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This paper investigates the positions and linear stability of an infinitesimal body around the
equilibrium points in the framework of the Robe’s circular restricted three-body problem, with
assumptions that the hydrostatic equilibrium figure of the first primary is an oblate spheroid and
the second primary is an oblate body as well. It is found that equilibrium point exists near the
centre of the first primary. Further, there can be one more equilibrium point on the line joining
the centers of both primaries. Points on the circle within the first primary are also equilibrium
points under certain conditions and the existence of two out-of-plane points is also observed. The
linear stability of this configuration is examined and it is found that points near the center of the
first primary are conditionally stable, while the circular and out of plane equilibrium points are
unstable.

1. Introduction

Robe [1] considered a new kind of restricted three-body problem in which, one of the
primaries of mass m1 is a rigid spherical shell, filled with homogenous, incompressible fluid
of density ρ1; the second one is a point massm2 located outside the shell and moving around
the mass m1 in a Keplerian orbit; the infinitesimal mass m3 is a small sphere of density ρ3,
moving inside the shell and is subject to the attraction of m2 and the buoyancy force due to
the fluid of the first primary. Further, he discussed the linear stability of an equilibrium point
obtained in two cases. In the first case, the orbit ofm2 aroundm1 is circular and in the second
case, the orbit is elliptic, but the shell is empty (there is no fluid inside it) or densities of m1

and m3 are equal. Since then various studies (e.g., [2–4]) under different assumptions have
been carried out.
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Figure 1: The Robe’s CRTBP with oblate primaries.

In his study, Robe [1] assumed that the pressure field of the fluid ρ1 has a spherical
symmetry around the center of the shell and he took into account only one out of the three
components of the pressure field which is due to the own gravitational field of the fluid
ρ1. He did not consider the other two components arising from the attraction of m2 and the
centrifugal force. Taking care of all these three components of the pressure field, A. R. Plastino
and A. Plastino [5] reanalyzed the Robe’s. But in their study, they assumed the hydrostatic
equilibrium figure of the first primary as Roche’s ellipsoid (see Figure 1). They found that
when the density parameter D is taken as zero, every point inside the fluid is an equilibrium
point; otherwise the center of the ellipsoid is the only equilibrium point and it is linearly
stable.

Hallan and Rana [3] investigated the existence of all equilibrium point and their
stability in the Robe’s [1] restricted three-body problem. It was seen that the Robe’s elliptic
restricted three-body problem has only one equilibrium point for all values of the density
parameter K and the mass parameter µ, while the Robe’s circular restricted three-body
problem can have two, three, or infinite numbers of equilibrium points. As regards to the
stability of these equilibria, they confirmed the stability result given by Robe [1] of the
equilibrium point (−µ, 0,0), whereas triangular and circular points are always unstable. The
equilibrium point collinear with the center of the shell and the second primary was found to
be stable under some conditions.

Hallan and Mangang [4] studied the Robe’s [1] restricted three-body problem by
considering the full buoyancy force as in A. R. Plastino and A. Plastino [5] and assuming
the hydrostatic equilibrium figure of the first primary as an oblate spheroid. They derived
the pertinent equations of motion and discussed the existence of equilibrium point and their
linear stability.

The participating bodies in the classical restricted three-body problem are strictly
spherical in shape, but in actual situations several heavenly bodies, such as Saturn and
Jupiter, are sufficiently oblate. The minor planets and meteoroids have irregular shape. The
lack of sphericity, or the oblateness, of the planet causes large perturbations from a two-body
orbit. The motions of artificial Earth satellites are examples of this. Global studies of problems
with oblateness have been carried out by many researchers (e.g., [6–9]).

Therefore, our effort in this paper aims at investigating the equilibrium points and
their stability in the Robe’s circular restricted three-body problem when the hydrostatic
equilibrium figure of the fluid of the first primary is an oblate spheroid and the second one is
an oblate spheroid as well. The model of this study can be used to study the small oscillation
of the Earth’s inner core taking into account the Moon’s attraction.
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This paper is organized as follows; Section 2 represents the equations of motion; the
existence of the equilibrium points is mentioned in Section 3, while Section 4 investigates their
linear stability; Section 5 discusses the results obtained; the conclusion is drawn in Section 6.

2. Equation of Motion

Let the first primarym1 be a fluid of density ρ1 in the shape of an oblate spheroid as assumed
by Hallan and Mangang [4]; let the second primary m2 be an oblate body too as Sharma and
Subba Rao [6] assumed, which describes a circular orbit around m1.

