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Existence and Learning of Oscillations in Recurrent Neural Networks

S. Townley, A. Ilchmann, M. G. Weiß, W. Mcclements, A. C. Ruiz, D. H. Owens, and D. Prätzel-Wolters

Abstract—In this paper we study a particular class of -node re-
current neural networks (RNN’s). In the 3-node case we use mono-
tone dynamical systems theory to show, for a well-defined set of pa-
rameters, that, generically, every orbit of the RNN is asymptotic to
a periodic orbit. Then we investigate whether RNN’s of this class
can adapt their internal parameters so as to “learn” and then repli-
cate autonomously (in feedback) certain external periodic signals.
Our learning algorithm is similar to identification algorithms in
adaptive control theory. The main feature of the algorithm is that
global exponential convergence of parameters is guaranteed. We
also obtain partial convergence results in the -node case.

Index Terms—Learning systems, monotone dynamical systems,
nonlinear dynamics, recurent neural networks.

I. INTRODUCTION

R
ECENTLY, there has been considerable interest in recur-

rent neural networks (RNN’s) which exhibit periodic or

chaotic dynamics. RNN’s which generate stable oscillations

have been used to model certain biological phenomena. See,

for example, [11] and [2]. RNN’s which generate chaotic

dynamics can be used to model oscillations in the cortex and

for controlling chaotic dynamical systems; see [3], [7], and

[25].

In this paper we are mainly interested in determining whether

a class of RNN’s can maintain a periodic orbit, and, if so, can

they be forced to learn such orbits. Such periodic orbits are

meant to capture the idea that certain activities or motions are

learned by repetition. In the literature, there are essentially three

approaches to this problem.

The first approach considers the behavior of RNN’s from

a computational point of view. Reference [17] has shown that

a fully interconnected five-dimensional RNN can generate a

stable limit cycle. This empirical approach uses a dynamic ver-

sion of the steepest descent adaptation algorithm to adapt the pa-

rameters or weights of the RNN so that, after a training period,

the network replicates a predetermined periodic signal. See also

[6]. This approach does not analyze the mechanism by which

the periodic signal is generated nor make any attempt to char-

acterize the set of parameter values for which the RNN has pe-
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riodic solutions. There is no guarantee that such a set of param-

eters exists.

The second approach uses Hopf bifurcation techniques to

prove that certain classes of RNN generate stable limit cycles.

While this approach can be used to determine parameter ranges

for which such limit cycles exist, by the very nature of the Hopf

theorem, these results are local, both in parameter and phase

space. For results in this direction see [2], [21], and the refer-

ences therein.

The third approach exploits the fact that many classes of

RNN’s can be regarded as monotone dynamical systems. For

example, [23] has studied a RNN with a cyclic structure and

the work of [12] on general “cyclic” dynamical systems can be

applied to classes of cyclic RNN’s. These examples lead us to

believe that monotone dynamical systems theory, as developed

by [9], [24], and [13], provides a powerful framework for

analysing the dynamics of RNN’s. However, to our knowledge,

developments in this direction are limited to the examples

mentioned above.

In this paper we study a particular class of -node RNN’s. In

the 3-node case we use monotone dynamical systems theory to

show, for a well-definedsetof parameters, that, generically, every

orbit of the RNN is asymptotic to a period orbit. Then, within

a usual “learning” context of neural networks, we investigate

whether RNN’s of this class can adapt their internal parameters

so as to “learn” and then replicate autonomously certain external

periodic signals. Our learning algorithm is similar to identifica-

tion algorithms in adaptive control theory. The main feature of

the adaptation algorithm is that global exponential convergence

of parameters is guaranteed. This is in contrast to “steepest de-

scent”-basedadaptationalgorithmswhichonly find localminima

of the parameter error cost functionals. We discuss in detail the

extent to which these results can be extended to the -node case.

