
Existence and Nonexis tence of Complete
Refinement Operators

Patrick R. J. van der Laag 1,2 and Shan-Hwei Nienhuys-Cheng I

i Department of Computer Science, Erasmus University of Rotterdam,
P.O.Box 1738, 3000 DR Rotterdam, the Netherlands

2 Tinbergen Institute

A b s t r a c t . Inductive Logic Programming is a subfield of Machine Lear-
ning concerned with the induction of logic programs. In Shapiro's Model
Inference System - a system that infers theories from examples- the
use of downward refinement operators was introduced to walk through
an ordered search space of clauses. Downward and upward refinement
operators compute specializations and generalizations of clauses respec-
tively. In this article we present the results of our study of completeness
and properness of refinement operators for an unrestricted search space of
clauses ordered by O-subsumption. We prove that locally finite downward
and upward refinement operators that are both complete and proper for
unrestricted search spaces ordered by 0-subsumption do not exist. We
also present a complete but improper upward refinement operator. This
operator forms a counterpart to Laird's downward refinement operator
with the same properties.

1 I n t r o d u c t i o n

Inductive Logic Programming (ILP) is a subfield of machine learning concerned
with the induction of logic programs that are consistent with examples of an
unknown concept, i.e. programs that can derive all positive examples and none
of the negative ones. Within ILP, generalization and specialization of theories
and clauses play important roles.

Whereas logical implication between theories or clauses are conceptually most
desirable, 0-subsumption, a weaker version of it, is widely used since it is more
manageable and we use it as our notion of generality w.r.t, which we study
refinement. Clause C O-subsumes clause D if there is a substitution 0 such that
C0 C D, where C and D are represented as sets of literals. If C 0-subsumes D
and D 0-subsumes C then C and D are called (subsume) equivalent.

Shapiro [15] has introduced the use of downward refinement operators in mo-
del inference. A downward refinement operator p can be used to derive a set of
specializations of a clause C, denoted by p(C). We also consider upward refine-
ment operators, denoted by 5, that return sets of generalizations. In our opinion,
ideal refinement operators are locally finite, complete and, less important, proper
for search spaces of clauses that are not restricted beforehand. Local finiteness
means that p(C) or 5(C) is finite and computable. Properness means that C is

308

not equivalent with any element of p(C) or 5(C), and completeness that every
proper specialization or generalization of a clause can be found.

Although O-subsumption is simpler and easier to understand than logical
implication, there are still some simple looking but unanswered questions related
to refinement w.r.t. O-subsumption. They will be answered in this article.

I. Can we define locally finite, complete and proper downward or upward refi-
nement operators for unrestricted search spaces ordered by 0-subsumption?

2. If not, can we define locally finite and complete downward or upward refine-
ment operators for such search spaces if we drop the condition of properness?

The following example illustrates the problems of completeness and properness
of refinement operators for unrestricted search spaces.

Example i. Consider the following clauses that represent that node X is in a
cycle of length 3 and 1 respectively:

c = cycle(X) con(X, Y), con(Y, Z), eo, (Z,X)
D = cycle(X) t--- con(X,X)

Then clause C 0-subsumes clause D as can be verified by the substitution
{Y/X, Z/X}. A downward refinement operator like Laird's P0 [7] can derive
D from C in two refinement steps: applying the variable unifications {Y/Z} and
{Z/X}. We say that there is a po-chain from C to D via E.

E = cycle(X) +-- co,~(X, X), con(X, Z), con(Z, X) �9 po(C)
D' = eyde(X) +- con(X,X), con(X,X), con(X,X) �9 po(E) c_ p~,(C)

In ILP, clauses are usually interpreted as sets of literals, hence the duplicate
literals in D' can be removed to get D. When we want to derive C from D
using an upward refinement operator, anti-unification of variables in D can only
result in C if we first duplicate the literal con(X, X) in D twice. Note that the
clauses D and E are subsume equivalent. Still it seems useful to derive E from
D first, since it can be used to derive C later on. We will prove that this kind
of equivalent refinement steps are necessary for completeness.

In this example, two literal duplications were sufficient to derive C. But
how many duplications are necessary to derive other clauses in an unrestricted
search space, for example cycles of arbi trary length n? Even if we drop the
condition of properness, problems with local finiteness of a complete upward
refinement operator arise if the required number of literal duplications cannot
be determined.

The results in this article provide a negative answer to Question 1. We prove
that complete and proper refinement operators for unrestricted search spaces
ordered by O-subsumption do not exist.

Question 2 is already part ly answered by Laird's [7] improper, complete
downward refinement operator for unrestricted sets of clauses. In this article we
complete the affirmative answer by defining an upward counterpar t . to Laird's
downward refinement operator. We will show that the number of required literal

309

duplications in upward refinement is finite and computable. Using this observa-
tion we will come to our positive result,

In practice these results imply that under the restriction of local finiteness
and completeness, any attempt to modify an improper refinement operator into
a proper one or to construct a new proper refinement operator is doomed to fail.

