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Existence and multiplicity of solutions to a

p-Laplacian equation with nonlinear boundary

condition ∗

Klaus Pflüger

Abstract

We study the nonlinear elliptic boundary value problem

Au = f(x, u) in Ω ,

Bu = g(x, u) on ∂Ω ,

where A is an operator of p−Laplacian type, Ω is an unbounded domain
in RN with non-compact boundary, and f and g are subcritical nonlinear-
ities. We show existence of a nontrivial nonnegative weak solution when
both f and g are superlinear. Also we show existence of at least two
nonnegative solutions when one of the two functions f , g is sublinear and
the other one superlinear. The proofs are based on variational methods
applied to weighted function spaces.

1 Introduction

The objective of this paper is to study the nonlinear elliptic boundary value
problem

− div(a(x)|∇u|p−2∇u) = f(x, u) in Ω ⊂ RN , (1)

n · a(x)|∇u|p−2∇u+ b(x)|u|p−2u = g(x, u) on Γ = ∂Ω, (2)

where Ω is an unbounded domain with noncompact, smooth boundary Γ (for
example a cylindrical domain), and n is the unit outward normal vector on Γ. We
assume throughout that 1 < p < N , 0 < a0 ≤ a ∈ L∞(Ω) and b is a positive and
continuous function defined on RN . The p−Laplace operator in (1) is a special
case of the divergence–form operator − div(a(x,∇u)) which appears in many
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2 Existence and multiplicity of solutions EJDE–1998/10

nonlinear diffusion problems, in particular in the mathematical modeling of non–
Newtonian fluids. For a discussion of some physical background see [5]. The
boundary condition (2) describes a flux through the boundary which depends
in a nonlinear manner on the solution itself. For some physical motivation of
such boundary conditions see for example [10].
The energy functional corresponding to (1), (2) is defined as

J(u) =
1

p

∫
Ω

a(x)|∇u|p dx+
1

p

∫
Γ

b(x)|u|p dΓ−

∫
Ω

F (x, u) dx −

∫
Γ

G(x, u) dΓ ,

where F and G denote the primitive functions of f and g with respect to the
second variable, i. e. F (x, u) =

∫ u
0 f(x, s) ds, G(x, u) =

∫ u
0 g(x, s) ds. Then the

weak solutions of (1), (2) are the critical points of J . We remark that, according
to the regularity theorem of [14], every weak solution of (1), (2) belongs to

C1,βloc (Ω). In addition, in [8] regularity up to the boundary was proved, but only
under rather restrictive conditions on g.
In this paper we consider problem (1), (2) under several conditions on f and

g. If both functions are subcritical and superlinear with respect to u, then we
prove existence of a nontrivial nonnegative solution (Theorem 2). In the case,
where f is sublinear and g superlinear, we show that there exist at least two
nonnegative solutions, one with positive energy, the other one with negative
energy (Theorem 3). The same result holds in the case where f is superlinear
and g sublinear (Theorem 4).
Such kind of problems with combined concave and convex nonlinearities were

studied recently by several authors, with the right hand side of (1) of the form
f + g and the boundary condition is u = 0 on Γ. For a bounded domain Ω and
p = 2 see [1], for 1 < p < N see [2] and [3] (which also includes the critical
case). For the p−Laplacian in an exterior domain see [16]. Our proofs are based
on weighted-norm estimates in Sobolev spaces, which imply some compactness
properties of the functional J . For some related results on the existence of
nontrivial solutions to equation (1) in RN see for example [4], [6], [7], [9]. We
remark that the results in this paper are new even in the semilinear elliptic case
p = 2.
This paper is organized as follows: In the next section we prove some pre-

liminary results concerning equivalent norms and traces in weighted Sobolev
spaces. Section 3 is devoted to the superlinear case (Theorem 2), and Section 4
contains the results on the mixed case (Theorems 3 and 4).

2 Preliminaries: Weighted Sobolev Spaces

Let C∞δ (Ω) be the space of C
∞
0 (R

N )-functions restricted on Ω. We define the
weighted Sobolev-space E as the completion of C∞δ (Ω) in the norm

‖u‖E =

(∫
Ω

|∇u(x)|p +
1

(1 + |x|)p
|u(x)|p dx

)1/p
.
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First we prove the following weighted Hardy-type inequality.