We adopt a uniformly rotating coordinate system Ox1x2x3 with origin at the center of
massm1,Ox1 pointing towardsm2, withOx1x2 being the orbital plane ofm2 coinciding with
the equatorial plane ofm1. Then, the equations of motion of the infinitesimal body of density
ρ3 in the coordinate system take the form [4, 6]:

ẍ1 − 2nẋ2 =
∂U

∂x1
, ẍ2 + 2nẋ1 =

∂U

∂x2
, ẍ3 =

∂U

∂x3
, (2.1)

where

U = V +
n2
{

(x1 − (m2/(m1 +m2))R)
2 + x2

2

}

2
,

V = B + B′ − ρ1

ρ3

⎡

⎢

⎣
B + B′ +

n2
{

(x1 − (m2/(m1 +m2))R)
2 + x2

2

}

2

⎤

⎥

⎦
,

B = πGρ1
[

I −A1x
2
1 −A1x

2
2 −A2x

2
3

]

,

B′ =
Gm2

[

(R − x1)
2 + x2

2 + x2
3

]1/2
+

Gm2α2

2
[

(R − x1)
2 + x2

2 + x2
3

]3/2
−

3Gm2α2x
2
3

2
[

(R − x1)
2 + x2

2 + x2
3

]5/2
,

I = 2a2
1A1 + a2

2A2,

A1 = a2
1a2

∫∞

0

du

Δ
(

a2
1 + u

) , A2 = a2
1a2

∫∞

0

du

Δ
(

a2
2 + u

) ,

Δ2 =
(

a2
1 + u

)2(

a2
2 + u

)

,

n2 =
G(m1 +m2)

R2

(

1 +
3

2
α1 +

3

2
α2

)

; α1 =
a2
1 − a2

3

5R2
, α2 =

a2
2 − a2

4

5R2
,

D = 1 − ρ1

ρ3
.

(2.2)
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Here V is the potential that explains the combined forces upon the infinitesimal mass, B
denotes the potential due to the fluid mass of the first primary, B′ stands for the potential
due to the second primary, R is the distance between the primaries, and G is the gravitational
constant. n is the mean motion. a1, a2 and a3, a4 are the equatorial and polar radii of the first
and second primary, respectively. I stands for the polar moment of inertia, while Ai (i =

1, 2) are the index symbols. α1 and α2 are the oblateness coefficients of the first and second
primaries, respectively.

We choose the unit of mass such that the sum of the masses of the primaries is taken
as unity, thus we take m2 = µ, 0 < µ = m2/(m1 + m2) < 1. For the unit of length, we take
the distance between the primaries as unity, that is, R = 1 and the unit of time is also selected
such thatG = 1. With these units and substituting the expression for the potential B due to the
fluid in the first primary and the potential B′ due to the second oblate primary, the equations
of motion (2.1) are recast to the form:

ẍ1 − 2nẋ2 =
∂U

∂x1
, ẍ2 + 2nẋ1 =

∂U

∂x2
, ẍ3 =

∂U

∂x3
, (2.3)

where

U = D

⎡

⎢

⎣
πρ1
{

I −A1

(

x2
1 + x2

2

)

−A2x
2
3

}

+
µ

[

(1 − x1)
2 + x2

2 + x2
3

]1/2

+
µα2

[

(1 − x1)
2 + x2

2 + x2
3

]3/2
−

3µα2x
2
3

2
[

(1 − x1)
2 + x2

2 + x2
3

]5/2
+
n2
{

(

x1 − µ
)2

+ x2
2

}

2

⎤

⎥

⎦
,

n2 =

(

1 +
3

2
α1 +

3

2
α2

)

.

(2.4)

These above equations of motion of the infinitesimal massm3 under the framework of
the Robe’s circular restricted three-body problem have been obtained by taking into account
the shapes of the primaries, the full buoyancy force, the forces due to the gravitational
attraction of the second primary, and the gravitational force exerted by the fluid of density
ρ1. In the case when the second primary is not an oblate spheroid (i.e., α2 = 0), the equations
are the same as those of Hallan and Mangang [4].

3. Position of Equilibrium Points

The equilibrium points are the solutions of the equations:

Ux1
= Ux2

= Ux3
= 0. (3.1)
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That is,

Ux1
= D

⎡

⎢

⎣
−2πρ1x1A1 +

µ(1 − x1)
[

(1 − x1)
2 + x2

2 + x2
3

]3/2

+
3µα2(1 − x1)

2
[

(1 − x1)
2 + x2

2 + x2
3

]5/2
−

15µα2(1 − x1)x
2
3

2
[

(1 − x1)
2 + x2

2 + x2
3

]7/2
+ n2(x1 − µ

)

⎤

⎥

⎦
= 0,

(3.2)

Ux2
= Dx2

⎡

⎢

⎣
−2πρ1A1 −

µ
[

(1 − x1)
2 + x2

2 + x2
3

]3/2

− 3µα2

2
[

(1 − x1)
2 + x2

2 + x2
3

]5/2
+

15µα2x
2
3

2
[

(1 − x1)
2 + x2

2 + x2
3

]7/2
+ n2

⎤

⎥

⎦
= 0,

(3.3)

Ux3
= Dx3

⎡

⎢

⎣
−2πρ1A2 −

µ
[

(1 − x1)
2 + x2

2 + x2
3

]3/2
− 3µα2

2
[

(1 − x1)
2 + x2

2 + x2
3

]5/2

− 3µα2
[

(1 − x1)
2 + x2

2 + x2
3

]5/2
+

15µα2x
2
3

2
[

(1 − x1)
2 + x2

2 + x2
3

]7/2

⎤

⎥

⎦
= 0.

