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Abstract. Poincaré made the first attempt in 1896 on applying variational calculus to the
three-body problem and observed that collision orbits do not necessarily have higher values of
action than classical solutions. Little progress has been made on resolving this difficulty until a
recent breakthrough by Chenciner and Montgomery. Afterward, variational methods have been
successfully applied to the N-body problem to construct new classes of solutions. In order to
avoid collisions, the problem is confined to symmetric path spaces and all new planar solutions
were constructed under the assumption that some masses are equal. A question for the variational
approach on planar problems naturally arises: Are minimizing methods useful only when some
masses are identical?
This article addresses this question for the three-body problem. For various choices of masses, it

is proved that there exist infinitely many solutions with certain topological type, called retrograde
orbits, that minimize the action functional on certain path spaces. Cases covered in our work
include triple stars in retrograde motions, double stars with one outer planet, and some double
stars with one planet orbiting around one primary mass. Our results largely complement the
classical results by Poincaré continuation method and Conley’s geometric approach.

1. Introduction

Periodic and quasi-periodic solutions to the Newtonian three-body problem have been exten-
sively studied for centuries. Until today, in general it is still a difficult task to prove the existence
of solutions with prescribed topological types and masses.
Calculus of variations, in spite of its long history, should be considered a relatively new approach

to the three-body problem. In 1896 Poincaré [23] made the first attempt to utilize minimizing
methods to obtain solutions for the three-body problem, but found out the discouraging fact that
existence of collisions does not necessarily cause a significant increment in value of the action
functional. As a result solutions were obtained only for the strong-force potential, instead of the
Newtonian case. In 1977 Gordon [13] proved a minimizing property for elliptical Keplerian orbits,
including the degenerate case — collision-ejection orbit. It turns out that the actions of these orbits
over one period depend only on the masses and the period, not on eccentricity. From this point
of view the collision-ejection orbits and other elliptical orbits are not distinguishable. A common
doubt at the time is: Are minimizing methods useful for the N -body problem? Concerning
this question, Chenciner-Venturelli [8] constructed the “hip-hop” orbit for the four-body problem
with equal masses and, a few months later, Chenciner-Montgomery [7] constructed the celebrated
figure-8 orbit for the three-body problem with equal masses, a solution numerically discovered in
[20]. Afterward, Marchal [16] found a class of solutions related to the figure-8 orbit and made an
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important progress on excluding collision paths [17, 5]. Inspired by the discovery of the figure-
8 orbit, a large number of new solutions [2, 3, 4, 11, 26] were proved to exist by variational
methods. These discoveries attract much attention not only because they are not covered by
classical approaches, but also due to the amusing symmetries they exhibit. On the other hand,
these orbits were constructed under the assumption that some masses are equal. Except a class of
nonplanar solutions constructed by varying planar relative equilibria in a direction perpendicular
to the plane (see Chenciner [5, 6]), among the discoveries for the N -body problem, none of the
new solutions constructed by variational methods can totally discard this constraint. A question
for the variational approach, especially on planar problems, naturally arises: Are minimizing
methods useful only when some masses are identical?
This article is concerned with variational methods on the existence of certain type of solutions to

the planar three-body problem with various choices of masses. There is a natural way of classifying
orbits by their topological types in the configuration space. Following the terminology normally
used in lunar theory, we call a solution retrograde if its homotopy type in the configuration space
(with collision set removed) is the same as those retrograde orbits in the lunar theory. Detailed
descriptions are left to Section 2 and 3. Our main theorem (Theorem 1) shows the existence of
many periodic and quasi-periodic retrograde solutions to the three-body problem provided the
mass ratios fall inside the white regions in Figure 1. The method used is a variational approach
with a mixture of topological and symmetry constraints. The advantage of our approach, as
Figure 1 indicates, is that it applies to a wide range of masses.
In sharp contrast with the results obtained from the classical Poincaré’s continuation method [22]

(see [24, 18] and references therein) and Conley’s geometric approach [9, 10], our main theorem
does not apply to Hill’s lunar theory and many satellite orbits, both of which treat the case with
one dominant mass. It is worth mentioning that Hill’s lunar theory can also be analysized by
variational methods, see Arioli-Gazzola-Terracini [1]. Cases we are able to cover include retro-
grade triple stars, double stars with one outer planet, and some double stars with one planet
orbiting around one primary mass. See Section 2 and Figure 3 for details. Moreover, due to the
minimizing properties the orbits we obtained do not contain tight binaries, and there are periodic
ones with very short periods in the sense that the prime periods are small integral multiples of
their prime relative periods. Classical approaches normally produce orbits with very long periods.
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Figure 1. Admissible mass ratios (the white region) for the main theorem.
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2. The Main Theorem

The planar three-body problem concerns the motion of three masses m1, m2, m3 > 0 moving
in the complex plane C in accordance with Newton’s law of gravitation:

mkẍk =
∂

∂xk
U(x), k = 1, 2, 3(1)

where x = (x1, x2, x3), xk ∈ C is the position of mk, and

U(x) =
m1m2

|x1 − x2|
+

m2m3

|x2 − x3|
+

m1m3

|x3 − x1|
,

is the potential energy (negative Newtonian potential). The kinetic energy is given by

K(ẋ) =
1

2

¡
m1|ẋ1|

2 +m2|ẋ2|
2 +m3|ẋ3|

2
¢
.

There is no loss of generality to assume that the mass center is at the origin; that is, assuming
x stays inside the configuration space:

V := {x ∈ C3 : m1x1 +m2x2 +m3x3 = 0} .

