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EXISTENCE AND MULTIPLICITY RESULTS FOR SEMICOERCIVE
UNILATERAL PROBLEMS

D. GoELEVEN, V.H. NGUYEN AND M. WILLEM

In this paper, we investigate a general class of variational inequalities. Existence
and multiplicity results are obtained by using minimax principles for lower semi-
continuous functions due to A. Szulkin.

1. INTRODUCTION

The aim of this paper is the study of problems in mechanics characterised by a

general mechanics law which may be written in the form
0 € grad W(u) + 8®(u), u € U,

that is, the law is the sum of a potential law and a superpotential law. W is the
potential and ® is a proper convex function and is the superpotential. We denote by
8% the convex subdifferential of . U is the space of all fields of possible displacements.
In this paper it will be assumed that W can be written in the following form

W(u) = (u, Tu)/2 + Cu,

where T is linear symmetric and C is C*(U, R).

As an example, we shall consider the following problem: let T > 0 and let
HY(I, R) be the Sobolev space obtained by completing the set of € real-valued
T-periodic functions on II := R/TZ with the norm

T
Il = [ ol + i .
Let K be the closed convex cone defined by
K :={u e H'(II,R): u(z) > 0 on [0, T]}.
We consider the following periodic unilateral problem
[Po] ve K: /on.(i) —u)dt + ATV,,V(t, u).(v—u)dt 20, VveK,

when V is a-positively homogeneous with respect to u and such that
(a) VueR\{0}: foTV(t, u)dt > 0,
(b) JveR*:V(,v) <0 on anon zero measure subset.
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In this case,
1 T T
W(u) = _/ [u]? dt+/ V(t, u)dt,
2 0 0

where the former term correspond to the kinetic energy and the latter to the potential
energy. ®(u) := Ix characterises the constraints on the displacement field.

We now detail the framework of our paper.

Let (X, X*) be a dual system of real Hilbert spaces, let T: X — X* be a symmet-
ric bounded linear operator and let C € C!}(X, R). C is assumed to be (-positively
homogeneous that is, (C'(u), u) = BC(v)) and strongly continuous (that is C maps
weakly converging sequences into converging sequences). Let &: X — (—o0, +00] be
a proper convex functional. ® is assumed to be a-positively homogeneous and weakly
lower semicontinuous.

We are looking for non trivial solutions, that is, z* ¢ KerT, of the following
variational inequality:

[P] z*eX: (v—z", Te*+C'(z")) + ®(v) -~ ®(z*) 20, VveX.

In case of bilateral problems (that is, ® = 0), the first result concerning this
problem is due to Lassoued [2]. Recently, using a version of the Ljusternik-Schnirelman
theory on C*-manifolds due to Szulkin [5] Ben Naoum, Troestler and Willem obtained
a general abstract existence and multiplicity theory for bilateral problems [1], where
homogeneous second order differential equations were considered. For a basic work on
critical point theory and its applications to bilateral problems we shall refer to [3]. In
this paper, we use a version of minimax primciples for lower semicontinuous functions
due to Szulkin, to get new results for the variational inequality [P] and related unilateral
problems.

2. EXISTENCE RESULT

THEOREM 2.1. If the following conditions hold true: o < 8 < 2 and

1) T is semicoercive, that is, there exists ¢ > 0 such that
b
(z, Tz) > c.||Pz||* foreach ze€ X

with P = I — Q, where I denotes the identity mapping and @ denotes
the orthogonal projection of X onto Ker(T).

(2) dimKerT < +o0,

(3) 3zeX:(C'(2), z) + ®(2) <O,

(4) Cu)>0,VueKerT, u#0,
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then problem [P] has a nontrivial solution.

ProoF: Let J: X — (—o0, +00] be the functional defined by
1
J(u) == E(u, Tu) + C(u) + ®(u).

Let X = U X, where for each n, X, := {z € X: ||z]| < n} is a weakly compact
neN
convex set in X . Since J is weakly lower semicontinuous, it reaches its minimum on

each X, let us say at u,.
We have J(un) < J(v), for each v € X,,.
Let v € X, tv+ (1 — t)u, € X, for each ¢ € [0, 1] and since P is convex, we get

1
®(v) — ®(un) + 5[(T(u,. +t(v — un)), un + (v — un)) — (Tun, ua)]/t
+ [Clun + t(v —un)) — C(un)]/t 20, for all v € X,,.
Computing the limit as t — 0% we get
(2.1) (v = tun, Tun + C'(uy)) + ®(v) — ®(us) >0, for all v e X,.