(3.4)

3.1. Equilibrium Points Near the Centre of the First Primary

The positions of the equilibrium points near the first primary are the solutions of (3.2) when
Ux1

= 0, x1 /= 0, x2 = x3 = 0, D/= 0, and n2 = 1 + (3/2)(α1 + α2). The x1 coordinate of the
equilibrium points are then the roots of the equation:

−2πρ1x1A1 +
µ(1 − x1)

|1 − x1|3
+
3µα2(1 − x1)

2|1 − x1|5
+

(

1 +
3

2
α1 +

3

2
α2

)

(

x1 − µ
)

= 0. (3.5)

We first determine the roots of (3.5) in the absence of oblateness, that is, the case when
the primaries are spherical. In this case, the roots are [4]

x11 = 1 +
µ +
√

µ2 + 8µπρ1A1 − 4µ

2
(

1 − 2πρ1A1

) , x12 = 1 +
µ −
√

µ2 + 8µπρ1A1 − 4µ

2
(

1 − 2πρ1A1

) . (3.6)

The termA1 which appears in (3.2) and is due to the fluid mass affects these roots. Therefore,
these roots will be real if the discriminant is nonnegative, that is if

µ + 8πρ1A1 − 4 ≥ 0. (3.7)
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When (1/4)µ ≥ 1 − 2πρ1A1 > 0, both roots are greater than unity and we reject them because
they lie outside the first primary. Now, if 1−2πρ1A1 < 0, we have x12 > 1 and x11 < 1. Further,
we see that x11 > −1when 1−2πρ1A1 < −(3/4)µ. Thus, in the casewhen 1−2πρ1A1 < −(3/4)µ,
the point (x11, 0, 0) lies within the first primary if |x11| < a1. When 1 − 2πρ1A1 < −(3/4)µ,
|x11| < a1; x11 is a root of (3.5). Hence for 1 − 2πρ1A1 = 0, the only root is x11 = 2 which lies
outside the first primary and we neglect it. Hence, for α1 = 0, α2 = 0, x11 = 0 is always a root
of (3.5) and x1 = x11 is also a root provided 1 − 2πρ1A1 < −(3/4)µ, |x11| < a1.

Now, we find the roots of (3.5) when oblateness of both primaries is considered (i.e.,
α1 /= 0, α2 /= 0).

Let the roots be such that

x1 = 0 + p1,
∣

∣p1
∣

∣≪ 1,

x1 = x11 + p2,
∣

∣p2
∣

∣≪ 1.
(3.8)

Putting these values in (3.5), multiplying throughout by (1 − p1)
4, expanding and neglecting

second and higher powers of p1, α1, α2, as they are very small quantities, we have

p1 ∼= −3α1

2

µ

2πρ1A1 −
(

1 + 2µ
) . (3.9)

Similarly, putting x1 = x11 + p2 in (3.5) and then simplifying it, we get

(1 − x11)
4
[

(

x11 − µ
)

(

1 +
3

2
α1 +

3

2
α2

)

− 2πρ1A1x11

]

+ p2(1 − x11)
3[(1 − 3x11)

(

1 − 2πρ1A1

)

+ 2µ
]

+ µ(1 − x11)
2 − 2p2(1 − x11)

[

(1 − x11)
2{x11 − 2πρ1A1x11 − µ

}

+ µ
]

= −3µα2

2
.

(3.10)

Multiplying (3.8) by (1 − x11)
2, simplifying and then using it in (3.10), we get

p2 ∼= −
(1 − x11)

[(

x11 − µ
)

((3/2)α1 + (3/2)α2)
]

[

(1 − 3x11)
(

1 − 2πρ1A1

)

+ 2µ
] − 3µα2

2(1 − x11)
3[(1 − 3x11)

(

1 − 2πρ1A1

)

+ 2µ
]
.

(3.11)

A substitution of (3.11) in the second equation of (3.8) at once gives the position of the other
equilibrium point near the center of the first primary.
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3.1.1. Positions of Circular Points

The positions of the circular points are sought using the first two equations of system (3.1)
with the conditions x1 /= 0, x2 /= 0, x3 = 0; that is, they are the solutions of

x1

⎡

⎢

⎣
−2πρ1A1 −

µ
{

(1 − x1)
2 + x2

2

}3/2
− 3µα2

2
{

(1 − x1)
2 + x2

2

}5/2
+ 1 +

3

2
α1 +

3

2
α2

⎤

⎥

⎦

+
µ

{

(1 − x1)
2 + x2

2

}3/2
+

3µα2

2
{

(1 − x1)
2 + x2

2

}5/2
− µ

(

1 +
3

2
α1 +

3

2
α2

)

= 0,

(3.12)

−2πρ1A1 −
µ

{

(1 − x1)
2 + x2

2

}3/2
− 3µα2

2
{

(1 − x1)
2 + x2

2

}5/2
+ 1 +

3

2
α1 +

3

2
α2 = 0.

(3.13)

Solving the above equations and knowing that µ/= 0, we get

1
{

(1 − x1)
2 + x2

2

}3/2
+

3α2

2
{

(1 − x1)
2 + x2

2

}5/2
− n2 = 0.