Related work. Refinement operators for clauses ordered by ~-subsumption are
also described by Shapiro [15], Laird [7], and Ling and Dawes [9]. Shapiro in-
tended to define a downward refinement operator for finite search spaces such
that every reduced clause was derivable from the empty clause. We have shown
that his operator did not satisfy this weak completeness property 3 and propo-
sed another proper and complete downward refinement operator for finite search
spaces of reduced clauses [6]. Laird's modified version of Shapiro's downward
refinement operator is complete but improper for unrestricted search spaces as
will be discussed in Section 4. Ling and Dawes have proposed an upward refi-
nement operator for clauses that is, using our definitions, neither complete nor
proper and operates on finite search spaces. It lacks the, in our opinion vital
(cf. Example 1), ability of increasing the number of literals in generalization. In
[12], the authors and Leon van der Torre presented a deeonstruction of logical
implication that resulted in six downward and upward refinement operators for
finite search spaces ordered by six increasingly strong orderings. In this last ar-
ticle the use of the substitution and set ordering to define refinement operators
for the 0-subsumption ordering was introduced. This approach will also be taken
in Section 5, in which we develop our complete upward refinement operator for
unrestricted search spaces. This last refinement operator is presented before as
a working paper in [5].

The difference between 0-subsumption and logical implication between clau-
ses can be characterized by self-resolution. When a clause is resolved n- 1 times
with itself then the resulting clause is called an n-th power of the original clause.
The original clause is also called an n-th root of the resulting clause [I0]. Ope-
rators that compute n-th powers and roots of a clause can be used to extend
downward and upward refinement operators for 0-subsumption to logical impli-
cation. For example, the complete upward refinement operator for ~-subsumption
that will be presented in this article becomes complete for logical implication
when we incorporate Idestam-Almquist's [i] expansions of clauses. Incomplete
but more efficient operators that compute n-th roots of clauses are described in
[2] and [8].

O u t l i n e o f t h e a r t i c l e . In Section 2 we give some basic definitions Concerning
orderings and refinement operators. In Section 3 we prove the nonexistence of
complete and proper refinement operators for unrestricted search spaces ordered
by 0-subsumption. In Section 4 we briefly discuss Laird's complete downward
refinement opera tor for such search spaces. A complete upward refinement ope-
ra tor will be defined in three steps in Section 5. Finally, in Section 6, we will
present our conclusions and suggest some future research directions.

3 This incompleteness is described independently by Niblett [11]

310

2 N o t a t i o n a n d D e f i n i t i o n s

2.1 Notation

Given a language of first order logic s with finitely many function and predicate
symbols we use the following notation. Clauses are denoted by C, D , . . . , function
symbols by f , g, constants by a, b, predicate symbols by p, q, r and literals by
L, M. All these symbols can occur with subscripts.

In this article we make an explicit distinction between the representat ion of
a clause as a set and as a sequence of literals. This is necessary since we need to
describe the operat ion of duplicating a literal in Section 5. In the four preceding
sections the difference is not important . Whenever we say 'clause C ' we mean a
sequence of literals: C = L 1 , . . . , L,~ 6- M 1 , . . . , M~.

The set representat ion is common in ILP and will, in this article, sometimes
be used to facilitate definitions. By writing C we mean tha t clause C is considered
as a set of literals and thus the internal ordering and repetit ion of literals play
no role. For example, the clauses

C = even(X) +-- odd(Y), odd(Y) ,p lus(Y,Y ,X) , and
D = even(X) +-- plus(Y, }I, X) , odd(Y)

have the same set representation

= D = {even(X),-~plus(Y, Y, X),-~odd(Y)}.

All definitions and properties of refinement operators in this article will be descri-
bed in terms of general first order clauses but they can easily be adapted for
(definite) Horn-clauses.

2.2 Definitions

In the following definitions S can be any set of clauses and ~ can be any ordering.

Given two literals L and M, we use the following notions:

- L and M are called compatible iff they have the s a m e p r e d i c a t e name and
sign [13].

- A literal is called most general w.r.t, a clause C iff it contains only distinct
variables as arguments tha t do not occur in C [15].

Given a set of clauses S and clauses C, D, E C S, we use the following notions:

- S is called unrestricted iff all clauses of some language E are in it.
- A binary relation _ on S is called a quasi-ordering on S iff it is reflexive

(C ~ C) and transit ive (C ~ D and D ~ E imply C h E). For every quasi-
ordering _ we can define an equivalence relation ,-~ by C ~ D iff C _ D and
D h C .

- Quasi-ordering ~-1 is stronger than ___2 if C ___2 D implies C ___1 D. If also for
some C, D, C ,~2 D and C ___1 D then ___1 is strictly stronger than ___2.

311

- If C ___ D holds then C is called a generalization of D and D a specialization
of C. If C ~- D holds, meaning C _ D and D ~ C, than C is a proper
generalization of D and D is proper specialization of C. If C _ D or D ~ C
then C and D are called comparable.

- If C ~- D and there exists no E such that C >- E ~- D, then C is called an
upward cover of D and D is called a downward cover of C.