We show first that the sequence {u,} is bounded.
(a) If 0 < B < 2. Suppose on the contrary that {u,} is unbounded. Passing pos-
sibly to a subsequence, we can suppose that w — lim z, = z*, where 5 := u,/ ||ua]|-

Put v = 0 in (2.1); we obtain T

(tny Tup) + B.C(un) + &(un) <0
which implies:
(2.2) (Tny TZ0) + B-C(@a)- [lunl? 2 + ®(za) ual|* 2 < 0.
Taking the limit as n — +o0 in (2.2), we get

(z*, Tz*) < iminf(z,, Tz,) <0,
and since (z*, Tz*) > 0 we obtain

(z*, Tz*) =0,

and thus Tz* = 0 and c.liminf [[Pz,|® < liminf(z,, Tz,) < 0. Going if necessary to
a subsequence we can assume that Pz, — 0, z, — z* € Ker T, since dimKerT < co.
Moreover [|z*{| = 1.
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By positivity, (un, Tu,) > 0 for each n € N, and thus we have from (2.1)
(2.3) (z, Tun) + (z, C'(un)) + ®(z) = BC(un) + ®(un), for each z € X,.
Choosing z = 0, we obtain

®(un) +6C(un) <0.

Dividing by ||u,||?,
BC(2n) + (za) [|ual|* P <0

and taking the limit, we obtain
C(z*) <0,

and since ¢* € Ker T, this is a contradiction to assumption (4).
Thus the sequence {u,} is bounded. Without loss of generality, we can suppose
that

u*'=w-— lim u,.
n—,oo

For y € X, there exists m € N such that y € X,, for all n > m. Hence J(u,) <

J(y), for all n > m and since J is weakly lower semicontinuous, we get
J(u*) < J(y)v

and therefore J(u*) = m}n J(y).
We have thus

(Tu* +C'(x*), v —u*) + &(v) ~ ®(v*) 20, VyeX.
With v = 0, we obtain SC(u*) + ®(u*) < 0, and thus by assumption (4)
u* ¢ Ker T\ {0}.

Now,

J@*) < J(v), foral velX,

and thus
J(u*) < C(v), forall ve€KerT.

By assumption (3), we get
J(x*) < C(z) +¥(2) <0,

and thus u* #0. 0
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COROLLARY 2.1. Let K be a nonempty closed convex cone of X . If the fol-
lowing conditions hold true: a < 8 < 2 and
(1) T is semicoercive.
(2) dimKerT < +oo0,
(3) 3ze K:(C'(z), 2) <0,
(4) Clu)>0,Vue KNKerT, u#0,
then there exists v € K \ KerT such that

(v-2z*,Tz*+C'(z*)) 20, VveEK.

3. MULTIPLICITY RESULT

We shall assume that C € C!(X, R) is even, B-positively homogeneous and
strongly continuous, and ®: X — (—o0, +00] is even, a-positively homogeneous and
strongly continuous. )

In order to obtain a multiplicity result to prove that [P] has many pairs of solutions
(—=z*, z*), we verify the assumptions of Theorem 4.4 in [4] due to Szulkin.

Let us recall some definitions.

Let X be a real Banach space and J a function on X satisfying: J = f+ g, where
f € CYX,R) and g: X — (—o00, +00] is convex, proper and lower semicontinuous.
We say that J satisfies the Palais-Smale condition in the sense of Szulkin (PS), if {u,}
is a sequence such that J(u,) » ¢ € R, z, € f'(un) + 99(un) where z, — 0, then
{u.} possesses a convergent subsequence.

THEOREM 3.1. (Szulkin [4].) Suppose that J is defined as above and satisfies
(PS), J(0) =0 and f, g are even. Assume also that

(1) there exists a subspace X; of X, of finite codimension, and numbers v,
p > 0 such that J IBBan1> v,
(2) thereis a finite dimensional subspace X; of X, dim X; > codim X, such
that J(u) - —oo as ||ul| - o0, u € X;.
Then J has at least dim X — codim X, distinct pairs of nonzero critical points
(—=z*, z*), that is 0 € f'(z*) + 9g(z*).

CoroLLARY 3.1. (Szulkin [4].) Suppose that the hypotheses of Theorem 3.1
are satisfied with (2) replaced by

(2') for any positive integer k there is a k-dimensional subspace X; of X
such that J(u) » —o0 as [jul]]| = +o0.

Then J has infinitely many distinct pairs of nonzero critical points.

From this theorem, we obtain the following
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THEOREM 3.2. Ifa>1, 8> max{2, 2* -1} and

(1) 7T is semicoercive

(2) dimKerT < +o0,

(3) there exists a subspace X, of X, such that n := dimX,, > dimKerT
and C(y) <0, forall ye X,, y#0,

(4) @u)>0,Vue(KerT)\{0}; P(x)>20,VuelX.

Then there exist at least n—dim Ker T distinct pairs of nontrivial solutions for problem
[P].

PROOF: Let f(z) := (, Tz)/2 + C(z), g(z) := ¥(z). Let X; := (KerT)‘L,
Xy =X,

(1) For every z € X;, we have

(z, Tz)/2 + &(z) + C(z) > ¢/2.|z])* — |C(=)]

and since ® and C are continuous and positively homogeneous, there exist k, k' > 0
such that

(z, Tz)/2 + ®(z) + BC(z) > ¢/2.]|z||* — k' ||=]|” .