(3.14)

We let

(1 − x1)
2 + x2

2 = r2. (3.15)

Substituting (3.15) in (3.14), and simplifying, we get

n2r5 − r2 − 3

2
α2 = 0. (3.16)

Now, we let

r = 1 + ε, ε ≪ 1. (3.17)

Substituting (3.16) in (3.15), neglecting second and higher powers of ε, we get

ε = −1
2
α1. (3.18)

Therefore, (3.17) is now expressed as

r ∼= 1 − 1

2
α1. (3.19)
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A substitution of (3.14) in (3.13) yields

2πρ1A1 = n2(1 − µ
)

. (3.20)

Therefore, when 2πρ1A1 = n2(1 − µ), the points on the circle given by (3.15) with x3 = 0
and r = 1 − (1/2)α1 lying within the first primary are also equilibrium points. The general
coordinates of these circular points are given by (1+ r cos θ, r sin θ, 0), where θ is a parameter.
When y = 0, the circular points coalesce to those lying on the line joining the primaries.

3.1.2. Positions of Out-of-Plane Equilibrium Points

The out-of-plane points have no analogy in the classical restricted three-body problem.
However the investigation concerning these points in the photogravitational restricted three-
body problem was first carried out by Radzievskii [10]. Afterwards, other researchers, for
instance Douskos and Markellos [8], Singh and Leke [11], and so forth, have worked on the
out-of-plane points. In this section, we locate these points for our study, as it has remained an
open problem to date.

The positions of the out-of-plane equilibrium points of the Robe’s problemwith oblate
primaries are the solutions of the first and last equations of (3.1) with x2 = 0, D/= 0; that is,

x1

⎡

⎢

⎣
−2πρ1A1 −

µ
[

(1 − x1)
2 + x2

3

]3/2
− 3µα2

2
[

(1 − x1)
2 + x2

3

]5/2
+

15µα2x
2
3

2
[

(1 − x1)
2 + x2

3

]7/2
+ n2

⎤

⎥

⎦

+
µ

[

(1 − x1)
2 + x2

3

]3/2
+

3µα2

2
[

(1 − x1)
2 + x2

3

]5/2
−

15µα2x
2
3

2
[

(1 − x1)
2 + x2

3

]7/2
− n2µ = 0,

(3.21)

x3

⎡

⎢

⎣
−2πρ1A2 −

µ
[

(1 − x1)
2 + x2

3

]3/2
− 9µα2

2
[

(1 − x1)
2 + x2

3

]5/2
+

15µα2x
2
3

2
[

(1 − x1)
2 + x2

3

]7/2

⎤

⎥

⎦
= 0. (3.22)

From (3.22), since x3 /= 0, we have

−2πρ1A2 =
µ

[

(1 − x1)
2 + x2

3

]3/2
+

9µα2

2
[

(1 − x1)
2 + x2

3

]5/2
−

15µα2x
2
3

2
[

(1 − x1)
2 + x2

3

]7/2
. (3.23)

Let

l2 = (1 − x1)
2 + x2

3. (3.24)
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Then, (3.23) and (3.21)may be written respectively:

15µα2x
2
3

2l7
= 2πρ1A2 +

µ

l3
+
9µα2

2l5
,

x1

[

−2πρ1A1 −
µ

l3
− 3µα2

2l5
+
15µα2x

2
3

2l7
+ n2

]

+
µ

l3
+
3µα2

2l5
−
15µα2x

2
3

2l7
− n2µ = 0.

(3.25)

Now, from first equations (3.25), we get

x3 = ± l
√

15µα2

[

µ
(

9α2 + 2l2
)

+ 4πρ1A2l
5
]1/2

. (3.26)

The use of (3.24) in second equation of (3.25) yields

x1 =

(

2πρ1A2 + n2µ
)

l5 + 3µα2
[

2πρ1(A2 −A1) + n2
]

l5 + 3µα2

. (3.27)

We use the software package Mathematica (Wolfram 2004) to compute the coordinates of the
out-of-plane equilibrium points denoted by L6 and L7 starting with the initial values x1 = 1−µ
and x3 =

√
3
√
α2 in the case where we have kept up to first order terms in both the numerator

and the denominator; we then get

x1 =
2µ + 3µα1 + 4A2πρ1

2 + 3α1 − 4A1πρ1 + 4A2πρ1

−
3
{

µA1 +
(

1 − µ
)

A2

}

α2πρ1
[

1 + 3α1

(

1 + 2A2πρ1 − 2A1πρ1
)

+ 4πρ1
(

A2 −A1 +A2
1πρ1 +A2

2πρ1 − 2A1A2πρ1
)] ,

x3 =

√

2/15µ
√

µ3
(

1 + 2πA2µ2ρ1
)

√
µα2

+
7
√

3µ/10
(

µ + 2πA2µ
3ρ1
)√

α2

2
√

µ3
(

1 + 2πA2µ2ρ1
)

.

(3.28)

The location of the out-of-plane equilibrium points can be obtained by solving numerically
equations (3.26) and (3.27) using (3.24).