A preferred way of parametrizing V is to use Jacobi’s coordinates:

(z1, z2) :=
³p

M1(x2 − x1),
p

M2(x3 − x̂12)
´

,

where M1 =
m1m2

m1+m2
, M2 =

(m1+m2)m3

m1+m2+m3
, and x̂12 =

1
m1+m2

(m1x1 +m2x2) is mass center of the

binary {x1, x2}. The reduced configuration space Ṽ is obtained by quotient out from V the
rotational symmetry given by the SO(2)-action: eiθ · (z1, z2) = (eiθz1, e

iθz2). The identification

Ṽ = V/SO(2) is via the Hopf map

(u1, u2, u3) := (|z1|
2 − |z2|2, 2Re(z̄1z2), 2 Im(z̄1z2)) .(2)

Each single point in Ṽ represents a congruence class of triangles form by the three mass points,
and each point on its unit sphere {|u|2 = 1}, called the unit shape sphere, represents a similarity
class of triangles. The signed area of the triangle is given by 1

2u3.
Figure 2, due to Moeckel [19], relates the configurations of the three bodies with points on the

unit shape sphere. In the figure Λj represents isosceles triangles with jth mass equally distant
from the other two. The equator (u3 = 0) represents collinear configurations. On the upper
hemisphere (u3 > 0), triangles with vertices {x1, x2, x3} are positively oriented; on the lower
hemisphere they are negatively oriented. The poles correspond to equilateral triangles.
Let ∆ := {x ∈ C3 : xi = xj for some i 6= j} be the variety of collision configurations. It is

invariant under rotations and its projection ∆̃ in Ṽ is the union of three lines emanating from the
origin (the triple collision). Each line represents a similarity class of one type of double collision.
Let S3 be the unit sphere in V and S2 be the unit shape sphere. The Hopf fibration (2) renders

S3 \ ∆ the structure of an SO(2)-bundle over S2 \ ∆̃, whose fundamental group is a free group
with two generators. For φ > 0, let αφ be the following loop in V \∆:

(3) αφ(t) := eφti
¡
m3(M −m2)−m2Me−2πti,m3(M +m1) +m1Me−2πti,−(m1 +m2)M

¢
,

where M = m1 +m2 +m3 is the total mass. The homotopy class of the projection α̃φ of αφ in

Ṽ \ ∆̃ over t ∈ [0, 1] is one of the two generators for π1(S2 \ ∆̃). The left side of Figure 2 depicts
the path α̃φ over t ∈ [0, 1].
A solution x of (1) is called relative periodic if its projection x̃ in the reduced configuration

space Ṽ is periodic. The prime relative period of x is the prime period of x̃. Our major result
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Figure 2. The unit shape sphere.

concerns the existence of relative periodic solutions to the three-body problem that are homotopic
to αφ in V \ ∆ respecting the rotation and reflection symmetry of αφ. A precise description is
given in (9). This type of solutions, called retrograde orbits, are of special importance in the three-
body problem. When 0 < m1,m2 ¿ m3, the search for this type of solutions is an important
problem in the lunar theory. A typical example is the system Sun-Jupiter-Asteroid. When
0 < m3 ¿ m2,m1, this type of solutions are sometimes called satellite orbits or comet orbits. If
all masses are comparable in size and none of them stay far from the other two, then the system
forms a triple star or triple planet. Another interesting case is 0 < m2 ¿ m1,m3. The binary m1,
m3 form a double star (or double planet) and m2 is a planet (or satellite) orbiting around m1.
There is no evident borderline between these categories. The dash lines in Figure 3 is a rough
sketch for the borders between them.
There is no loss of generality by assuming m3 = 1. Let M = m1 +m2 + 1 be the total mass.

Define functions J : [0, 1)→ R+ and F,G : R2+ → R by

J(s) :=

Z 1

0

1

|1− s e2πti|
dt ,(4)

F (m1,m2) := 3
2

∙
22/3−1
max{mi}

+ 1−
³

M
m1+m2

´ 1

3

¸
,(5)

G(m1,m2) := 1
m1

³
J
³

m1

M1/3(m1+m2)2/3

´
− 1
´
+ 1

m2

³
J
³

m2

M1/3(m1+m2)2/3

´
− 1
´
.(6)

The following is our main theorem.

Theorem 1. Let m3 = 1, M = m1 +m2 + 1 be the total mass, and let F , G be as in (5), (6).
Then the three-body problem (1) has infinitely many periodic and quasi-periodic retrograde orbits
provided

F (m1,m2) > G(m1,m2) .(7)
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Furthermore, there exists a periodic retrograde orbit whose prime period is twice its prime relative
period.

Theorem 1 applies to the complement of the shaded region in Figure 3. Following from a
minimizing property described in Section 3, orbits given by Theorem 1 do not possess tight
binaries. In section 6 we will explain this and demonstrate a more general theorem. Classical
results on retrograde orbits treat the case with one tight binary or with one dominant mass,
including Hill’s lunar theory and some satellite orbits. From this point of view Theorem 1 largely
complements classical results.
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Figure 3. Theorem 1 applies to the complement of the shaded region.

3. A Minimizing Problem

In this section we set up a variational problem for which minimizers exist and solves (1) with
the claimed properties in Theorem 1.
Equations (1) are the Euler-Lagrange equations for the action functional A : H1

loc(R, V ) →
R ∪ {+∞} defined by

A(x) :=

Z 1

0
K(ẋ) + U(x) dt .

By choosing a sequence of motionless paths with greater and greater mutual distances, it is easy
to see that the infimum of A on H1

loc(R, V ) is zero, which is not attained. To ensure that the
minimizing problem is solvable, we select the following ground space:

Hφ := {x ∈ H1
loc(R, V ) : x(t) = e−φix(t+ 1)} ,

where φ ∈ (0, π] is some fixed constant. Any path x in Hφ satisfies

hx(0), x(1)i = cosφ|x(0)| · |x(1)|.

