Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition *

Klaus Pflüger

Abstract

We study the nonlinear elliptic boundary value problem $$
\begin{gathered} A u=f(x, u) \quad \text { in } \Omega, \\ B u=g(x, u) \quad \text { on } \partial \Omega, \end{gathered}
$$ where A is an operator of p-Laplacian type, Ω is an unbounded domain in \mathbb{R}^{N} with non-compact boundary, and f and g are subcritical nonlinearities. We show existence of a nontrivial nonnegative weak solution when both f and g are superlinear. Also we show existence of at least two nonnegative solutions when one of the two functions f, g is sublinear and the other one superlinear. The proofs are based on variational methods applied to weighted function spaces.

1 Introduction

The objective of this paper is to study the nonlinear elliptic boundary value problem

$$
\begin{align*}
-\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)=f(x, u) \quad \text { in } & \Omega \subset \mathbb{R}^{N}, \tag{1}\\
\mathrm{n} \cdot a(x)|\nabla u|^{p-2} \nabla u+b(x)|u|^{p-2} u=g(x, u) & \text { on } \quad \Gamma=\partial \Omega, \tag{2}
\end{align*}
$$

where Ω is an unbounded domain with noncompact, smooth boundary Γ (for example a cylindrical domain), and n is the unit outward normal vector on Γ. We assume throughout that $1<p<N, 0<a_{0} \leq a \in L^{\infty}(\Omega)$ and b is a positive and continuous function defined on \mathbb{R}^{N}. The p-Laplace operator in (1) is a special case of the divergence-form operator $-\operatorname{div}(a(x, \nabla u))$ which appears in many

[^0]nonlinear diffusion problems, in particular in the mathematical modeling of nonNewtonian fluids. For a discussion of some physical background see [5]. The boundary condition (2) describes a flux through the boundary which depends in a nonlinear manner on the solution itself. For some physical motivation of such boundary conditions see for example [10].

The energy functional corresponding to (1), (2) is defined as

$$
J(u)=\frac{1}{p} \int_{\Omega} a(x)|\nabla u|^{p} d x+\frac{1}{p} \int_{\Gamma} b(x)|u|^{p} d \Gamma-\int_{\Omega} F(x, u) d x-\int_{\Gamma} G(x, u) d \Gamma
$$

where F and G denote the primitive functions of f and g with respect to the second variable, i. e. $F(x, u)=\int_{0}^{u} f(x, s) d s, G(x, u)=\int_{0}^{u} g(x, s) d s$. Then the weak solutions of (1), (2) are the critical points of J. We remark that, according to the regularity theorem of [14], every weak solution of (1), (2) belongs to $C_{\mathrm{loc}}^{1, \beta}(\Omega)$. In addition, in [8] regularity up to the boundary was proved, but only under rather restrictive conditions on g.

In this paper we consider problem (1), (2) under several conditions on f and g. If both functions are subcritical and superlinear with respect to u, then we prove existence of a nontrivial nonnegative solution (Theorem 2). In the case, where f is sublinear and g superlinear, we show that there exist at least two nonnegative solutions, one with positive energy, the other one with negative energy (Theorem 3). The same result holds in the case where f is superlinear and g sublinear (Theorem 4).

Such kind of problems with combined concave and convex nonlinearities were studied recently by several authors, with the right hand side of (1) of the form $f+g$ and the boundary condition is $u=0$ on Γ. For a bounded domain Ω and $p=2$ see [1], for $1<p<N$ see [2] and [3] (which also includes the critical case). For the p-Laplacian in an exterior domain see [16]. Our proofs are based on weighted-norm estimates in Sobolev spaces, which imply some compactness properties of the functional J. For some related results on the existence of nontrivial solutions to equation (1) in \mathbb{R}^{N} see for example [4], [6], [7], [9]. We remark that the results in this paper are new even in the semilinear elliptic case $p=2$.

This paper is organized as follows: In the next section we prove some preliminary results concerning equivalent norms and traces in weighted Sobolev spaces. Section 3 is devoted to the superlinear case (Theorem 2), and Section 4 contains the results on the mixed case (Theorems 3 and 4).

2 Preliminaries: Weighted Sobolev Spaces

Let $C_{\delta}^{\infty}(\Omega)$ be the space of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$-functions restricted on Ω. We define the weighted Sobolev-space E as the completion of $C_{\delta}^{\infty}(\Omega)$ in the norm

$$
\|u\|_{E}=\left(\int_{\Omega}|\nabla u(x)|^{p}+\frac{1}{(1+|x|)^{p}}|u(x)|^{p} d x\right)^{1 / p}
$$

First we prove the following weighted Hardy-type inequality.
Lemma 1 Let $1<p<N$. Then there exist positive constants C_{1} and C_{2}, such that for every $u \in E$

$$
\begin{equation*}
\int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x \leq C_{1} \int_{\Omega}|\nabla u|^{p} d x+C_{2} \int_{\Gamma} \frac{|\mathrm{n} \cdot x|}{(1+|x|)^{p}}|u|^{p} d \Gamma . \tag{3}
\end{equation*}
$$

Proof. Using the divergence theorem we obtain for $u \in C_{\delta}^{\infty}(\Omega)$
$\int_{\Omega} x \cdot \nabla\left(\frac{1}{(1+|x|)^{p}}|u|^{p}\right) d x=\int_{\Gamma}(\mathrm{n} \cdot x) \frac{1}{(1+|x|)^{p}}|u|^{p} d \Gamma-N \int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x$.
This implies

$$
\begin{aligned}
N \int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x \leq & \int_{\Gamma} \frac{|\mathrm{n} \cdot x|}{(1+|x|)^{p}}|u|^{p} d \Gamma+p \int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x \\
& +p \int_{\Omega} \frac{1}{(1+|x|)^{p-1}}|u|^{p-1}|\nabla u| d x
\end{aligned}
$$