Lemma 1 Let 1 < p < N . Then there exist positive constants C1 and C2, such
that for every u ∈ E

∫
Ω

1

(1 + |x|)p
|u|p dx ≤ C1

∫
Ω

|∇u|p dx + C2

∫
Γ

|n · x|

(1 + |x|)p
|u|p dΓ . (3)

Proof. Using the divergence theorem we obtain for u ∈ C∞δ (Ω)

∫
Ω

x·∇

(
1

(1 + |x|)p
|u|p
)
dx =

∫
Γ

(n·x)
1

(1 + |x|)p
|u|p dΓ−N

∫
Ω

1

(1 + |x|)p
|u|p dx .

This implies

N

∫
Ω

1

(1 + |x|)p
|u|p dx ≤

∫
Γ

|n · x|

(1 + |x|)p
|u|p dΓ + p

∫
Ω

1

(1 + |x|)p
|u|p dx

+p

∫
Ω

1

(1 + |x|)p−1
|u|p−1|∇u| dx .

Using Hölder’s and Young’s inequality, the last term can be estimated by

p

(∫
Ω

1

(1 + |x|)p
|u|p dx

)(p−1)/p(∫
Ω

|∇u|p dx

)1/p

≤ ε(p− 1)

∫
Ω

1

(1 + |x|)p
|u|p dx+ ε1−p

∫
Ω

|∇u|p dx ,

where ε > 0 is an arbitrary real number. It follows that

(N−ε(p−1)−p)

∫
Ω

1

(1 + |x|)p
|u|p dx ≤ ε1−p

∫
Ω

|∇u|p dx+

∫
Γ

|n · x|

(1 + |x|)p
|u|p dΓ ,

and for ε small enough, the desired inequality follows by standard density ar-
guments. 2

Now denote by Lr(Ω;w1) and L
q(Γ;w2) the weighted Lebesgue spaces with

weight functions

wi(x) = (1 + |x|)
αi , i = 1, 2, αi ∈ R (4)

and norm defined by

‖u‖rr,w1 =

∫
Ω

w1|u(x)|
r dx , and ‖u‖qq,w2 =

∫
Γ

w2|u(x)|
q dx .

Then we have the following embedding and trace theorem.
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Theorem 1 If

p ≤ r ≤
pN

N − p
and −N < α1 ≤ r

N − p

p
−N , (5)

then the embedding E ↪→ Lr(Ω;w1) is continuous. If the upper bounds for r in
(5) are strict, then the embedding is compact. If

p ≤ q ≤
p(N − 1)

N − p
and −N < α2 ≤ q

N − p

p
−N + 1 , (6)

then the trace operator E → Lq(Γ;w2) is continuous. If the upper bounds for q
in (6) are strict, then the trace is compact.

This theorem is a consequence of Theorem 2 and Corollary 6 of [11].
As a corollary of Lemma 1 and Theorem 1 we obtain

Lemma 2 Let b satisfy c/(1 + |x|)p−1 ≤ b(x) ≤ C/(1 + |x|)p−1 for some con-
stants 0 < c ≤ C. Then

‖u‖pb =

∫
Ω

a(x)|∇u|p dx+

∫
Γ

b(x)|u|p dΓ

defines an equivalent norm on E.

Proof. The inequality ‖u‖E ≤ C1‖u‖b follows directly from Lemma 1, while
from Theorem 1 (setting p = q and α2 = −(p− 1)) we obtain

‖u‖pb ≤ ‖a‖L∞
∫
Ω

|∇u|pdx+ C

∫
Γ

|u|p(1 + |x|)−(p−1)dΓ

≤ ‖a‖L∞
∫
Ω

|∇u|pdx+ C2‖u‖
p
E,

which shows the desired equivalence. 2

Remark. In special geometries the lower bound for b required in Lemma 2 can
be improved. In view of Lemma 1 it is sufficient to assume b(x) ≥ |n·x|/(1+|x|)p,
where n · x = |n||x| cos γ and γ is the angle between x and n. For a cylindrical
domain Ω = B × R, where B ⊂ RN−1 is bounded, we obtain | cosγ| ≤ CB/|x|,
with a constant CB depending only on the diameter of B. This shows that in
cylindrical domains, Lemma 2 holds under the weaker assumption

c

(1 + |x|)p
≤ b(x) ≤

C

(1 + |x|)p−1
.