Now, from the expression for the density parameter

D =

(

1 − ρ1

ρ3

)

. (3.29)

We assume that ρ1 /= ρ3, then D > or < 0. In the case when the density parameter is positive,
we have

ρ1 < ρ3. (3.30)
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Hence, numerically we choose

a2
1 = 0.94, a2

2 = 0.9, a2
3 = 0.82, a2

4 = 0.8, µ = 0.01, π = 3.14. (3.31)

Then,

α1 = 0.024, α2 = 0.02, ρ1 = 0.236. (3.32)

Now, we perform a numerical exploration of computing the out-of-plane points in the case of
the Earth-Moon system. To do this, we arbitrarily choose values for theAi (i = 1, 2). We found
that when A1 = 2.5076 and A2 = 2.555, the positions of the out-of-plane points (x1, 0,±x3):

x1 = 3.3527, x3 = 0.271418. (3.33)

The abscissae of the out-of-plane point is outside the possible region of motion of the
infinitesimal mass and so we neglect it. However, in the case when theAi (i = 1, 2) are chosen
such that

|A1 −A2| ≪ 1, A1 = 0.7, A2 = 0.68
(

say
)

, (3.34)

Ai ∈ (0, 0.7], the point L6, and L7 are, respectively,

x1 = 0.98611, x3 = 0.271381 (3.35)

and lies within the fluid.

4. Linear Stability of the Equilibrium Points

In order to study the linear stability of any equilibrium point (x10, x20, x30) of an infinitesimal
body, we displace it to the position (x1, x2, x3) such that

(

x10 + ξ, x20 + η, x30 + ζ
)

, (4.1)

where ξ, η, ζ are small displacements, and then linearize equation (2.3) to obtain the
equations:

ξ̈ − 2nη̇ =
(

U0
x1x1

)

ξ +
(

U0
x1x2

)

η +
(

U0
x1x3

)

ζ,

η̈ + 2nξ̇ =
(

U0
x1x2

)

ξ +
(

U0
x2x2

)

η +
(

U0
x2x3

)

ζ,

ζ̈ =
(

U0
x1x3

)

ξ +
(

U0
x2x3

)

η +
(

U0
x3x3

)

ζ,

(4.2)

where the partial derivatives are evaluated at the equilibrium points.
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4.1. Equilibrium Points Near the Center of the First Primary

In order to consider the motion near any equilibrium point in the x1x2-plane, we let solutions
of the first two equations of (4.2) be

ξ = A exp(λt), η = B exp(λt), (4.3)

where A, B, and λ are constants.
Taking first and second derivatives of the above, substituting them into the first two

equations of system (4.2) and has a non-zero solution when

∣

∣

∣

∣

∣

∣

(

λ2 −U0
x1x1

) (

2nλ +U0
x1x2

)

(

2nλ −U0
x1x2

) (

λ2 −U0
x2x2

)

∣

∣

∣

∣

∣

∣

= 0. (4.4)

Expanding the determinant, we have

λ4 −
(

U0
x1x1

+U0
x2x2

− 4n2
)

λ2 +U0
x1x1

U0
x2x2

−
(

U0
x1x2

)2
= 0. (4.5)

Equation (4.5) is the characteristic equation corresponding to the variational equations (4.2)
in the case when motion is considered in the x1, x2-plane.

Now, the values of the second-order partial derivatives of the equilibrium point
(xL, 0, 0), where xL = p1 stands for the first equilibrium and xL = x11 + p2 for the second
one, are given as

U0
x1x1

= Dµ

[

−(1 − xL)
3 − (3α2/2)(1 − xL) + 2xL(1 − xL)

2 + 6xLα2 + n2(1 − xL)
5

xL(1 − xL)
5

]

,

U0
x2x2

= Dµ

[

−(1 − xL)
3 − (3/2)α2(1 − xL) − xL(1 − xL)

2 − (3/2)α2xL + n2(1 − xL)
5

xL(1 − xL)
5

]

,

U0
x3x3

= −D

[

2πρ1A2 +
µ

(1 − xL)
3
+

9µα2

2(1 − xL)
5

]

, U0
x1x2

= 0 = U0
x2x3

= U0
x1x3

.

(4.6)

Substituting these in (4.2), we at once have the variational equations:

ξ̈ − 2nη̇ = U0
x1x1

ξ,

η̈ + 2nξ̇ = U0
x2x2

η,
(4.7)

ζ̈ = −D
[

µ

(1 − xL)
3
+

9µα2

2(1 − xL)
5
+ 2πρ1A2

]

ζ, (4.8)

where the partial derivatives have been computed at each equilibrium point xL.
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Now, (4.8) is independent of (4.7), the solution being a periodic function is bounded
and therefore, the motion of the infinitesimal body in the x3 direction is stable.

Now, the characteristic equation of the equilibrium points (xL, 0, 0) corresponding to
the system (4.7) is

λ4 −
(

U0
x1x1

+U0
x2x2

− 4n2
)

λ2 +U0
x1x1

U0
x2x2

= 0, (4.9)

where

U0
x1x1

= 3Dµ

(

α1

2xL

)

, (4.10)

U0
x2x2

= 3Dµ

(

−1 + α1

2xL

)

. (4.11)

These equations have been obtained using binomial expansion and ignoring terms with
second and higher power in p1, p2, α2, and their product.

