EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR DOUBLE-PHASE ROBIN PROBLEMS

N.S. PAPAGEORGIOU, V.D. RĂDULESCU, AND D.D. REPOVŠ

Abstract

We consider a double phase Robin problem with a Carathéodory nonlinearity. When the reaction is superlinear but without satisfying the Ambrosetti-Rabinowitz condition, we prove an existence theorem. When the reaction is resonant, we prove a multiplicity theorem. Our approach is Morse theoretic, using the notion of homological local linking.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with Lipschitz boundary $\partial \Omega$. In this paper we study the following two phase Robin problem

$$
\left\{\begin{array}{ll}
-\operatorname{div}\left(a_{0}(z)|D u|^{p-2} D u\right)-\Delta_{q} u+\xi(z)|u|^{p-2} u=f(z, u) & \text { in } \Omega \tag{1}\\
\frac{\partial u}{\partial n_{\theta}}+\beta(z)|u|^{p-2} u=0 & \text { on } \partial \Omega
\end{array}\right\}
$$

where $1<q<p \leqslant N$.
In this problem, the weight $a_{0}: \bar{\Omega} \rightarrow \mathbb{R}$ is Lipschitz continuous and $a_{0}(z)>0$ for all $z \in \Omega$. The potential function $\xi \in L^{\infty}(\Omega)$ satisfies $\xi(z) \geqslant 0$ for a.a. $z \in \Omega$, while the reaction term $f(z, x)$ is Carathéodory (that is, for all $x \in \mathbb{R}$ the mapping $z \mapsto f(z, x)$ is measurable and for a.a. $z \in \Omega$ the function $x \mapsto f(z, x)$ is continuous). Let $F(z, \cdot)$ be the primitive of $f(z, \cdot)$, that is, $F(z, x)=\int_{0}^{x} f(z, s) d s$. We assume that for a.a. $z \in \Omega, F(z, \cdot)$ is q-linear near the origin. On the other hand, near $\pm \infty$, we consider two distinct cases for $f(z, \cdot)$:
(i) for a.a. $z \in \Omega, f(z, \cdot)$ is $(p-1)$-superlinear but without satisfying the Ambrosetti-Rabinowitz condition (the AR-condition for short), which is common in the literature when dealing with superlinear problems;
(ii) for a.a. $z \in \Omega, f(z, \cdot)$ is $(p-1)$-linear and possibly resonant with respect to the principal eigenvalue of the weighted p-Laplacian

$$
u \mapsto-\operatorname{div}\left(a_{0}(z)|D u|^{p-2} D u\right)
$$

with Robin boundary condition.
In the boundary condition, $\frac{\partial u}{\partial n_{\theta}}$ denotes the conormal derivative of u corresponding to the modular function $\theta(z, x)=a_{0}(z) x^{p}+x^{q}$ for all $z \in \Omega$, all $x \geqslant 0$. We interpret this derivative via the nonlinear Green identity (see Papageorgiou, Rădulescu and Repovš [18, p. 34]) and

$$
\frac{\partial u}{\partial n_{\theta}}=\left[a_{0}(z)|D u|^{p-2}+|D u|^{q-2}\right] \frac{\partial u}{\partial n} \text { for all } u \in C^{1}(\bar{\Omega})
$$

with $n(\cdot)$ being the outward unit normal on $\partial \Omega$. The boundary coefficient β satisfies $\beta \in C^{0, \alpha}(\partial \Omega)$ with $0<\alpha<1$ and $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$.

The differential operator in problem (1) is a weighted (p, q)-Laplace operator and it corresponds to the energy functional

$$
u \mapsto \int_{\Omega}\left[a_{0}(z)|D u|^{p}+|D u|^{q}\right] d z .
$$

[^0]Since we do not assume that the weight function $a_{0}(z)$ is bounded away from zero, the continuous integrand $\theta_{0}: \Omega \times \mathbb{R}^{N} \rightarrow \mathbb{R}_{+}$of this integral functional exhibits unbalanced growth, namely

$$
|y|^{q} \leqslant \theta_{0}(z, y) \leqslant c_{0}\left(1+|y|^{p}\right) \text { for a.a. } z \in \Omega, \text { all } y \in \mathbb{R}^{N} \text { and some } c_{0}>0
$$

Such integral functionals were first investigated by Marcellini [14] and Zhikov [22], in connection with problems in nonlinear elasticity theory. Recently, Baroni, Colombo and Mingione [3] and Colombo and Mingione [6, 7] revived the interest in them and produced important local regularity results for the minimizers of such functionals. A global regularity theory for such problems remains elusive.

In this paper, using tools from Morse theory (in particular, critical groups), we prove an existence theorem (for the superlinear case) and a multiplicity theorem (for the linear resonant case). Existence and multiplicity results for two phase problems were proved recently by Cencelj, Rădulescu and Repovš [4] (problems with variable growth), Colasuonno and Squassina [5] (eigenvalue problems), Liu and Dai [13] (existence of solutions for problems with superlinear reaction), Papageorgiou, Rădulescu and Repovš [19] (multiple solutions for superlinear problems), and Papageorgiou, Vetro and Vetro [20] (parametric Dirichlet problems). The approach in all the aforementioned works is different and the hypotheses on the reaction are more restrictive.

Finally, we mention that (p, q)-equations arise in many mathematical models of physical processes. We refer to the very recent works of Bahrouni, Rădulescu and Repovš [1, 2] and the references therein.

2. Mathematical background

The study of two-phase problems requires the use of Musielak-Orlicz spaces. So, let $\theta: \Omega \times \mathbb{R}_{+} \rightarrow$ \mathbb{R}_{+}be the modular function defined by

$$
\theta(z, x)=a_{0}(z) x^{p}+x^{q} \text { for all } z \in \Omega, x \geqslant 0
$$

This is a generalized N -function (see Musielak [16]) and it satisfies

$$
\theta(z, 2 x) \leqslant 2^{p} \theta(z, x) \text { for all } z \in \Omega, x \geqslant 0
$$

that is, $\theta(z, \cdot)$ satisfies the $\left(\Delta_{2}\right)$-property (see Musielak [16, p. 52]). Using the modular function $\theta(z, x)$, we can define the Musielak-Orlicz space $L^{\theta}(\Omega)$ as follows:

$$
L^{\theta}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} ; u \text { is measurable and } \int_{\Omega} \theta(z,|u|) d z<\infty\right\}
$$

This space is equipped with the so-called "Luxemburg norm" defined by

$$
\|u\|_{\theta}=\inf \left\{\lambda>0: \int_{\Omega} \theta\left(z, \frac{|u|}{\lambda}\right) d z \leqslant 1\right\} .
$$

Using $L^{\theta}(\Omega)$, we can define the following Sobolev-type space $W^{1, \theta}(\Omega)$, by setting

$$
W^{1, \theta}(\Omega)=\left\{u \in L^{\theta}(\Omega):|D u| \in L^{\theta}(\Omega)\right\}
$$

We equip $W^{1, \theta}(\Omega)$ with the norm $\|\cdot\|$ defined by

$$
\|u\|=\|u\|_{\theta}+\|D u\|_{\theta},
$$

where $\|D u\|_{\theta}=\||D u|\|_{\theta}$. The spaces $L^{\theta}(\Omega)$ and $W^{1, \theta}(\Omega)$ are separable and uniformly convex (hence reflexive) Banach spaces.

Let $\hat{\theta}(z, x)$ be another modular function. We say that " $\hat{\theta}$ is weaker than θ " and write $\hat{\theta} \prec \theta$, if there exist $c_{1}, c_{2}>0$ and a function $\eta \in L^{1}(\Omega)$ such that

$$
\hat{\theta}(z, x) \leqslant c_{1} \theta\left(z, c_{2} x\right)+\eta(z) \text { for a.a. } z \in \Omega \text { and all } x \geqslant 0
$$

Then we have

$$
L^{\theta}(\Omega) \hookrightarrow L^{\hat{\theta}}(\Omega) \text { and } W^{1, \theta}(\Omega) \hookrightarrow W^{1, \hat{\theta}}(\Omega) \text { continuously. }
$$

Combining this fact with the classical Sobolev embedding theorem, we obtain the following embeddings; see Propositions 2.15 and 2.18 of Colasuonno and Squassina [5].

