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Existence and multiplicity of solutions to a
p-Laplacian equation with nonlinear boundary
condition *

Klaus Pfliiger

Abstract

We study the nonlinear elliptic boundary value problem

Au = f(z,u) in Q,
Bu = g(z,u) on 09,

where A is an operator of p—Laplacian type, Q is an unbounded domain
in RY with non-compact boundary, and f and g are subcritical nonlinear-
ities. We show existence of a nontrivial nonnegative weak solution when
both f and g are superlinear. Also we show existence of at least two
nonnegative solutions when one of the two functions f, g is sublinear and
the other one superlinear. The proofs are based on variational methods
applied to weighted function spaces.

1 Introduction

The objective of this paper is to study the nonlinear elliptic boundary value
problem

—div(a(2)|VulP~2Vu) = f(z,u) in QCRY, (1)
n-a(z)|VulP72Vu + b(z)|ulP%u = g(z,u) on I =99, (2)

where 2 is an unbounded domain with noncompact, smooth boundary I' (for
example a cylindrical domain), and n is the unit outward normal vector on I". We
assume throughout that 1 <p < N, 0 < ag < a € L*®() and b is a positive and
continuous function defined on RY. The p—Laplace operator in (1) is a special
case of the divergence—form operator — div(a(x, Vu)) which appears in many
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2 Existence and multiplicity of solutions EJDE-1998/10

nonlinear diffusion problems, in particular in the mathematical modeling of non—
Newtonian fluids. For a discussion of some physical background see [5]. The
boundary condition (2) describes a flux through the boundary which depends
in a nonlinear manner on the solution itself. For some physical motivation of
such boundary conditions see for example [10]

The energy functional corresponding to (1), (2) is defined as

J(u)z%/ﬂ()WuP’dw—k / x)|ulP dl" — /qudx—/Gxu

where F' and G denote the prlmltlve functlons of f and g Wlth respect to the
second variable, i. e. F(z,u) = [} f(z,s)ds, = [, g(z,s)ds. Then the
weak solutions of (1), (2) are the critical points of J We remark that, according
to the regularity theorem of [14], every weak solution of (1), (2) belongs to
Cllo’f (©). In addition, in [8] regularity up to the boundary was proved, but only
under rather restrictive conditions on g.

In this paper we consider problem (1), (2) under several conditions on f and
g. If both functions are subcritical and superlinear with respect to u, then we
prove existence of a nontrivial nonnegative solution (Theorem 2). In the case,
where f is sublinear and g superlinear, we show that there exist at least two
nonnegative solutions, one with positive energy, the other one with negative
energy (Theorem 3). The same result holds in the case where f is superlinear
and g sublinear (Theorem 4).

Such kind of problems with combined concave and convex nonlinearities were
studied recently by several authors, with the right hand side of (1) of the form
f + g and the boundary condition is w = 0 on I". For a bounded domain 2 and
p = 2see [1], for 1 < p < N see [2] and [3] (which also includes the critical
case). For the p—Laplacian in an exterior domain see [16]. Our proofs are based
on weighted-norm estimates in Sobolev spaces, which imply some compactness
properties of the functional J. For some related results on the existence of
nontrivial solutions to equation (1) in RY see for example [4], [6], [7], [9]. We
remark that the results in this paper are new even in the semilinear elliptic case
p=2.

This paper is organized as follows: In the next section we prove some pre-
liminary results concerning equivalent norms and traces in weighted Sobolev
spaces. Section 3 is devoted to the superlinear case (Theorem 2), and Section 4
contains the results on the mixed case (Theorems 3 and 4).

2 Preliminaries: Weighted Sobolev Spaces

Let C§°(02) be the space of C§°(RY)-functions restricted on 2. We define the
weighted Sobolev-space E as the completion of C§°(f2) in the norm

fulle = ([ 1vuta)? + mm(mn%)w .
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First we prove the following weighted Hardy-type inequality.

Lemma 1 Let1 < p < N. Then there exist positive constants C1 and Cs, such
that for every u € £

1 In- x|

Proof. Using the divergence theorem we obtain for u € C§°(2)

/Qx-V (ﬁw) dx:/F(n-x)mwdr—zvfgmwdx.

This implies

1 [n- | 1
N/iupdm < /7updf+p/7updx
o T T o T e

1
e P dx .
+p/g(1+|x|)1’*1 |ulP~* | Vu| dz

Using Holder’s and Young’s inequality, the last term can be estimated by

1 (p—1)/p 1/p
- p p
P </Q T e d’“") </g Vel dm)

1
< -1 7upd:c+51_p/ VulP dz,
< o) [ Gl [ vu

where € > 0 is an arbitrary real number. It follows that

|ulP do < ' 7P / |Vul|P d:c+/ MM” dr,
Q r

1
(¥ -etr-1-p) [ 7 (1 Jal)?