In particular, we prove partial convergence results for the -node

case. Note that while we use an identical network structure to

that in [21], our results differ on two accounts. First, in Ruiz et al.

convergenceofagenericorbitoftheRNNtoaperiodicorbitisonly

proved to on time scalesof Second, inRuizetal. the

learning algorithm is based on steepest descent techniques so that

onlylocalasymptoticconvergenceofparameters isguaranteed.

This paper is organized as follows. In Section II we specify

the class of RNN’s under consideration and make precise the

notions of learning and replication. To do so we introduce the

so-called teaching network and learning RNN. The teaching

network provides the external periodic signal which is to be

learned. In Section III we prove that the orbits of the teaching

network are, generically, asymptotic to a periodic orbit. In Sec-

tion IV we develop the parameter adaptation algorithm by which

learning is achieved. In the 3-node case our adaptation algorithm

guarantees exponential convergence. We also prove partial con-

vergence results for the -node case. In Section V we comment

1045–9227/00$10.00 © 2000 IEEE
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Fig. 1. Class of recurrent neural networks.

on the difficulties encountered in proving exponential conver-

gence in the -node case.

II. STRUCTURE OF THE TEACHING NETWORK AND LEARNING

RNN

We consider the RNN shown in Fig. 1. This RNN is described

formally by the system of differential equations

...

(1)

where is the state,

is the net-

work parameter or weight vector, is the input, i.e., teaching

signal, and is the output. In (1) the nonlinear triggering

function for the neurons is hyperbolic tangent. However, any

triggering function, with similar properties of oddity, bound-

edness, monotonicity and smoothness, could have been consid-

ered. These properties are used in the proof of Lemma 3.3. In

Proposition 5.1 we use a triggering function We

are interested in whether, by adapting the weights, the RNN (1)

can learn and then replicate a periodic teaching signal The

use of a periodic teaching signal is motivated by the idea that

most learning systems need repetition. To make the problem

solvable we restrict the class of signals that are to be learned.

In fact, we assume that the signal to be learned is given by

where

...

(2)

We refer to (2) as the teaching network. The teaching network,

with state and

has a similar structure to (1) but the corresponding weight

vector is fixed and the loop from

to is closed with unity feedback. We will see in Section III

that the teaching network can have periodic solutions, which we

can then use as periodic teaching signals.

The RNN (1) will operate in two modes—as a learning RNN

in the learning phase and as a replicating RNN in the replicating

phase.

1) As a learning RNN, (1) has time-varying weights and

the input is equal to the output of the

teaching network. The time-varying weights of this

learning RNN are adapted so as to enable learning of

the periodic teaching signal and unknown

weights of the teaching network.

2) As a replicating RNN, (1) has fixed weights and oper-

ates in a unity feedback configuration. The output of this

replicating RNN is meant to agree with the output of the

teaching network.

The overall process of learning/replication is described as fol-

lows: The teaching network produces at its output an unknown

periodic teaching signal. In the learning phase this signal is fed

as input into the learning RNN. The weights of the learning

RNN are then adapted. We use a weight adaptation algorithm

which is similar to identification algorithms in adaptive control

theory. After some finite time , assumed long enough for the

convergence to be adequate, we switch from the learning phase

to the replication phase so that weight adaptation is terminated

and the output of the teaching network is removed as input to

the learning RNN to be replaced with its own output. The re-

sulting replicating RNN, with fixed weight vector then

reproduces (approximately), as its output, the periodic teaching

signal.

In the context of our learning/replication process, there are

two crucial aspects. We must prove that the teaching network

produces periodic signals as its output and we must be able to

prove that the adapted weights of the learning RNN converge to

the fixed weights of the teaching RNN. These issues are dealt

with separately in Sections III and IV, respectively.

III. EXISTENCE OF ATTRACTIVE PERIODIC SOLUTIONS IN THE

TEACHING NETWORK

In this section we focus on properties of a 3-node version of

teaching network (2)

(3)

We prove, for a range of weight values, that each trajectory of

(3) which does not converge to the equilibrium converges

to a periodic orbit. We do so by regarding the system (3) as

a monotone dynamical system and by using techniques from

monotone dynamical systems theory.