Proposition 2.1. We assume that $1<q<p<\infty$. Then the following properties hold.
(a) If $q \neq N$, then $W^{1, \theta}(\Omega) \hookrightarrow L^{r}(\Omega)$ continuously for all $1 \leqslant r \leqslant q^{*}$, where

$$
q^{*}= \begin{cases}\frac{N q}{N-q} & \text { if } q<N \\ +\infty & \text { if } q \geqslant N\end{cases}
$$

(b) If $q=N$, then $W^{1, \theta}(\Omega) \hookrightarrow L^{r}(\Omega)$ continuously for all $1 \leqslant r<\infty$.
(c) If $q \leqslant N$, then $W^{1, \theta}(\Omega) \hookrightarrow L^{r}(\Omega)$ compactly for all $1 \leqslant r<q^{*}$.
(d) If $q>N$, then $W^{1, \theta}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ compactly.
(e) $W^{1, \theta}(\Omega) \hookrightarrow W^{1, q}(\Omega)$ continuously.

We have

$$
L^{p}(\Omega) \hookrightarrow L^{\theta}(\Omega) \hookrightarrow L_{a_{0}}^{p}(\Omega) \cap L^{q}(\Omega)
$$

with both embeddings being continuous.
We consider the modular function

$$
\rho_{\theta}(u)=\int_{\Omega} \theta(z,|D u|) d z=\int_{\Omega}\left[a_{0}(z)|D u|^{p}+|D u|^{q}\right] d z \text { for all } u \in W^{1, \theta}(\Omega) .
$$

There is a close relationship between the norm $\|\cdot\|$ of $W^{1, \theta}(\Omega)$ and the modular functional $\rho_{\theta}(\cdot)$; see Proposition 2.1 of Liu and Dai [13].
Proposition 2.2. (a) If $u \neq 0$, then $\|D u\|_{\theta}=\lambda$ if and only if $\rho_{\theta}\left(\frac{u}{\lambda}\right) \leqslant 1$.
(b) $\|D u\|_{\theta}<1$ (resp. $=1,>1$) if and only if $\rho_{\theta}(u)<1($ resp $.=1,>1)$.
(c) If $\|D u\|_{\theta}<1$, then $\|D u\|_{\theta}^{p} \leqslant \rho_{\theta}(u) \leqslant\|D u\|_{\theta}^{q}$.
(d) If $\|D u\|_{\theta}>1$, then $\|D u\|_{\theta}^{q} \leqslant \rho_{\theta}(u) \leqslant\|D u\|_{\theta}^{p}$.
(e) $\|D u\|_{\theta} \rightarrow 0$ if and only if $\rho_{\theta}(u) \rightarrow 0$.
(f) $\|D u\|_{\theta} \rightarrow+\infty$ if and only if $\rho_{\theta}(u) \rightarrow+\infty$.

On $\partial \Omega$ we consider the ($N-1$)-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Using this measure, we can define in the usual way the "boundary" Lebesgue spaces $L^{s}(\partial \Omega)$ for $1 \leqslant s \leqslant \infty$. It is wellknown that there exists a unique continuous linear map $\gamma_{0}: W^{1, q}(\Omega) \rightarrow L^{q}(\partial \Omega)$, known as the "trace map", such that

$$
\gamma_{0}(u)=\left.u\right|_{\partial \Omega} \text { for all } u \in W^{1, q}(\Omega) \cap C(\bar{\Omega})
$$

We have

$$
\operatorname{im} \gamma_{0}=W^{\frac{1}{q^{\prime}}, q}(\Omega)\left(\frac{1}{q}+\frac{1}{q^{\prime}}=1\right) \text { and } \operatorname{ker} \gamma_{0}=W_{0}^{1, q}(\Omega)
$$

Moreover, the trace map $\gamma_{0}(\cdot)$ is compact into $L^{s}(\partial \Omega)$ for all $1 \leqslant s<(N-1) q /(N-q)$ if $q<N$, and for all $1 \leqslant s<\infty$ if $q \geqslant N$. In what follows, for the sake of notational simplicity, we drop the use of the trace map $\gamma_{0}(\cdot)$. All restrictions of the Sobolev functions on the boundary $\partial \Omega$ are understood in the sense of traces.

Let $\langle\cdot, \cdot\rangle$ denote the duality brackets for the pair $\left(W^{1, \theta}(\Omega), W^{1, \theta}(\Omega)^{*}\right)$ and $\langle\cdot, \cdot\rangle_{1, q}$ denote the duality brackets for the pair $\left(W^{1, q}(\Omega), W^{1, q}(\Omega)^{*}\right)$. We introduce the maps $A_{p}^{a_{0}}: W^{1, \theta}(\Omega) \rightarrow W^{1, \theta}(\Omega)^{*}$ and $A_{q}: W^{1, q}(\Omega) \rightarrow W^{1, q}(\Omega)^{*}$ defined by

$$
\begin{gathered}
\left\langle A_{p}^{a_{0}}(u), h\right\rangle=\int_{\Omega} a_{0}(z)|D u|^{p-2}(D u, D h)_{\mathbb{R}^{N}} d z \text { for all } u, h \in W^{1, \theta}(\Omega) \\
\left\langle A_{q}(u), h\right\rangle_{1, q}=\int_{\Omega}|D u|^{q-2}(D u, D h)_{\mathbb{R}^{N}} d z \text { for all } u, h \in W^{1, q}(\Omega)
\end{gathered}
$$

We have

$$
\left\langle A_{q}(u), h\right\rangle_{1, q}=\left\langle A_{q}(u), h\right\rangle \text { for all } u, h \in W^{1, \theta}(\Omega)
$$

We introduce the following hypotheses on the weight $a_{0}(\cdot)$ and on the coefficients $\xi(\cdot)$ and $\beta(\cdot)$.
$H_{0}: a_{0}: \bar{\Omega} \rightarrow \mathbb{R}$ is Lipschitz continuous, $a_{0}(z)>0$ for all $z \in \Omega, \xi \in L^{\infty}(\Omega), \xi(z) \geqslant 0$ for a.a. $z \in \Omega, \beta \in C^{0, \alpha}(\partial \Omega)$ with $0<\alpha<1, \xi \not \equiv 0$ or $\beta \not \equiv 0$ and $q>N p /(N+p-1)$.
Remark 2.1. The latter condition on the exponent q implies that $W^{1, \theta}(\Omega) \hookrightarrow L^{p}(\partial \Omega)$ compactly and $q<p^{*}$.

We introduce the C^{1}-functional $\gamma_{p}: W^{1, \theta}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\gamma_{p}(u)=\int_{\Omega} a_{0}(z)|D u|^{p} d z+\int_{\Omega} \xi(z)|u|^{p} d z+\int_{\partial \Omega} \beta(z)|u|^{p} d \sigma \text { for all } u \in W^{1, \theta}(\Omega) .
$$

Then hypotheses H_{0}, Lemma 4.11 of Mugnai and Papageorgiou [15], and Proposition 2.4 of Gasinski and Papageorgiou [10], imply that

$$
\begin{equation*}
c_{1}\|u\|^{p} \leqslant \gamma_{p}(u) \text { for some } c_{1}>0, \text { all } u \in W^{1, \theta}(\Omega) . \tag{2}
\end{equation*}
$$

We denote by $\hat{\lambda}_{1}(p)$ the first (principal) eigenvalue of the following nonlinear eigenvalue problem

$$
\left\{\begin{array}{ll}
-\operatorname{div}\left(a_{0}(z)|D u|^{p-2} D u\right)+\xi(z)|u|^{p-2} u=\hat{\lambda}|u|^{p-2} u & \text { in } \Omega \tag{3}\\
\frac{\partial u}{\partial n_{p}}+\beta(z)|u|^{p-2} u=0 & \text { on } \partial \Omega
\end{array}\right\}
$$