Now, let λ21 and λ22 be the roots of (4.9), then, the equilibrium point is stable if both the
roots are real and negative. This means that their sum must be negative and their product
must be positive. Hence, the points (xL, 0, 0) will be stable if the following two conditions
hold:

λ21 + λ22 = U0
x1x1

+U0
x2x2

− 4n2 < 0, (4.12)

λ21λ
2
2 = U0

x1x1
U0

x2x2
> 0. (4.13)

Now, in the case of the first equilibrium point xL = p1, if we suppose in (4.10) that p1 < 0 then,
U0

x1x1
< 0 since 0 < µ < 1, D > 0, 0 < α1 ≪ 1 and when p1 > 0, we have U0

x1x1
> 0.

Similarly, in (4.11), if we suppose p1 < 0 then U0
x2x2

< 0.
For the case p1 > 0, we will haveU0

x2x2
> 0 when α1 > 2|p1|which is not possible, hence

U0
x2x2

< 0.
In the case 0 < p1 < α1/2,U

0
x1x1

> 0, andU0
x2x2

> 0.
Also, if 0 < α1/2 < p1, we see thatU0

x1x1
> 0 andU0

x2x2
< 0. Thus, for the case p1 < 0, the

equilibrium point is stable. For 0 < p1 < α1/2, the equilibrium point is stable if the condition
(4.12) holds. When 0 < α1/2 < p1, the equilibrium point is unstable.

Next, for the other equilibrium point positioned at xL = x11 + p2, when x11 > 0, then
x′
11 > 0 since |p2| ≪ 1 and the equilibrium point is stable if the conditions (4.12) and (4.13) are

satisfied. If x11 < 0 then x′
11 < 0; it makes U0

x1x1
< 0, U0

x2x2
< 0. Therefore, when x11 < 0, both

the conditions (4.12) and (4.13) are fulfilled and the equilibrium point is stable.



Advances in Mathematical Physics 13

4.2. Circular Points

At circular points (1 + r cos θ, r sin θ, 0), the values of the second partial derivatives with the
use of (3.14) and neglecting the product α1α2 are

U0
x1x1

= 3Dµ cos2 θ
(

n2 + α2

)

,

U0
x1x2

= 3Dµ cos θ sin θ
(

n2 + α2

)

,

U0
x2x2

= 3Dµ sin2 θ
(

n2 + α2

)

,

U0
x3x3

= −D
[

2πρ1A2 + µ
(

n2 + 3α2

)]

.

(4.14)

Substituting these values in the variational equations (4.2), we get

ξ̈ − 2nη̇ = 3Dµ cos2 θ
(

n2 + α2

)

ξ + 3Dµ cos θ sin θ
(

n2 + α2

)

η + (0)ζ,

η̈ + 2nξ̇ = 3Dµ cos θ sin θ
(

n2 + α2

)

ξ + 3Dµ sin2 θ
(

n2 + α2

)

η + (0)ζ,

(4.15)

ζ̈ = −D
[

2πρ1A2 + µ
(

n2 + 3α2

)]

ζ. (4.16)

Equation (4.16) is independent of (4.15), it shows that the motion of the infinitesimal mass
along the x3-direction is stable.

Now, a substitution of these partial derivatives in the characteristic equation (4.5)
yields

λ4 −
[

3Dµ
(

n2 + α2

)

− 4n2
]

λ2 = 0. (4.17)

Let λ2 = Λ in (4.17) then, we have

Λ
[

Λ −
{

3Dµ
(

n2 + α2

)

− 4n2
}]

= 0. (4.18)

Hence, either

Λ = 0 or Λ = 3Dµ
(

n2 + α2

)

− 4n2, (4.19)
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which implies that

λ = 0 twice, or λ = ±
[

3Dµ
(

n2 + α2

)

− 4n2
]1/2

. (4.20)

Therefore, (4.20) gives the roots of the characteristic equation (4.17). Hence we conclude that
the circular points are unstable due to the presence of multiple roots.

4.3. Out-of-Plane Points

To determine the stability of the out-of-plane equilibrium points, we consider the following
partial derivatives:

Ux1x1
= D

⎡

⎢

⎣
−2πρ1A1 + µ

⎧

⎪

⎨

⎪

⎩

[

2(1 − x1)
2 − x2

3

]

{

(1 − x1)
2 + x2

3

}5/2

⎫

⎪

⎬

⎪

⎭

+
3

2
µα2

⎧

⎪

⎨

⎪

⎩

[

4(1 − x1)
2 − x2

3

]

{

(1 − x1)
2 + x2

3

}7/2

⎫

⎪

⎬

⎪

⎭

− 15

2
µα2x

2
3

⎧

⎪

⎨

⎪

⎩

[

6(1 − x1)
2 − x2

3

]