Given a set of clauses S ordered by _,

- p is a downward refinement operator iff VC E S: p(C) C_ {D E SIC ~- D}
- 5 is an upward refinement operator iff 7C C S: 5(C) C {D E S[D ~_ C}

All definitions regarding refinement operators will be presented in terms of down-
ward refinement but are defined similarly for upward refinement.

- p is called locally finite iff VC C S: p(C) is finite and computable.
- p is called proper iff VC E S: p(C) c_ {D C SIC >-- D}
- The sets of one-step refinements, n-step refinements and refinements of a

clause C E S are defined respectively as
p~ (c) = p(C)
p~(C) = {D[3E E p~-X(C) and D e p(E)}
p * (C) = p l (C) u p 2 (C) u . . . u p i (C) u . . .

- p is called complete iff VC, D C S if C ~- D then 3E C p* (C) and E ~ D 4.

3 C o m p l e t e a n d P r o p e r R e f i n e m e n t

Before we present our nonexistence results we motivate our interest in complete
and proper refinement operators for an unrestricted search space. First of all, it
should be clear that any refinement operator that is not locally finite is of no
practical use. All refinement operators in this article will be locally finite.

Completeness of refinement operators is an important property since without
it it is hard to make any statement concerning the performance of the systems
in which they are used. Properness is a nice property for reasons of efficiency.
If a clause is refuted because it is too general or too specific then we are not
interested in clauses that are equivalent with this refuted clause. These clauses
will also be too general or too specific. Still some refinement operators do return
equivalent clauses. It will appear that improper refinement steps are sometimes
necessary as a bridge to reach proper specializations or generalizations.

Since the clauses in the theory to learn are not known in advance, any res-
triction to the search space might exclude these clauses. Shapiro [15] solves this
problem by incrementally expanding the search space. This, however, brings a
lot of extra work. Furthermore, even if a clause and a proper specialization of it
are both in a restricted search space, problems with finding a refinement chain

between them can still occur if intermediate clauses are not in this search space.

4 Our notion of completeness is stronger than Shapiro's [15] notion of completeness
that is defined for downward refinement operators only by p*(D) = S, where []
denotes the empty c]ause.

312

3.1 N o n e x i s t e n c e C o n d i t i o n s

Example 2. Consider the clauses

D2 = q(X1) +-- p(X1, X2),p(X2, X1)
Vn = q (X l) +--- p(Xl, X2),p(X2, X l) . . . ,p(Xn-1, Xn),P(Xn, Xn--1)
C = q(X1) +- p(X1,X1)

D~ contains every literal p(X~, Xj), where 1 < i , j <_ n and i ~ j. In the following
subsection we will show tha t if these clauses are ordered by 0-subsumption they
satisfy D2 >- D3 ~- . . . >- D~ ~- D~+I ~- . . . >- C, and no clause E satisfies D~ ~-
E ~- C for all n. Lemma 2 states for ordered search spaces tha t contain clauses
like these, no locally finite, complete and proper upward refinement opera tor
exists. The problems are il lustrated in Figure lb. The arrows illustrate proper
generalization relations. Using a locally finite and proper upward refinement
operator , all filled dots can be derived from C, whereas the open dots can not.
Hence it can not be complete.

"o>~. c D m
.

. . . . / \
D~.~ ~ E~

/ i
Dk-2 ~ // /

/ /

J / %, ,

/ % E /)2 Dk~." , E , 4

c

(a) the downward case (b) the upward case

Fig. 1, Nonexistence conditions for locally finite, complete and proper refinement op-
erators.

The following lemma states sufficient condition to conclude tha t locally finite,
complete and proper downward refinement operator does not exist.

313

L e m m a 1. Let S be ordered by ~. If S contains clauses C and D,~, n >_ 1 such
that

1. C ~- . . . ~- D~+I ~- Dn ~ . . . ~- D2 ~- D1, and
2. ~ E such that for all n >_ 1: C ~- E ~ D~.

Then a locally finite, complete and proper downward refinement operator for S
ordered by ~_ does not exist.

Proof. Assume that such a p exists. Let p(C) = { E l , . . . , E,~}, then C ~- Ei, 1
i ~ m. For every E~, let ni = min{nlEi ~ D~}. Because of condition 2 these
ni 's exist. Let k = max{ni}. Then C ~- Dk and Ei ~ Dk, 1 < i < m. Thus, Dk
is not in p(C) itself nor is Dk derivable from any Ei. We conclude that p is not
complete. []

An analogous proof holds for the upward version of Lemma 1:

L e m m a 2. Let S be ordered by ~-. If S contains clauses D~, n > 1 and C such
that

i. D1 ~ D2 ~- . . . ~- D~ ~- Dn+~ ~- . . . ~- C, and
2. ~]E such that for all n > 1: D~ ~- E ~ C.

Then a locally finite, complete and proper upward refinement operator for S
ordered by ~- does not exist.