Here h·, ·i represents the standard scalar product on (R2)3. From this condition, the action
functional A restricted to Hφ is coercive (see [3, Proposition 2], for instance). By using Fatou’s
lemma and the fact that any norm is weakly sequentially lower semicontinuous, it is an easy
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exercise to show that A is weakly sequentially lower semicontinuous on Hφ. Following a standard
argument in calculus of variations, the action functional A attains its infimum on Hφ.
Although it may appear as an easy fact, let us remark here that collision-free critical points of

A restricted to Hφ are classical solutions to (1). If H
∗
φ is the space Hφ except the configuration

space V is replaced by (R2)3, then on H∗
φ the fundamental lemmas for calculus of variations are

clearly applicable. Now if x is a collision-free critical point of A restricted to Hφ, from the first
variation of A constrained to Hφ, at x we have

0 = δhA(x) = −
Z 1

0

3X

k=1

µ
mkẍk −

∂U

∂xk

¶
· hk dt

for any h = (h1, h2, h3) ∈ C∞0 ([0, 1], V ). Let yk = mkẍk − ∂U
∂xk
, then (y1(t), y2(t), y3(t)) ∈ V ⊥

for any t. A basis for the subspace V ⊥ of (R2)3 is {(m1, 0,m2, 0,m3, 0), (0,m1, 0,m2, 0,m3)}.
Therefore yi(t) = miα(t) for some α : [0, 1] → R2 and for each i. It can be easily verified thatP3

k=1 yk(t) = 0, that is (m1 +m2 +m3)α(t) = 0. Then α and hence every yi is identically zero.
This proves that x is indeed a classical solution of (1).
The conventional definition of inner product on the Sobolev space H1([0, 1], V ) defines an inner

product on Hφ as well:

hx, yiφ :=

Z 1

0
hx(t), y(t)i+ hẋ(t), ẏ(t)i dt .

Critical points of A on Hφ are critical points of A on H1([0, 1], V ). One can easily verify that, for
any x ∈ Hφ and τ ∈ R,

A(x) =

Z 1+τ

τ
K(ẋ) + U(x) dt ,

hx, yiφ =

Z 1+τ

τ
hx(t), y(t)i+ hẋ(t), ẏ(t)i dt .

Following these observations, any critical point x of A on Hφ is a solution of (1), but possibly
with collisions. If we can show that x has no collision on [0, 1), then there is no collision at all

and x indeed solves (1) for any t ∈ R. Moreover, x is periodic if φ
π is rational, it is quasi-periodic

if φ
π is irrational.
Consider a linear transformation g on Hφ defined by

(g · x)(t) := x(−t) .(8)

The space of g-invariant paths in Hφ is denoted by Hg
φ. That is,

Hg
φ := {x ∈ Hφ : g · x = x} .

Observe that g is an isometry of order 2, and the action functional A defined on Hφ is g-invariant.
By Palais’ principle of symmetric criticality [21], any collision-free critical point of A while re-
stricted to Hg

φ is also a collision-free critical point of A on Hφ, and hence solves (1).

Let αφ be as in (3). The space Xφ of retrograde paths in Hg
φ is defined as the path-component

of collision-free paths in Hg
φ containing αφ. In other words,

Xφ :=

½
x ∈ Hg

φ :
x(t) 6∈ ∆ for any t, x is homotopic to αφ in V \∆
within the class of collision-free paths in Hg

φ

¾
.(9)
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The set Xφ is an open subset of H
g
φ. Therefore, critical points of A in Xφ, if exist, are retrograde

orbits. Now we consider the following minimizing problem:

inf
x∈Xφ

A(x) .(10)

As noted before, the action functional A is coercive and hence attains its infimum on the weak
closure of Xφ. The boundary ∂Xφ of Xφ consists of paths in Hg

φ that have nonempty intersection
with the collision set ∆. The next two sections are devoted to proving the inequality

inf
x∈Xφ

A(x) < inf
x∈∂Xφ

A(x)

for φ ∈ (0, π] sufficiently close to π, under the assumptions in Theorem 1.

4. Upper Bound Estimates for the Action Functional A

This section is devoted to providing an upper bound estimate for (10).
Assume m3 = 1, φ ∈ (0, π], and M = m1 +m2 + 1. Let

Q(t) :=
1

(Mφ)2/3
eφti ,

R(t) :=
1

(m1 +m2)2/3(2π − φ)2/3
e(φ−2π)ti .

and

x(φ)(t) = (x
(φ)
1 , x

(φ)
2 , x

(φ)
3 )

:= (Q(t)−m2R(t), Q(t) +m1R(t),− (m1 +m2)Q(t)) .

It is routine to verify that x(φ) ∈ Xφ. See Figure 4 for the retrograde path x(φ).
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Figure 4. The retrograde path x(φ).
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The calculation for K(ẋ(φ)) is simple:

|ẋ
(φ)
1 |2 =

φ2/3

M4/3
+m2

2

(2π − φ)2/3

(m1 +m2)4/3
+ 2m2

φ1/3(2π − φ)1/3

M2/3(m1 +m2)2/3
cos(2πt)

|ẋ
(φ)
2 |2 =

φ2/3

M4/3
+m2

1

(2π − φ)2/3

(m1 +m2)4/3
− 2m1

φ1/3(2π − φ)1/3

M2/3(m1 +m2)2/3
cos(2πt)

|ẋ
(φ)
3 |2 = (m1 +m2)

2 φ2/3

M4/3

K(ẋ(φ)) =
1

2

"

(m1 +m2)
φ2/3

M1/3
+

m1m2(2π − φ)2/3

(m1 +m2)1/3

#

.