Here, $\frac{\partial u}{\partial n_{p}}=|D u|^{p-2} \frac{\partial u}{\partial n}$. The eigenvalue $\hat{\lambda}_{1}(p)$ has the following variational characterization

$$
\begin{equation*}
\hat{\lambda}_{1}(p)=\inf \left\{\frac{\gamma_{p}(u)}{\|u\|_{p}^{p}}: u \in W^{1, p}(\Omega) \backslash\{0\}\right\}(\text { see }[17]) . \tag{4}
\end{equation*}
$$

Then by (2), we see that $\hat{\lambda}_{1}(p)>0$. This eigenvalue is simple (that is, if \hat{u}, \hat{v} are corresponding eigenfunctions, then $\hat{u}=\eta \hat{v}$ with $\eta \in \mathbb{R} \backslash\{0\}$) and isolated (that is, if $\hat{\sigma}(p)$ denotes the spectrum of (3), then we can find $\varepsilon>0$ such that $\left.\left(\hat{\lambda}_{1}(p), \hat{\lambda}_{1}(p)+\varepsilon\right) \cap \hat{\sigma}(p)=\emptyset\right)$. The infimum in (4) is realized on the corresponding one-dimensional eigenspace, the elements of which have fixed sign. We denote by $\hat{u}_{1}(p)$ the corresponding positive, L^{p}-normalized (that is, $\left\|\hat{u}_{1}(p)\right\|_{p}=1$) eigenfunction. We know that $\hat{u}_{1}(p) \in L^{\infty}(\Omega)$ (see Colasuonno and Squassina [5, Section 3.2]) and $\hat{u}_{1}(p)(z)>0$ for a.a. $z \in \Omega$ (see Papageorgiou, Vetro and Vetro [19, Proposition 4]).

We will also use the spectrum of the following nonlinear eigenvalue problem

$$
-\Delta_{q} u=\hat{\lambda}|u|^{q-2} u \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega .
$$

It is well known that this problem has a sequence of variational eigenvalues $\left\{\hat{\lambda}_{k}(q)\right\}_{k \geqslant 1}$ such that $\hat{\lambda}_{k}(q) \rightarrow+\infty$ as $k \rightarrow \infty$. We have $\hat{\lambda}_{1}(q)=0<\hat{\lambda}_{2}(q)$ (see Gasinski and Papageorgiou [9, Section 6.2]).

Let X be a Banach space and $\phi \in C^{1}(X, \mathbb{R})$. We denote by K_{ϕ} the critical set of ϕ, that is,

$$
K_{\phi}=\left\{u \in X: \phi^{\prime}(u)=0\right\} .
$$

Also, if $\eta \in \mathbb{R}$, then we set

$$
\phi^{\eta}=\{u \in X: \phi(u) \leqslant \eta\} .
$$

Consider a topological pair (A, B) such that $B \subseteq A \subseteq X$. Then for every $k \in \mathbb{N}_{0}$, we denote by $H_{k}(A, B)$ the k th-singular homology group for the pair (A, B) with coefficients in a field \mathbb{F} of characteristic zero (for example, $\mathbb{F}=\mathbb{R}$). Then each $H_{k}(A, B)$ is an \mathbb{F}-vector space and we denote by $\operatorname{dim} H_{k}(A, B)$ its dimension. We also recall that the homeomorphisms induced by maps of pairs and the boundary homomorphism ∂, are all \mathbb{F}-linear.

Suppose that $u \in K_{\phi}$ is isolated. Then for every $k \in \mathbb{N}_{0}$, we define the " k-critical group" of ϕ at u by

$$
C_{k}(\phi, u)=H_{k}\left(\phi^{c} \cap U, \phi^{c} \cap U \backslash\{u\}\right),
$$

where U is an isolating neighborhood of u, that is, $K_{\phi} \cap U \cap \phi^{c}=\{u\}$. The excision property of singular homology implies that this definition is independent of the choice of the isolating neighborhood U.

We say that ϕ satisfies the "C-condition" if it has the following property:
"Every sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq X$ such that $\left\{\phi\left(u_{n}\right)\right\}_{n \geqslant 1} \subseteq \mathbb{R}$ is bounded and $\left(1+\left\|u_{n}\right\|\right) \phi^{\prime}\left(u_{n}\right) \rightarrow 0$ in X^{*} as $n \rightarrow \infty$, has a strongly convergent subsequence".

Suppose that $\phi \in C^{1}(X, \mathbb{R})$ satisfies the C -condition and that $\inf \phi\left(K_{\phi}\right)>-\infty$. Let $c<\inf \phi\left(K_{\phi}\right)$. Then the critical groups of ϕ at infinity are defined by

$$
C_{k}(\phi, \infty)=H_{k}\left(X, \phi^{c}\right) \text { for all } k \in \mathbb{N}_{0}
$$

On account of the second deformation theorem (see Papageorgiou, Rădulescu and Repovš [18, p. 386], Theorem 5.3.12) this definition is independent of the choice of the level $c<\inf \phi\left(K_{\phi}\right)$.

Our approach is based on the notion of local (m, n)-linking ($m, n \in \mathbb{N}$), see Papageorgiou, Rădulescu and Repovš [18, Definition 6.6.13, p. 534].

Definition 2.3. Let X be a Banach space, $\phi \in C^{1}(X, \mathbb{R})$, and 0 an isolated critical point of ϕ with $\phi(0)=0$. Let $m, n \in \mathbb{N}$. We say that ϕ has a "local (m, n)-linking" near the origin if there exist a neighborhood U of 0 and nonempty sets $E_{0}, E \subseteq U$, and $D \subseteq X$ such that $0 \notin E_{0} \subseteq E, E_{0} \cap D=\emptyset$ and
(a) 0 is the only critical point of ϕ in $\phi^{0} \cap U$;
(b) $\operatorname{dimim} i_{*}-\operatorname{dimim} j_{*} \geqslant n$, where

$$
i_{*}: H_{m-1}\left(E_{0}\right) \rightarrow H_{m-1}(X \backslash D) \text { and } j_{*}: H_{m-1}\left(E_{0}\right) \rightarrow H_{m-1}(E)
$$

are the homomorphisms induced by the inclusion maps $i: E_{0} \rightarrow X \backslash D$ and $j: E_{0} \rightarrow E$;
(c) $\left.\phi\right|_{E} \leqslant 0<\left.\phi\right|_{U \cap D \backslash\{0\}}$.

Remark 2.2. The notion of "local (m, n)-linking" was introduced by Perera [21] as a generalization of the concept of local linking due to Liu [12]. Here we introduce a slightly more general version of this notion.

3. Superlinear case

In this section we treat the superlinear case, that is, we assume that the reaction $f(z, \cdot)$ exhibits ($p-1$)-superlinear growth near $\pm \infty$.

The hypotheses on $f(z, x)$ are the following.
$H_{1}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) $|f(z, x)| \leqslant \hat{a}(z)\left(1+|x|^{r-1}\right)$ for a.a. $z \in \Omega$ and all $x \in \Omega$, with $\hat{a} \in L^{\infty}(\Omega), p<r<q^{*}$;
(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then $\lim _{x \rightarrow \pm \infty} \frac{F(z, x)}{|x|^{p}}=+\infty$ uniformly for a.a. $z \in \Omega$;
(iii) if $\eta(z, x)=f(z, x) x-p F(z, x)$, then there exists $e \in L^{1}(\Omega)$ such that

$$
\eta(z, x) \leqslant \eta(z, y)+e(z) \text { for a.a. } z \in \Omega \text { and all } 0 \leqslant x \leqslant y \text { or } y \leqslant x \leqslant 0
$$

(iv) there exist $\delta>0, \theta \in L^{\infty}(\Omega)$ and $\hat{\lambda}>0$ such that

$$
\begin{gathered}
0 \leqslant \theta(z) \text { for a.a. } z \in \Omega, \theta \not \equiv 0, \hat{\lambda} \leqslant \hat{\lambda}_{2}(q) \\
\theta(z)|x|^{q} \leqslant q F(z, x) \leqslant \hat{\lambda}|x|^{q} \text { for a.a. } z \in \Omega \text { and all }|x| \leqslant \delta
\end{gathered}
$$