It is always possible to choose p such that 7 := ¢p?/2 — k'p? > 0 and thus
J(z)21, Vze€dB,NX,.
(2) By assumption (3), there exists § > 0 such that

C(z) < —6|z||°, forall ze€ X,.

We have
J(z) < |7, ll=|* - 6 l1=I|® + k |j=]|®
and thus
m J(z)= —o0.
llzll =+ (2)
z€EX,

It remains to prove that J satisfies the (PS) condition. Let u, € X be a sequence such
that J(un) — c€ R, 2z, € f'(un) + 89(u,) where z, — 0; that is also (see [4] for more
details)

(3.1) (v) — B(un) + (Tun + C'un, v —un) = —ba. |jv — un||,

where 6, — 0.
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We claim that {u,} is bounded. Suppose that {u,} is unbounded. With v = 2u,
in (3.1) we get

(%n, Tun) + BC(un) + (2% — 1)®(un) = —bn. |luall,
so that, for n large enough, ‘
BJ(un) — {{tn, Tun) + BC(un) + (2% — 1)@(un)} < B(c+1) + |lua| -
Thus
(3:2) (B+1-2%)8(un) +(B/2 ~ 1){un, Tun) < Blc+1) + [uall.
By assumption (6) we have
(ﬂ/2 - 1)("‘1&1 Tu’n) < ﬂ(c + 1) + ”uﬂ” .

Put v, := un/ ||us||. We can suppose, by considering if necessary a subsequence, that
w — Hm v, = v*.
n—oo
We have
(B/2 = 1)(vn, Tvn) < Ble+ 1)/ |luall® +1/ |[uall -
Taking the limit, we get
0 < (v*, Tv*) < iminf(v,, Tv,) <0,
and as in Theorem 2.1, going if necessary to a subsequence, we can assume that |[v*| =
1.
Since T is positive, from (3.2) we get also
(B+1—2%)%(un) < Blc+1) + [luall,
and thus
(B+1-2%)8(va) < Ble+1)/ lfunll™ +1/ [[unll*" .
By taking the limit, we get ®(v*) < 0, which is a contradiction to assumption (4).
Thus {¢,} is bounded and by considering possibly a subsequence, we may suppose
that u,, is weakly convergent. Let u* = w —limu,,. Put v =u* in (3.1). We get

(Tun, u* —un) + {Clup, u* —un) + B(v*) — B(un) > —bn.|lv* — ua|-

Taking the limit, we get
lm (Tup, u, —u*)} < 0.

n— 00

The orthogonal decomposition X @ Ker (T') allows us to write uy, =: T, +%,. Thus
we have

lim c.|[@, —%"||* < lim (T(%. —T"), T - 7") <0,
n—oo n—0o0

and %, is strongly convergent to #*. Since dimKerT < +o00, going if necessary to a
subsequence, %, is strongly convergent to @* and the conclusion follows. 0
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4. EXAMPLES
EXAMPLE 4.1. Let T > 0 and let X := H'(II, R). Let K be the closed convex
cone defined by K := {u € H}(II, R) : u(z) > 01in [0, T]}. We consider the periodic

unilateral problem

T T
1) uweK: / (v — u)dt +/ VuV(t, u).(v —u)dt > 0, Vv € K.
1] 0

We assume that:
(a) VYu €eR, V(- u)is measurable and there exist a, b € L'([0, T'], Ry) such
that Vt € [0,7T], Vu € R, |[u| =1, [V(¢, u)| € a(t) and |V, V (¢, u)| <
b(t).
(b) for almost all t € R, V (¢, .)€ C?,
(c) YuweR\{0}: [T V(L u)dt>o0,
(d) 3veR*:V(,v) <0, on anon zero measure subset,

(e) V is B-positively homogeneous (8 < 2) with respect to u.
Let T: X — X* and C: X — R be defined by

T T
(Tu, v) = / w6 — @)dt, C(u) = / V(t, u)dt.
0 0
We can prove that if V satisfies (a)-(e), then all assumptions of Corollary 2.1 are

satisfied [1], so that (1) has at least one non-constant solution.

EXAMPLE 4.2. We consider the problem
(2)
T T T
u€ X: / u.(v —u)dt + / V.V(t, u).(v — u)dt +/ g(%) (l'u[3 - Iuls)dt
0 0 0
20, Vue X.

Let T: X » X* and C: X — R be defined as in Example 4.1 and put ®(u) :=
foT g(t) lu)® dt. We assume that g is a positive (g # 0) bounded function.

We can prove that if V satisfies (a)~(d) and (e) with # > 7 and even, then all
assumptions of Theorem 3.2 [1] are satisfied. Therefore (1) has infinitly many distinct
pairs of non-constant solutions.
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