We will apply these lemma's that are valid for arbitrary ordered search spaces
to unrestricted search spaces ordered by 0-subsumption. Example clauses that
fit the lemma's can already be found in a logical language with one binary pre-
dicate p and no function symbols. The nonexistence results of the succeeding
subsections are valid for any logical language that contains infinitely many va-
riables, one or more predicate symbols of arity> 1 and any number of function
symbols.

For simplicity we use only positive literals in the construction of our example
clauses. By changing these examples a little they can be transformed to program
clauses. For example, if we use {p(XI, X2),p(X2,XI)} then the same problems
occur with the program clause p(a, a) +- p(X1, X2),p(X2, Xl).

3.2 Nonex i s tence for Upward Ref inement

Throughout this subsection we use the clauses with the following underlying
sets:

B:~ -- [.J{p(X~,Xj)]I < i , j ~ n , i ~ j }
= { p (X l , xl)}

/(~ represents a structure that is known as a complete graph of size n, for
example

/(3 ~-~ {p(Xl, X2), p(Xl , X3), p(X2, X l), p(X2, X3), p(X3, X l), p(X3, X2) }.

314

Throug.hout this section C will be used whenever set properties are used, such
as in C _C /). Otherwise we write C, where C is a clause that contains one
occurrence of every literal in C. Until Section 5 the difference between the two
notations is not important and can be ignored.

We adopt from Plotkin's definition of reducedness [13]. A clause C is called
reduced i f f /) _C C and D ~ C imply C = /). In words, C is reduced iff it
equivalent to no proper subset of itself.

L e m m a 3. For all n > 2, K~ is reduced.

Proof. Assume K , is not reduced for some n. Then for some substitution 0,
/(~0 C / (~ . This implies that two literals p(Xil, Z~ 2) and p(Xjl , Xj2) in K~ are
mapped to the same literal p(Xkl, Xk2) in KnO. If il r Jl then p(Xi~, Xj l) in K~
is mapped to p(Xk~, Xkz). Otherwise, i2 r j2 and p(X~2, Xj2) in K,~ is mapped
to P(Xk2, Xk2). Both cases contradict/(,~0 C/(,~. []

L e m m a 4. K2 ~- K3 >- ... ~ Kn ~ Kn+l ~ ... >'- C.

Proof. For every K . we can define a 0 that maps every Xi in K~ to X1. This
gives/(,~0 C_ C. Since p(X1, X1) in C cannot be mapped to any literal in any
K~ we get K~ ~- C.

Using the trivial substitution we can prove K~ _ K~+I. Since Kn+l is re-
duced (Lemma 3) and /(,~ c /{~+1, Kn+l and K~ cannot be equivalent, and
Kn ~ Kn+l. []

L e m m a 5. Let C and K,~ be defined as above. Then there is no E such that for
all n >_ 2, K~ >-_ E ~- C.

Proof. Assume that E satisfies~K,~ K E ~- C for all n > 2. Let X 1 , . . . , X,~ be
all variables in E. By/~0 C C, E can contain only literals p(Xi ,X j) . In these
literals Xi # Xj must hold, otherwise E is equivalent with C. But then /~ c_/(,~
which implies E ~ K,~ >- Km+l. This contradicts K~ _ E for n = m + 1. []

T h e o r e m 6. A locally finite, complete and proper upward refinement operator
for unrestricted search spaces ordered by O-subsumption does not exist.

Proof. Follows directly from Lemma 2, Lemma 4 and Lemma 5. []

3.3 N o n e x i s t e n c e for D o w n w a r d R e f i n e m e n t

Throughout this subsection clauses with the following underlying sets are used:

C' = {p(Xl, X2),p(X2, Xl)}
C~ = {.P(YI: Y2),P(Y2, V3),..- ,p(Yn-1, Y~),P(Y,~, Y1)}
b,~ = C u C 3 . , n >_ 1

We state without proof that

L e m m a 7. For all n >_ 1, D,~ is reduced.

315

L e m m a 8 . Let C and D~ be defined as above. Then C ~- . . . ~ Dn+l ~- D~
. . . ~- D2 >- D1.

Proof. C ~- D,~ follows directly from C C /) , and the reducedness of Dn
(Lemma 7). Let 8 be the substitution tha t maps every Yj, 1 < j < 3 '~+1, in
D~+I to Yk in D~, where k = 3 n iff j mod 3 n = 0 and k = j mod 3 '~ other-
wise. Then /)~+10 = /)n, and hence D~+I ~- D~. Assume D~ _ D~+I. Then
for some a, Dn~ C_ D~+I and since IDol < 1D~+ll, D ~ a c D~+I. But then
/)~+10a = / P , a C D , + I , which contradicts tha t D,~+I is reduced (Lemma 7).
We conclude D~ ~ D~+~, and hence Dn+l ~- D~. []

L e m m a 9. Let C and D~ be defined as above. Then there is no E such that for
a l l n > _ l , C ~ E ~ _ D ~ .