1+ [z[)P

and for £ small enough, the desired inequality follows by standard density ar-
guments. O

Now denote by L"(€;w1) and L(T'; we) the weighted Lebesgue spaces with
weight functions

wi(z) =14+ |z))*, i=12 o €R (4)
and norm defined by

lull7 = / wlu(@| de,  and  Julf,, = / ws ()7 d

Then we have the following embedding and trace theorem.
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Theorem 1 If

p<r< and —-N<ay; <r

—p p _Nv (5)

then the embedding E — L™ (Q;w1) is continuous. If the upper bounds for r in
(5) are strict, then the embedding is compact. If

p(N —1)
N-p

—-p

N
p<q< and — N <ay<q —N+1, (6)

then the trace operator E — L1(T';ws) is continuous. If the upper bounds for q
in (6) are strict, then the trace is compact.

This theorem is a consequence of Theorem 2 and Corollary 6 of [11].
As a corollary of Lemma 1 and Theorem 1 we obtain

Lemma 2 Let b satisfy c¢/(1+ |z|)P~1 < b(z) < C/(1 + |z|)P~L for some con-
stants 0 < ¢ < C. Then

Jullf = [ a@Iup dz+ [ ba)iup dr
Q r
defines an equivalent norm on E.

Proof. The inequality ||u||g < Ci||ul|» follows directly from Lemma 1, while
from Theorem 1 (setting p = ¢ and ap = —(p — 1)) we obtain

ulf < lollow [ [VupPda+C [ fuP(a+Jol) @Var
Q T
< lalle~ [ [VulPde+ Callull,
Q
which shows the desired equivalence. O

Remark. In special geometries the lower bound for b required in Lemma 2 can

be improved. In view of Lemma 1 it is sufficient to assume b(x) > |n-x|/(1+]|z|)?,
where n -z = |n||z|cos~y and ~ is the angle between x and n. For a cylindrical
domain Q = B x R, where B C RV~ is bounded, we obtain | cosvy| < Cg/|z|,
with a constant Cp depending only on the diameter of B. This shows that in
cylindrical domains, Lemma 2 holds under the weaker assumption

c C

Tl <P < Gt

We shall assume throughout the paper that b satisfies the assumption of Lemma 2
so that we can use || - ||p as an equivalent norm in F.
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3 The superlinear case
We make the following assumptions

Al f and g are Carathéodory functions on 2 x R and I' x R, respectively,
f(-,0) =g(-,0) =0 and
[f(z,8)] < folz) + fr(@)[s]"™" . p<r<pN/(N-p)
l9(z,5)| < go(x) +gr(2)]s]"" , p<q<p(N—-1)/(N—-p)

where f;, g; are nonnegative, measurable functions which satisfy the fol-
lowing hypotheses: There exist aj, s, —N < a1 < r% — N, —-N <

ag < q% — N + 1, such that, with w; defined as in (4), we have

0 < fi(z) < Cywr a.e., fo€ LT/(T—l)(Q;w}/(lfr)),
0<gi(z) < Cywsz a.e., go € Lq/(qfl)(p;w;/(lfq)).

A2 limg o f(x,8)/|s|P~t = lims_0 g(x, s)/|s[P~! = 0 uniformly in z.

A3 There exists p > p such that pF'(z,s) < f(z,s)s, uG(z,s) < g(z,s)s for
a.e. x € Q resp. x € I' and every s € R.

A4 One of the following conditions holds:

a) There is a nonempty open set O C Q with F(z,s) > 0 for (z,s) €
O x (0,00)

b) There is a nonempty open set U C I' with G(z,s) > 0 for (z,s) €
U x (0,00) and G satisfies pG(z, s) < g(x, s)s with some i > r.

c) G(z,s) > 0 for (z,s) € U x (0,00) and and there exist an open,
nonempty subset V' C Q, VNU # @ and a constant Cr, such that
F(z,u) > —Cp on V x (0,00).

We denote by N¢, Np, Ny, N the corresponding Nemytskii operators. Under
the assumptions above we have the following result.