First we introduce the concept of a competitive dynamical

system.
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Definition 3.1: Let be continuously differen-

tiable on some open set A system is said to

be competitive on if and only if

for all and for all (4)

Competitive systems are special cases of monotone systems. For

a detailed study of monotone dynamical systems see [24] and

the references therein. Note that we have defined the notion of

a competitive system with respect to the positive orthant in

and the usual partial ordering: if and only if for

all , and The notion can be extended in an obvious

way by considering other orthants in The main result on

competitive systems we need is the following proposition from

[24].

Proposition 3.2: Let the system

with continuously differentiable on an open set be

competitive on Suppose that contains a unique equilibrium

point which is hyperbolic. Suppose further that , the

stable manifold at is one-dimensional and tangential at

to a nonnegative vector If and the positive

semi-orbit has compact closure in

then the -limit set, of is a nontrivial periodic orbit.

Note that this result, sometimes referred to as a

Poincaré–Bendixson theorem for three-dimensional sys-

tems, does not generalize to higher dimensions, except in the

special case of cyclic systems, see [12]. Furthermore, mono-

tone systems theory does not provide us with any information

concerning the uniqueness and stability of these periodic orbits.

Nevertheless, Proposition 3.2 is a useful tool for establishing

the existence of attractive periodic orbits in the teaching

network (3).

We begin with a lemma which is proved in [21].

Lemma 3.3: Consider the system described by (3). If the

fixed weights and satisfy

(5)

then 1) the linearization of (3) about zero has one negative real

eigenvalue and a pair of complex conjugate eigenvalues with

positive real part and 2) the origin is a unique equilibrium of

(3).

We use Lemma 3.3 in the following theorem which gives con-

ditions for the guaranteed existence of periodic solutions in the

teaching network (3).

Theorem 3.4: Consider the teaching network (3). Suppose

that the weights satisfy (5) and, in addition, Then for

each is a nontrivial periodic orbit.

Proof: In order to apply Proposition 3.2 we need some

preliminary results.

1) We show for all that the positive

semiorbit has compact closure. Indeed,

since is bounded, we can view (3) as

an exponentially stable linear system driven with a

bounded input. Therefore every positive semiorbit is

bounded and so has compact closure in In fact the

set attracts all

solutions.

2) It follows from (5) and Lemma 3.3, parts 1) and 2), that

is a unique hyperbolic equilibrium of (3) with

a one-dimensional stable manifold

3) In order to apply Proposition 3.2, we transform (3)

into a competitive system on We do so by using

a change of coordinates

which, when applied to (3), gives

(6)

Since the weights satisfy (5), so that in particular

, and by assumption , it follows that the

right-hand side of (6) satisfies (4). Hence the system

(6) is competitive.

4) Let be the Jacobian matrix of the right-hand side of

(6) evaluated at zero. Clearly is nonnegative and

is a positive matrix (i.e., is a primitive

matrix). It follows (see, for example, [10, Sec. 8.5 ])

that has a positive eigenvector corresponding to

the (unique by Lemma 3.3) negative real eigenvalue of

Hence the stable manifold for the zero equilibrium

of (6) is tangential at zero to a positive vector.

The proof is now complete since we can use 1)–4) to apply

Proposition 3.2 to (6).

Remark 3.5:

1) The conclusions of Theorem 3.4 will hold if the trig-

gering function is replaced by any other

function with similar properties of oddity, bounded-

ness, monotonicity, and smoothness provided that the

inequalities in (5) are scaled appropriately to account

for

2) Note that in the case and satisfying (5) but with

we have not been able to find a change of co-

ordinates which converts (3) into a competitive system

in the sense of Definition 3.1. This has prevented us

from extending Theorem 3.4 to the case

However in [21] we have shown, for such weight pa-

rameters, a weaker convergence to a periodic function

to on time scales of

3) For weights satisfying the conditions of Theorem 3.4,

typically the resulting teaching signal is sinusoidal in

nature. This “linear-like” behavior is somewhat sur-

prising because the teaching network is strongly non-

linear and we allow parameters far from the Hopf bi-

furcation curves in weight space.

