV
= F(V, Z)

G(V, Z)
.

This allows us to work in the V –Z plane, as discussed at length

in Section 4.

When det M is zero, the system may have solutions if the

determinant of the cofactor matrix

N =
[

V − 1 3V δ − 2

(γ − 1)V 2 + Z 2δZ + V (V (4γ − 3)δ − 1)

]

,

is also zero. In the space (V , Z ), the locus of the points for

which det N = 0 is a continuous curve CG of the equation

Z = J (V ) = V (γ δV 2 + (−4δγ + 2γ + 3δ − 3)V + 1)

(V + 2)δ − 2
.

Note that the curve CG is also the locus of points where

G(V, Z) = 0, which means that:

• Any integral path crossing CG admits a vertical tangent at

the point of crossing.

• The points where CG and C I coincide are singular solutions

to Eq. (A.1).

To close our boundary value problem, we need to specify the

boundary conditions. The boundary conditions (9) and (10) at

the front impose

Z(ξ f ) = 0 and V (ξ f ) = 1, (A.4)

where ξ f denotes the front position. At the source, Eqs. (6)–(8)

imply that Z and V tend toward infinity as follows:

Z ∝ β

δ2ξ2
and V ∝ α

√
β

δξ
when ξ → 0. (A.5)

Since the solution may admit discontinuities, we supplement

the following condition derived from Eq. (6), which ensures that

the mass balance is not violated:

∫ ξ f

0

ξ2 Z(ξ)dξ = δ−2 A. (A.6)

When there is no discontinuity, this equation is redundant with

Eq. (A.5).

Eventually, note that the coefficient δ is fixed by the volume

growth rate: replacing h and u by their similarity forms into the

initial conditions (6), we find δ = (n + 2)/3.

A.2. Flow discontinuity in the phase plane

The two Eqs. (11) and (12) involve three unknown variables

and therefore are not closed. To close the equations, we use the

volume balance equation (A.6). When a shock occurs and if

we know the flow variables Z1 and V1 upstream (respectively,

downstream) of the shock, we can solve the shock equations

(11) and (12) to determine the shock velocity σ and a curve

referred to as the shock curve V2(Z2|Z1, V1), which is the locus

of all the points satisfying the jump conditions (11) and (12).

Solving this system of equations, we derive the shock velocity
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and the variation in upstream velocity V2 with upstream flow

depth Z2:

σ = γ

β
V1 ± 1

β

√

1

2
(β(Z1 + Z2)+ 2(γ − 1)V 2

1 )
Z2

Z1
, (A.7)

V2(Z2|Z1, V1) = V1

β
± (Z2 − Z1)

β

×

√

1

2

β(Z1 + Z2)+ 2(γ − 1)V 2
1

Z1 Z2
, (A.8)

with β = γ + (1 − γ )
Z2
Z1

.

In the derivation of (A.7) and (A.8), we have assumed that

the Boussinesq coefficient is the same either side of the jump.

Similar albeit far more complicated relations can be derived

when the jump is associated with a modification in the velocity

profile; we will not report these relations here since they do not

entail any change when we compute the shock from upstream

to downstream (although the converse is not true).

Since there is a quadratic dependence on velocity in (11)

and (12), we actually find two shock curves, but a single one

is physically admissible by requiring that energy dissipation

through the shock be positive.

Appendix B. Critical points and separatrix

To understand the phase portraits, it is worth recalling

some basic properties of the singular points. Through a regular

(i.e., nonsingular) point, a single integral path can pass and all

the curves in its close neighborhood have the same behavior. In

contrast, a singular point can be crossed either by an infinity

of curves (if the point is a node) or a single curve (if it is

saddle); here, we will not mention the case of focus points.

The singularity type can usually be obtained by linearizing Eqs.

(A.2) and (A.3) around a singular point (V0, Z0) [6,38]:

d

dξ

[

V − V0

Z − Z0

]

=
[

∂V F ∂Z F

∂V G ∂Z G

]

·
[

V − V0

Z − Z0

]

. (B.1)

Note that since the singular behavior results from F and G

vanishing at (V0, Z0), it is no use considering the denominator

Z(Z − I (v)) in the linearization. We are then seeking solutions

in the form v = v0e−λt . It is straightforward to deduce that λ

must be an eigenvalue of the linear system above, while v0 is

an eigenvector.