Lemma 3 The operators

Ny : L"(Qwy) — L7 Qw/ ), Np: L'(Qwy) — LYQ),
N, : L9(Tywy) — LY@ D (@) 9) | Ng: LYT;w,) — LNT)

are bounded and continuous.
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Proof. We only prove the statements for IV, and Ng, since the arguments
for Ny and Np are similar. Let ¢’ = ¢/(¢ — 1) and u € LY(T;wz). Then, by
Assumption Al,

/|Ng(u)|q,w;/(1_q)dr < 97-1 (/ gg'w;/(l_@dr-#/g‘11/|u|qw;/(1_q)d1“>
r r .

20 1 <C+Cg/|u|qw2dF>,
T

which shows that N; is bounded. In a similar way we obtain

/|NG(u)|dF < /go|u|dF+/g1|u|qu
T T T
L{ 1
q, 1/(1—q) B q B q
</ gg Wo dF> (/ |u|Yws dF> +Cy / |u|9wg dT°
T T T

and again we claim that Ng is bounded. The continuity of these operators now
follows from the usual properties of Nemytskii operators (cf. [15]). i

IN

IN

Lemma 4 Under Assumptions A1-A/, J is Fréchet—differentiable on E and
satisfies the Palais—Smale condition.

Proof. We use the notation I(u) = lHqu = [ F(z,u)dx, Kg(u) =
fF z,u) dl’. Then the directional derivative of J in direction h € F is

(J'u,h) = (I'u, h) — (Kpu, h) — (KGu, h),
where

= [ a(@)|VulP~ 2Vthda:+fF )|uP~2uh dT,
<KF = [o f(z,u)hdr, (K(u),h) = [.g(z,u)hdl.

Clearly, I' : E — E’ is continuous. The operator K, is a composition of
operators

KL+ E — LI(Tywg) ~% L9/(@=D(D; 0t/ (70) £, B,

where (£(v),h) = [ vhdl. Since

1/4’ 1/q
/|vh|dl“§ (/ |v|qw;/<1q>dr> (/ Ih[Tws dF) ,
N T T

¢ is continuous by Theorem 1. As a composition of continuous operators, K,
is continuous, too. Moreover, by our assumptions on wo (see Al), the trace
operator E — LI(I';wsy) is compact and therefore, K[, is also compact. In a
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similar way we obtain that K is compact and the Fréchet-differentiability of J
follows.

Now let ux € E be a Palais—Smale sequence, i. e. |J(ux)| < C for all k and
J'(ur) — 0 as k — oco. For k large enough we have [(J'(ug), ux)| < ||uglls and
by Assumption A3

vV

Ct luls > T(ux) - %<J'<uk>,uk>

11
(— - —) lully -
pon

This shows that uj is bounded in E. To show that wj contains a Cauchy
sequence we use the following inequalities for &, ¢ € R (see [5], Lemma 4.10):

€= ¢IP < ClglP2e = [¢P72¢) (€ = ), forp>2, (7)
[€ = ¢I* < C(lglP~26 = [cIP=2¢) (€ = Q€] + [¢)*7P, forT<p<2. (8)

Y

Then we obtain in the case p > 2:

lun — will? = /Qa(ac)|Vun ~ VuilPda + /F b() un — wp|PdT

< O/ ) = i) = (I (), un = i)

= O (un) un = wr) = () — ) + (K ()
FEG )t — k) — (K p(un) + K ue). wn — i)
(I )l + 119" ()7 + 1K) = Ko ar)

G (tn) = K (ur) )l — o

IN

Since J'(ux) — 0 and K}, K(, are compact, there exists a subsequence of uy,
which converges in F.
If 1 < p <2, then we use (8) and Holder’s inequality to obtain the estimate

ot = w2 < C[ (1" (wn), e = ) = (1" () = )| (a7 + s 377

Since ||un||p is bounded, the same arguments as above lead to a convergent
subsequence. O

Theorem 2 There exists a nontrivial nonnegative solution of (1), (2) in E.

Proof. We shall use the Mountain—Pass lemma [13] to obtain a solution. First
we observe that, from Assumption Al and A2, for every € > 0 there is a C.
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such that |F(z,u)| < efo(z)|ul? + Cefi(x)|u|”, and |G(z,u)| < ego(z)|ul? +
C.g1(x)|u|?. Consequently

J(u) = %IIUII%‘,’—/Q(efo(x)IUI”+Cef1($)IUIT)d$

- / (ego(@)lul? + Cega (z)[u/?) T
I
> Jlullf — £Caull? — CeCa(ully + [1ull9)

and for € and |lul|s = p sufficiently small, the right hand side is strictly greater
than 0. It remains to show that there exists ug € E, |lug|lp > p such that
J(up) < 0.