Note that for any weight values satisfying (5), not only does

every simulation we have tried produce solutions converging to

a periodic function, but that for each pair of weights this periodic

function is unique, i.e., simulations suggest that for each pair

of weights satisfying (5), (3) has a limit cycle which attracts all

solutions except those starting in It is easy to see that the

solution of the teaching network (2) is constant if and only
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if one of its components is. We conclude this section with

a lemma concerning the linear independency of the functions

and in the case of the 3-node teaching

network. Let

(7)

Lemma 3.6: Assume that is a nontrivial periodic solu-

tion of (3) with period Then the functions and

are linearly independent or equivalently

(8)

Proof: Suppose that and are depen-

dent. Since neither of and are constant,

we can find so that Substi-

tuting for in the first equation in (3) gives

It then follows that is constant since the only periodic so-

lution of a first-order equation is a constant solution. This im-

plies that is constant which is a contradiction. Therefore

and are linearly independent. Now (8)

holds if and only if for all nonzero

, i.e., , for all nonzero , i.e., if and

only if and are linearly independent.

Remark 3.7:

1) The condition given by (8) states that is persis-

tently exciting; see [14].

2) We have been unable to obtain necessary and suf-

ficient conditions for persistency of excitation of

in the case of

an -node teaching network. In Proposition 5.1 we

show, for a teaching network with triggering function

in place of , that persistency

of excitation can fail even though the teaching network

has a limit cycle. However, all our simulations suggest

that persistency of excitation holds generically among

those weight vectors yielding periodic solutions.

IV. LEARNING THE OUTPUT FROM THE TEACHING NETWORK

In this section we construct weight adaptation algorithms

which enable the learning RNN to learn the output of the

teaching network. More accurately, in the case the

learning algorithms guarantee that the state and weight

vector of the learning RNN converge exponentially to the

state and fixed weight vector of the teaching network.

The weight adaptation algorithms are similar to identification

algorithms in adaptive control. The convergence proofs use the

persistency of excitation property (8). We also obtain partial

convergence results for the -node case.

Theorem 4.1: Consider the 3-node teaching network (3) and

the corresponding 3-node Learning RNN

(9)

where

(10)

Define the weight adaptation algorithm by

(11)

Then for arbitrary initial conditions and

, the closed-loop system (3), (9)–(11) has a unique

solution defined on Furthermore, if is a nontrivial

periodic solution of (3), then there exist independent

of and , so that

for all (12)

Proof: Existence and uniqueness of solutions on

is guaranteed because the right-hand side of the closed-loop

system (3), (9)–(11) is continuous and affine linearly bounded.

Let Then

(13)

where, for or and

Clearly, from (13)

for all (14)

Since has a global Lipschitz constant equal to one

we have that

for all and (15)

It follows, using variation of contants in the first equation in

(13), and then taking estimates, that

Hence there exists such that

for all and

(16)

It remains to show that decays to

zero exponentially. First we show that the weights are bounded.

Indeed, differentiating

along solutions and using (15) and (16), we obtain for all

that

(17)
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Integrating (17) from zero to gives

(18)

It follows from (18) that and, in particular, is bounded.

Next we look at the differential equation which describes the

evolution of This can be written in the form

(19)

where

and is given

by (7). Notice that and which we consider as pertur-

bation terms in (19) decay to zero exponentially. In analysing

(19) we first consider the “unperturbed,” homogeneous system

(20)

with Since satisfies the persistency of excita-

tion condition (8) it follows from Corollary 2.3 in [15], that the

system given by (20) is uniformly exponentially stable. Now,

using the fact that it follows from stan-

dard perturbation results, (see, for example, [19, p. 134]), that

for the transition matrix of

there exists so that

(21)

for all , and Using variation of constants in (19)

and estimating, using (21), gives, for all

(22)

Now using the boundedness of and the exponential decay

to zero of and given by (15) and (16) we have that

converges to zero exponentially as tends to It then

follows that there exists so that (12) holds.