Using Hölder's and Young's inequality, the last term can be estimated by

$$
\begin{aligned}
& p\left(\int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x\right)^{(p-1) / p}\left(\int_{\Omega}|\nabla u|^{p} d x\right)^{1 / p} \\
& \quad \leq \varepsilon(p-1) \int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x+\varepsilon^{1-p} \int_{\Omega}|\nabla u|^{p} d x
\end{aligned}
$$

where $\varepsilon>0$ is an arbitrary real number. It follows that
$(N-\varepsilon(p-1)-p) \int_{\Omega} \frac{1}{(1+|x|)^{p}}|u|^{p} d x \leq \varepsilon^{1-p} \int_{\Omega}|\nabla u|^{p} d x+\int_{\Gamma} \frac{|\mathbf{n} \cdot x|}{(1+|x|)^{p}}|u|^{p} d \Gamma$,
and for ε small enough, the desired inequality follows by standard density arguments.

Now denote by $L^{r}\left(\Omega ; w_{1}\right)$ and $L^{q}\left(\Gamma ; w_{2}\right)$ the weighted Lebesgue spaces with weight functions

$$
\begin{equation*}
w_{i}(x)=(1+|x|)^{\alpha_{i}}, \quad i=1,2, \quad \alpha_{i} \in \mathbb{R} \tag{4}
\end{equation*}
$$

and norm defined by

$$
\|u\|_{r, w_{1}}^{r}=\int_{\Omega} w_{1}|u(x)|^{r} d x, \quad \text { and } \quad\|u\|_{q, w_{2}}^{q}=\int_{\Gamma} w_{2}|u(x)|^{q} d x .
$$

Then we have the following embedding and trace theorem.

Theorem 1 If

$$
\begin{equation*}
p \leq r \leq \frac{p N}{N-p} \quad \text { and } \quad-N<\alpha_{1} \leq r \frac{N-p}{p}-N \tag{5}
\end{equation*}
$$

then the embedding $E \hookrightarrow L^{r}\left(\Omega ; w_{1}\right)$ is continuous. If the upper bounds for r in (5) are strict, then the embedding is compact. If

$$
\begin{equation*}
p \leq q \leq \frac{p(N-1)}{N-p} \quad \text { and } \quad-N<\alpha_{2} \leq q \frac{N-p}{p}-N+1 \tag{6}
\end{equation*}
$$

then the trace operator $E \rightarrow L^{q}\left(\Gamma ; w_{2}\right)$ is continuous. If the upper bounds for q in (6) are strict, then the trace is compact.

This theorem is a consequence of Theorem 2 and Corollary 6 of [11].
As a corollary of Lemma 1 and Theorem 1 we obtain
Lemma 2 Let b satisfy $c /(1+|x|)^{p-1} \leq b(x) \leq C /(1+|x|)^{p-1}$ for some constants $0<c \leq C$. Then

$$
\|u\|_{b}^{p}=\int_{\Omega} a(x)|\nabla u|^{p} d x+\int_{\Gamma} b(x)|u|^{p} d \Gamma
$$

defines an equivalent norm on E.

Proof. The inequality $\|u\|_{E} \leq C_{1}\|u\|_{b}$ follows directly from Lemma 1, while from Theorem 1 (setting $p=q$ and $\alpha_{2}=-(p-1)$) we obtain

$$
\begin{aligned}
\|u\|_{b}^{p} & \leq\|a\|_{L^{\infty}} \int_{\Omega}|\nabla u|^{p} d x+C \int_{\Gamma}|u|^{p}(1+|x|)^{-(p-1)} d \Gamma \\
& \leq\|a\|_{L^{\infty}} \int_{\Omega}|\nabla u|^{p} d x+C_{2}\|u\|_{E}^{p}
\end{aligned}
$$

which shows the desired equivalence.
Remark. In special geometries the lower bound for b required in Lemma 2 can be improved. In view of Lemma 1 it is sufficient to assume $b(x) \geq|\mathrm{n} \cdot x| /(1+|x|)^{p}$, where $\mathrm{n} \cdot x=|\mathrm{n}||x| \cos \gamma$ and γ is the angle between x and n . For a cylindrical domain $\Omega=B \times \mathbb{R}$, where $B \subset \mathbb{R}^{N-1}$ is bounded, we obtain $|\cos \gamma| \leq C_{B} /|x|$, with a constant C_{B} depending only on the diameter of B. This shows that in cylindrical domains, Lemma 2 holds under the weaker assumption

$$
\frac{c}{(1+|x|)^{p}} \leq b(x) \leq \frac{C}{(1+|x|)^{p-1}} .
$$

We shall assume throughout the paper that b satisfies the assumption of Lemma 2 so that we can use $\|\cdot\|_{b}$ as an equivalent norm in E.