When the two eigenvalues are real and of the same sign, the

singular point is a node, and when ξ → ∞ or ξ → −∞,

the two solutions converge to the singular point by following

the directions given by the eigenvectors (see Fig. B.1). These

solutions are special solutions called separatrices since they

can usually be used to delineate different regions in the phase

plane. If we now consider a point in the immediate vicinity of

the singular point and integrate Eqs. (A.2) and (A.3) from this

point, the resulting integral path will pass through the singular

point, and its tangent at that point is collinear with one of

the eigenvectors. This means that one of the special curves is

also the limiting curve at which all the integral paths passing

Fig. B.1. Saddle and nodes in the phase plane. The solid lines represent the

special solutions; the arrows indicate the direction pointed by increasing ξ . The

dashed lines represent the integral paths.

through the singular point are tangent (except for the other

special solution).

When the two eigenvalues are real and of opposite sign, the

singular point is a saddle, and when ξ → ∞ or ξ → −∞,

one of the two solutions converges to the singular point by

following the direction given by one of the eigenvectors, while

the other solution diverges (see Fig. B.1). The solutions are also

special solutions and their curves are called separatrices. For a

saddle, there is only one curve passing through it (one of the

separatrices); all integral paths are deflected when approaching

this point.

For both saddle and node points, separatrices play a key

role. Their equations can be derived theoretically by seeking

the symmetry groups leaving Eq. (15) invariant [8,19] or

numerically by using L’Hôpital’s rule [19]. Basically, the latter

technique involves expanding the different terms in Eq. (15)

into a power series of F . Let us refer to the equation of the

separatrix by Z = Zs(V ). Since Zs(V ) is an exceptional

solution of Eq. (15), we can write

Z ′
s(V0)(V − V0)+ 1

2
Z ′′

s (V0)(V − V0)
2 + · · ·

=
(V − V0)D

(1)F + 1
2 (V − V0)

2D(2)F + · · ·
(V − V0)D(1)G + 1

2 (V − V0)2D(2)G + · · ·

with D(1) = ∂V + Z ′
s∂Z , D(2) = ∂V V + 2Z ′

s∂V Z + Z ′2
s ∂Z Z +

Z ′′
s ∂Z , etc. the total derivatives of order 1, 2, etc. Then collecting

the coefficients associated with the same power of V −V0 makes

it possible to find a Taylor series of the separatrix. Note that

there are two possible values for the first-order term and these

values correspond to the slope of the eigenvectors of the matrix

of Eq. (B.1). We end up with a power series in the form

Zs(V ) = Z0 + Z (1)s (V − V0)+ 1

2
Z (2)s (V − V0)

2 + · · · , (B.2)

with

Z (1)s = Z ′
s(V0, Z0)

= ∂Z F − ∂V G ±
√

(∂Z F)2 − 2∂V G∂Z F + (∂V G)2 + 4∂V F∂Z G

2∂Z G
,

Z (2)s = Z ′′
s (V0, Z0)

= −(Z (1)s )3∂Z Z G + (Z
(1)
s )2(∂Z Z F − 2∂V Z G)+ 2Z

(1)
s (∂V Z F − ∂V V )+ ∂V V F

−∂Z F + 2∂V G + 3Z
(1)
s ∂Z G

.
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When several singular points lie in the same region, they

share the same separatrices. For instance, in Fig. 5, SAB is

a separatrix for the singular points Aγ and Bγ . It is worth

noting that the numerical computation of the Taylor series

decomposition of Zs may encounter severe difficulties when

two neighboring points are not of the same topological nature

(which is the usual case). A priori, there is no specific reason

for the separatrix equation to be decomposable into a Taylor

series. Fig. B.2 shows how accurate a truncated Taylor series

decomposition is when its order is increased. We first computed

the Taylor series of separatrix SAB for γ = 1 and δ > 1 by

starting from point A1 (2, 1), which is a node. The separatrix

passes through point B1 (1, 0), which is a saddle; the values of

Zs at V = 1 computed using Eq. (B.2) can then be compared

to the expected value 0 and give an idea of the accuracy of this

expansion. Fig. B.2(a) shows the value Z(1) for order 26. It is

seen that for δ < 5/4, the accuracy increases with increasing

order, as expected. However, for δ > 5/4, the converse can

be observed, which shows that the series diverges. The same

exercise was repeated by computing the separatrix equation

starting from point B1 and evaluating the expansion accuracy

at point A1. Fig. B.2(b) shows that for δ > 5/4, accuracy is

enhanced by increasing the series order, while the Taylor series

diverges for δ < 5/4.

Appendix C. Construction of the similarity solution in the

phase plane

C.1. Usual computational procedure

The solution in the phase plane can be found by solving

Eq. (15) numerically. In practice, this was achieved by

proceeding as follows [4]:

(1) We selected a pair of points (VS, ZS) standing for the

source point and such that ZS = α−2V 2
S so that the

boundary condition (A.6) is satisfied. Usually, taking VS on

the order of 104 ensured accuracy to within 10−3.