Remark 4.2: Note that the learning algorithm (11) is re-

alizable since can be obtained from the teaching signal

using the invertibility of Fig. 2 shows

the results from a simulation of the learning algorithm where

the weights of the teaching signal are

and

The simulation shows clearly that the output of

the teaching network is periodic.

The weight adaptation (11) is chosen to make the right-hand

side of (17) seminegative definite, except for a term which de-

cays to zero exponentially. Note that the algorithm (11) guar-

antees not only local, but global convergence. A similar con-

struction can be used in the -node case to obtain the following

partial extension of Theorem 4.1.

Fig. 2. (Top) reference signal u(t) (dotted), learning signal y(t) (continuous);
(Bottom): weight dynamics w (t) and w � 2(t):

Theorem 4.3: Let and be given by (1) and (2), re-

spectively. Define the weight adaptation algorithm by

for

(23)

Then

1) there exist independent of , , and

so that

for all and

2) the weights are bounded;

3)

4) for any we have

(24)

where

Proof: As in the proof of Theorem 4.1, introduce
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Then

(25)

Part 1) follows analogously to the corresponding result in The-

orem 4.1. To prove parts 2) and 3) let

where Then, as in the

3-node case

and

It follows that and are bounded, and

Then, from (25), it follows that is bounded.

Hence, using Barbǎlat’s Lemma (see Corollary 2.9 in [15]),

This proves 2) and 3). All that remains

is to prove the partial convergence 4). To do this we borrow

techniques from partial convergence proofs in adaptive control

(see [22, Th. 2.7.4]. Now for each

(26)

Let be arbitrary. We claim that

(27)

Indeed, using

and the facts that and

from 1) and the global Lipschitz continuity of that

for each (27) holds if

Now, from (25), and

yields Then, using part 3), we have

and therefore (27) holds as claimed. Let

Then, following the techniques in [22, proof of Th.

2.7.4], we have

(28)

Taking limits in (28) as tends to , using (26) and (27), gives

4).

Corollary 4.4: Under the assumptions of Theorem 4.3:

1) If is periodic and is persistently exciting, then

and converge to zero exponentially;

2) If is periodic with period then

(29)

i.e., the weight vector converges to

Proof:

1) This follows using the same techniques as in the proof of

Theorem 4.1.

2) This follows by taking in Theorem 4.3, part 4).

While the conclusions of Corollary 4.4 give us exact general-

izations of the results we obtained in the 3-node case, Corollary

4.4 is unsatisfactory because the additonal conditions of period-

icity and persistency of excitation are, in general, uncheckable,

except by simulations. Note that [28] has obtained similar re-

sults to Corollary 4.4 for a slightly more general RNN structure

including self-connections of the neurons. More recently, one

of the authors, see [29], has shown that if is periodic, then

convergence of the weight error given in (24), and of to

zero, is exponential.

We illustrate the algorithm in the 5-node with

In the simulations we

choose

for the teaching network, and

and in the learning RNN and weight

adaptation algorithm. The weights of the teaching network

were chosen so that the linearization of (2) about has

one pair of unstable complex conjugate eigenvalues and three

exponentially stable eigenvalues. While we have been unable

to prove that this type of eigenvalue configuration produces os-

cillatory behavior, our simulations suggest that this is the case.
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Fig. 3. (Top) reference signal u(t) (dotted), learning signal y(t) (continuous);
(Bottom): weight dynamics w (t); � � � ; w (t):.

Fig. 3 shows the output signals and the weight convergence. In

this simulation both the state error and the weight error

converge to zero exponentially. This claim is supported by the

fact that the matrix is positive definite

which, combined with the apparent periodicity of would

give us the required persistency of excitation condition needed

to apply Corollary 4.4.