Remark 3.1. Evidently, hypotheses $H_{1}(i i)$, (iii) imply that for a.a. $z \in \Omega$, the function $f(z, \cdot)$ is superlinear. However, to express this superlinearity, we do not invoke the usual AR-condition. We recall that the $A R$-condition says that there exist $\tau>p$ and $M>0$ such that

$$
\begin{gather*}
0<\tau F(z, x) \leqslant f(z, x) x \text { for a.a. } z \in \Omega \text { and all }|x| \geqslant M ; \text { and } \tag{5}\\
0<\operatorname{essinf}_{\Omega} F(\cdot, \pm M) \tag{6}
\end{gather*}
$$

Integrating (5) and using (6), we obtain a weaker condition, namely

$$
\begin{array}{ll}
& c_{2}|x|^{\tau} \leqslant F(z, x) \\
\Rightarrow \quad & \text { for a.a. } z \in \Omega \text {, all }|x| \geqslant M \text { and some } c_{2}>0 \\
c_{3}|x|^{\tau} \leqslant f(z, x) x & \text { for a.a. } z \in \Omega \text {, all }|x| \geqslant M \text { and with } c_{3}=\tau c_{2}>0
\end{array}
$$

Therefore the $A R$-condition implies that, eventually, $f(z, \cdot)$ has at least ($\tau-1$)-polynomial growth.

In the present work, instead of the AR-condition, we use the quasimonotonicity hypothesis $H_{1}(i i i)$, which is less restrictive and incorporates in our framework also ($p-1$)-superlinear nonlinearities with slower growth near $\pm \infty$ (see the examples below). Hypothesis $H_{1}(i i i)$ is a slight generalization of a condition which can be found in Li and Yang [11]. There are very natural ways to verify the quasimonotonicity condition. So, if there exists $M>0$ such that for a.a. $z \in \Omega$, either the function

$$
x \mapsto \frac{f(z, x)}{|x|^{q-2} x} \text { is increasing on } x \geqslant M \text { and decreasing on } x \leqslant-M
$$

or the mapping

$$
x \mapsto \eta(z, x) \text { is increasing on } x \geqslant M \text { and decreasing on } x \leqslant-M
$$

then hypothesis $H_{1}(i i i)$ holds.
Hypothesis $H_{1}(i v)$ implies that for a.a. $z \in \Omega$, the primitive $F(z, \cdot)$ is q-linear near 0.
Examples. The following functions satisfy hypotheses H_{1}. For the sake of simplicity we drop the z-dependence:

$$
\begin{aligned}
& f_{1}(x)=\left\{\begin{array}{ll}
\mu|x|^{q-2} x & \text { if }|x| \leqslant 1 \\
\mu|x|^{r-2} x & \text { if }|x|>1
\end{array} \quad\left(\text { with } 0<\mu \leqslant \hat{\lambda}_{2}(q) \text { and } p<r<q^{*}\right)\right. \\
& f_{2}(x)=\left\{\begin{array}{ll}
\mu|x|^{q-2} x & \text { if }|x| \leqslant 1 \\
\mu|x|^{p-2} x \ln x+\mu|x|^{\tau-2} x & \text { if }|x|>1
\end{array} \quad\left(\text { with } 0<\mu \leqslant \hat{\lambda}_{2}(q) \text { and } 1<\tau<p\right)\right.
\end{aligned}
$$

Note that only f_{1} satisfies the AR-condition, whereas the function f_{2} does not satisfy this growth condition.

The energy functional for problem (1) is the C^{1}-functional $\varphi: W^{1, \theta}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\varphi(u)=\frac{1}{p} \gamma_{p}(u)+\frac{1}{q}\|D u\|_{q}^{q}-\int_{\Omega} F(z, u) d z \text { for all } u \in W^{1, \theta}(\Omega)
$$

Next, we show that $\varphi(\cdot)$ satisfies the C-condition.
Proposition 3.1. If hypotheses H_{0}, H_{1} hold, then the functional $\varphi(\cdot)$ satisfies the C-condition.
Proof. We consider a sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W^{1, \theta}(\Omega)$ such that

$$
\begin{equation*}
\left|\varphi\left(u_{n}\right)\right| \leqslant c_{4} \text { for some } c_{4}>0 \text { and all } n \in \mathbb{N} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left(1+\left\|u_{n}\right\|\right) \varphi^{\prime}\left(u_{n}\right) \rightarrow 0 \text { in } W^{1, \theta}(\Omega)^{*} \text { as } n \rightarrow \infty \tag{8}
\end{equation*}
$$

From (8) we have

$$
\begin{align*}
\mid\left\langle A_{p}^{a_{0}}\left(u_{n}\right), h\right\rangle+\left\langle A_{q}\left(u_{n}\right), h\right\rangle & +\int_{\Omega} \xi(z)\left|u_{n}\right|^{p-2} u_{n} h d z+\int_{\partial \Omega} \beta(z)\left|u_{n}\right|^{p-2} u_{n} h d \sigma \tag{9}\\
& -\int_{\Omega} f\left(z, u_{n}\right) h d z \left\lvert\, \leqslant \frac{\varepsilon_{n}\|h\|}{1+\left\|u_{n}\right\|}\right.
\end{align*}
$$

for all $h \in W^{1, \theta}(\Omega)$, with $\varepsilon_{n} \rightarrow 0$.
In (9) we choose $h=u_{n} \in W^{1, \theta}(\Omega)$ and obtain for all $n \in \mathbb{N}$
(10) $-\int_{\Omega} a_{0}(z)\left|D u_{n}\right|^{p} d z-\left\|D u_{n}\right\|_{q}^{q}-\int_{\Omega} \xi(z)\left|u_{n}\right|^{p} d z-\int_{\partial \Omega} \beta(z)\left|u_{n}\right|^{p} d \sigma+\int_{\Omega} f\left(z, u_{n}\right) u_{n} d z \leqslant \varepsilon_{n}$.

Also, by (7) we have for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\int_{\Omega} a_{0}(z)\left|D u_{n}\right|^{p} d z+\frac{p}{q}\left\|D u_{n}\right\|_{q}^{q}+\frac{p}{q} \int_{\Omega} \xi(z)\left|u_{n}\right|^{p} d z+\frac{p}{q} \int_{\partial \Omega} \beta(z)\left|u_{n}\right|^{p} d \sigma-\int_{\Omega} p F\left(z, u_{n}\right) d z \leqslant p c_{4} \tag{11}
\end{equation*}
$$

We add relations (10) and (11). Since $q<p$, we obtain

$$
\begin{equation*}
\int_{\Omega} \eta\left(z, u_{n}\right) d z \leqslant c_{5} \text { for some } c_{5}>0 \text { and all } n \in \mathbb{N} \tag{12}
\end{equation*}
$$

Claim. The sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W^{1, \theta}(\Omega)$ is bounded.