In the case A4 a), we choose a nontrivial nonnegative function ¢ € C§°(O).
From A3 we see that F(z,s) > C1s* — C2 on O x (0,00). Then, for ¢ > 0,

1
It) < 5 Pl — Cutt [ o+ Cal0).
o

Since p > p, the right hand side tends to —oo as t — oo and for sufficiently
large o, ug = top has the desired properties.

In the case A4 b), we choose a nonnegative ¢ € C§°(£2) such that supppnI’ C
U is not empty. Again from G(z,s) > Css” —Cy on U x (0, 00) and Assumption
Al we claim

1 _ _
Tite) <~ el + 05/ to + 17" dx — Cgt“/ Pmdl + C4|U] .
Q U

Since fi > r > p, we obtain J(tp) -+ —ocoast—oo.
In the case A4 c), we take ¢ € C5°(Q2) with supppnQ C V and suppenU # 0.
Then

1
I(t) < 5 Il + CrlV| = Cat [ g+ Cul]
U

and again we claim J(tp) - —o0 as t — oo.

Since J satisfies the Palais—Smale condition and J(0) = 0, the Mountain—
Pass Lemma shows that there is a nontrivial critical point of J in E with critical
value

¢ = inf, max J (v(@)) >0,
where P = {7 € C([0, 1], E) | 7(0) = 0, (1) = uo}.

To obtain a nonnegative solution by this procedure, we introduce the trun-
cated functions f and g such that f(x,s) = g(z,s) = 0 for all s < 0. Then
the arguments above remain true and we obtain a critical point u of the trun-
cated functional J, i. e. (J'(u),h) = 0 for all h € E. In particular, setting
u_(x) = max{—u(x),0} and h = u_, we claim that u > 0. Since any nonnega-
tive solution of the truncated problem is also a solution of the original equation,
we have found a nonnegative solution of (1), (2). O
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4 Combined Sub- and Superlinear Nonlineari-
ties

In this part we introduce an additional parameter into equation (1), i. e. we

study
—div(a(z)|VulP72Vu) = Mf(z,u) in Q (1)a

with the same boundary condition (2) as before. Here, we assume the following
B1 Let g satisfy Assumptions A1-A3 with go = 0 and | f(z, s)| < fi(z)[s|"™!, 1<

r < p, where f; is nonnegative, measurable and there exists a;, —IV <
o < TNT_ — N, such that for wi(zx) = (1 + |z|)**, we have f; €

p/(p—r) (Q; w;’/(“f’)).

B2 |f(z,8)] > fa(x)|s|™"t, 1 <7 <7, with f, > 0 in some nonempty open
set O C Q.

B3 There is a nonempty open set U C I" with G(z,s) > 0 for (z,s) € U x
(0, 00).

The Nemytskii operators N, and N¢ have the same properties as in Lemma 3,
while for Ny and Nr we obtain

Lemma 5 The operators Ny : LP(Q;wi) — L”/(”*I)(Q;wi/(l_p)), and Np :
LP(Q;w1) — LY(Q) are bounded and continuous.

Proof. Since the first statement is trivial if » = 1, we may assume that r > 1.
From B1 we obtain with Holder’s inequality (setting p’ = p/(p — 1))

/ f@w)lo/ " Pde < / a0 Dm0 g
Q Q
p—r r—1
p—1 p—1
< (Lnpomuy ) ([ )
Q Q
< CHqufgW(”‘l).

For Nr we obtain

/ Fa,u)lde < / | Falwy P )P de
Q Q

(p=7)/p r/p
< / | f1|p/<pT>wal~/<rp>dm> ( / |u|pw1dm>
Q Q

C llullp,w, - 0

p,w1

IN

IN

The differentiability for J now follows as above.
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To obtain the Palais—Smale condition for J, let ux € E be a sequence such
that |J(ux)| < C and J'(ug) — 0 as k — oco. With Assumptions A3, B1 and
Holder’s inequality we get

J(ug) — %<J'<uk>,uk>

(%_a ||uk|\§+/Qif(ac,u)u—F(ac,u)dm+/F%g(w,u)u—G(w,u)dF

11 1
> (3= D)t~ (141) [ A@hura
(p—r)/p r/p
11 =) /(-
> (G-t ([ e ) ([ )
p K Q ?
1 1 T
> (21 kg~ il sl

p

where || f1||« is the weighted norm of f; in L”/(”*T)(Q;wf/(r_p)). Since r < p
and C + ||ugllp > J(ug) — %(J’(uk),uk), we claim that uy is bounded in E. The
convergence of a subsequence of uy then follows as above from the compactness
properties of K and K.