We shall assume throughout the paper that b satisfies the assumption of Lemma 2
so that we can use ‖ · ‖b as an equivalent norm in E.
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3 The superlinear case

We make the following assumptions

A1 f and g are Carathéodory functions on Ω × R and Γ × R, respectively,
f(·, 0) = g(·, 0) = 0 and

|f(x, s)| ≤ f0(x) + f1(x)|s|
r−1 , p ≤ r < pN/(N − p),

|g(x, s)| ≤ g0(x) + g1(x)|s|
q−1 , p ≤ q < p(N − 1)/(N − p),

where fi, gi are nonnegative, measurable functions which satisfy the fol-
lowing hypotheses: There exist α1, α2, −N < α1 < r

N−p
p − N , −N <

α2 < q
N−p
p −N + 1, such that, with wi defined as in (4), we have

0 ≤ fi(x) ≤ Cfw1 a. e. , f0 ∈ L
r/(r−1)(Ω;w

1/(1−r)
1 ),

0 ≤ gi(x) ≤ Cgw2 a. e. , g0 ∈ L
q/(q−1)(Γ;w

1/(1−q)
2 ) .

A2 lims→0 f(x, s)/|s|p−1 = lims→0 g(x, s)/|s|p−1 = 0 uniformly in x.

A3 There exists µ > p such that µF (x, s) ≤ f(x, s)s, µG(x, s) ≤ g(x, s)s for
a. e. x ∈ Ω, resp. x ∈ Γ and every s ∈ R.

A4 One of the following conditions holds:

a) There is a nonempty open set O ⊂ Ω with F (x, s) > 0 for (x, s) ∈
O × (0,∞)

b) There is a nonempty open set U ⊂ Γ with G(x, s) > 0 for (x, s) ∈
U × (0,∞) and G satisfies µ̄G(x, s) ≤ g(x, s)s with some µ̄ > r.

c) G(x, s) > 0 for (x, s) ∈ U × (0,∞) and and there exist an open,
nonempty subset V ⊂ Ω, V ∩ U 6= ∅ and a constant CF , such that
F (x, u) ≥ −CF on V × (0,∞).

We denote by Nf , NF , Ng, NG the corresponding Nemytskii operators. Under
the assumptions above we have the following result.

Lemma 3 The operators

Nf : L
r(Ω;w1)→ L

r/(r−1)(Ω;w
1/(1−r)
1 ) , NF : L

r(Ω;w1)→ L
1(Ω) ,

Ng : L
q(Γ;w2)→ L

q/(q−1)(Γ;w
1/(1−q)
2 ) , NG : L

q(Γ;w2)→ L
1(Γ)

are bounded and continuous.
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Proof. We only prove the statements for Ng and NG, since the arguments
for Nf and NF are similar. Let q

′ = q/(q − 1) and u ∈ Lq(Γ;w2). Then, by
Assumption A1,

∫
Γ

|Ng(u)|
q′w

1/(1−q)
2 dΓ ≤ 2q

′−1

(∫
Γ

gq
′

0 w
1/(1−q)
2 dΓ +

∫
Γ

gq
′

1 |u|
qw
1/(1−q)
2 dΓ

)

≤ 2q
′−1

(
C + Cg

∫
Γ

|u|qw2dΓ

)
,

which shows that Ng is bounded. In a similar way we obtain∫
Γ

|NG(u)|dΓ ≤

∫
Γ

g0|u|dΓ +

∫
Γ

g1|u|
qdΓ

≤

(∫
Γ

gq
′

0 w
1/(1−q)
2 dΓ

) 1
q′
(∫
Γ

|u|qw2 dΓ

) 1
q

+ Cg

∫
Γ

|u|qw2 dΓ

and again we claim that NG is bounded. The continuity of these operators now
follows from the usual properties of Nemytskii operators (cf. [15]). 2

Lemma 4 Under Assumptions A1–A4, J is Fréchet–differentiable on E and
satisfies the Palais–Smale condition.