3 The superlinear case

We make the following assumptions
A1 f and g are Carathéodory functions on $\Omega \times \mathbb{R}$ and $\Gamma \times \mathbb{R}$, respectively, $f(\cdot, 0)=g(\cdot, 0)=0$ and

$$
\begin{aligned}
&|f(x, s)| \leq f_{0}(x)+f_{1}(x)|s|^{r-1}, \quad p \leq r<p N /(N-p) \\
&|g(x, s)| \leq g_{0}(x)+g_{1}(x)|s|^{q-1} \quad, \quad p \leq q<p(N-1) /(N-p)
\end{aligned}
$$

where f_{i}, g_{i} are nonnegative, measurable functions which satisfy the following hypotheses: There exist $\alpha_{1}, \alpha_{2},-N<\alpha_{1}<r \frac{N-p}{p}-N,-N<$ $\alpha_{2}<q \frac{N-p}{p}-N+1$, such that, with w_{i} defined as in (4), we have

$$
\begin{array}{ll}
0 \leq f_{i}(x) \leq C_{f} w_{1} \text { a. e. , } & f_{0} \in L^{r /(r-1)}\left(\Omega ; w_{1}^{1 /(1-r)}\right) \\
0 \leq g_{i}(x) \leq C_{g} w_{2} \text { a. e. }, & g_{0} \in L^{q /(q-1)}\left(\Gamma ; w_{2}^{1 /(1-q)}\right)
\end{array}
$$

A2 $\lim _{s \rightarrow 0} f(x, s) /|s|^{p-1}=\lim _{s \rightarrow 0} g(x, s) /|s|^{p-1}=0$ uniformly in x.
A3 There exists $\mu>p$ such that $\mu F(x, s) \leq f(x, s) s, \mu G(x, s) \leq g(x, s) s$ for a. e. $x \in \Omega$, resp. $x \in \Gamma$ and every $s \in \mathbb{R}$.

A4 One of the following conditions holds:
a) There is a nonempty open set $O \subset \Omega$ with $F(x, s)>0$ for $(x, s) \in$ $O \times(0, \infty)$
b) There is a nonempty open set $U \subset \Gamma$ with $G(x, s)>0$ for $(x, s) \in$ $U \times(0, \infty)$ and G satisfies $\bar{\mu} G(x, s) \leq g(x, s) s$ with some $\bar{\mu}>r$.
c) $G(x, s)>0$ for $(x, s) \in U \times(0, \infty)$ and and there exist an open, nonempty subset $V \subset \Omega, \bar{V} \cap U \neq \emptyset$ and a constant C_{F}, such that $F(x, u) \geq-C_{F}$ on $V \times(0, \infty)$.

We denote by $N_{f}, N_{F}, N_{g}, N_{G}$ the corresponding Nemytskii operators. Under the assumptions above we have the following result.

Lemma 3 The operators

$$
\begin{array}{cll}
N_{f}: L^{r}\left(\Omega ; w_{1}\right) \rightarrow L^{r /(r-1)}\left(\Omega ; w_{1}^{1 /(1-r)}\right), & N_{F}: L^{r}\left(\Omega ; w_{1}\right) \rightarrow L^{1}(\Omega) \\
N_{g}: L^{q}\left(\Gamma ; w_{2}\right) \rightarrow L^{q /(q-1)}\left(\Gamma ; w_{2}^{1 /(1-q)}\right), & & N_{G}: L^{q}\left(\Gamma ; w_{2}\right) \rightarrow L^{1}(\Gamma)
\end{array}
$$

are bounded and continuous.

Proof. We only prove the statements for N_{g} and N_{G}, since the arguments for N_{f} and N_{F} are similar. Let $q^{\prime}=q /(q-1)$ and $u \in L^{q}\left(\Gamma ; w_{2}\right)$. Then, by Assumption A1,

$$
\begin{aligned}
\int_{\Gamma}\left|N_{g}(u)\right|^{q^{\prime}} w_{2}^{1 /(1-q)} d \Gamma & \leq 2^{q^{\prime}-1}\left(\int_{\Gamma} g_{0}^{q^{\prime}} w_{2}^{1 /(1-q)} d \Gamma+\int_{\Gamma} g_{1}^{q^{\prime}}|u|^{q} w_{2}^{1 /(1-q)} d \Gamma\right) \\
& \leq 2^{q^{\prime}-1}\left(C+C_{g} \int_{\Gamma}|u|^{q} w_{2} d \Gamma\right)
\end{aligned}
$$

which shows that N_{g} is bounded. In a similar way we obtain

$$
\begin{aligned}
\int_{\Gamma}\left|N_{G}(u)\right| d \Gamma & \leq \int_{\Gamma} g_{0}|u| d \Gamma+\int_{\Gamma} g_{1}|u|^{q} d \Gamma \\
& \leq\left(\int_{\Gamma} g_{0}^{q^{\prime}} w_{2}^{1 /(1-q)} d \Gamma\right)^{\frac{1}{q^{\prime}}}\left(\int_{\Gamma}|u|^{q} w_{2} d \Gamma\right)^{\frac{1}{q}}+C_{g} \int_{\Gamma}|u|^{q} w_{2} d \Gamma
\end{aligned}
$$

and again we claim that N_{G} is bounded. The continuity of these operators now follows from the usual properties of Nemytskii operators (cf. [15]).

Lemma 4 Under Assumptions A1-A4, J is Fréchet-differentiable on E and satisfies the Palais-Smale condition.