Remark 4.5: We discuss briefly the behavior of the repli-

cating RNN. Under the persistency of excitation condition both

the state and parameter error converge exponentially. So we can

specify how small the errors are at the time, of switching

from “learning” to “replication.” Especially we can control the

error between and It is possible to show that the ex-

istence of attractive periodic orbits in the teaching network is

an open property with regards to the weight values, and that

the attractive periodic orbits depend continuously (with respect

to the Hausdorff metric) on the weights, see [29]. This attrac-

tivity and continuous dependence are essentially nonlinear phe-

nomena and suggests that our nonlinear RNN’s have advantages

over linear networks, such as those considered in [4] and [18]. In

the nonlinear case, even though the outputs of the teaching net-

work and replicating RNN may drift in phase, the corresponding

Fig. 4. (Top) Output of replicating RNN (1) without noise (solid) and with
additive band-limited noise (dash-dotted). (Bottom) band-limited noise.

orbits remain close in state space. In the case of linear RNN’s the

identity, rather than , is used as the triggering function and

the resulting replicating RNN can be written as a linear system

where the system matrix, describing the same connection struc-

ture as in Fig. 1, depends linearly on the weights. In this linear

case, periodic solutions of the teaching network correspond to

eigenvalues of on the imaginary axis. However, given

any there exists with and such that

the eigenvalues of the replicating RNN have positive real parts.

Consequently, if then orbits of the teaching network

and replicating RNN will diverge exponentially.

In Fig. 4 we illustrate this robustness with a simulation of a

3-node replicating RNN subject to band-limited noise n(t) in the

feedback loop. The weights of (1) in replicating mode are fixed

so that , The noise is introduced additively

so that We see that the primary effect

of the noise is to shift the phase of the signal. The shape of the

signal is essentially retained.



212 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 1, JANUARY 2000

V. FURTHER COMMENTS ON WEIGHT CONVERGENCE

In Section III we proved that the 3-node teaching network

has periodic solutions. In Section IV we proved that the learning

RNN can learn these periodic outputs in the sense that the output

error and weight error converge to zero exponentially. The proof

of this exponential convergence used persistency of excitation

conditions. For -node RNN’s, we could only obtain partial

convergence results. There are two major obstacles to obtaining

a general theory in the -node case. First, we have not been able

to determine conditions on the weights of the -node teaching

network (2) which guarantee the existence of periodic solutions.

The existence of periodic solutions is fundamental to our idea of

learning by repetition. Second, we have not been able to prove

that is persistently exciting,

or, equivalently in the case when is periodic, that the func-

tions are linearly independent.

Our simulations suggest that linear independency, and

hence the persistency of excitation condition, holds generically

amongst those weight parameters for which the teaching

network (2) has periodic solutions. However, there do exist

teaching networks which have periodic solutions but which

violate the linear independency condition. To construct such

an example we need to modify (2) slightly by replacing the

triggering function with for some

Proposition 5.1: Let be given by (2) but with triggering

function for some Assume for

some and otherwise.

1) If then the modified teaching network pos-

sesses a limit cycle.

2) If is a periodic solution of the modified teaching

network, then for

In particular, for , if , then the functions

are linearly dependent.

Proof:

1) Let denote the right-hand

side of the modified teaching network. Consider first the

case Then the teaching network forms a cyclic

system (where components are indexed modulo with

The existence of a limit cycle follows from [2] using tech-

niques from [8].

Let Then the dynamics for components

are given by a cyclic -dimensional

subsystem which, as in the case has a limit cycle.

For the other components let

continuous and periodic

and define a nonlinear operator by

with denoting composed with itself

times. If are the component functions of the

limit cycle for the -dimensional subsystem ex-

tended to by periodicity, then the periodic functions

restricted to ,

determine the remaining components of the solu-

tion and hence the required limit cycle for the modified

teaching network.