{

(1 − x1)
2 + x2

3

}9/2

⎫

⎪

⎬

⎪

⎭

+ n2

⎤

⎥

⎦
,

Ux1x3
= D

⎡

⎢

⎣

−3µ(1 − x1)x3
{

(1 − x1)
2 + x2

3

}5/2
− 15

2

µα2(1 − x1)x3
{

(1 − x1)
2 + x2

3

}7/2

−15µα2(1 − x1)

2

2x3

[

(1 − x1)
2 + x2

3

]

− 7x3
3

{

(1 − x1)
2 + x2

3

}9/2

⎤

⎥

⎦
,

Ux2x2
= D

⎡

⎢

⎣
−2πρ1A1 − µ

⎧

⎪

⎨

⎪

⎩

(1 − x1)
2 + x2

3
{

(1 − x1)
2 + x2

3

}5/2

⎫

⎪

⎬

⎪

⎭

−3µα2

2

⎧

⎪

⎨

⎪

⎩

(1 − x1)
2 + x2

3
{

(1 − x1)
2 + x2

3

}7/2

⎫

⎪

⎬

⎪

⎭

+
15µα2x

2
3

2

⎧

⎪

⎨

⎪

⎩

(1 − x1)
2 + x2

3
{

(1 − x1)
2 + x2

3

}9/2

⎫

⎪

⎬

⎪

⎭

+ n2

⎤

⎥

⎦
,

Ux3x3
= D

⎡

⎢

⎣
−2πρ1A2 − µ

⎧

⎪

⎨

⎪

⎩

(1 − x1)
2 − 2x2

3
{

(1 − x1)
2 + x2

3

}5/2

⎫

⎪

⎬

⎪

⎭

−9µα2

2

⎧

⎪

⎨

⎪

⎩

(1 − x1)
2 − 4x2

3
{

(1 − x1)
2 + x2

3

}7/2

⎫

⎪

⎬

⎪

⎭

+
15µα2

2

⎧

⎪

⎨

⎪

⎩

3x2
3

[

(1 − x1)
2 + x2

3

]

− 7x4
3

{

(1 − x1)
2 + x2

3

}9/2

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎦
.

(4.21)
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Since x2 = 0, therefore the partial derivatives to be computed at the out-of-plane equilibrium
points are

U0
x1x2

= 0 = U0
x2x1

= U0
x2x3

= U0
x3x2

,

U0
x1x1

= D

[

−2πρ1A1 − 2πρ1A2 +
µ

l3
−
3µx2

3

l5
+
3µα2

2l5
− 9µα2

2l5
−
45µα2x

2
3

l7
+
105µα2x

4
3

2l9
+ n2

]

,

U0
x2x2

= D

[

−2πρ1A1 + 2πρ1A2 +
3µα2

l5
+ n2

]

,

U0
x1x3

= − 3(1 − x1)x3D

[

µ

l5
+
15µα2

2l7
−
35µα2x

2
3

2l9

]

,

U0
x3x3

= D

[

3µx2
3

l5
+
75µα2x

2
3

2l7
−
105µα2x

4
3

2l9

]

.

(4.22)

Now, we let,

U0
x1x1

= U11, U0
x2x2

= U22,

U0
x1x3

= U13, U0
x3x3

= U33,

U0
x1x2

= U12, U0
x2x3

= U23.

(4.23)

Using (4.23), the variational equation can be recast in the form:

ξ̈ − 2nη̇ = U11ξ +U13ζ,

η̈ + 2nξ̇ = U22η +U23ζ,

ζ̈ = U13ξ +U33ζ.

(4.24)

In order to consider the motion of the out-of-plane points, we let solution of the system (4.24)
be

ξ = A exp(λt), η = B exp(λt), ζ = C exp(λt), (4.25)

where A,B,C, and λ are constants. ξ, η, and ζ are the small displacements in the coordinates
of the infinitesimal body.

Now, the characteristic equation corresponding to the variational equations (4.24) in
the case of the out-of-plane point may be expressed as

λ6 − a1λ
4 + a2λ

2 + a3 = 0, (4.26)
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where the coefficients of the characteristic equation (4.26) are such that

a1 = D
[

−4πρ1A1 − 2πρ1A2 + 2n2
]

,

a2 =
1

4l16

[

D
[

−9µ2Dx2
3(−1 + x1)

2
[

2l4 + 5α2

(

3l2 − 7x2
3

)]

+ 3l4µx2
3

[

2l4 + 5α2

(

5l2 − 7µx2
3

)]

×
[

3Dµα2 + 2l5
{

(−4 +D)n2 − 2DA1πρ1 + 2DA2πρ1
}]

+D
[

6l4µx2
3 + 3α2

{

l4µ − 25l2 − 35µx4
3

}

+ 2l9
(

n2 − 2A1πρ1 + 2A2πρ1
)]

×
[

3α2

{

l4µ − 2l2
(

15 + l2
)

x2
3 + 35µx4

3

}

+ 2l6
(

l3n2 + µ − 2l3A1πρ1 − 2l3A2πρ1
)]]]

a3 =
3D3

4l18
µx2

3

[

2l4 + 5α2

(

5l2 − 7µx2
3

)]

[

n2 +
3µα2

2l5
− 2A1πρ1 + 2A2πρ1

]