We argue by contradiction. Suppose that the claim is not true. We may assume that

$$
\begin{equation*}
\left\|u_{n}\right\| \rightarrow \infty \text { as } n \rightarrow \infty \tag{13}
\end{equation*}
$$

We set $y_{n}=u_{n} /\left\|u_{n}\right\|$ for all $n \in \mathbb{N}$. Then $\left\|y_{n}\right\|=1$ and so we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W^{1, \theta}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{r}(\Omega) \text { and in } L^{p}(\partial \Omega), \tag{14}
\end{equation*}
$$

see hypotheses H_{0}, Proposition 2.1 and Remark 2.1.
We first assume that $y \not \equiv 0$. Let

$$
\Omega_{+}=\{z \in \Omega: y(z)>0\} \text { and } \Omega_{-}=\{z \in \Omega: y(z)<0\}
$$

Then at least one of these measurable sets has positive Lebesgue measure on \mathbb{R}^{N}. We have

$$
u_{n}(z) \rightarrow+\infty \text { for a.a. } z \in \Omega_{+} \text {and } u_{n}(z) \rightarrow-\infty \text { for a.a. } z \in \Omega_{-} .
$$

Let $\hat{\Omega}=\Omega_{+} \cup \Omega_{-}$and let $|\cdot|_{N}$ denote the Lebesgue measure on \mathbb{R}^{N}. We see that $|\hat{\Omega}|_{N}>0$ and on account of hypothesis $H_{1}(i i)$, we have

$$
\begin{align*}
& \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{p}}=\frac{F\left(z, u_{n}(z)\right)}{\left|u_{n}(z)\right|^{p}}\left|y_{n}(z)\right|^{p} \rightarrow+\infty \text { for a.a. } z \in \hat{\Omega} \tag{15}\\
\Rightarrow & \int_{\hat{\Omega}} \frac{F\left(z, u_{n}(z)\right)}{\left\|u_{n}\right\|^{p}} d z \rightarrow+\infty \text { by Fatou's lemma. }
\end{align*}
$$

Hypotheses $H_{1}(i)$, (ii) imply that

$$
\begin{equation*}
F(z, x) \geqslant-c_{6} \text { for a.a. } z \in \Omega, \text { all } x \in \mathbb{R} \text { and some } c_{6}>0 \tag{16}
\end{equation*}
$$

Thus we obtain

$$
\begin{align*}
\int_{\Omega} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z & =\int_{\hat{\Omega}} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z+\int_{\Omega \backslash \hat{\Omega}} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z \\
& \geqslant \int_{\hat{\Omega}} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z-\frac{c_{6}|\Omega|_{N}}{\left\|u_{n}\right\|^{p}}(\text { see }(16)) \tag{17}\\
& \Rightarrow \lim _{n \rightarrow \infty} \int_{\Omega} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z=+\infty(\text { see }(15) \text { and (13)) }
\end{align*}
$$

By (7), we have

$$
\begin{equation*}
\int_{\Omega} \frac{p F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z \leqslant \gamma_{p}\left(y_{n}\right)+\frac{p}{q} \frac{1}{\left\|u_{n}\right\|^{p-q}}\left\|D y_{n}\right\|_{q}^{q}+\frac{c_{4}}{\left\|u_{n}\right\|^{p}} \leqslant c_{7} \tag{18}
\end{equation*}
$$

for some $c_{7}>0$ and all $n \in \mathbb{N}$ (see (13) and recall that $\left\|y_{n}\right\|=1$).
We compare relations (15) and (18) and arrive at a contradiction.
Next, we assume that $y=0$. Let $\mu>0$ and set $v_{n}=(p \mu)^{1 / p} y_{n}$ for all $n \in \mathbb{N}$. Evidently, we have

$$
\begin{align*}
& v_{n} \rightarrow 0 \text { in } L^{r}(\Omega)(\text { see }(14)), \tag{19}\\
\Rightarrow \quad & \int_{\Omega} F\left(z, v_{n}\right) d z \rightarrow 0 \text { as } n \rightarrow \infty .
\end{align*}
$$

Consider the functional $\psi: W^{1, \theta}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\psi(u)=\frac{1}{p} \gamma_{p}(u)-\int_{\Omega} F(z, u) d z \text { for all } u \in W^{1, \theta}(\Omega)
$$

Clearly, $\psi \in C^{1}\left(W^{1, \theta}(\Omega), \mathbb{R}\right)$ and

$$
\begin{equation*}
\psi \leqslant \varphi \tag{20}
\end{equation*}
$$

We can find $t_{n} \in[0,1]$ such that

$$
\begin{equation*}
\psi\left(t_{n} u_{n}\right)=\min \left\{\psi\left(t u_{n}\right): 0 \leqslant t \leqslant 1\right\} \text { for all } n \in \mathbb{N} \tag{21}
\end{equation*}
$$

Because of (13), we can find $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
0<\frac{(p \mu)^{1 / p}}{\left\|u_{n}\right\|} \leqslant 1 \text { for all } n \geqslant n_{0} \tag{22}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\psi\left(t_{n} u_{n}\right) & \geqslant \psi\left(v_{n}\right)(\text { see }(21),(22)) \\
& \geqslant \mu \gamma_{p}\left(y_{n}\right)-\int_{\Omega} F\left(z, v_{n}\right) d z \\
& \geqslant \mu c_{1}-\int_{\Omega} F\left(z, v_{n}\right) d z\left(\text { see }(2) \text { and recall that }\left\|y_{n}\right\|=1\right) \\
& \geqslant \frac{\mu}{2} c_{1} \text { for all } n \geqslant n_{1} \geqslant n_{0}(\text { see }(19))
\end{aligned}
$$

Since $\mu>0$ is arbitrary, it follows that

$$
\begin{equation*}
\psi\left(t_{n} u_{n}\right) \rightarrow+\infty \text { as } n \rightarrow \infty \tag{23}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\psi(0)=0 \text { and } \psi\left(u_{n}\right) \leqslant c_{4} \text { for all } n \in \mathbb{N}(\text { see }(7),(20)) \tag{24}
\end{equation*}
$$

By (23) and (24) we can infer that

$$
\begin{equation*}
t_{n} \in(0,1) \text { for all } n \geqslant n_{2} \tag{25}
\end{equation*}
$$

From (21) and (25), we can see that for all $n \geqslant n_{2}$ we have

$$
\begin{align*}
0 & =\left.t_{n} \frac{d}{d t} \psi\left(t u_{n}\right)\right|_{t=t_{n}} \\
& =\left\langle\psi^{\prime}\left(t_{n} u_{n}\right), t_{n} u_{n}\right\rangle(\text { by the chain rule }) \tag{26}\\
& =\gamma_{p}\left(t_{n} u_{n}\right)-\int_{\Omega} f\left(z, t_{n} u_{n}\right)\left(t_{n} u_{n}\right) d z
\end{align*}
$$

It follows that

$$
0 \leqslant t_{n} u_{n}^{+} \leqslant u_{n}^{+} \text {and }-u_{n}^{-} \leqslant-t_{n} u_{n}^{-} \leqslant 0 \text { for all } n \in \mathbb{N}
$$

(recall that $u_{n}^{+}=\max \left\{u_{n}, 0\right\}$ and $u_{n}^{-}=\max \left\{-u_{n}, 0\right\}$).
By hypothesis $H_{1}(i i i)$, we have

$$
\begin{gathered}
\eta\left(z, t_{n} u_{n}^{+}\right) \leqslant \eta\left(z, u_{n}^{+}\right)+e(z) \text { for a.a. } z \in \Omega \text { and all } n \in \mathbb{N} \\
\eta\left(z,-t_{n} u_{n}^{-}\right) \leqslant \eta\left(z,-u_{n}^{-}\right)+e(z) \text { for a.a. } z \in \Omega \text { and all } n \in \mathbb{N} .
\end{gathered}
$$

From these two inequalities and since $u_{n}=u_{n}^{+}-u_{n}^{-}$, we obtain

$$
\begin{align*}
& \eta\left(z, t_{n} u_{n}\right) \leqslant \eta\left(z, u_{n}\right)+e(z) \text { for a.a. } z \in \Omega \text { and all } n \in \mathbb{N} \\
\Rightarrow \quad & f\left(z, t_{n} u_{n}\right)\left(t_{n} u_{n}\right) \leqslant \eta\left(z, u_{n}\right)+e(z)+p F\left(z, t_{n} u_{n}\right) \text { for a.a. } z \in \Omega \text { and all } n \in \mathbb{N} . \tag{27}
\end{align*}
$$

We return to (26) and apply (27). Then

$$
\begin{align*}
& \gamma_{p}\left(t_{n} u_{n}\right)-p \int_{\Omega} F\left(z, t_{n} u_{n}\right) d z \leqslant \int_{\Omega} \eta\left(z, u_{n}\right) d z+\|e\|_{1} \text { for all } n \in \mathbb{N}, \tag{28}\\
\Rightarrow & p \psi\left(t_{n} u_{n}\right) \leqslant c_{8} \text { for some } c_{8}>0 \text { and all } n \in \mathbb{N}(\text { see }(12)
\end{align*}
$$