Proof. We use the notation $I(u)=\frac{1}{p}\|u\|_{b}^{p}, K_{F}(u)=\int_{\Omega} F(x, u) d x, K_{G}(u)=$ $\int_{\Gamma} G(x, u) d \Gamma$. Then the directional derivative of J in direction $h \in E$ is

$$
\left\langle J^{\prime} u, h\right\rangle=\left\langle I^{\prime} u, h\right\rangle-\left\langle K_{F}^{\prime} u, h\right\rangle-\left\langle K_{G}^{\prime} u, h\right\rangle
$$

where

$$
\begin{aligned}
\left\langle I^{\prime}(u), h\right\rangle & =\int_{\Omega} a(x)|\nabla u|^{p-2} \nabla u \nabla h d x+\int_{\Gamma} b(x)|u|^{p-2} u h d \Gamma \\
\left\langle K_{F}^{\prime}(u), h\right\rangle & =\int_{\Omega} f(x, u) h d x, \quad\left\langle K_{G}^{\prime}(u), h\right\rangle=\int_{\Gamma} g(x, u) h d \Gamma
\end{aligned}
$$

Clearly, $I^{\prime}: E \rightarrow E^{\prime}$ is continuous. The operator K_{G}^{\prime} is a composition of operators

$$
K_{G}^{\prime}: E \rightarrow L^{q}\left(\Gamma ; w_{2}\right) \xrightarrow{N_{g}} L^{q /(q-1)}\left(\Gamma ; w_{2}^{1 /(1-q)}\right) \xrightarrow{\ell} E^{\prime}
$$

where $\langle\ell(v), h\rangle=\int_{\Gamma} v h d \Gamma$. Since

$$
\int_{\Gamma}|v h| d \Gamma \leq\left(\int_{\Gamma}|v|^{q^{\prime}} w_{2}^{1 /(1-q)} d \Gamma\right)^{1 / q^{\prime}}\left(\int_{\Gamma}|h|^{q} w_{2} d \Gamma\right)^{1 / q}
$$

ℓ is continuous by Theorem 1. As a composition of continuous operators, K_{G}^{\prime} is continuous, too. Moreover, by our assumptions on w_{2} (see A1), the trace operator $E \rightarrow L^{q}\left(\Gamma ; w_{2}\right)$ is compact and therefore, K_{G}^{\prime} is also compact. In a
similar way we obtain that K_{F}^{\prime} is compact and the Fréchet-differentiability of J follows.

Now let $u_{k} \in E$ be a Palais-Smale sequence, i. e. $\left|J\left(u_{k}\right)\right| \leq C$ for all k and $J^{\prime}\left(u_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. For k large enough we have $\left|\left\langle J^{\prime}\left(u_{k}\right), u_{k}\right\rangle\right| \leq\left\|u_{k}\right\|_{b}$ and by Assumption A3

$$
\begin{aligned}
C+\left\|u_{k}\right\|_{b} & \geq J\left(u_{k}\right)-\frac{1}{\mu}\left\langle J^{\prime}\left(u_{k}\right), u_{k}\right\rangle \\
& \geq\left(\frac{1}{p}-\frac{1}{\mu}\right)\|u\|_{b}^{p}
\end{aligned}
$$

This shows that u_{k} is bounded in E. To show that u_{k} contains a Cauchy sequence we use the following inequalities for $\xi, \zeta \in \mathbb{R}^{N}$ (see [5], Lemma 4.10):

$$
\begin{gather*}
|\xi-\zeta|^{p} \leq C\left(|\xi|^{p-2} \xi-|\zeta|^{p-2} \zeta\right)(\xi-\zeta), \quad \text { for } p \geq 2 \tag{7}\\
|\xi-\zeta|^{2} \leq C\left(|\xi|^{p-2} \xi-|\zeta|^{p-2} \zeta\right)(\xi-\zeta)(|\xi|+|\zeta|)^{2-p}, \quad \text { for } 1<p<2 \tag{8}
\end{gather*}
$$

Then we obtain in the case $p \geq 2$:

$$
\begin{aligned}
\left\|u_{n}-u_{k}\right\|_{b}^{p}= & \int_{\Omega} a(x)\left|\nabla u_{n}-\nabla u_{k}\right|^{p} d x+\int_{\Gamma} b(x)\left|u_{n}-u_{p}\right|^{p} d \Gamma \\
\leq & C\left(\left\langle I^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle-\left\langle I^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle\right) \\
= & C\left(\left\langle J^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle-\left\langle J^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle+\left\langle K_{F}^{\prime}\left(u_{n}\right)\right.\right. \\
& \left.\left.+K_{G}^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle-\left\langle K_{F}^{\prime}\left(u_{n}\right)+K_{G}^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle\right) \\
\leq & C\left(\left\|J^{\prime}\left(u_{n}\right)\right\|_{E^{\prime}}+\left\|J^{\prime}\left(u_{k}\right)\right\|_{E^{\prime}}+\left\|K_{F}^{\prime}\left(u_{n}\right)-K_{F}^{\prime}\left(u_{k}\right)\right\|_{E^{\prime}}\right. \\
& \left.+\left\|K_{G}^{\prime}\left(u_{n}\right)-K_{G}^{\prime}\left(u_{k}\right)\right\|_{E^{\prime}}\right)\left\|u_{n}-u_{k}\right\|_{b}
\end{aligned}
$$

Since $J^{\prime}\left(u_{k}\right) \rightarrow 0$ and $K_{F}^{\prime}, K_{G}^{\prime}$ are compact, there exists a subsequence of u_{k} which converges in E.

If $1<p<2$, then we use (8) and Hölder's inequality to obtain the estimate

$$
\left\|u_{n}-u_{k}\right\|_{b}^{2} \leq C\left|\left\langle I^{\prime}\left(u_{n}\right), u_{n}-u_{k}\right\rangle-\left\langle I^{\prime}\left(u_{k}\right), u_{n}-u_{k}\right\rangle\right|\left(\left\|u_{n}\right\|_{b}^{2-p}+\left\|u_{k}\right\|_{b}^{2-p}\right) .
$$

Since $\left\|u_{n}\right\|_{b}$ is bounded, the same arguments as above lead to a convergent subsequence.