Proof. Assume tha t E is a clause tha t satisfies C >- E _ Dn for all n > 1.
Choose an m such tha t 3 m > I/~1. Then, for some 0 , / ~ C_ D,~. Since I/~01 < 3 "~
and I/9,~1 = 3 "~ + 2, we know tha t at least one of the literals of the C3m-part
of Dm does not occur in E0. Without loss of generality we may assume tha t
p(Yn, Y1) c b.~ -Ee .

Consider the clause ~/" = /) , ~ - {p(Y~, Y1)}. T h e n / ~ 8 c_ /~ implies E ~ F.
Let a map every Y~ in F to X1 if i is odd, and to X2 if i is even. Then l/ 'a C
and hence F ~_ C. So E ~_ F __ C, which contradicts C ~ E. []

T h e o r e m 10. A locally finite, complete and proper downward refinement ope-
rator for unrestricted search spaces ordered by 8-subsumption does not exist.

Proof. Follows directly from Lemma 1, Lemma 8 and Lemma 9.

4 Complete Downward Refinement

Laird has presented a generalized version of Shapiro's [15] refinement operator
for reduced clauses in [7], where he referred to Shapiro's (incorrect) proof of
(weak) completeness. We repeat the definition of Laird's downward refinement
opera tor in our notation:

R e f i n e m e n t o p e r a t o r P0. Let C = L 1 , . . . , L , ~ +- M 1 , . . . , M n be a clause.
Then D C po(C) when exactly one of the following holds:

1. D = C8, where 0 = { X / Y } and both variables X and Y occur in C.
2. D = C0, where 0 = { X / f (Y 1 , . . . , Yn)}, f is an n-ary function symbol, X

occurs in C and Y I , . . . , Y~ are distinct variables not occurring in C.
3. D = L 1 , . . . , Lm+l +-- M1, �9 �9 Mn, where L ~ + I is a most general a tom w.r.t.

C.
4. D = L 1 , . . . , Lm +-- M1, �9 �9 Mn+l, where M~+I is a most general a tom w.r.t.

C.

Where Shapiro needed to restrict the search space to a finite set, Laird 's P0
operates on unrestr icted search spaces.

316

T h e o r e m 11. Po is a locally finite, complete but improper refinement operator
for unrestricted search spaces ordered by O-subsumption.

Proof. Local finiteness of P0 follows directly from the finite number of variables
in a clause and the definition of po. A proof of completeness can be found in [4].
Improperness is easy to verify. Consider for example the clauses C = p(f (X)) +-
p(X) and D = p(f (X)) <--- p(X) ,p(Y) . They satisfy C ~ D, and D E po(C) by
item 4. []

5 C o m p l e t e U p w a r d R e f i n e m e n t

Our intention is to define an upward refinement operator 50 with the same pro-
perties as P0. The different problems involved in the definition of such an upward
refinement operator arise in different weaker orderings. We therefore consider
three increasingly weak orderings: the 0-subsumption, set, and substitution orde-
ring, denoted by >-, >-1, and ~2 respectively. The corresponding complete upward
refinement operators will be denoted by 50, 61,52. Since refinement operators for
weaker and simpler orderings can be used to define refinement operators for
stronger, more complex orderings, 50, 52 and 52 will be defined in reverse order.
The weak to strong approach was also used in [12], where we investigated proper
refinement in restricted, finite search spaces. 51 and 52 that will be defined later
on could already be found in that article.

5.1 The Substi tut ion Ordering

In the substitution ordering ~_2, clauses are treated as sequences of literals, the
number of the literals and their position in a clause are fixed. It is defined by
C ___2 D iff 30 : CO = D

Example 3. Consider

C = even(X) +-- odd(Y), plus(Y, II, X) and
D = even(Z) +-- plus(3, 3, Z), odd(3).

C and D are incomparable in the substitution ordering because no substitution
can map odd(Y) to plus(3,3, Z) or the other way around. If the places of the
body literals in either C or D were swapped then C >-2 D would hold by 0 =
{X /Z , II/3} (in fact, C ~2 D).

In the substitution ordering, substitutions that axe not renamings determine
proper refinements [12]. In all clauses comparable with a clause C, predicate
symbols appear in the same place as in C and no literals can be removed or ad-
ded. We can speak of clauses being treated as atoms, L 1 , . . . , L,~ +- M 1 , . . . , M,~
can be viewed as V(L1, . . . ,Lm,-~M1,. . . , ~M,~) where the ordering of the ar-
guments of v is fixed. Reynolds [14] has described a (downward) cover relation
for atoms which corresponds with items 1 and 2 in the definition of Po. This
relation can be used as a downward refinement operator for clauses w.r.t, the
substitution ordering directly.

317

Our first upward refinement operator is obtained by inverting these substi tu-
tions. The dual of i tem 2 in P0 has to be described seperately for constants and
function symbols of arity > 0. Replacing some or all occurences of a constant c
by a new variable X always inverts a p0-substitution {X/c}. Replacing some but
not all occurences f (Y1 , . . . , Y,~) by a variable X does not invert a p0-subsitition
{ X / f (Y 1 , . . . , Y~)} since it results in a clause in which Y~ still occurs.