We compare (23) and (28) and arrive at a contradiction.
This proves the claim.
On account of this claim, we may assume that

$$
\begin{equation*}
u_{n} \xrightarrow{w} u \text { in } W^{1, \theta}(\Omega) \text { and } u_{n} \rightarrow u \text { in } L^{r}(\Omega) \text { and in } L^{p}(\partial \Omega) \tag{29}
\end{equation*}
$$

(see hypotheses H_{0}).
From (29) we have

$$
\begin{equation*}
D u_{n} \rightarrow D u \text { in } L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right) \quad \text { and } \quad D u_{n}(z) \rightarrow D u(z) \text { a.a. } z \in \Omega \tag{30}
\end{equation*}
$$

In (9) we choose $h=u_{n}-u \in W^{1, \theta}(\Omega)$, pass to the limit as $n \rightarrow \infty$ and use (30) and the monotonicity of $A_{p}(\cdot)^{a_{0}}$. We obtain

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty}\left\langle A_{p}^{a_{0}}\left(u_{n}\right), u_{n}-u\right\rangle \leqslant 0 \\
\Rightarrow \quad & \limsup _{n \rightarrow \infty}\left\|D u_{n}\right\|_{L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right)} \leqslant\|D u\|_{L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right)} .
\end{aligned}
$$

On the other hand, from (30) we have

$$
\liminf _{n \rightarrow \infty}\left\|D u_{n}\right\|_{L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right)} \geqslant\|D u\|_{L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right)}
$$

Therefore we conclude that

$$
\begin{equation*}
\left\|D u_{n}\right\|_{L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right)} \rightarrow\|D u\|_{L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right)} \tag{31}
\end{equation*}
$$

The space $L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right)$ is uniformly convex, hence it has the Kadec-Klee property (see Papageorgiou, Rădulescu and Repovš [18, Remark 2.7.30, p. 127]). So, it follows from (30) and (31) that

$$
\begin{aligned}
& D u_{n} \rightarrow D u \text { in } L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right), \\
\Rightarrow & D u_{n} \rightarrow D u \text { in } L^{q}\left(\Omega, \mathbb{R}^{N}\right) \text { since } L_{a_{0}}^{p}\left(\Omega, \mathbb{R}^{N}\right) \hookrightarrow L^{q}\left(\Omega, \mathbb{R}^{N}\right) \text { continuously, } \\
\Rightarrow & \rho_{\theta}\left(\left|D u_{n}-D u\right|\right) \rightarrow 0(\text { see Proposition } 2.2), \\
\Rightarrow & \left\|u_{n}-u\right\| \rightarrow 0 \text { (see (29) and Proposition 2.2), } \\
\Rightarrow & \varphi \text { satisfies the C-condition. }
\end{aligned}
$$

The proof is now complete.
Proposition 3.2. If hypotheses H_{0}, H_{1} hold, then the functional $\varphi(\cdot)$ has a local $(1,1)$-linking at 0 .
Proof. Since the critical points of φ are solutions of problem (1), we may assume that K_{φ} is finite or otherwise we already have infinitely many nontrivial solutions of (1) and so we are done.

Choose $\rho \in(0,1)$ so small that $K_{\varphi} \cap \bar{B}_{\rho}=\{0\}$ (here, $B_{\rho}=\left\{u \in W^{1, \theta}(\Omega):\|u\|<\rho\right\}$). Let $V=\mathbb{R}$ and let $\delta>0$ as postulated by hypothesis $H_{1}(i v)$. Recall that on a finite dimensional normed space all norms are equivalent. So, by taking $\rho \in(0,1)$ even smaller as necessary, we have

$$
\begin{equation*}
\|u\| \leqslant \rho \Rightarrow|u| \leqslant \delta \text { for all } u \in V=\mathbb{R} \tag{32}
\end{equation*}
$$

Then for $u \in V \cap \bar{B}_{\rho}$, we have

$$
\begin{aligned}
\varphi(u) & \leqslant \frac{1}{p} \gamma_{p}(u)-\frac{|u|^{q}}{q} \int_{\Omega} \theta(z) d z\left(\text { see }(32) \text { and Hypothesis } H_{1}(i v)\right) \\
& =\frac{|u|^{p}}{p}\left(\int_{\Omega} \xi(z) d z+\int_{\partial \Omega} \beta(z) d \sigma\right)-\frac{|u|^{q}}{q} \int_{\Omega} \theta(z) d z \\
& \left.\leqslant c_{9}\|u\|^{p}-c_{10}\|u\|^{q} \text { for some } c_{9}, c_{10}>0 \text { (see hypotheses } H_{0} \text { and } H_{1}(i v)\right) .
\end{aligned}
$$

Since $q<p$, choosing $\rho \in(0,1)$ small, we conclude that

$$
\begin{equation*}
\left.\varphi\right|_{V \cap \bar{B}_{\rho}} \leqslant 0 \tag{33}
\end{equation*}
$$

Let

$$
D=\left\{u \in W^{1, \theta}(\Omega):\|D u\|_{q}^{q} \geqslant \hat{\lambda}_{2}(q)\|u\|_{q}^{q}\right\} .
$$

For all $u \in D$ we have

$$
\begin{aligned}
\varphi(u) & =\frac{1}{p} \gamma_{p}(u)+\frac{1}{q}\|D u\|_{q}^{q}-\int_{\{|u| \leqslant \delta\}} F(z, u) d z-\int_{\{|u|>\delta\}} F(z, u) d z \\
& \geqslant \frac{1}{p} \gamma_{p}(u)+\frac{1}{q}\left(\|D u\|_{q}^{q}-\int_{\Omega} \hat{\lambda}|u|^{q} d z\right)-\int_{\Omega} F(z, u) d z \\
& \geqslant \frac{1}{p} \gamma_{p}(u)+\frac{1}{q} \int_{\Omega}\left(\hat{\lambda}_{2}(q)-\hat{\lambda}\right)|u|^{q} d z-c_{11}\|u\|^{r} \\
& \geqslant \frac{c_{11}}{p}\|u\|^{p}-c_{11}\|u\|^{r}(\text { see }(22))
\end{aligned}
$$

Since $p<r$, for small $\rho \in(0,1)$ we have

$$
\begin{equation*}
\left.\varphi\right|_{D \cap \bar{B}_{\rho} \backslash\{0\}}>0 . \tag{34}
\end{equation*}
$$

Let $U=\bar{B}_{\rho}, E_{0}=V \cap \partial B_{\rho}, E=V \cap \bar{B}_{\rho}$ and D as above. We have $0 \notin E_{0}, E_{0} \subseteq E \subseteq U=\bar{B}_{\rho}$ and $E_{0} \cap D=\emptyset$ (see Definition 2.3).

Let Y be the topological complement of V. We have that

$$
W^{1, \theta}(\Omega)=V \oplus Y(\text { see }[18, \text { pp. } 73,74])
$$

So, every $u \in W^{1, \theta}(\Omega)$ can be written in a unique way as

$$
u=v+y \text { with } v \in V, y \in Y
$$

We consider the deformation $h:[0,1] \times\left(W^{1, \theta}(\Omega) \backslash D\right) \rightarrow W^{1, \theta}(\Omega) \backslash D$ defined by

$$
h(t, u)=(1-t) u+t \rho \frac{v}{\|v\|} \text { for all } t \in[0,1], u \in W^{1, \theta}(\Omega) \backslash D
$$

We have

$$
h(0, u)=u \text { and } h(1, u)=\rho \frac{v}{\|v\|} \in V \cap \partial B_{\rho}=E_{0} .
$$

It follows that E_{0} is a deformation retract of $W^{1, \theta}(\Omega) \backslash D$ (see Papageorgiou, Rădulescu and Repovš [17, Definition 5.3.10, p. 385]). Hence

$$
i_{*}: H_{0}\left(E_{0}\right) \rightarrow H_{0}\left(W^{1, \theta}(\Omega) \backslash\{0\}\right)
$$

is an isomorphism (see Eilenberg and Steenrod [8, Theorem 11.5, p.30] and Papageorgiou, Rădulescu and Repovš [18, Remark 6.1.6, p. 460]).