Proof. We use the notation I(u) = 1
p
‖u‖pb , KF (u) =

∫
Ω F (x, u) dx, KG(u) =∫

Γ
G(x, u) dΓ. Then the directional derivative of J in direction h ∈ E is

〈J ′u, h〉 = 〈I ′u, h〉 − 〈K ′Fu, h〉 − 〈K
′
Gu, h〉 ,

where

〈I ′(u), h〉 =
∫
Ω a(x)|∇u|

p−2∇u∇h dx+
∫
Γ b(x)|u|

p−2uh dΓ ,

〈K ′F (u), h〉 =
∫
Ω
f(x, u)h dx , 〈K ′G(u), h〉 =

∫
Γ
g(x, u)h dΓ .

Clearly, I ′ : E → E′ is continuous. The operator K ′G is a composition of
operators

K ′G : E → L
q(Γ;w2)

Ng
−→ Lq/(q−1)(Γ;w1/(1−q)2 )

`
−→ E′,

where 〈`(v), h〉 =
∫
Γ vh dΓ. Since

∫
Γ

|vh| dΓ ≤

(∫
Γ

|v|q
′

w
1/(1−q)
2 dΓ

)1/q′ (∫
Γ

|h|qw2 dΓ

)1/q
,

` is continuous by Theorem 1. As a composition of continuous operators, K ′G
is continuous, too. Moreover, by our assumptions on w2 (see A1), the trace
operator E → Lq(Γ;w2) is compact and therefore, K ′G is also compact. In a
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similar way we obtain that K ′F is compact and the Fréchet-differentiability of J
follows.
Now let uk ∈ E be a Palais–Smale sequence, i. e. |J(uk)| ≤ C for all k and

J ′(uk) → 0 as k → ∞. For k large enough we have |〈J ′(uk), uk〉| ≤ ‖uk‖b and
by Assumption A3

C + ‖uk‖b ≥ J(uk)−
1

µ
〈J ′(uk), uk〉

≥

(
1

p
−
1

µ

)
‖u‖pb .

This shows that uk is bounded in E. To show that uk contains a Cauchy
sequence we use the following inequalities for ξ, ζ ∈ RN (see [5], Lemma 4.10):

|ξ − ζ|p ≤ C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ) , for p ≥ 2, (7)

|ξ − ζ|2 ≤ C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)(|ξ|+ |ζ|)2−p , for 1 < p < 2 . (8)

Then we obtain in the case p ≥ 2:

‖un − uk‖
p
b =

∫
Ω

a(x)|∇un −∇uk|
pdx+

∫
Γ

b(x)|un − up|
pdΓ

≤ C
(
〈I ′(un), un − uk〉 − 〈I

′(uk), un − uk〉
)

= C
(
〈J ′(un), un − uk〉 − 〈J

′(uk), un − uk〉+ 〈K
′
F (un)

+K ′G(un), un − uk〉 − 〈K
′
F (un) +K

′
G(uk), un − uk〉

)

≤ C
(
‖J ′(un)‖E′ + ‖J

′(uk)‖E′ + ‖K
′
F (un)−K

′
F (uk)‖E′

+‖K ′G(un)−K
′
G(uk)‖E′

)
‖un − uk‖b .

Since J ′(uk) → 0 and K ′F ,K
′
G are compact, there exists a subsequence of uk

which converges in E.
If 1 < p < 2, then we use (8) and Hölder’s inequality to obtain the estimate

‖un − uk‖
2
b ≤ C

∣∣∣〈I ′(un), un − uk〉 − 〈I ′(uk), un − uk〉
∣∣∣(‖un‖2−pb + ‖uk‖

2−p
b

)
.

Since ‖un‖b is bounded, the same arguments as above lead to a convergent
subsequence. 2

Theorem 2 There exists a nontrivial nonnegative solution of (1), (2) in E.