Note that K(ẋ(φ)) is independent of time. Define

ξ = ξ(m1,m2, φ) :=
1

M1/3(m1 +m2)2/3

µ
φ

2π − φ

¶ 2

3

,(11)

ξπ := ξ(m1,m2, π) =
1

M1/3(m1 +m2)2/3
.(12)

Let J(s) be as in (4). In terms of J and ξ, the contribution of U(x(φ)) to the total action can be
written

Z 1

0
U(x(φ)) dt

=

Z 1

0

m1m2

|x
(φ)
1 − x

(φ)
2 |

+
m1

|x
(φ)
1 − x

(φ)
3 |

+
m2

|x
(φ)
2 − x

(φ)
3 |

dt

=

Z 1

0

m1m2(2π − φ)2/3

(m1 +m2)1/3
+

Ã
φ2/3

M1/3

!
m1

|1−m2ξe−2πti|

+

Ã
φ2/3

M1/3

!
m2

|1−m1ξe−2πti|
dt

=
m1m2(2π − φ)2/3

(m1 +m2)1/3
+

µ
φ2

M

¶ 1

3 ³
m1J (m2ξ) +m2J (m1ξ)

´
.

Combining with K(ẋ(φ)), we have proved

Lemma 2. Assume m3 = 1. Let J , ξ, ξπ be as in (4), (11), (12). Then

inf
x∈Xφ

A(x)

≤ 3m1m2

2

(2π − φ)2/3

(m1 +m2)1/3
+

µ
φ2

M

¶ 1

3
∙
m1 +m2

2
+m1J (m2ξ) +m2J (m1ξ)

¸
.

In particular, when φ = π,

inf
x∈Xπ

A(x)

≤ 3m1m2π
2/3

2(m1 +m2)1/3
+

π2/3

M1/3

∙
m1 +m2

2
+m1J (m2ξπ) +m2J (m1ξπ)

¸
.



EXISTENCE AND MINIMIZING PROPERTIES OF RETROGRADE ORBITS 9

5. Lower Bound Estimates for A on Collision Paths

Let x = (x1, x2, x3) be any path in H1
loc(R, V ). From the assumption on the center of mass the

action functional A can be written

A(x) =
1

M

X

i<j

mimj

Z 1

0

1

2
|ẋi − ẋj |

2 +
M

|xi − xj |
dt .(13)

This formulation has been used to construct Lagrange’s equilateral solutions by Venturelli [25].
Each integral in this expression will be estimated by the formula in the first subsection below. In
the second subsection, we will provide lower bound estimates for collision paths in ∂Xφ.

5.1. An Estimate for the Keplerian Action Functional. Given any φ ∈ (0, π], T > 0,
consider the following path space:

ΓT,φ := {r ∈ H1([0, T ],C) : hr(0), r(T )i = |r(0)||r(T )| cosφ} ,

Γ∗T,φ := {r ∈ ΓT,φ : r(t) = 0 for some t ∈ [0, T ]} .
The symbol h·, ·i stands for the standard scalar product in R2 ∼= C. Let µ, α be positive constants.
Define a functional Iµ,α,T : H

1([0, T ],C)→ R ∪ {+∞} by

Iµ,α,T (r) :=

Z T

0

µ

2
|ṙ|2 +

α

|r|
dt .

In terms of polar coordinates, r = reθi, then

Iµ,α,T (r) =

Z T

0

µ

2
(ṙ2 + r2θ̇2) +

α

r
dt .

This is actually the action functional for the Kepler problem with reduced mass µ and some
suitable gravitation constant, under the assumption that the mass center is at rest. Each integral
in (13) is of this form. In this sense, expression (13) is essentially treating the system as three
Kepler problems. The proposition below is an extension of a result in [4, Theorem 3.1]. It concerns
the minimizing problem for Iµ,α,T over ΓT,φ and Γ

∗
T,φ. We reproduce it here because (15) is not

contained in [4], and the proof below is shorter and makes no use of Marchal’s theorem [17, 5].

Proposition 3. Let φ ∈ (0, π], T > 0, µ > 0, α > 0 be constants. Then

inf
r∈ΓT,φ

Iµ,α,T (r) =
3

2
(µα2φ2)

1

3T
1

3 ,(14)

inf
r∈Γ∗T,φ

Iµ,α,T (r) =
3

2
(µα2π2)

1

3T
1

3 .(15)

Proof. Consider the following subset of ΓT,φ

∆T,φ = {r = reiθ ∈ H1([0, T ],C) : θ(0) = θ(T )− φ = 0}

which consists of paths that start from the positive real axis and end on {reφi : r ≥ 0}. Let
∆∗T,φ = {r = reiθ ∈ ∆T,φ : r(t) = 0 for some t ∈ [0, T ]} .

It is easy to show that both ∆T,φ and ∆
∗
T,φ are weakly closed.