Theorem 2 There exists a nontrivial nonnegative solution of (1), (2) in E.
Proof. We shall use the Mountain-Pass lemma [13] to obtain a solution. First we observe that, from Assumption A1 and A2, for every $\varepsilon>0$ there is a C_{ε}
such that $|F(x, u)| \leq \varepsilon f_{0}(x)|u|^{p}+C_{\varepsilon} f_{1}(x)|u|^{r}$, and $|G(x, u)| \leq \varepsilon g_{0}(x)|u|^{p}+$ $C_{\varepsilon} g_{1}(x)|u|^{q}$. Consequently

$$
\begin{aligned}
J(u) \geq & \frac{1}{p}\|u\|_{b}^{p}-\int_{\Omega}\left(\varepsilon f_{0}(x)|u|^{p}+C_{\varepsilon} f_{1}(x)|u|^{r}\right) d x \\
& -\int_{\Gamma}\left(\varepsilon g_{0}(x)|u|^{p}+C_{\varepsilon} g_{1}(x)|u|^{q}\right) d \Gamma \\
\geq & \|u\|_{b}^{p}-\varepsilon C_{1}\|u\|_{b}^{p}-C_{\varepsilon} C_{2}\left(\|u\|_{b}^{r}+\|u\|_{b}^{q}\right)
\end{aligned}
$$

and for ε and $\|u\|_{b}=\rho$ sufficiently small, the right hand side is strictly greater than 0 . It remains to show that there exists $u_{0} \in E,\left\|u_{0}\right\|_{b}>\rho$ such that $J\left(u_{0}\right) \leq 0$.

In the case A4 a), we choose a nontrivial nonnegative function $\varphi \in C_{0}^{\infty}(O)$. From A3 we see that $F(x, s) \geq C_{1} s^{\mu}-C_{2}$ on $O \times(0, \infty)$. Then, for $t \geq 0$,

$$
J(t \varphi) \leq \frac{1}{p} t^{p}\|\varphi\|_{b}^{p}-C_{1} t^{\mu} \int_{O} \varphi^{\mu} d x+C_{2}|O|
$$

Since $\mu>p$, the right hand side tends to $-\infty$ as $t \rightarrow \infty$ and for sufficiently large $t_{0}, u_{0}=t_{0} \varphi$ has the desired properties.

In the case A4 b), we choose a nonnegative $\varphi \in C_{\delta}^{\infty}(\Omega)$ such that $\operatorname{supp} \varphi \cap \Gamma \subset$ U is not empty. Again from $G(x, s) \geq C_{3} s^{\bar{\mu}}-C_{4}$ on $U \times(0, \infty)$ and Assumption A1 we claim

$$
J(t \varphi) \leq \frac{1}{p} t^{p}\|\varphi\|_{b}^{p}+C_{5} \int_{\Omega} t \varphi+t^{r} \varphi^{r} d x-C_{3} t^{\bar{\mu}} \int_{U} \varphi^{\bar{\mu}} d \Gamma+C_{4}|U|
$$

Since $\bar{\mu}>r \geq p$, we obtain $J(t \varphi) \rightarrow-\infty$ as $t \rightarrow \infty$.
In the case A4c), we take $\varphi \in C_{\delta}^{\infty}(\Omega)$ with $\operatorname{supp} \varphi \cap \bar{\Omega} \subset \bar{V}$ and $\operatorname{supp} \varphi \cap U \neq \emptyset$. Then

$$
J(t \varphi) \leq \frac{1}{p} t^{p}\|\varphi\|_{b}^{p}+C_{F}|V|-C_{3} t^{\mu} \int_{U} \varphi^{\mu} d \Gamma+C_{4}|U|
$$

and again we claim $J(t \varphi) \rightarrow-\infty$ as $t \rightarrow \infty$.
Since J satisfies the Palais-Smale condition and $J(0)=0$, the MountainPass Lemma shows that there is a nontrivial critical point of J in E with critical value

$$
c=\inf _{\gamma \in P} \max _{t \in[0,1]} J(\gamma(t))>0
$$

where $P=\left\{\gamma \in C([0,1], E) \mid \gamma(0)=0, \gamma(1)=u_{0}\right\}$.
To obtain a nonnegative solution by this procedure, we introduce the truncated functions \bar{f} and \bar{g} such that $\bar{f}(x, s)=\bar{g}(x, s)=0$ for all $s \leq 0$. Then the arguments above remain true and we obtain a critical point u of the truncated functional \bar{J}, i. e. $\left\langle\bar{J}^{\prime}(u), h\right\rangle=0$ for all $h \in E$. In particular, setting $u_{-}(x)=\max \{-u(x), 0\}$ and $h=u_{-}$, we claim that $u \geq 0$. Since any nonnegative solution of the truncated problem is also a solution of the original equation, we have found a nonnegative solution of (1), (2).

4 Combined Sub- and Superlinear Nonlinearities

In this part we introduce an additional parameter into equation (1), i. e. we study

$$
\begin{equation*}
-\operatorname{div}\left(a(x)|\nabla u|^{p-2} \nabla u\right)=\lambda f(x, u) \quad \text { in } \quad \Omega \tag{1}
\end{equation*}
$$

with the same boundary condition (2) as before. Here, we assume the following
B1 Let g satisfy Assumptions A1-A3 with $g_{0} \equiv 0$ and $|f(x, s)| \leq f_{1}(x)|s|^{r-1}, \quad 1 \leq$ $r<p$, where f_{1} is nonnegative, measurable and there exists $\alpha_{1},-N<$ $\alpha_{1}<r \frac{N-p}{p}-N$, such that for $w_{1}(x)=(1+|x|)^{\alpha_{1}}$, we have $f_{1} \in$ $L^{p /(p-r)}\left(\Omega ; w_{1}^{r /(r-p)}\right)$.
B2 $|f(x, s)| \geq f_{2}(x)|s|^{\bar{r}-1}, \quad 1 \leq \bar{r} \leq r$, with $f_{2}>0$ in some nonempty open set $O \subset \Omega$.