Theorem 3 Under Assumptions B1-B3 there exists \* > 0, such that for every
0 < X < X, there are at least two nontrivial nonnegative solutions of (1)x, (2).

Proof. First we show that for A € (0, A*), we can find p > 0 such that J(u) >
¢ >0 if ||lu|p = p. We denote by Cgq, Cr the embedding and trace constants for
the operators E — LP(Q;w;) and E — LI(T'; ws), respectively. We obtain

1 A 1
nw = -2 [ A@hlrde - [ @)
p T Ja qJr
1 A (p—r)/p r/p
> —|lullp - = </ fl(x)P/(p—r)wl(x)r/(r—p)dx) (/ |u|pw1d:c)
p r Q Q
1
[ @uar
qJr
1 A L1
> ISIIUIIZ’ = 2 Call fullllull aCngHUHZ-
If ||ullp = p, we obtain
1 o PA rp _ P —
Ia(u) = L G —Callfilp™? — aCngp 9)
Elementary calculations show that the right hand side is maximal for

P = <q(p—r)ACn||f1I*>1/(“)
mn r(qg — p) C4Cr
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Inserting this into equation (9), we find that the right hand side is zero for

A=x = 2ileaci™ + Le,ared ]

where

6o - (I4Cato =)
C,Cr(q —p)r ’

and strictly greater than 0 for A < A*. This shows that for every A < \*, we
find py > 0 such that Jy > ¢y > 0 for |lul|s = pr. The existence of a function
uo € E, ||uolls > px and Jx(up) < 0 now follows as in the proof of Theorem 2
(case A4 b). Then the Mountain-Pass Lemma again implies the existence of a
nontrivial solution u; with Jy(u1) > ca.

On the other hand, for ¢ € C§°(O) and ¢ > 0 we obtain

P T ~
wag—wm—f/hMMWw
p r Jo

This shows that Jy(tp) < 0 for sufficiently small ¢ and consequently Jy attains
its minimum in the ball B,, C E. We claim that there is a second solution
Uy € Bm\ with J,\(Ug) < 0.
In addition, with the same truncation procedure as in the proof of Theorem
2, we claim that there are two nonnegative solutions. a
Now we can prove the corresponding result for equation (1) with boundary
condition

n-a(z)|VulP"2Vu + b(z)|uP~?u = Ag(z,u) on T (2)a

if we interchange the roles of g and f in Assumptions B1-B3. That is, we assume
now that f satisfies Assumptions A1-A4 a) (with fo = 0) and g satisfies

< gi(@)|s|T, 1 < g < p, g1 € LY/ P00 TP g(a,5)| >

B4 |g(z,s)|
|77, 1 < g < q and g > 0 in some nonempty open set U C T.

ga2(z)]s

Theorem 4 Let f satisfy Assumptions A1-A4 a) (with fo = 0) and g satisfy
Bj. Then for every 0 < A < X*, there are at least two nontrivial nonnegative
solutions of (1), (2)x.

Proof. First we claim as in Lemma 5 that
N, : LP(T;wy) — LP/ @ D(Tywh/ U | Ng : LP(T;ws) — LY(T)

are bounded and continuous. The estimate for Jy now reads

1 1 A
In(u) = ];IIUIIi’ = ~CaCfllully ~ ECFHng*HUHZv
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where ||g1 ]|« is the norm of g; in LP/(P=9)(T; wg/(qu)). Now A* can be calculated
as

q—r

A= §||91||*CFCF +§CfCQCOT_q] R C’O = (

llg1]l«Cr(p — Q)T> .
CiCa(r —p)q

The existence of ug with ||uolls > px and J(up) < 0 follows in the same way as
in the proof of Theorem 2, case A4 a). Finally, for a nonnegative ¢ € C§°(Q2)
with supp ¢ NT" C U not empty, we find

[ R A a
Ite) < —llelly + C—llells = — [ ga(@)lel"dz.
p r q Ju

Since ¢ < p <, Ja(te) < 0 for ¢ sufficiently small and we claim that Jy attains
its minimum in B,, C FE. o

We remark that, if Q is of class C1* (o < 1) and, in addition to B4, g
satisfies

9@,5) = 9w < Cle =yl +1s =), lg(w,s) <C

for all z,y € T, s,t € R, then the regularity result of [8], Thm. 2, shows that
the solution u belongs to C'*#(Q) for some 3 > 0.
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