Given any r ∈ ΓT,φ (resp. Γ
∗
T,φ), there is an A ∈ O(2) and r̃ ∈ ∆T,φ (resp. ∆

∗
T,φ) such that

r̃ = Ar and Iµ,α,T (r) = Iµ,α,T (r̃). This is because the space ΓT,φ (resp. Γ
∗
T,φ) is actually the image

of O(2) acting on ∆T,φ (resp. ∆
∗
T,φ). Therefore, we may just consider the minimizing problem

over ∆T,φ and ∆
∗
T,φ.
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Let rφ ∈ ∆∗T,φ be a minimizer of Iµ,α,T on ∆∗T,φ. Suppose ξ1 = rφ(0), ξ2 = rφ(T ), then clearly
rφ also minimizes Iµ,α,T over paths with fixed ends ξ1, ξ2. In particular, this implies rφ is a
Keplerian orbit with collision(s), and thus has zero angular momentum almost everywhere. Now
we recall a result by Gordon [13, Lemma 2.1] that implies such a path with lowest possible action
is the collision (or ejection) orbit that begins (or ends) with zero velocity, whereby

inf
∆∗T,φ

Iµ,α,T =
3

2
(µα2π2)

1

3T
1

3 .

This proves (15).
When φ = π, the path rπ can be extended to a loop by concatenating rπ with its complex

conjugate; that is,

R(t) =

(
rπ(t) for t ∈ [0, T ]
rπ(2T − t) for t ∈ (T, 2T ] .

By Gordon’s theorem [13],

Iµ,α,T (rπ) =
1

2

Z 2T

0

µ

2
|Ṙ|2 +

α

|R|
dt ≥ 3

2
(µα2π2)

1

3T
1

3 .

The lower bound on the right-hand side is achieved when and only when rπ is half of an elliptical
Keplerian orbits (including collision-ejection orbits) with prime period 2T . This proves (14) for
the case φ = π.
Now suppose rφ ∈ ∆T,φ minimizes Iµ,α,T over ∆T,φ for φ ∈ (0, π). Consider the circular

Keplerian orbit with prime period 2πT
φ :

r̃φ(t) =

µ
αT 2

µφ2

¶ 1

3

e
t
T
φi .

The calculation for Iµ,α,T (r̃φ) is easy:

Iµ,α,T (r̃φ) =
φ

2π

Z 2πT
φ

0

µ

2
| ˙̃rφ|

2 +
α

|r̃φ|
dt =

3φ

2π
(
µα2π2

2
)
1

3

µ
2πT

φ

¶ 1

3

=
3

2

¡
µα2φ2

¢ 1
3 T

1

3 < inf
∆∗T,φ

Iµ,α,T .

The value of Iµ,α,T (r̃φ) is indeed the right-hand side of (14). The last inequality shows that rφ has
no collision at all, and therefore it is a Keplerian orbit with nonzero angular momentum. Note
that any other circular Keplerian orbits in ∆T,φ that winds around the origin by an angle 2kπ+φ,
k ∈ Z \ {0} has higher action than r̃φ. Now it remains to show that rφ is circular.
From the first variation of Iµ,α,T with respect to r, it is easy to see that ṙ(0) = ṙ(T ) = 0. Since

rφ = reiθ ∈ ∆T,φ is a nondegenerate conic section, there are constants p > 0, e ≥ 0, θ0 ∈ [0, 2π)
such that

p

r
= 1 + e cos(θ − θ0) .

Differentiating the identity with respect to t at t = 0, T yields

−e sin(−θ0) · θ̇(0) = 0 = −e sin(φ− θ0) · θ̇(T ) .

The only possibility is e = 0 because φ ∈ (0, π) and the angular momentum is nonzero. This
shows the minimizing orbit rφ is a circular Keplerian orbit, completing the proof. ¤
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5.2. Lower Bound Estimates for Collision Paths. First note that [0, 12 ] is a fundamental

domain of the action g defined in (8). Let x ∈ ∂Xφ, then xi(t) = xj(t) for some t ∈ [0, 12 ] and
i 6= j. Assume for now i = 1, j = 2. According to g-invariance and the definition of Hφ, all
masses are aligned on the real axis at t = 0, and

e−
φ
2
ix(12) = e−

φ
2
ix(−1

2) = e
φ
2
ix(−12) = e−

φ
2
ix(12) .

This says all masses will be aligned on the line {re
φ
2
i : r ∈ R} at t = 1

2 . Therefore,

x1 − x2 ∈ Γ∗1
2
,φ
2

or Γ∗1
2
,π−φ

2

,

x1 − x3, x2 − x3 ∈ Γ 1

2
,φ
2

or Γ 1

2
,π−φ

2

.

Suppose both x1 − x3 and x2 − x3 belong to Γ 1

2
,φ
2

. By (13), (14), and (15),

A(x) =
2

M

X

i<j

mimj

Z 1

2

0

1

2
|ẋi − ẋj |

2 +
M

|xi − xj |
dt

≥ 2

M

"
3

2
m1m2(Mπ)

2

3

µ
1

2

¶1

3

+
3

2
(m1m3 +m2m3)

µ
Mφ

2

¶2

3

µ
1

2

¶ 1

3

#

If any of x1 − x3 and x2 − x3, say x1 − x3, belongs to Γ 1

2
,π−φ

2

, then the term involving m1m3

becomes

3

M
m1m3

µ
M

µ
π − φ

2

¶¶ 2

3

µ
1

2

¶ 1

3

.

Since φ ∈ (0, π], this results in a larger lower bound estimate than the one we obtained.
The estimates for other cases, x1, x3 collide or x2, x3 collide, are similar. To summarize, we

have proved the following lemma.