B3 There is a nonempty open set $U \subset \Gamma$ with $G(x, s)>0$ for $(x, s) \in U \times$ $(0, \infty)$.

The Nemytskii operators N_{g} and N_{G} have the same properties as in Lemma 3, while for N_{f} and N_{F} we obtain

Lemma 5 The operators $N_{f}: L^{p}\left(\Omega ; w_{1}\right) \rightarrow L^{p /(p-1)}\left(\Omega ; w_{1}^{1 /(1-p)}\right)$, and N_{F} : $L^{p}\left(\Omega ; w_{1}\right) \rightarrow L^{1}(\Omega)$ are bounded and continuous.

Proof. Since the first statement is trivial if $r=1$, we may assume that $r>1$. From B1 we obtain with Hölder's inequality (setting $p^{\prime}=p /(p-1)$)

$$
\begin{aligned}
\int_{\Omega}|f(x, u)|^{p^{\prime}} w_{1}^{1 /(1-p)} d x & \leq \int_{\Omega}\left|f_{1}\right|^{p^{\prime}} w_{1}^{r /(1-p)}|u|^{p^{\prime}(r-1)} w_{1}^{(r-1) /(p-1)} d x \\
& \leq\left(\int_{\Omega}\left|f_{1}\right|^{p /(p-r)} w_{1}^{r /(r-p)}\right)^{\frac{p-r}{p-1}}\left(\int_{\Omega}|u|^{p} w_{1}\right)^{\frac{r-1}{p-1}} \\
& \leq C\|u\|_{p, w_{1}}^{p(r-1) /(p-1)}
\end{aligned}
$$

For N_{F} we obtain

$$
\begin{aligned}
\int_{\Omega}|F(x, u)| d x & \leq \int_{\Omega}\left|f_{1}\right| w_{1}^{-r / p}|u|^{r} w_{1}^{r / p} d x \\
& \leq\left(\int_{\Omega}\left|f_{1}\right|^{p /(p-r)} w_{1}^{r /(r-p)} d x\right)^{(p-r) / p}\left(\int_{\Omega}|u|^{p} w_{1} d x\right)^{r / p} \\
& \leq C\|u\|_{p, w_{1}}^{r}
\end{aligned}
$$

The differentiability for J now follows as above.

To obtain the Palais-Smale condition for J, let $u_{k} \in E$ be a sequence such that $\left|J\left(u_{k}\right)\right| \leq C$ and $J^{\prime}\left(u_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$. With Assumptions A3, B1 and Hölder's inequality we get

$$
\begin{aligned}
& J\left(u_{k}\right)-\frac{1}{\mu}\left\langle J^{\prime}\left(u_{k}\right), u_{k}\right\rangle \\
& \quad=\left(\frac{1}{p}-\frac{1}{\mu}\right)\left\|u_{k}\right\|_{b}^{p}+\int_{\Omega} \frac{1}{\mu} f(x, u) u-F(x, u) d x+\int_{\Gamma} \frac{1}{\mu} g(x, u) u-G(x, u) d \Gamma \\
& \quad \geq\left(\frac{1}{p}-\frac{1}{\mu}\right)\left\|u_{k}\right\|_{b}^{p}-\left(1+\frac{1}{\mu}\right) \int_{\Omega} f_{1}(x)\left|u_{k}\right|^{r} d x \\
& \quad \geq\left(\frac{1}{p}-\frac{1}{\mu}\right)\left\|u_{k}\right\|_{b}^{p}-\left(\int_{\Omega} f_{1}^{p /(p-r)} w_{1}^{r /(r-p)} d x\right)^{(p-r) / p}\left(\int_{\Omega}\left|u_{k}\right|^{p} d x\right)^{r / p} \\
& \quad \geq\left(\frac{1}{p}-\frac{1}{\mu}\right)\left\|u_{k}\right\|_{b}^{p}-C_{1}\left\|f_{1}\right\|_{*}\left\|u_{k}\right\|_{b}^{r}
\end{aligned}
$$

where $\left\|f_{1}\right\|_{*}$ is the weighted norm of f_{1} in $L^{p /(p-r)}\left(\Omega ; w_{1}^{r /(r-p)}\right)$. Since $r<p$ and $C+\left\|u_{k}\right\|_{b} \geq J\left(u_{k}\right)-\frac{1}{\mu}\left\langle J^{\prime}\left(u_{k}\right), u_{k}\right\rangle$, we claim that u_{k} is bounded in E. The convergence of a subsequence of u_{k} then follows as above from the compactness properties of K_{F}^{\prime} and K_{G}^{\prime}.
Theorem 3 Under Assumptions B1-B3 there exists $\lambda^{*}>0$, such that for every $0<\lambda<\lambda^{*}$, there are at least two nontrivial nonnegative solutions of (1) λ_{λ}, (2).