2) By the structure of the modified teaching network

for (30)

and

for (31)

On the other hand using in the th equation of

the modified teaching network gives,

(32)

Applying to (32) and using (30)–(32), we obtain

for

This gives a very simple linear dependence of the Oddity of

yields

for

For a modified teaching network of dimension

with the resulting dependency of the functions

means that the corresponding per-

sistency of excitation condition fails. This in turn means

that exponential convergence of the weights cannot be

guaranteed. It is quite delicate to actually find suitable

parameters by which failure of exponential convergence

of weights is observed. The failure of exponential con-

vergence does occur in the case and with

for which, by Proposition 5.1,

and For the simulation we choose

and

In this simulation the components and

converge to zero exponentially and, on the time scale of the

simulation, are almost indistinguishable. The components

and do not converge to zero. Notice the strange behavior

of which appears to converge, to zero but then, after

, rises to a nonzero value.

Remark 5.2:

1) For in Proposition 5.1, the modified teaching

network is a cooperative system and therefore it cannot

have a limit cycle. See [9].

2) While the modified cyclic teaching network is useful

in illustrating that failure of the persistency of ex-
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Fig. 5. Logarithm of weight error for a five-dimensional cyclic system.

citation can lead to nonconvergence of the weights,

from the point of view learning its significance is

limited. This is due to the fact that the components

do not contribute to the dynamics

of the output neuron in the teaching network.

Hence the same output can be generated by a cyclic

teaching network of dimension which, in

all our simulations, yields a linearly independent set

of functions

VI. CONCLUSIONS

We have shown, using a result from monotone dynamical sys-

tems theory, that a certain 3-node RNN with fixed weights, the

so-called teaching network, has periodic solutions. The moti-

vation behind the need for the teaching network to have pe-

riodic solutions arises from the observation that learning usu-

ally requires repetition. We then used the periodic output of

the teaching network as a teaching signal to be learned by a

3-node learning RNN. The learning RNN has a similar struc-

ture to the teaching network but with time-varying weights. The

algorithm by which the weights are adapted is similar to param-

eter identification algorithms in adaptive control. We were able

to prove global exponential convergence of the state and weights

of the learning RNN to the fixed weights and periodic solution

of the teaching network. This global and exponential conver-

gence is much sharper than the local and asymptotic conver-

gence which is usually associated with gradient descent adap-

tation. Note also that the inherently nonlinear nature and the

resulting limit cycle-like structure of the periodic solutions of

the teaching network and learning/replicating RNN provides ro-

bustness of the learned signal against external disturbances. This

contrasts with the case of linear RNN’s as developed by [4] and

[18] which are sensitive to such disturbances. We also obtained

partial convergence results in the -node case by using tech-

niques from adaptive control. Under appropriate persistency of

excitation type conditions we obtain global exponential conver-

gence as in the 3-node case.

Techniques for speeding up the exponential convergence of

the weights in the case when the persistency of excitation con-

dition is satisfied have been developed in [28] for a similar RNN

structure. These techniques could also be applied to our class of

RNN.

Applications of our results to the control of a robot arm have

been developed in [21], in the case of a gradient descent weight

adaptation algorithm, and in [26], with our weight adaptation

algorithm.

An area of research which requires further work is to make

use of monotone dynamical systems theory in studying more

general RNN structures. So far our results are restricted, in the

main, to a special class 3-node RNN’s. Another issue, which we

did not address here, is to understand the detailed structure of the

class of periodic signals which can be generated by the teaching

network. Our simulations suggest that the periodic signals are

very nearly sinusoidal. This issue would be important if many

learning RNN’s were combined in parallel so as to facilitate

learning of more complicated signals. See [20] for preliminary

simulation-based studies of RNN’s comprised of several 3-node

networks in parallel.

Finally, we have restricted attention to the problem of

learning and then replicating a teaching signal. Another issue

of interest is to consider the recall capabilities of RNN’s.

More precisely, how can we build into the learning RNN,

mechanisms for recognizing a previously learned signal so as

to then speed-up, or even bypass, relearning. For results in this

direction see [27].
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