(2) The ordinary differential equation (15) was then solved

using standard techniques (i.e., the predictor–corrector

Adams method). The resulting solution was plotted in the

phase plane as an integral path C of equation Z = Z(V ).

(3) On some occasions, the integral path crossed or came close

to the critical curve C I . In that case, the numerical solution

started to diverge: a discontinuous solution (strong shock)

was then envisaged. The integral path was made up of a

continuous path on either side of C I , while the endpoints of

these pieces were linked together by the shock conditions

(A.7) and (A.8). See Appendix C.2.

(4) To resolve the dependence on ξ and determine V (ξ) and

H(ξ), we first integrated Eq. (A.3) along the integral path C

from S to any point M (with some restrictions on M if the

solution crossed the critical curve C I ) and we obtained an

equation in the form

ξM = ξS exp

(

−
∫ S

M

I (V, Z(V ))

G(V, Z(V ))
dV

)

, (C.1)

Fig. B.2. Variation in the Z(1) value computed using the Taylor expansion

given by L’Hôpital’s rule to different orders when the δ = (2 + n)/3 value

is varied.

which allowed us to compute the value ξM associated with

any point M (VM , Z M = Z(VM )). Taking into account the

asymptotic behavior when ξ → 0 given by Eq. (A.5), we

were able to get rid of the terms representing the behavior

close to the source in order to obtain a closed form for the

coordinates of M. Note that when α = 2(9 − 8γ )−
1
2 , this

computation can be done analytically:

ξM =
(

2VMδ − 2

3δ

)δ−1
α
√
β

δV δ
M

.

C.2. Numerical treatment of the discontinuities

We refer to point E (VE , Z E ) as the point at which the shock

occurs. First of all, note that:

• It is not possible to directly relate P and E using the shock

conditions (A.7) and (A.8) because a hydraulic jump cannot

form between a dry bed and the current.

• Since no regular solution except the trivial solution Z =
0 passes through P, there is no other way of joining

the subcritical and supercritical branches of C since the

subcritical branch does not exist.
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The path E′ → P along the separatrix SAB must be integrated

numerically.

To locate the position of E along the integral path, we

used a trial-and-error procedure. On the integral path coming

from the source point, we first guessed the position of point

E in the phase plane V –Z . We deduced the position of E′ by

seeking the intersection point between the proper shock curve

and the separatrix SAB, then we computed the relations V (ξ) by

solving Eq. (A.3) numerically on either piece of the solution.

The volume of the current was then computed by integrating
∫ ξ f

0 ξ2 Z(ξ)dξ and compared with the expected value Aδ−2 [see

Eq. (A.6)]. The position of E was then varied until the computed

and expected total volumes coincided.

Appendix D. Ritter solutions

For δ = n = 1 and γ = 1, the critical curves C I , and CF ,

and CG form a single curve of equation Z = (V − 1)2; the

functions F and G simplify a great deal:

F = 2Z((V − 1)2 − Z) and G = V ((V − 1)2 − Z),

so that Eq. (15) is transformed into a simple equation

dZ

dV
= 2Z

V
.

This shows that the equations of the regular integral paths are of

the form Z = k1V 2, with k1 an integration factor. The boundary

conditions at the source yield k1 = α−2. Using Eqs. (A.2) and

(A.3) to resolve the dependence on ξ , we find

ξdZ + 2Zdξ = 0,

which provides

Z = βξ−2, hence V =
√

βαξ−1,

when the boundary conditions (9) are taken into account. In

the phase plane, the corresponding curves are parabolas P of

equation Z = (V/α)2.

As is seen in Fig. 8, curves of this type do not satisfy

the boundary conditions at the front. However, they meet the

critical curve C I at point

• E′ of coordinates (α/(α + 1), (1 + α)−2) associated with

ξe = √
β(1 + α) when α < 1.

• E of coordinates (α/(α − 1), (1 − α)−2) associated with

ξe = √
β(1 − α) when α > 1.

This coalesced C I curve is a singular solution to Eq. (A.1),

which corresponds to α = 1. Indeed, along this curve, we have

det N = 0 and det M = 0. This implies that Z = (V − 1)2 and

Eq. (A.1) reduces to

3ξdV + (3V − 2)dξ = 0,

which, when integrated, provides

V = 2

3
+ k2

ξ
,

where k2 is an integration constant. When α > 1, using the

coordinates of E, we deduce the value of k2:

k2 = 2

3

√

βα.

Returning to the dimensionless physical variables, we find

ū = ξV = 2

3

(

ξ + α
√

β
)

,

h = ξ2 Z = ξ2(V − 1)2 = 1

9

(

ξ − 2α
√

β
)2

for ξ ≥ ξe, while for ξ < ξe, we have

ū = α
√

β,

h = β.