Proof. First we show that for $\lambda \in\left(0, \lambda^{*}\right)$, we can find $\rho>0$ such that $J(u) \geq$ $c>0$ if $\|u\|_{b}=\rho$. We denote by C_{Ω}, C_{Γ} the embedding and trace constants for the operators $E \hookrightarrow L^{p}\left(\Omega ; w_{1}\right)$ and $E \rightarrow L^{q}\left(\Gamma ; w_{2}\right)$, respectively. We obtain

$$
\begin{aligned}
J_{\lambda}(u) \geq & \frac{1}{p}\|u\|_{b}^{p}-\frac{\lambda}{r} \int_{\Omega} f_{1}(x)|u|^{r} d x-\frac{1}{q} \int_{\Gamma} g_{1}(x)|u|^{q} d \Gamma \\
\geq & \frac{1}{p}\|u\|_{b}^{p}-\frac{\lambda}{r}\left(\int_{\Omega} f_{1}(x)^{p /(p-r)} w_{1}(x)^{r /(r-p)} d x\right)^{(p-r) / p}\left(\int_{\Omega}|u|^{p} w_{1} d x\right)^{r / p} \\
& -\frac{1}{q} \int_{\Gamma} g_{1}(x)|u|^{q} d \Gamma \\
\geq & \frac{1}{p}\|u\|_{b}^{p}-\frac{\lambda}{r} C_{\Omega}\left\|f_{1}\right\|_{*}\|u\|_{b}^{r}-\frac{1}{q} C_{\Gamma} C_{g}\|u\|_{b}^{q}
\end{aligned}
$$

If $\|u\|_{b}=\rho$, we obtain

$$
\begin{equation*}
J_{\lambda}(u) \geq \frac{1}{p} \rho^{p}\left(1-\frac{p \lambda}{r} C_{\Omega}\left\|f_{1}\right\|_{*} \rho^{r-p}-\frac{p}{q} C_{\Gamma} C_{g} \rho^{q-p}\right) \tag{9}
\end{equation*}
$$

Elementary calculations show that the right hand side is maximal for

$$
\rho_{m}=\left(\frac{q(p-r) \lambda C_{\Omega}\left\|f_{1}\right\|_{*}}{r(q-p) C_{g} C_{\Gamma}}\right)^{1 /(q-r)}
$$

Inserting this into equation (9), we find that the right hand side is zero for

$$
\lambda=\lambda^{*}:=\left[\frac{p}{r}\left\|f_{1}\right\|_{*} C_{\Omega} C_{0}^{\frac{r-p}{q-r}}+\frac{p}{q} C_{g} C_{\Gamma} C_{0}^{\frac{q-p}{q-r}}\right]^{\frac{r-q}{q-p}}
$$

where

$$
C_{0}=\left(\frac{\left\|f_{1}\right\|_{*} C_{\Omega}(p-r) q}{C_{g} C_{\Gamma}(q-p) r}\right)
$$

and strictly greater than 0 for $\lambda<\lambda^{*}$. This shows that for every $\lambda<\lambda^{*}$, we find $\rho_{\lambda}>0$ such that $J_{\lambda} \geq c_{\lambda}>0$ for $\|u\|_{b}=\rho_{\lambda}$. The existence of a function $u_{0} \in E,\left\|u_{0}\right\|_{b}>\rho_{\lambda}$ and $J_{\lambda}\left(u_{0}\right) \leq 0$ now follows as in the proof of Theorem 2 (case A4 b). Then the Mountain-Pass Lemma again implies the existence of a nontrivial solution u_{1} with $J_{\lambda}\left(u_{1}\right) \geq c_{\lambda}$.

On the other hand, for $\varphi \in C_{0}^{\infty}(O)$ and $t>0$ we obtain

$$
J_{\lambda}(t \varphi) \leq \frac{t^{p}}{p}\|\varphi\|_{b}^{p}-\frac{t^{\bar{r}}}{\bar{r}} \int_{O} f_{2}(x)|\varphi|^{\bar{r}} d x
$$

This shows that $J_{\lambda}(t \varphi)<0$ for sufficiently small t and consequently J_{λ} attains its minimum in the ball $B_{\rho_{\lambda}} \subset E$. We claim that there is a second solution $u_{2} \in B_{\rho_{\lambda}}$ with $J_{\lambda}\left(u_{2}\right)<0$.

In addition, with the same truncation procedure as in the proof of Theorem 2 , we claim that there are two nonnegative solutions.

Now we can prove the corresponding result for equation (1) with boundary condition

$$
\begin{equation*}
\mathrm{n} \cdot a(x)|\nabla u|^{p-2} \nabla u+b(x)|u|^{p-2} u=\lambda g(x, u) \quad \text { on } \quad \Gamma \tag{2}
\end{equation*}
$$

if we interchange the roles of g and f in Assumptions $\mathrm{B} 1-\mathrm{B} 3$. That is, we assume now that f satisfies Assumptions A1-A4 a) (with $f_{0} \equiv 0$) and g satisfies
$\mathrm{B} 4|g(x, s)| \leq g_{1}(x)|s|^{q-1}, 1 \leq q<p, g_{1} \in L^{p /(p-q)}\left(\Gamma ; w_{2}^{q /(q-p)}\right),|g(x, s)| \geq$ $g_{2}(x)|s|^{\bar{q}-1}, 1 \leq \bar{q} \leq q$ and $g_{2}>0$ in some nonempty open set $U \subset \Gamma$.

Theorem 4 Let f satisfy Assumptions A1-A4 a) (with $f_{0} \equiv 0$) and g satisfy B4. Then for every $0<\lambda<\lambda^{*}$, there are at least two nontrivial nonnegative solutions of (1), (2) ${ }_{\lambda}$.