The set $E=V \cap B_{\rho}$ is contractible (it is an interval). Hence $H_{0}\left(E, E_{0}\right)=0$ (see Eilenberg and Steenrod [8, Theorem 11.5, p. 30]). Therefore, if $j_{*}: H_{0}\left(E_{0}\right) \rightarrow H_{0}(E)$, then $\operatorname{dimim} j_{*}=1$ (see Papageorgiou, Rădulescu and Repovš [8, Remark 6.1.26, p. 468]). So, finally we have

$$
\begin{aligned}
& \operatorname{dimim} i_{*}-\operatorname{dimim} j_{*}=2-1=1, \\
\Rightarrow \quad & \varphi(\cdot) \text { has a local }(1,1) \text {-linking at } 0, \text { see Definition 2.3. }
\end{aligned}
$$

The proof is now complete.
From Proposition 3.2 and Theorem 6.6.17 of Papageorgiou, Rădulescu and Repovš [18, p. 538], we have

$$
\begin{equation*}
\operatorname{dim} C_{1}(\varphi, 0) \geqslant 1 \tag{35}
\end{equation*}
$$

Moreover, Proposition 3.9 of Papageorgiou, Rădulescu and Repovš [17] leads to the following result.
Proposition 3.3. If hypotheses H_{0}, H_{1} hold, then $C_{k}(\varphi, \infty)=0$ for all $k \in \mathbb{N}_{0}$.
We are now ready for the existence theorem concerning the superlinear case.
Theorem 3.4. If hypotheses H_{0}, H_{1} hold, then problem (1) has a nontrivial solution $u_{0} \in W^{1, \theta}(\Omega) \cap$ $L^{\infty}(\Omega)$.

Proof. On account of (35) and Proposition 3.3, we can apply Proposition 6.2.42 of Papageorgiou, Rădulescu and Repovš [18, p. 499]. So, we can find $u_{0} \in W^{1, \theta}(\Omega)$ such that

$$
\begin{aligned}
& u_{0} \in K_{\varphi} \backslash\{0\} \\
\Rightarrow \quad & u_{0} \in W^{1, \theta}(\Omega) \cap L^{\infty}(\Omega) \text { is a solution of problem (1), see [18, Section 3.2]. }
\end{aligned}
$$

The proof is now complete.

4. Resonant case

In this section we are concerned with the resonant case (p-linear case). Our hypotheses allow resonance at $\pm \infty$ with respect to the principal eigenvalue $\hat{\lambda}_{1}(p)>0$.

The new conditions on the reaction $f(z, x)$ are the following.
$H_{2}: f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that $f(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) $|f(z, x)| \leqslant \hat{a}(z)\left(1+|x|^{r-1}\right)$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$, with $\hat{a} \in L^{\infty}(\Omega), p<r<q^{*}$;
(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$, then $\lim _{x \rightarrow \pm \infty} p F(z, x) /|x|^{p} \leqslant \hat{\lambda}_{1}(p)$ uniformly for a.a. $z \in \Omega$;
(iii) we have

$$
f(z, x) x-p F(z, x) \rightarrow+\infty \text { uniformly for a.a. } z \in \Omega, \text { as } x \rightarrow \pm \infty
$$

(iv) there exist $\delta>0, \theta \in L^{\infty}(\Omega)$ and $\hat{\lambda}>0$ such that

$$
\begin{gathered}
0 \leqslant \theta(z) \text { for a.a. } z \in \Omega, \theta \not \equiv 0, \hat{\lambda} \leqslant \hat{\lambda}_{2}(q) \\
\theta(z)|x|^{q} \leqslant q F(z, x) \leqslant \hat{\lambda}|x|^{q} \text { for a.a. } z \in \Omega \text { and all }|x| \leqslant \delta
\end{gathered}
$$

Remark 4.1. Hypothesis $H_{2}(i i)$ implies that at $\pm \infty$, we can have resonance with respect to the principal eigenvalue of the operator $u \mapsto-\operatorname{div}\left(a_{0}(z)|D u|^{p-2} D u\right)-\Delta_{q} u$ with Robin boundary condition.

Proposition 4.1. If hypotheses H_{0}, H_{2} hold, then the energy functional $\varphi(\cdot)$ is coercive.
Proof. We have

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{F(z, x)}{|x|^{p}}\right) & =\frac{f(z, x)|x|^{p}-p|x|^{p-2} x F(z, x)}{|x|^{2 p}} \\
& =\frac{|x|^{p-2} x[f(z, x) x-p F(z, x)]}{|x|^{2 p}}
\end{aligned}
$$

On account of hypothesis $H_{2}(i i i)$, given any $\gamma>0$, we can find $M_{1}=M_{1}(\gamma)>0$ such that

$$
f(z, x) x-p F(z, x) \geqslant \gamma \text { for a.a. } z \in \Omega \text { and all }|x| \geqslant M_{1}
$$

Hence we obtain

$$
\frac{d}{d x}\left(\frac{F(z, x)}{|x|^{p}}\right) \begin{cases}\geqslant \frac{\gamma}{x^{p+1}} & \text { if } x \geqslant M_{1} \\ \leqslant-\frac{\gamma}{|x|^{p+1}} & \text { if } x \leqslant-M_{1}\end{cases}
$$

Integrating, we obtain

$$
\begin{equation*}
\frac{F(z, x)}{|x|^{p}}-\frac{F(z, x)}{|u|^{p}} \geqslant-\frac{\gamma}{p}\left(\frac{1}{|x|^{p}}-\frac{1}{|u|^{p}}\right) \text { for a.a. } z \in \Omega \text { and all }|x| \geqslant|u| \geqslant M_{1} \tag{36}
\end{equation*}
$$

On account of hypothesis $H_{2}(i i)$, given $\varepsilon>0$, we can find $M_{2}=M_{2}(\varepsilon)>0$ such that

$$
F(z, x) \leqslant \frac{1}{p}\left(\hat{\lambda}_{1}(p)+\varepsilon\right)|x|^{p} \text { for a.a. } z \in \Omega \text { and all }|x| \geqslant M_{2}
$$

Using this inequality in (36) and letting $|x| \rightarrow \infty$ we obtain

$$
\begin{align*}
& \frac{1}{p}\left(\hat{\lambda}_{1}(p)+\varepsilon\right)-\frac{F(z, u)}{|u|^{p}} \geqslant \frac{\gamma}{p} \frac{1}{|u|^{p}} \text { for a.a. } z \in \Omega \text { and all }|u| \geqslant M=\max \left\{M_{1}, M_{2}\right\}, \tag{37}\\
\Rightarrow \quad & \left(\hat{\lambda}_{1}(p)+\varepsilon\right)|u|^{p}-p F(z, u) \geqslant \gamma \text { for a.a. } z \in \Omega \text { and all }|u| \geqslant M
\end{align*}
$$

Arguing by contradiction, suppose that $\varphi(\cdot)$ is not coercive. Then we can find $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W^{1, \theta}(\Omega)$ such that

$$
\begin{equation*}
\left\|u_{n}\right\| \rightarrow \infty \text { and } \varphi\left(u_{n}\right) \leqslant M_{0} \text { for some } M_{0}>0 \text { and all } n \in \mathbb{N} \tag{38}
\end{equation*}
$$

Let $y_{n}=u_{n} /\left\|u_{n}\right\|$ for all $n \in \mathbb{N}$. Then $\left\|y_{n}\right\|=1$, hence we may assume that

$$
\begin{equation*}
y_{n} \xrightarrow{w} y \text { in } W^{1, \theta}(\Omega) \text { and } y_{n} \rightarrow y \text { in } L^{p}(\Omega) \text { and in } L^{p}(\partial \Omega) . \tag{39}
\end{equation*}
$$