Proof. We shall use the Mountain–Pass lemma [13] to obtain a solution. First
we observe that, from Assumption A1 and A2, for every ε > 0 there is a Cε
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such that |F (x, u)| ≤ εf0(x)|u|p + Cεf1(x)|u|r , and |G(x, u)| ≤ εg0(x)|u|p +
Cεg1(x)|u|q . Consequently

J(u) ≥
1

p
‖u‖pb −

∫
Ω

(εf0(x)|u|
p + Cεf1(x)|u|

r) dx

−

∫
Γ

(εg0(x)|u|
p + Cεg1(x)|u|

q) dΓ

≥ ‖u‖pb − εC1‖u‖
p
b − CεC2(‖u‖

r
b + ‖u‖

q
b)

and for ε and ‖u‖b = ρ sufficiently small, the right hand side is strictly greater
than 0. It remains to show that there exists u0 ∈ E, ‖u0‖b > ρ such that
J(u0) ≤ 0.
In the case A4 a), we choose a nontrivial nonnegative function ϕ ∈ C∞0 (O).

From A3 we see that F (x, s) ≥ C1sµ − C2 on O × (0,∞). Then, for t ≥ 0,

J(tϕ) ≤
1

p
tp‖ϕ‖pb − C1t

µ

∫
O

ϕµdx+ C2|O| .

Since µ > p, the right hand side tends to −∞ as t → ∞ and for sufficiently
large t0, u0 = t0ϕ has the desired properties.
In the case A4 b), we choose a nonnegative ϕ ∈ C∞δ (Ω) such that suppϕ∩Γ ⊂

U is not empty. Again from G(x, s) ≥ C3sµ̄−C4 on U× (0,∞) and Assumption
A1 we claim

J(tϕ) ≤
1

p
tp‖ϕ‖pb + C5

∫
Ω

tϕ+ trϕrdx− C3t
µ̄

∫
U

ϕµ̄dΓ + C4|U | .

Since µ̄ > r ≥ p, we obtain J(tϕ)→ −∞ as t→∞.
In the case A4 c), we take ϕ ∈ C∞δ (Ω) with suppϕ∩Ω ⊂ V and suppϕ∩U 6= ∅.

Then

J(tϕ) ≤
1

p
tp‖ϕ‖pb + CF |V | − C3t

µ

∫
U

ϕµdΓ + C4|U |

and again we claim J(tϕ)→ −∞ as t→∞.
Since J satisfies the Palais–Smale condition and J(0) = 0, the Mountain–

Pass Lemma shows that there is a nontrivial critical point of J in E with critical
value

c = inf
γ∈P

max
t∈[0,1]

J(γ(t)) > 0 ,

where P = {γ ∈ C([0, 1], E) | γ(0) = 0, γ(1) = u0}.
To obtain a nonnegative solution by this procedure, we introduce the trun-

cated functions f̄ and ḡ such that f̄(x, s) = ḡ(x, s) = 0 for all s ≤ 0. Then
the arguments above remain true and we obtain a critical point u of the trun-
cated functional J̄ , i. e. 〈J̄ ′(u), h〉 = 0 for all h ∈ E. In particular, setting
u−(x) = max{−u(x), 0} and h = u−, we claim that u ≥ 0. Since any nonnega-
tive solution of the truncated problem is also a solution of the original equation,
we have found a nonnegative solution of (1), (2). 2
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4 Combined Sub- and Superlinear Nonlineari-

ties

In this part we introduce an additional parameter into equation (1), i. e. we
study

− div(a(x)|∇u|p−2∇u) = λf(x, u) in Ω (1)λ

with the same boundary condition (2) as before. Here, we assume the following

B1 Let g satisfy Assumptions A1–A3 with g0 ≡ 0 and |f(x, s)| ≤ f1(x)|s|r−1, 1 ≤
r < p, where f1 is nonnegative, measurable and there exists α1, −N <
α1 < r

N−p
p
− N , such that for w1(x) = (1 + |x|)α1 , we have f1 ∈

Lp/(p−r)(Ω;w
r/(r−p)
1 ).

B2 |f(x, s)| ≥ f2(x)|s|r̄−1, 1 ≤ r̄ ≤ r, with f2 > 0 in some nonempty open
set O ⊂ Ω.

B3 There is a nonempty open set U ⊂ Γ with G(x, s) > 0 for (x, s) ∈ U ×
(0,∞).

The Nemytskii operators Ng and NG have the same properties as in Lemma 3,
while for Nf and NF we obtain

Lemma 5 The operators Nf : L
p(Ω;w1) → Lp/(p−1)(Ω;w

1/(1−p)
1 ), and NF :

Lp(Ω;w1)→ L1(Ω) are bounded and continuous.