×
[

3α2

{

l4µ − 2l2
(

15 + l2
)

µx2
3 + 35µx4

3

}

+ 2l6
(

l3n2 + µ − 2l3A1πρ1 − 2l3A2πρ1
)]

,

(4.27)

where l2 = (1 − x1)
2 + x2

3.
These computations have been done using the software package Mathematica.
For the stability analysis of the out-of-plane equilibrium point, we compute

numerically the partial derivatives calculated at the out-of-plane points with the use of (3.28)
and the following numerical values:

µ = 0.01, π = 3.14, α1 = 0.024, α2 = 0.02

A1 = 0.7, A2 = 0.68, ρ1 = 0.236, D = 0.2133.
(4.28)

Now, substituting the above values in the characteristic equation (4.27), we get

λ6 − 0.192437λ4 + 0.248034λ2 − 0.0000197624 = 0. (4.29)

Its roots are:

λ1,2 = − 0.545066 ± 0.448239i,

λ3,4 = ± 0.00892642,

λ5,6 = 0.545066 ± 0.448239i.

(4.30)

The positive root and the positive real part of the complex roots induce instability at the
out-of-plane point. Hence, the motion of the infinitesimal mass around the out-of-plane
equilibrium points is unstable for the specific numerical example given here. However, fuller
discussion of their stability remains a theme for future research.
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5. Discussion

The equation of motion (2.3) is different from those of Hallan and Mangang [4] due to
oblateness of the second primary. If we assume that the second primary is not oblate (i.e.,
α2 = 0), then these equations will fully coincide with those of Hallan and Mangang [4].

Equation (3.9) gives the equilibrium position of the point (P1, 0, 0) near the center of

the first primary and fully coincides with that of Hallan and Mangang [4]. It shows that the

position of this equilibrium point does not depend on oblateness of the second primary, while

the other equilibrium point (x11 + P2, 0, 0) given by (3.11) is different from that of Hallan and

Mangang [4] due to the appearance of oblateness of the second primary. When 2πρ1A1 =

n2(1 − µ), points on the circle (1 − x1)
2 + x2

2 = r2, x3 = 0 lying within the first primary are

also equilibrium points. These points are affected by oblateness of both primaries. Equations

(3.28) give the positions of the out-of-plane points when only linear terms in oblateness of the

second primary are retained. We have been able to show that the oblateness of the primaries

allows the existence of the out-of-plane equilibrium points in the x1x3-plane within the first

primary. These points have no analogy in the previous studies of the Robe’s restricted three-

body problem.

The linear stability analysis of the equilibrium solutions of the problem is investigated
with the help of characteristic roots. The characteristic equation (4.9) in the case of the
equilibrium point xL = p1 near the center of the first primary is the same as that of Hallan and
Mangang [4], while that of the other point xL = x11 + p2 near the center differs from that of
Hallan andMangang [4] due to oblateness of the second primary. The characteristic equation
of the circular case (4.17) also differs from that of Hallan and Mangang [4] due to oblateness
of the second primary. The stability in the first approximation of this configuration shows
that points near the centre of the first primary are conditionally stable; the circular points are
unstable. This confirms the earlier results of Hallan and Rana [3], Hallan andMangang [4]. A
numerical exploration shows that the out-of-plane equilibrium points are also unstable. This
outcome validates the earlier results of Douskos and Markellos [8] and Singh and Leke [11]
that the points are unstable.

6. Conclusion

We have derived the equations of motion and established the positions of the equilibrium
points of the infinitesimal body in the Robe’s [1] restricted three-body problem with
oblateness. The term “oblateness” is used in the sense that both primaries are considered
as oblate spheroids under the effects of the full buoyancy force exerted by the fluid on the
infinitesimal mass.

We have obtained one equilibrium point (P1, 0, 0) near the centre of the first primary
which will be on the left or right of the centre of the first primary accordingly as 2πρ1A1 −
2µ >< 1. This point is the same as that of Hallan andMangang [4]. In addition to this, another
equilibrium point (x11+P2, 0, 0) is found within the first primary on the line joining the center
of the primaries when 1 − 2πρ1A1 < −3µ/4 and |x11| < a1. When 2πρ1A1 = n2(1 − µ), points
on the circle (1 − x1)

2 + x2
2 = r2, x3 = 0 lying within the first primary are also equilibrium

points. We call them circular points. Finally, we have been able to show that the oblateness
of the primaries allows the existence of the out-of-plane equilibrium points in the x1x3-plane
within the first primary.



18 Advances in Mathematical Physics

The result of this paper can be summarized as follows. The restricted three-body
problem under the framework of the Robe’s [1] problem with oblate primaries has the
equilibrium points of the type: points near the center of the first primary, points on the circle
(circular points), and two out-of-plane points L6,7. It is seen that points near the first primary
are conditionally stable, the circular points are unstable, while the out-of-plane equilibrium
points are unstable for the specific numerical example given here. The effect of drag forces
as considered by Giordano et al. [2] under the present context, particularly as regards the
analysis of the properties of the equilibrium points located inside the first primary, will be
interesting.
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