When α → 1, we retrieve the usual Ritter solution found by

Ritter [52] in his analysis of the dam-break problem. Note that

this problem, where an infinite volume of fluid retained by a

dam is unleashed at time t = 0, is nearly equivalent to a

constant-discharge problem because if we examine what occurs

at x = 0 (hence ξ = 0) for the Ritter solution, we find that the

flow depth and velocity are constant, and hence the flow rate

is in turn constant. The equivalence is, however, not complete

since the flow geometries differ slightly.

When α < 1, we can also construct a mathematical solution,

but this solution is nonphysical. Indeed, in that case, the

integration constant k2 is (2 − α)
√
β/3, which means that the

velocity
∣

∣

∣

∣

V − 2

3

∣

∣

∣

∣

= (α − 2)
√
β

3ξ
,

tends to 2/3 and the front point P (V = 1) is never reached.

Appendix E. Scaling of the Navier–Stokes equation

The governing equations are given by the Navier–Stokes

equations. These equations can be simplified a great deal by

focusing on shallow inertial flows, i.e., keeping only the terms

whose order of magnitude is O(ǫ0).

The characteristic streamwise and vertical velocities, the

timescale, and the typical pressure are referred to as U∗, V∗, T∗,

and P∗, respectively. Moreover, in addition to the length scale

ratio ǫ, we introduce the following dimensionless numbers

that characterize free-surface, gravity-driven flows: the flow

Reynolds number Re = ρU∗ H∗/µ and the Froude number

Fr = U∗/
√

gH∗. Finally, the following dimensionless variables

will be used: u = û/U∗, v = v̂/V∗, x = x̂/L∗, y = ŷ/H∗,

t = t̂/T∗, and p = p̂/P∗, where the hat refers to dimensional

variables. Natural choices for T∗ and P∗ are T∗ = L∗/U∗
and P∗ = ρgH∗ since we expect that, to leading order, the

pressure adopts a hydrostatic distribution. If we define the

vertical velocity scale as V∗ = ǫU∗, the mass balance equation

takes the following dimensionless form:

∂u

∂x
+ ∂v

∂y
= 0. (E.1)
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At high speeds, there is a balance between inertia and the

pressure gradient, which leads us to define the velocity scale as:

U∗ =
√

gH∗. In this case, the order of magnitude of the viscous

stress is ρgH∗O(ǫ−1 Re−1). For the viscous contribution to

the momentum balance to be neglected compared to inertial

and pressure terms, the following conditions must be satisfied:

ǫRe ≫ 1. In this case, we also have: Fr = O(1). We refer to

this regime as the inertial flow regime. The governing equations

take the following dimensionless form:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ λ

(

ǫ2 ∂
2u

∂x2
+ ∂2u

∂y2

)

, (E.2)

ǫ2

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= −1 − ∂p

∂y

+ λǫ
(

ǫ2 ∂
2v

∂x2
+ ∂2v

∂y2

)

, (E.3)

where λ = (ǫRe)−1 ≪ 1.

E.1. Governing equations for the body

When λ ≪ 1 and ǫ ≪ 1, then we can get rid of higher-order

terms in Eqs. (E.2) and (E.3) and we end up with the so-called

shallow-wave equations [66]

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
, (E.4)

0 = −1 − ∂p

∂y
. (E.5)

E.2. Governing equations for the head

When λ ≪ 1, but ǫ = O(1), we retrieve the dimensionless

Euler equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
, (E.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1 − ∂p

∂y
. (E.7)

Appendix F. Irrotational solution

Our problem boils down to finding the stream function for

an inviscid irrotational flow in a wedge of angle χ . We shall

see that the only solution to this problem is the trivial solution

ψ0 = 0 within the tip region. Indeed, the complex potential

w(z) = φ0 + iψ0, with z = x + iy and φ0 the potential function,

is analytical for an irrotational inviscid flow. If we focus our

attention on the close neighborhood of the leading edge, the free

surface at order O(t0) appears as a stationary line, making an

angle χ with respect to the bed. We solve the equation1ψ0 = 0

within a wedge. The contour line of this wedge is the streamline

ψ0 = 0. Using the conformal transformation Z = X + iY = ez ,

the wedge is transformed into an infinite strip; the Laplace

equation reads ψ0,Y Y = 0 in the Z -plane and the boundary

conditions are the following: ψ0 = 0 on Y = 0 and Y = χ .

Hence, we obtain ψ0 = 0. This result might be anticipated with

physical intuition because the only possibility for observing an

irrotational flow in a wedge is assuming that there is a sink at

the edge. The only way to overcome this paradoxical result is to

assume that there are sources of vorticity within the tip region.
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