Refinement operator 52. Let C be a clause, then

D C 52(C) iff one of the following holds:

1. D is C after some (not all) occurrences of a variable Y in C are replaced by
a variable X not in C.

2. D is C after all occurrences of a te rm f (Y1 , . . . , Y~) are replaced by a variable
X , where f is a n-ary function symbol (n > 0), X does not occur in C and
all Y~'s are distinct variables not occurring elsewhere in C besides in terms
f (Y1 , . . . ,yn).

3. D is C after some or all occurrences of a constant c are replaced by a variable
X, where X does not occur in C.

L e m m a 12. 5z is a locally finite refinement operator.

Proof. Every clause contains a finite number of te rm occurrences. Therefore the
number of possible inverse substitutions is finite and 52 is locally finite. []

L e m m a 13. 62 is a complete refinement operator for unrestricted search spaces
w.r.t, the substitution ordering.

Proof. It is proved by Reynolds [14, Theorem 4] tha t for every pair of a toms A
and B, if A ~2 B then there is a finite chain A = Ao, �9 �9 �9 A~ = B such tha t A~
is a downward cover of Ai-1 and Ai can be derived from Ai-1 through i tem 1 or
2 of p0. Since A is a downward cover of B iff B is an upward cover of A we can
use 52 in the upward case. Since clauses are t reated as atoms, this result can be
generalized to unrestricted search spaces of clauses ordered by ___2. []

5.2 T h e Se t O r d e r i n g

In the set ordering ~-1, permuta t ion of literals and addition or removal of dupli-
cate literals in a clause no longer influence generality relations. The set ordering
is strictly stronger than the substitution ordering [12]. It is defined by C _~1 D
iff 30 : CO = D.

Set reduction of a clause is the removal of all duplicate literals in it. A clause
is set reduced iff it contains no duplicate literals. If set reduction of C results in
C ' , then clearly C ~1 C' . We might therefore call C ' the set reduced equivalent
of C.

In the set ordering, the necessity of adding literals in generalization steps
arises:

318

Example~ . We repeat the clauses of Example 1:

D = cyc le (X) +- c o n (X , X)

D'= cycle(X) +- con(X,X), con(X,Z), con(Z,X)
E = cyc le (X) +-- con(X , X) , con(X, Z), con(Z, X)

c = c cle(x) con(X, Y), con(V, Z), con(Z, X)

In the set ordering, C >-1 E >-1 D t "~1 D. These clauses illustrate a p0-chain of
downward refinement steps, E E po(C), D E po(E). At every step two variables
are unified and duplicate literals are removed. In the case of upward refinement,
C E 52(E) holds. However, 52 can not be used to derive E from D, since the
number of literals must increase. If we duplicate con(X , X) twice in D before
applying (~2, then we would obtain D t and E E 52(DI). This motivates our
definition of 51 later on.

In the case of downward refinement operators, equal literals are of no use
since they remain equal after substitution. Hence there is no need to duplicate
literals at any t ime and clauses can be set reduced as soon as duplicate literals
appear.

As the last example showed for the case of upward refinement, literals some-
times should be repeated before inverse substitutions are applied by 52. We can
easily define an operator tha t duplicates a literal:

Let C = L 1 , . . . , L,~ +-- M 1 , . . . , M~ be a clause, then D E eql (C) iff

D = L 1 , . . . , L m +-- M1, . . . ,Mi , M i , . . . , M n or
D = L 1 , . . . , L i , L i , . . . , L m +- M 1 , . . . , M ~ .

By applying eql zero or more times, eq~ (C) contains infinitely many clauses of
the form L1,. �9 L~, L2,. �9 L2,. �9 L , r L,~ +--

M 1 , . . . , M~ , M2, . . . , M2, . . . , M~, . . . , M~.

In his description of the inversion of 0-subsumption Jung [3] also incorporated
the addition of arbi t rary many copies of body literals to a clause. Later on in
this section we will show tha t only a finite par t of eq~ is needed for computing
one-step upward refinements.

Ref inemen t operator 51. Let C be a set reduced clause, then

D E~51(C) iff there are C' E eq~(C), D E 52(C') and D is set reduced.

Note tha t clauses with duplicate literals are hard to describe when clauses are
represented as sets of literals. We therefore need the sequence of literals repre-
sentation of clauses for clauses tha t are obtained by eq~ and submit ted to 52.

The proof of the following lemma contains the solution for the main problem
of defining a locally finite complete upward refinement operator for unrestr icted
search spaces ordered by ___1 or __. It shows tha t the number of necessary literal
repetitions is finite and computable.

L e m m a 14. 51 is a locally f inite ref inement operator.

319

Proof. We show that , no mat te r how many times every single literal of C is
repeated before 52 is applied, 51 (C) contains finitely many nonequivalent clauses.