Lemma 4. Let S3 be the permutation group for {1, 2, 3}. Then

inf
x∈∂Xφ

A(x) ≥ 3

2M1/3
min
σ∈S3

h
mσ1mσ2 (2π)

2

3 + (mσ1mσ3 +mσ2mσ3)φ
2

3

i
.

In particular, when φ = π,

inf
x∈∂Xπ

A(x) ≥ 3π2/3

2M1/3

"
(22/3 − 1)m1m2m3

max{mi}
+m1m2 +m2m3 +m1m3

#

.

6. Proof of Main Theorems

We begin with the proof of Theorem 1:

Proof. (of Theorem 1)
Assume m3 = 1, M = m1 + m2 + 1. Let F (m1,m2), G(m1,m2) be as in (5), (6). Suppose



12 KUO-CHANG CHEN

F (m1,m2) > G(m1,m2). Then

0 <
m1m2

M1/3

³
F (m1,m2)−G(m1,m2)

´

=
3

2M1/3

"
(22/3 − 1)m1m2

max{mi}
+m1m2 −m1m2

µ
M

m1 +m2

¶1

3

#

− 1

M1/3
[m1 (J(m2ξπ)− 1) +m2 (J(m1ξπ)− 1)]

=
3

2M1/3

"
(22/3 − 1)m1m2

max{mi}
+m1m2 +m1 +m2

#

− 3m1m2

2(m1 +m2)1/3

− 1

M1/3

∙
m1 +m2

2
+m1J (m2ξπ) +m2J (m1ξπ)

¸
.

Thus, by Lemma 2 and Lemma 4,

inf
x∈Xπ

A(x) < inf
x∈∂Xπ

A(x).

By continuity of the bounds in Lemma 2 and Lemma 4 with respect to φ, there is some > 0
such that

inf
x∈Xφ

A(x) < inf
x∈∂Xφ

A(x)

for any φ ∈ (π − , π]. This proves the existence of infinitely many periodic and quasi-periodic
retrograde orbits for the three-body problem (1) under the assumption (7). By the construction
of Xφ, the prime period of any minimizer for the case φ = π is twice its prime relative period.
This completes the proof for Theorem 1. ¤

Boundary curves of the shaded regions in Figure 1 are implicitly defined by F (m1,m2) =
G(m1,m2). Clearly the simple criterion stated in Theorem 1 can be generalized to a more precise
but complicated one by comparing the estimates in Lemma 2 and Lemma 4 for general φ. In
section 2, we ventured that solutions given by Theorem 1 do not possess tight binaries. This can
be seen from the following generalization of Theorem 1.

Theorem 5. Let m3 = 1, M = m1+m2+1 be the total mass, and let J, Xφ, ξ be as in (4), (9),
(11).

(a) Given any φ ∈ (0, π], the three-body problem (1) has a retrograde solution that minimize
the action functional A in Xφ provided

3m1m2

2

(2π − φ)2/3

(m1 +m2)1/3
+

µ
φ2

M

¶1

3

∙
m1 +m2

2
+m1J (m2ξ) +m2J (m1ξ)

¸

<
3

2M1/3
min
σ∈S3

h
mσ1mσ2 (2π)

2

3 + (mσ1mσ3 +mσ2mσ3)φ
2

3

i
.

(b) Let x ∈ Xφ be an action-minimizing retrograde solution described in (a), and let

rij = max
t∈[0,1]

|xi(t)− xj(t)|, rij = min
t∈[0,1]

|xi(t)− xj(t)| .

Then

A(x) ≥ 1

M

X

i<j

mimj

∙
1

2
(rij − rij)

2 +
1

2
r2ijφ

2 +
M

rij

¸
.(16)
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Proof. Part (a) follows directly from the estimates in Lemma 2 and Lemma 4.
Writing xi − xj in polar form rije

iθij , then θij(1)− θij(0) = φ and
Z 1

0

1

2
|ẋi − ẋj |

2 +
M

|xi − xj |
dt =

Z 1

0

1

2
(ṙ2ij + r2ij θ̇

2
ij) +

M

rij
dt

≥ 1

2

µZ 1

0
|ṙij |dt

¶2
+
1

2
r2ij

µZ 1

0
|θ̇ij |dt

¶2
+

M

rij

≥ 1

2
(rij − rij)

2 +
1

2
r2ijφ

2 +
M

rij
.

Part (b) follows easily from this observation and identity (13). ¤

Now let us see how (16) implies action-minimizers have no tight binaries. Firstly, Lemma 2
provides a precise upper bound estimate for the value of A(x) in (16). In (16), the term M

rij
gives

a positive lower bound C1 for rij ,
1
2r
2
ijφ

2 gives an upper bound C2 for rij , and
1
2(rij − rij)

2 gives
an upper bound C3 for rij − rij . Combining all these, we have

C1 ≤ rij ≤ C2 + C3.

We may choose C1, C2, C3 so that these inequalities hold for each pair of i < j. The ratio rij/rik
is then bounded by C2+C3

C1
for any choice of i, j, k, which means no binary is “tight” relative to

other binaries.

7. Some Examples

The three examples below demonstrate how the admissible masses in Figure 1 can be obtained
by direct calculations. Regions not included in these examples can be analyzed in the same
fashion. As we shall see in these examples, the usefulness of Theorem 1 indeed relies on several
nice features of the function J(s). Most importantly, J(s) is strictly increasing on [0, 1), J 0(0) = 0,
and its value is considerably close to 1 when s is away from 1. See the Appendix.