Proof. First we claim as in Lemma 5 that

$$
N_{g}: L^{p}\left(\Gamma ; w_{2}\right) \rightarrow L^{p /(p-1)}\left(\Gamma ; w_{2}^{1 /(1-p)}\right), \quad N_{G}: L^{p}\left(\Gamma ; w_{2}\right) \rightarrow L^{1}(\Gamma)
$$

are bounded and continuous. The estimate for J_{λ} now reads

$$
J_{\lambda}(u) \geq \frac{1}{p}\|u\|_{b}^{p}-\frac{1}{r} C_{\Omega} C_{f}\|u\|_{b}^{r}-\frac{\lambda}{q} C_{\Gamma}\left\|g_{1}\right\|_{*}\|u\|_{b}^{q}
$$

where $\left\|g_{1}\right\|_{*}$ is the norm of g_{1} in $L^{p /(p-q)}\left(\Gamma ; w_{2}^{q /(q-p)}\right)$. Now λ^{*} can be calculated as

$$
\lambda^{*}:=\left[\frac{p}{q}\left\|g_{1}\right\|_{*} C_{\Gamma} \bar{C}_{0}^{\frac{q-p}{r-q}}+\frac{p}{r} C_{f} C_{\Omega} \bar{C}_{0}^{\frac{r-p}{r-q}}\right]^{\frac{q-r}{r-p}}, \quad \bar{C}_{0}=\left(\frac{\left\|g_{1}\right\|_{*} C_{\Gamma}(p-q) r}{C_{f} C_{\Omega}(r-p) q}\right)
$$

The existence of u_{0} with $\left\|u_{0}\right\|_{b}>\rho_{\lambda}$ and $J\left(u_{0}\right)<0$ follows in the same way as in the proof of Theorem 2, case A4 a). Finally, for a nonnegative $\varphi \in C_{\delta}^{\infty}(\Omega)$ with $\operatorname{supp} \varphi \cap \Gamma \subset U$ not empty, we find

$$
J_{\lambda}(t \varphi) \leq \frac{t^{p}}{p}\|\varphi\|_{b}^{p}+C \frac{t^{r}}{r}\|\varphi\|_{b}^{r}-\frac{t^{\bar{q}}}{\bar{q}} \int_{U} g_{2}(x)|\varphi|^{\bar{q}} d x
$$

Since $\bar{q}<p \leq r, J_{\lambda}(t \varphi)<0$ for t sufficiently small and we claim that J_{λ} attains its minimum in $B_{\rho_{\lambda}} \subset E$.

We remark that, if Ω is of class $C^{1, \alpha}(\alpha \leq 1)$ and, in addition to $\mathrm{B} 4, g$ satisfies

$$
|g(x, s)-g(y, t)| \leq C\left(|x-y|^{\alpha}+|s-t|^{\alpha}\right), \quad|g(x, s)| \leq C
$$

for all $x, y \in \Gamma, s, t \in \mathbb{R}$, then the regularity result of [8], Thm. 2 , shows that the solution u belongs to $C^{1, \beta}(\bar{\Omega})$ for some $\beta>0$.

References

[1] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122 (1994), 519-543.
[2] J. Garcia Azorero and I. Peral Alonso, Existence and non-uniqueness for the p-Laplacian. Commun. Partial Differ. Equations 12 (1987), 1389-1430.
[3] J. Garcia Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43 (1994), 941-957.
[4] D. G. Costa and O. H. Miyagaki, Nontrivial solutions for perturbations of the p-Laplacian on unbounded domains. J. Math. Anal. Appl. 193 (1995), 735-755.
[5] J. I. Diaz, Nonlinear partial differential equations and free boundaries. Elliptic equations. Pitman Adv. Publ., Boston etc., 1986.
[6] P. Drábek, Nonlinear eigenvalue problems for the p-Laplacian in \mathbb{R}^{N}. Math. Nachr. 173 (1995), 131-139.
[7] P. Drábek and S. I. Pohozaev, Positive solutions for the p-Laplacian: Application of the fibrering method. Proc. R. Soc. Edinburgh 127A (1997), 703-726.
[8] G. M. Lieberman, Boundary regularity of degenerate elliptic equations. Nonlinear Anal., Theory, Methods, Appl. 12 (1988), 1203-1219.
[9] J. M. B. do Ó, Solutions to perturbed eigenvalue problems of the p-Laplacian in \mathbb{R}^{N}. Electr. J. Diff. Eqns., Vol. 1997 (1997), No. 11, 115.
[10] C. V. Pao, Nonlinear parabolic and elliptic equations. Plenum Press, New York, London, 1992.
[11] K. Pflüger, Compact traces in weighted Sobolev spaces. Analysis 18 (1998), 65-83.
[12] K. Pflüger, Nonlinear boundary value problems in weighted Sobolev spaces. Proc. 2nd WCNA, Nonlinear Anal. TMA 30 (1997), 1263-1270.
[13] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations. Reg. Conf. Ser. Math. 65 (1986), 1-100.
[14] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eqns. 51 (1984), 126-150.
[15] M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators. Holden Day, San Francisco, 1964.
[16] Yu Lao Sen Nonlinear p-Laplacian problems on unbounded domains. Proc. Am. Math. Soc. 115 (1992), 1037-1045.

Klaus Pflüger

FB Mathematik, Freie Universität Berlin
Arnimallee 3, 14195 Berlin, Germany
email: pflueger@math.fu-berlin.de

[^0]: * 1991 Mathematics Subject Classifications: 35J65, 35J20.

 Key words and phrases: p-Laplacian, nonlinear boundary condition, variational methods, unbounded domain, weighted function space.
 © 1998 Southwest Texas State University and University of North Texas.
 Submitted March 5, 1998. Published April 10, 1998.