Given a clause C, if C' E eq~(C) and D E 52(C'), then D contains exactly
one variable, say X, tha t is not in C ~ and C. Suppose tha t 52 replaces some or all
of the occurrences of a constant c in C ~ by X (the cases of anti-unification and
functional terms can be proved similarly). Let c occur in the literals L1,. �9 L,~
of C. In every such literal L~, C occurs finitely many times, say n~ times. When
52 is applied to C f every single occurrence of c is either replaced by X or not.
For a single literal L~ this results in 2 TM possible different literals. Hence there is
no need to repeat L~ more than 2 ~ times.

For each literal L in C we can thus compute an upper bound of the sufficient
number of repetitions of L in C ~. Hence we only have to consider a finite and
computable par t of eq~ (C) in the definition of 51. []

The following example illustrates the local finiteness of 51.

Example 5. Consider the clause

C = q(b) +-- p(a, a)

We describe the case in which 52 replaces some or all occurrences of a by a new
variable X. Then L = p(a, a) can either become p(X, X), p(X, a), or p(a, X), or
remain unchanged. We claim tha t no more than 22 = 4 occurrences of L in C ~
are useful. Consider

C' = q(b) +-- p(a, a),p(a, a)
C" = q(b) +-- p(a, a),p(a, a),p(a, a),p(a, a)
D1 = q(b) +-- p(a, X), p(X, a)
92 = q(b) +-- p(a, X) ,p(X, a),p(a, Z) ,p(X, a)
D3 -- q(b) +-- p(a, X), p(X, a), p(X, X), p(a, a)

Then D1 is one of the clauses in 52(C ~) and D2 and D3 are two of the many
possible clauses in 52 (C"). D2 contains the literals p(a, X) and p(X, a) twice and
is not set reduced. Dz is therefore not a member of 51 (C).

Proper generalizations of C with more than five literals do exist. But they
all have at least two variables tha t are not in C. Consider for example the clause

E = q(b) +-- p(a, X), p(X, a), p(X, X), p(X, Y), p(Y, X),

then E is not derivable from C in one step. I t is however derivable in two steps.

L e m m a 15. 51 is a complete upward refinement operator for unrestricted search
spaces w.r.t, the set ordering.

Proof. Let C and D be set reduced clauses such tha t D >-1 C. Then there exists
a substi tut ion 0 such tha t D0 = C.

D ~_2 DO, so by the completeness of 52 there exists a finite 52-chain from DO
to a clause D ~ ~2 D.

DO possibly differs from C in the repetit ion of literals and a permuta t ion of
literals. Since in the definition of 51 all necessary literals are repeated before 52
is applied and the ordering of literals does not influence the applicability of 52,

320

there exists a 51-chain from C to D" "~1 D containing all 52 steps of the 52-chain
from D0 to D ~, possibly preceded by literal duplications. []

Example 6. We will illustrate the proof of Lemma 5.7 using the following clauses:

C = even(X) +-- odd(3),plus(3, 3,X)
D = even(U) ~ plus(V, W, U), odd(V), odd(W)

/)0 = C by 0 = {U/X, V/3, W/3}. Hence there exists a 52-chain from DO to a
clause D I "1 D:

DO = even(X) +-- plus(3, 3, X), odd(3), odd(3)
E = even(X)+--plus(Z,Z,X), odd(Z), odd(Z)e 52(0'0)
D' = even(X) +- plus(Z, W, Z) , odd(Z), odd(W) E 52(E)

This 52-chain from DO to D' can indeed be transformed to a 51-chain from C to
D" by adding the necessary literal duplications:

C = even(X) +-- odd(3), plus(3, 3, X)
E' = even(X) +- odd(Z),plus(Z, Z, X) e 51(C)
E " = even(X) +-- odd(Z), odd(Z),plus(Z, Z , X) e eq~(E')
D" = even(X) +-- odd(Z), odd(W),plus(Z, W,X) e 52(E") (D" E 51(E'))

Note that every literal modification in the 52-chain DO, E, D ~ returns in the 51-
chain C, E ~, D ' . The literal odd(Z) is duplicated once in E ~ in order to derive
V l! .

5.3 The O- S ubsumpt ion O r d e r i n g

The 0-subsumption ordering is strictly stronger than the set ordering. [12]. To
transform our upward refinement operator for the set ordering (CO = D) to one
for the O-subsumption ordering (C0 C_ /)) is relatively easy. We only have to
incorporate an operation for removing literals. We therefore invert the operation
of adding a most general literal:

R e f i n e m e n t o p e r a t o r 50. Let C be a set reduced clause, then

D 6 5o(C) iff D 6 51(C) or
D is C after removing a literal that is most general w. r . t .D.

T h e o r e m 16. 5o is a locally finite: complete but improper upward refinement
operator for unrestricted search spaces ordered by O-subsumption.

Proof. Local finiteness. Every clause C contains finitely many literals, hence fini-
tely many one-step refinements can be added by the new operation of removing
a l i teral Local finiteness of 50 then follows from the local finiteness of 51.
Completeness (outline). Let D ~- C, then for some 0, /)8 _C C. First we prove
that there exists a finite 5o-chain from C to DO. Let {M1, . . . , Mn} = C - [90.