Example 6. Consider the case 1 = m3 ≤ m1 = m, m2 = λm, λ ≥ 1. Then

F (m,λm) =
3

2

"
22/3 − 1

λm
+ 1−

µ
1 +

1

(1 + λ)m

¶1

3

#

mF (m,λm) =
3

2

⎡
⎢⎢⎣
22/3 − 1

λ
− 1

(1 + λ)

µ
1 +

³
1 + 1

(1+λ)m

´1/3
+
³
1 + 1

(1+λ)m

´2/3¶

⎤
⎥⎥⎦

≥ 3

2

"
22/3 − 1

λ
− 1

3(1 + λ)

#

=: a(λ) .

Note that a(λ) is decreasing. Using the fact that J(s) is strictly increasing on [0, 1) (see (20)),

mG(m,λm)

= J

Ã
m1/3

¡
1 + (1 + λ)m

¢1/3
(1 + λ)2/3

!

− 1 + 1

λ

Ã

J

Ã
λm1/3

(1 + (1 + λ)m)1/3(1 + λ)2/3

!

− 1
!

< J

µ
1

1 + λ

¶
− 1 + 1

λ

µ
J

µ
λ

1 + λ

¶
− 1
¶
=: b(λ) .
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The function J(s) can be approximated by (17) with any desired precision. One simple way of
finding those λ satisfying a(λ) > b(λ) is the following. Use the the monotonicity of a(λ) and J(s),
on any interval of the form [λ̄, λ̄+ 1], we have

a(λ) ≥ 3

2

"
22/3 − 1
1 + λ̄

− 1

2(2 + λ̄)

#

b(λ) < J

µ
1

1 + λ̄

¶
− 1 + 1

λ̄

µ
J

µ
1 + λ̄

2 + λ̄

¶
− 1
¶

for any λ ∈ [λ̄, λ̄ + 1]. For λ̄ = 1, 2, 3, 4, 5, the above lower bound for a(λ) is greater than
the above upper bound for b(λ). This implies a(λ) > b(λ), and hence F (m,λm) > G(m,λm),
for any λ ∈ [1, 6]. The estimates for the case 1 = m3 ≤ m2 = m, m1 = λm, λ ≥ 1, is
identical. Theorem 1 applies to regions A1 and A2 in Figure 5. Comparing with Figure 3, this
example covers triple stars in retrograde motions and double stars with one retrograde planet or
comet. Some of those orbits are shown in Figure 6 and 7. The first orbit in Figure 6 satisfies
(m1,m2,m3) = (π − 1, 1, 3.03× 10−6), φ = π, and the initial conditions are approximately

x(0) = (1, 1− π,−3.4812) , ẋ(0) = (−0.3183i, 0.6817i,−1.1330i) .
The other orbit is similar but with φ < π. The upper left orbit in Figure 7 has equal masses. It
was first numerically discovered by Hénon [14] (see also Moore [20]). The upper right orbit has
masses (m1,m2,m3) = (8, 8, 1) and initial conditions

x(0) = (0.6525,−0.5009,−1.2122) , ẋ(0) = (−1.6412i, 2.1361i,−3.9587i) .
The other two orbits have φ = π and masses (m1,m2,m3) = (1.5, 7, 1), (3, 5, 1). Their initial
conditions are approximately

x(0) = (−0.6142, 0.2677,−0.9526) , ẋ(0) = (3.1288i,−0.2365i,−3.0377i) ;
x(0) = (0.6822,−0.2282,−0.9055) , ẋ(0) = (−1.5006i, 1.4974i,−2.9852i) .

0

1

2

3

4

3 421

5

6

7

8

5 6 7 8

A1

A2

B

m2

m1

C1

C2

Figure 5. Admissible masses shown in Exam 6, 7, 8.
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Figure 6. Double stars with retrograde planets
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Figure 7. Retrograde triple stars with (m1,m2) in region A
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Example 7. Consider another type of triple stars in retrograde motions: 0 < m1,m2 ≤ m3 = 1,
m1m2 = α2, α > 1

2 . Then 2α ≤ m1 +m2 ≤ 1 + α2 and

F (m1,m2) =
3

2

"

22/3 −
µ
1 +

1

m1 +m2

¶ 1

3

#

≥ 3

2

"

22/3 −
µ
1 +

1

2α

¶1

3

#

=: c(α) .

Again, use the fact that J(s) is strictly increasing on [0, 1),

G(m1,m2)

≤
µ
1

m1
+

1

m2

¶µ
J

µ
1

(1 +m1 +m2)1/3(m1 +m2)2/3

¶
− 1
¶

≤ 1 + α2

α2

µ
J

µ
1

(1 + 2α)1/3(2α)2/3

¶
− 1
¶
=: d(α) .

It is not hard to see that c(α) is increasing and d(α) is decreasing. One can verify, by using (17),
that 0.5543 ≈ c(0.62) > d(0.62) ≈ 0.5374. Thus c(α) > d(α), and hence F (m1,m2) > G(m1,m2),
for any α ∈ [0.62, 1]. Theorem 1 applies to the region B in Figure 5. A typical example is the
first orbit in Figure 8, where the masses are (m1,m2,m3) = (0.5, 0.8, 1) and the initial conditions
are approximately

x(0) = (0.5589, 0.09859,−0.3583) , ẋ(0) = (−0.2211i, 1.5881i,−1.1599i) .

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8. Retrograde triple stars with (m1,m2) in regions B, C

Example 8. Consider 0 < m3 = 1 ≤ m1 = m, m2 = ≈ 0. This case covers double stars
with one planet orbiting around the heaviest mass. Numerically, the inferior mass of the action
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minimizer encircles the heaviest mass along a peanut-shaped loop.