From (38) we have

$$
\begin{aligned}
& \frac{1}{p} \gamma_{p}\left(y_{n}\right)+\frac{1}{q} \frac{1}{\left\|u_{n}\right\|^{p-q}} \int_{\Omega}\left|D y_{n}\right|^{q} d z-\int_{\Omega} \frac{F\left(z, u_{n}\right)}{\left\|u_{n}\right\|^{p}} d z \leqslant \frac{M_{0}}{\left\|u_{n}\right\|^{p}} \\
\Rightarrow & \gamma_{p}\left(y_{n}\right)+\frac{p}{q} \frac{1}{\left\|u_{n}\right\|^{p-q}} \int_{\Omega}\left|D y_{n}\right|^{q} d z \leqslant \tau_{n}+\left(\hat{\lambda}_{1}(p)+\varepsilon\right)\left\|y_{n}\right\|_{p}^{p} \text { with } \tau_{n} \rightarrow 0, \text { see }(37), \\
\Rightarrow & \gamma_{p}(y) \leqslant\left(\hat{\lambda}_{1}(p)+\varepsilon\right)\|y\|^{p}(\text { see }(39)) \\
\Rightarrow & \gamma_{p}(y) \leqslant \hat{\lambda}_{1}(p)\|y\|_{p}^{p}(\text { since } \varepsilon>0 \text { is arbitrary }) \\
\Rightarrow & y=\mu \hat{u}_{1}(p) \text { for some } \mu \in \mathbb{R}(\text { see }(4)) .
\end{aligned}
$$

If $\mu=0$, then $y=0$ and so $\gamma_{p}\left(y_{n}\right) \rightarrow 0$. Hence, as in the proof of Proposition 3.1, we have $y_{n} \rightarrow 0$ in $W^{1, \theta}(\Omega)$, contradicting the fact that $\left\|y_{n}\right\|=1$ for all $n \in \mathbb{N}$.

So, $\mu \neq 0$ and since $\hat{u}_{1}(p)(z)>0$ for a.a. $z \in \Omega$, we have $\left|u_{n}(z)\right| \rightarrow+\infty$ for a.a. $z \in \Omega$. By (38) and (4) we have

$$
\begin{equation*}
\int_{\Omega}\left[\frac{1}{p} \hat{\lambda}_{1}(p)\left|u_{n}\right|^{p}-F\left(z, u_{n}\right)\right] d z \leqslant M_{0} \text { for all } n \in \mathbb{N} \tag{40}
\end{equation*}
$$

However, from (37) and since $\gamma>0$ is arbitrary, we can infer that

$$
\begin{align*}
& \frac{1}{p} \hat{\lambda}_{1}(p)\left|u_{n}\right|^{p}-F\left(z, u_{n}\right) \rightarrow+\infty \text { for a.a. } z \in \Omega, \text { as } n \rightarrow \infty \\
\Rightarrow & \int_{\Omega}\left[\frac{1}{p} \hat{\lambda}_{1}(p)\left|u_{n}\right|^{p}-F\left(z, u_{n}\right)\right] d z \rightarrow+\infty \text { by Fatou's lemma. } \tag{41}
\end{align*}
$$

Comparing (40) and (41) we arrive at a contradiction. Therefore we can conclude that $\varphi(\cdot)$ is coercive.

Using Proposition 4.1 and Proposition 5.1.15 of Papageorgiou, Rădulescu and Repovš [18, p. 369], we obtain the following result.
Corollary 4.2. If hypotheses H_{0}, H_{2} hold, then the energy functional $\varphi(\cdot)$ is bounded below and satisfies the C-condition.

Now we are ready for the multiplicity theorem in the resonant case.
Theorem 4.3. If hypotheses H_{0}, H_{2} hold, then problem (1) has at least two nontrivial solutions $u_{0}, \hat{u} \in W^{1, \theta}(\Omega) \cap L^{\infty}(\Omega)$.
Proof. By Proposition 3.2 we know that $\varphi(\cdot)$ has a local $(1,1)$-linking at the origin. Note that for that result mattered only the behavior of $f(z, \cdot)$ near zero and this is common in hypotheses H_{1} and H_{2}. Also, we know that $\varphi(\cdot)$ is sequentially weakly lower semicontinuous. This fact in conjunction with Proposition 4.1, permit the use of the Weierstrass-Tonelli theorem. So, we can find $u_{0} \in W^{1, \theta}(\Omega)$ such that

$$
\begin{equation*}
\varphi\left(u_{0}\right)=\min \left\{\varphi(u): u \in W^{1, \theta}(\Omega)\right\} \tag{42}
\end{equation*}
$$

On account of hypothesis $H_{2}(i v)$ and since $q<p$, we have

$$
\begin{array}{ll}
& \varphi\left(u_{0}\right)<0=\varphi(0) \\
\Rightarrow & u_{0} \neq 0 \text { and } u_{0} \in K_{\varphi} \\
\Rightarrow & u_{0} \in K_{\varphi} \cap L^{\infty}(\Omega) \text { is a nontrivial solution of }(1)
\end{array}
$$

Moreover, by Corollary 6.7.10 of Papageorgiou, Rădulescu and Repovš [18, p. 552], we can find $\hat{u} \in K_{\varphi}, \hat{u} \notin\left\{0, u_{0}\right\}$. Then $\hat{u} \in W^{1, \theta}(\Omega) \cap L^{\infty}(\Omega)$ is the second nontrivial solution of problem (1).

Acknowledgments. This research was supported by the Slovenian Research Agency grants P1-0292, J1-8131, N1-0114, N1-0064, and N1-0083.

References

[1] A. Bahrouni, V.D. Rădulescu, D.D. Repovš, A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications, Nonlinearity 31 (2018), no. 4, 1516-1534.
[2] A. Bahrouni, V.D. Rădulescu, D.D. Repovš, Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves, Nonlinearity 32 (2019), no. 7, 2481-2495.
[3] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206-222.
[4] M. Cencelj, V.D. Rădulescu, D.D. Repovš, Double phase problems with variable growth, Nonlinear Anal. 177 (2018), part A, 270-287.
[5] F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl. (4) 195 (2016), no. 6, 1917-1959.
[6] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015), no. 2, 443-496.
[7] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), no. 1, 219-273.
[8] S. Eilenberg, N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, Princeton, New Jersey, 1952.
[9] L. Gasinski, N.S. Papageorgiou, Nonlinear Analysis, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[10] L. Gasinski, N.S. Papageorgiou, Positive solutions for the Robin p-Laplacian problem with competing nonlinearities, Adv. Calc. Var. 12 (2019), no. 1, 31-56.
[11] G. Li, C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal. 72 (2010), no. 12, 4602-4613.
[12] J. Liu, The Morse index of a saddle point, Systems Sci. Math. Sci. 2 (1989), no. 1, 32-39.
[13] W. Liu, G. Dai, Existence and multiplicity results for double phase problem, J. Differential Equations 265 (2018), no. 9, 4311-4334.
[14] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differential Equations 90 (1991), no. 1, 1-30.
[15] D. Mugnai, N.S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11 (2012), no. 4, 729-788.
[16] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983.
[17] N.S. Papageorgiou, V.D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud. 16 (2016), no. 4, 737-764.
[18] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Nonlinear Analysis-Theory and Methods, Springer Monographs in Mathematics, Springer Nature, Cham, 2019.
[19] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Ground state and nodal solutions for a class of double phase problems, Z. Angew. Math. Phys. 71 (2020), no. 1, art. 15, 15 pp.
[20] N.S. Papageorgiou, C. Vetro, F. Vetro, Multiple solutions for parametric double phase Dirichlet problems, Commun. Contemp. Math., in press (https://doi.org/10.1142/S0219199720500066).
[21] K. Perera, Homological local linking, Abstr. Appl. Anal. 3 (1998), no. 1-2, 181-189.
[22] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory (Russian); English transl. in Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 4, 675-710, 877.
(N.S. Papageorgiou) Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia \& Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece Email address: npapg@math.ntua.gr
(V.D. Rădulescu) Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia \& Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland

Email address: vicentiu.radulescu@imfm.si
(D.D. Repovš) Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana \& Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

Email address: dusan.repovs@guest.arnes.si

[^0]: Key words and phrases. Unbalanced growth, Musielak-Orlicz space, homological local linking, superlinear reaction, resonant reaction.

 2010 Mathematics Subject Classification. Primary: 35J20. Secondary: 35J25, 35J60.