Let Ci = 1)8 U.{M~, . . . ,MI} , then Cn = C. We will show that we can
successively derive C,~-1, . . . , Co = /50 .

321

For i = n - 1 downto 1:
We start with C~+i = C~ U {Mi+l}.
Let Li+i denote a literal that is compatible with M~+i and most general

w.r.t. C~. Then C~+l = (C~ U {L~+i})0 for some 8.
-By the completeness of 51, we can derive Ci U {L~+i} from 6~+i.
-Since L~+i is most general w.r.t. C~, we can remove L~+i from Ci U

{L~+i}, which results in C~.

Since there are finitely many literals M~, all these operations can be performed
in a finite number of refinement steps. We now have a finite (~0-chain from C to
DO. By the completeness of 51, there exists a finite 51-chain from DO to D' ,,~ D.
Since all operations of 51 are operations of 5o too, this 51-chain can be used to
complete the 5o-chain from C to D' ~,, D.
Improperness. Consider the clauses

C -= p (f (X)) +- p (X) ,p (Y)
D = p (f (X)) +-- p(X)

As can be verified, C ~ D, but D E 5o(C). []

6 C o n c l u s i o n s a n d F u t u r e R e s e a r c h

In this article we have presented some new results regarding refinement in un-
restricted search spaces ordered by 0-subsumption. A localy finite, complete but
improper upward refinement operator has been defined, a downward refinement
operator with these properties already existed. We have proven that locally finite
downward and upward refinement operators that are both complete and proper
for these search spaces do not exist.

Our current and future research involves a logical framework in which all
refinement operators that we know of find their place. Operators are classified
according to being upward or downward and properties such as local finiteness,
properness, weak and strong completeness w.r.t, an (un)restricted search space
and its generality ordering. Using this framework we try to fill the categories in
which no refinement operators are known.

A c k n o w l e d g m e n t . We thank Leon van der Torre for reading and commenting
the article as well as for his moral support.

R e f e r e n c e s

1. P. Idestam-Almquist. Generalization under Implication by Using Or-Introduction.
In P.B. Brazdil, editor, ECML-93, pages 56-64, Vienna, Austria, April 1993. LNAI-
667, Springer-Verlag.

2. P. Idestam-Almquist. Recursive Anti-unification. In S. Muggleton, editor,
ILP'93, pages 241-253, Bled, Slovenia, March 1993. Technical Report IJS-DP-
6707, J.Stefan Institute.

322

3. B. Jung. On Inverting Generality Relations. In S. Muggleton, editor, ILP'93,
pages 87-101, Bled, Slovenia, March 1993. Technical Report IJS-DP-6707, J.Stefan
Institute.

4. P.R.J. van der Lang. Een Meest Algemene Verfijningsoperator voor Gereduceerde
Zinnen. In NAIC-92, pages 29-39. Delftse Universitaire Pets, 1992. In Dutch, Eng-
lish version has appeared as Technical Report EUR-CS-92-03, Erasmus Univerity
of Rotterdam, Dept. of Computer Science.

5. P.R.J. van der Laag and S.H. Nienhuys-Cheng. A Locally Finite and Complete
Upward Refinement Operator for 8-Subsumption. In Benelearn.g3. Artificial In-
telligence Laboratory, Vrije Universiteit Brusset, Brussels, 1993.

6. P.R.J. van der Laag and S:H. Nienhuys-Cheng. Subsumption and Refinement in
Model Inference. In ECML-93, pages 95-114, Vienna, Austria, April 1993. LNAI-
667, Springer Verlag.

7. P.D. Laird. Learning from Good and Bad Data. Kluwer Academic Publishers,
1988.

8. S. Lapointe and S. Matwin. Subunification: A Tool for Efficient Induction of Re-
cursive Programs. In ML-92, pages 273-280, Aberdeen~ 1992. Morgan Kaufmann.

9. C. Ling and M. Dawes. SIM the Inverse of Shapiro's MIS. Technical report, De-
partment of Computer Science, University of Western Ontario, London, Ontario,
Canada., 1990.

10. S.H. Muggleton. Inverting Implication. In Muggleton, S.H., editor~ Proceedings of
the International Workshop on Inductive Logic Programming~ 1992.

11. T. Niblett. A Note on Refinement Operators. In ECML-93, pages 329-335. LNAI-
667, Springer Verlag, 1993.

12. S.H. Nienhuys-Cheng, P.R.J. van der Laag, and L.W.N, van der Torre. Construc-
ting Refinement Operators by Decomposing Logical Implication. In P. Torasso,
editor, AI*IA '93, pages 178-189, Torino, Italy, October 1993. LNAI-728, Springer-
Verlag.

13. G.D. Plotkin. A Note on Inductive Generalization. Machine Intelligence, 5:153-
163, 1970.

14. J.C. Reynolds. Transformational Systems and the Al~gebraic Structure of Atomic
Formulas. Machine Intelligence, 5:135-153, 1970.

15. E.Y. Shapiro. Inductive Inference of Theories from Facts. Technical Report 192,
Department of Computer Science, Yale University, New Haven. C T , 1981.