Proof. Since the first statement is trivial if r = 1, we may assume that r > 1.
From B1 we obtain with Hölder’s inequality (setting p′ = p/(p− 1))
∫
Ω

|f(x, u)|p
′

w
1/(1−p)
1 dx ≤

∫
Ω

|f1|
p′w

r/(1−p)
1 |u|p

′(r−1)w
(r−1)/(p−1)
1 dx

≤

(∫
Ω

|f1|
p/(p−r)w

r/(r−p)
1

) p−r
p−1
(∫
Ω

|u|pw1

) r−1
p−1

≤ C ‖u‖p(r−1)/(p−1)p,w1
.

For NF we obtain∫
Ω

|F (x, u)|dx ≤

∫
Ω

|f1|w
−r/p
1 |u|rwr/p1 dx

≤

(∫
Ω

|f1|
p/(p−r)w

r/(r−p)
1 dx

)(p−r)/p(∫
Ω

|u|pw1dx

)r/p

≤ C ‖u‖rp,w1 . 2

The differentiability for J now follows as above.
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To obtain the Palais–Smale condition for J , let uk ∈ E be a sequence such
that |J(uk)| ≤ C and J ′(uk) → 0 as k → ∞. With Assumptions A3, B1 and
Hölder’s inequality we get

J(uk)−
1

µ
〈J ′(uk), uk〉

=

(
1

p
−
1

µ

)
‖uk‖

p
b +

∫
Ω

1

µ
f(x, u)u− F (x, u) dx +

∫
Γ

1

µ
g(x, u)u−G(x, u) dΓ

≥

(
1

p
−
1

µ

)
‖uk‖

p
b −

(
1 +
1

µ

)∫
Ω

f1(x)|uk|
rdx

≥

(
1

p
−
1

µ

)
‖uk‖

p
b −

(∫
Ω

f
p/(p−r)
1 w

r/(r−p)
1 dx

)(p−r)/p(∫
Ω

|uk|
pdx

)r/p

≥

(
1

p
−
1

µ

)
‖uk‖

p
b − C1‖f1‖∗‖uk‖

r
b ,

where ‖f1‖∗ is the weighted norm of f1 in Lp/(p−r)(Ω;w
r/(r−p)
1 ). Since r < p

and C + ‖uk‖b ≥ J(uk)−
1
µ 〈J

′(uk), uk〉, we claim that uk is bounded in E. The
convergence of a subsequence of uk then follows as above from the compactness
properties of K ′F and K

′
G.

Theorem 3 Under Assumptions B1–B3 there exists λ∗ > 0, such that for every
0 < λ < λ∗, there are at least two nontrivial nonnegative solutions of (1)λ, (2).

Proof. First we show that for λ ∈ (0, λ∗), we can find ρ > 0 such that J(u) ≥
c > 0 if ‖u‖b = ρ. We denote by CΩ, CΓ the embedding and trace constants for
the operators E ↪→ Lp(Ω;w1) and E → Lq(Γ;w2), respectively. We obtain

Jλ(u) ≥
1

p
‖u‖pb −

λ

r

∫
Ω

f1(x)|u|
r dx−

1

q

∫
Γ

g1(x)|u|
q dΓ

≥
1

p
‖u‖pb −

λ

r

(∫
Ω

f1(x)
p/(p−r)w1(x)

r/(r−p)dx

)(p−r)/p(∫
Ω

|u|pw1dx

)r/p

−
1

q

∫
Γ

g1(x)|u|
q dΓ

≥
1

p
‖u‖pb −

λ

r
CΩ‖f1‖∗‖u‖

r
b −
1

q
CΓCg‖u‖

q
b .

