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Existence and Nonexistence of Positive Radial
Solutions of Neumann Problems with
Critical Sobolev Exponents

ADIMURTHI & S. L. YADAVA

Communicated by J. SERRIN

1. Introduction

Let 2 CR” be a bounded domain with smooth boundary and let « € C*(0Q).
For A>0, p> 1, n=3 we consider the following problem

—Au=uP + Ax(x)u in Q,

u>0 in Q, ()
d
Z—o on 982.
v
n-t2 . , .
When p < p— and «(x) = —1, this problem has been discussed extensively

in the works of N1 [12], Lin & N1 [10] and Lin, N1 & Taxkaci [11]. They have
proved that there exist positive constants 4, and A;, with 1, = 1,, such that
(1.1) admits a non-constant solution for 1 = 14; and does not admit any non-
constant solution for 1< ,. In view of their results, it was conjectured by LIN

2
& Ni [10] that a similar result holds even for p = nL

n-2

When p = n——_—z,

and £ for which (1.1) admits a solution. Clearly when «(x) = 0, (1.1) does not

admit any solution. Therefore we have to consider two cases: (i) x(x) changes
sign, (i) x(x) = 0.

In case (i) some partial results have been obtained in [3] by using the variation-

al methods of BREzis & NIRENBERG [8]. To describe the results of [3], we further

assume that f a(x) dx << 0, that there exists an x, € 02 such that «(x,) >0,

Brezis [7] posed the question of finding conditions on

and that 80 is flat at xo of order at least four. Under these assumptions, it was
shown that for n = 4 there exists a A* > 0 such that (1.1) admits a solution
if and only if A€ (0, A%).
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In case (ii) the standard variational arguments do not seem to work. On the
other hand, in this situation it is easy to construct an example (see Remark 2 at
the end of Section 4) such that for any £ we can find a negative function x(x)
for which (1.1) admits a solution. In view of this and the results of Lin, N1 & TaA-
KAGI [11], we shall consider the very restricted case of problem (1.1) when Ax(x) =
—1, Q is a ball and the solution is radial.

Let B(R) denote the ball of radius R with center at the origin and let u,(R)
be the first non-zero eigenvalue of the radial problem

—Ap =pup in B(R),
) 1.2)
o = 0 on dB(R).
We consider the problem

—NAu = @22 _ 4 in B(R),

u>0, wuis radial in B(R), (1.3)
du
Foi 0 on 9B(R)

and prove the following

Theorem. Let p = (n + 2)/(n — 2). The following conclusions hold:

@If n=3 and p — 1> u(R), then (1.3) admits a solution which is radially
increasing.

() If ncf{4,5,6} and p — 1 < uy(R), then (1.3) admits a solution which is
radially decreasing.

(©) If n=23, then there exists an R* > 0 such that for 0 < R < R*, (1.3)
does not admit any nonconstant solution.

Here we remark that part (a) of the theorem has been proved by N1 [12] and
LiN & N1[10], and that part (b) gives a counter-example to a part of the conjecture
of Lin & Ni [10].

Since we are looking for radial solutions, (1.3) reduces to studying the first
turning point R,(y) of v(r, y), where v satisfies

n—1 n+2
—p" — v =uvn—2 — p,
-
0 =0, v0)=y>0 (1.4)

and R,(y) is defined by
Ri(y) =sup {r; v'(s,») £0 ¥ s5c(0,n)}. (1.5)

Because of the continuity of y — R,(y), we shall be able to deduce the theorem
from knowledge of the behavior of R,(y) as y — 0, 1 and co. Information about
the behavior of R,(¥) as y — 0, 1 is available in the literature. Therefore the main
difficulty lies in understanding its behavior at co. We illustrate this for n = 6.
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Let n=6, y>1, 5 =0v(Ry(yp),y) and w = v — 2. Then w satisfies

w>0 in B(R:(»)),

ow
== 0, on @B(Ri(p)).

Hence by Pohozaev’s identity we have

2@ —1) [ widx+ 8n(n— 1) [ wdx=0.
BRIY BRI
This implies that # > 1/2 and hence v(r,y) > 1/2 for all r€ (0, R,()). Now
the asymptotic analysis of ATKINSON & PELETIER {5] suggests that we can find
positive constants 8, C;, C,, C3 and y, such that, for y > y, and R(y) = C,;y~ ',

R@y) < Ri(»), (1.6)
1 —v(R(y),v) = 9, (1.7)
CilyVe = [V (R, )| = Cofy™. (1.8)

Integrating (1.4) from R(y) to R;(y) and using (1.6)—(1.8), we obtain for C =
C?Cz that

Cly = =R VRO ¥y = [ 1%l — o) dr = 8/12(R,)° — Cufy).