F (m, ) =
3

2

"
22/3 − 1

m
+ 1−

µ
1 +

1

m+

¶ 1

3

#

,

mF (m, ) =
3

2

⎡
⎢⎣22/3 − 1−

µ
m

m+

¶
1

1 +
³
1 + 1

m+

´1/3
+
³
1 + 1

m+

´2/3

⎤
⎥⎦

>
3

2

"

22/3 − 1− 1

1 +
¡
1 + 1

m

¢1/3
+
¡
1 + 1

m

¢2/3

#

+ o(1) as → 0.

Define the function in the last line without o(1) by e(m). By (18), as → 0,

mG(m, ) = J

µ
m

(1 +m+ )1/3(m+ )2/3

¶
− 1 + o(1)

≤ J

Ã
m1/3

(1 +m)1/3

!

− 1 + o(1) .

Define the function in the last line without o(1) by f(m). The function e(m) is decreasing and
f(m) is increasing. By using (17), we obtain 0.4371 ≈ e(2.44) > f(2.44) ≈ 0.4365. This implies
F (m, ) > G(m, ) (and hence F ( ,m) > G( ,m)) for m ∈ [1, 2.44] and sufficiently small. The
regions of admissible masses are C1 and C2. A typical example is the second orbit in Figure 8,
where the masses are (m1,m2,m3) = (2, 0.01, 1) and the initial conditions are approximately

x(0) = (0.2209, 0.7934,−0.4498) , ẋ(0) = (0.7127i,−1.0786i,−1.4146i) .

The discussion for the case m1 < m3, m2 ≈ 0 (or m2 < m3, m1 ≈ 0) is similar. In this
case the inferior mass for the action minimizer penetrate, without bias, across the nearly circular
orbits formed by the primaries. Figure 9 shows two such solutions. Both of them have masses
(m1,m2,m3) = (10−7, 0.7, 1). The angle φ is π for the first case and less than π in the second.
Initial conditions for these orbits are approximately

x(0) = (2.1618, 1,−0.7) , ẋ(0) = (−0.2052i, 0.588235i,−0.411764i) ;
x(0) = (2.1128, 1,−0.7) , ẋ(0) = (−0.2227i, 0.588235i,−0.411764i) .

Suppose the two primaries form a double star, then we call the inferior mass a wagging planet for
the binary. Numerically many wagging planets are stable. Since it is commonly believed that a
large proportion of the star systems in the cosmos are double stars, there are good chances such
wagging planets do exist somewhere.

Appendix: Some Properties of J(s)

Let J(s) be as in (4). In terms of a power series in 4s
(1+s)2 , J(s) can be written

J(s) =
1

1 + s

∞X

k=0

µ
(2k)!

4k(k!)2

¶2µ 4s

(1 + s)2

¶k

(17)
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Figure 9. Double stars with wagging planets

for any s ∈ (0, 1). Clearly J(0) = 1 and J(1) = ∞. This series can be obtained by substituting
u = cos2(πt), resulting a term

1
p
(1 + s)2 − 4su

=
1

1 + s

∞X

k=0

(2k)!

4k(k!)2

µ
4s

(1 + s)2

¶k

uk

in the integrand, so that (4) can be expressed

Z 1

0

1

|1− s e2πti|
dt = 2

Z 1

2

0

1
p
(1 + s)2 − 4s cos2(πt)

dt

=
1

π

Z 1

0

1
p

u(1− u)

1
p
(1 + s)2 − 4su

du

=
1

(1 + s)π

∞X

k=0

(2k)!

4k(k!)2

µ
4s

(1 + s)2

¶k

B

µ
1

2
+ k,

1

2

¶
,

where B is the beta function. Equation (17) follows easily from the last identity.
The power series (17) is served to acquire a rigorous approximation for J(s) without appealing

to numerical integration. From (17),

1

s
(J(s)− 1) =

−1
1 + s

+
1

(1 + s)3
+

9s

4(1 + s)5
+

25s2

4(1 + s)7
+

1225s3

64(1 + s)9
+ · · · .(18)

In particular, J 0(0) = 0. Observe that J(s) is considerably close to 1 when s is away from 1. See
Figure 10. As can be seen from Examples 6, 7, 8, this observation is quite crucial. If we use, for
instance, the naïve estimate J(s) ≤ 1

1−s from the definition of J(s), then the regions of admissible
masses in Figure 5 would completely diminish.
The function J(s) can be viewed as the potential at (1, 0) ∈ R2 of a circular ring centered at

the origin with radius s and uniform density. Moreover,

J(s) =

Z 1

0

1

|1− se2πti|
dt =

Z 1

0

1

|e2πti − s|
dt .

Therefore J(s) can be also viewed as the potential at (s, 0) ∈ R2 of a unit circular ring with
uniform density.
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Figure 10. The graph of the function J(s).

This type of potential was first analyzed by Gauss [12], who provided an iterative algorithm
to approximate J(s) instead of using the series (17). He observed that the value of J(s) can be
obtained by computing what he called the arithmetico-geometric mean of 1 + s and 1 − s. A
formula he derived is quite useful (see, for instance, [15, III.4]):

J(s) =
2

π

Z π
2

0

1
p
1− s2 sin2 ψ

dψ .(19)

It is not easy to see monotonicity of J(s) from (4) or (17), but from (19) it becomes apparent
that J(s) is strictly increasing on [0, 1):

d

ds
J(s) =

2

π

Z π
2

0

s sin2 ψ

(1− s2 sin2 ψ)3/2
dψ .(20)
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