If ‖u‖b = ρ, we obtain

Jλ(u) ≥
1

p
ρp
(
1−
pλ

r
CΩ‖f1‖∗ρ

r−p −
p

q
CΓCgρ

q−p

)
(9)

Elementary calculations show that the right hand side is maximal for

ρm =

(
q(p− r)λCΩ‖f1‖∗
r(q − p)CgCΓ

)1/(q−r)
.
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Inserting this into equation (9), we find that the right hand side is zero for

λ = λ∗ :=

[
p

r
‖f1‖∗CΩC

r−p
q−r

0 +
p

q
CgCΓC

q−p
q−r

0

] r−q
q−p

,

where

C0 =

(
‖f1‖∗CΩ(p− r)q

CgCΓ(q − p)r

)
,

and strictly greater than 0 for λ < λ∗. This shows that for every λ < λ∗, we
find ρλ > 0 such that Jλ ≥ cλ > 0 for ‖u‖b = ρλ. The existence of a function
u0 ∈ E, ‖u0‖b > ρλ and Jλ(u0) ≤ 0 now follows as in the proof of Theorem 2
(case A4 b). Then the Mountain-Pass Lemma again implies the existence of a
nontrivial solution u1 with Jλ(u1) ≥ cλ.
On the other hand, for ϕ ∈ C∞0 (O) and t > 0 we obtain

Jλ(tϕ) ≤
tp

p
‖ϕ‖pb −

tr̄

r̄

∫
O

f2(x)|ϕ|
r̄dx .

This shows that Jλ(tϕ) < 0 for sufficiently small t and consequently Jλ attains
its minimum in the ball Bρλ ⊂ E. We claim that there is a second solution
u2 ∈ Bρλ with Jλ(u2) < 0.
In addition, with the same truncation procedure as in the proof of Theorem

2, we claim that there are two nonnegative solutions. 2

Now we can prove the corresponding result for equation (1) with boundary
condition

n · a(x)|∇u|p−2∇u+ b(x)|u|p−2u = λg(x, u) on Γ (2)λ

if we interchange the roles of g and f in Assumptions B1–B3. That is, we assume
now that f satisfies Assumptions A1–A4 a) (with f0 ≡ 0) and g satisfies

B4 |g(x, s)| ≤ g1(x)|s|q−1, 1 ≤ q < p, g1 ∈ Lp/(p−q)(Γ;w
q/(q−p)
2 ), |g(x, s)| ≥

g2(x)|s|q̄−1, 1 ≤ q̄ ≤ q and g2 > 0 in some nonempty open set U ⊂ Γ.

Theorem 4 Let f satisfy Assumptions A1–A4 a) (with f0 ≡ 0) and g satisfy
B4. Then for every 0 < λ < λ∗, there are at least two nontrivial nonnegative
solutions of (1), (2)λ.

Proof. First we claim as in Lemma 5 that

Ng : L
p(Γ;w2)→ L

p/(p−1)(Γ;w
1/(1−p)
2 ) , NG : L

p(Γ;w2)→ L
1(Γ)

are bounded and continuous. The estimate for Jλ now reads

Jλ(u) ≥
1

p
‖u‖pb −

1

r
CΩCf‖u‖

r
b −
λ

q
CΓ‖g1‖∗‖u‖

q
b,
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where ‖g1‖∗ is the norm of g1 in Lp/(p−q)(Γ;w
q/(q−p)
2 ). Now λ∗ can be calculated

as

λ∗ :=

[
p

q
‖g1‖∗CΓC̄

q−p
r−q

0 +
p

r
CfCΩC̄

r−p
r−q

0

] q−r
r−p

, C̄0 =

(
‖g1‖∗CΓ(p− q)r

CfCΩ(r − p)q

)
.

The existence of u0 with ‖u0‖b > ρλ and J(u0) < 0 follows in the same way as
in the proof of Theorem 2, case A4 a). Finally, for a nonnegative ϕ ∈ C∞δ (Ω)
with suppϕ ∩ Γ ⊂ U not empty, we find

Jλ(tϕ) ≤
tp

p
‖ϕ‖pb + C

tr

r
‖ϕ‖rb −

tq̄

q̄

∫
U

g2(x)|ϕ|
q̄dx .

Since q̄ < p ≤ r, Jλ(tϕ) < 0 for t sufficiently small and we claim that Jλ attains
its minimum in Bρλ ⊂ E. 2

We remark that, if Ω is of class C1,α (α ≤ 1) and, in addition to B4, g
satisfies

|g(x, s)− g(y, t)| ≤ C
(
|x− y|α + |s− t|α

)
, |g(x, s)| ≤ C

for all x, y ∈ Γ, s, t ∈ R, then the regularity result of [8], Thm. 2, shows that
the solution u belongs to C1,β(Ω) for some β > 0.
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