R

Hence
12C
R (s < <—6_ -+ C1> /y—>0 asy—oo, (1.9)

When n < 5 it may not be true that (R, (y), v) is bounded away from zero
as y — oo, whereas estimates similar to (1.6)—(1.8) still hold. Therefore in this
case we have to adopt a different procedure to study R,(y) as y —co.

The paper is divided into two parts. In the first part (Section 3), we study the
behavior of R (y) as y — 0, 1. In the second part (Section 4), following the tech-
niques developed in ATKINSON & PELETIER [5], we obtain estimates similar to
(1.6)—(1.8). Using these (see Section 2) we obtain the proof of the theorem.

In a forthcoming paper we shall study problem (1.3) when —A is replaced by
the p-Laplacian for p =< n.

While revising this paper, we learned of a recent result of BubpDp, KNaar &
PELETIER [9], which discusses the question of existence and non-existence of solu-
tions of (1.3) when u®*2/=2_ 4 is replaced by u®*2/=2 _ 42 for 1<
g << 4/(n — 2). This problem, for ¢ = 4/(n — 2), has also been treated by
ApiMURTHI, KNAAP & Yapava [4].

Recently, ADIMURTHI & MANCINI [1] have tackeled this problem in an arbitrary
domain using variational techniques. We learned from Prof. J. SERRIN that
X. J. WaNG [13] has also found related results.
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2. Proof of the Theorem

In order to prove the theorem, we make use of the standard substitutions,

n— 2\*? 2n—1) n-+2
t—( - ) » k= n—2 ° P:n_zzzk—3> y(’:?’):U(”,?’),

introduced in [5]. Then from (1.4), y satisfies the Emden-Fowler equation

—y" =t750" — »),

2.1
o) =y >0, y(c0)=0.
Let S,(y) be the first turning point of (¢, y), defined by
Si(y) = inf {£; y'(s,7) =0 V s€ (¢, 00)}. 2.2)
Let ¢ be the solution of
—¢" =t in (0,00),
) =1, ¢'(>)=0 (2.3)

and let 7, and 7, respectively be the first zero and first turning point of ¢, ie.,

7o = inf {t; p(s) > 0 for s> t},

. 2.4)
7, = inf {#; ¢'(s) > 0 for s> t}.

Then we have

Lemma A. Let vy = 0,1. Then

@) Si(y) exists and y(Si(p),y) > Q.

i) If y€(0,1), then y is decreasing, with
limS,(y») =0, (2.5)
r=0
lim $,(y) = (p— DV 7. (2.6)
’V—)

(iii) If v > 1, then y is increasing, with
lim §,(7) = (p — DD, 2.7
Y

This result is contained in the works of N1 [12] and LiN & Ni [10]. For the sake
of completeness, we present the proof in Section 3.

Lemma B. Let y € (1,00). Then
() For t=S,(),
y(t:v 7/) 2 Zl(t: 7)3 (28)
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where
— vt
2D =TT e e
(i) If 3= n= 06, there exist positive constants 6, Cy, C,, Cs, Cy and v, such
that, for all y =y, and S(y) = Cpy!*—D,

S1(y) < S(»), 29

1 —y(S(»,y) =9, (2.10)
Gily = ¥'(S0),v) = Cofy, 2.11)
lim $,() = Cs. (2.12)

Assuming the validity of Lemmas A and B, we first complete the proof of the
theorem. Since Lemma A gives the behavior of S,(y) as y — 0,1, to prove the
theorem we must study its behavior at co. For this we need three further lemmas,

Lemma 2.1. Let Z, be as defined in (2.8). Then

77— yp__y —k 7p ;
- &~ yp t 1 n (05 OO), (213)
lim Z; =7, (2.14)
, AN
y—Z(t,y)+ tZ(t,y) = ( 7 ) f ZBs R+ g, (2.15)
t
kT
1Zi(t,y) — Zy(t,y) = T T Sk DD (2.16)
This lemma follows easily from the definition of Z,.
Lemma 2.2, If n=3 (k=4), then
Tim S1(y) < oo.
7~ 00
1 . . .
Proof. Let B(¢) = tcoshT. It is easy to verify that B satisfies
p”7=1¢*p in (0,00), 217
limp(1) =oo,  f(t) =t + C(), 2.18)

where C(t) = 0. Let T, be such that f'(T,) = 0. Then the lemma follows if we
can show that

lim S1(®) = T,. (2.19)

Y>>0
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Let W=y’ — py’). Then W(co) =y and W'(t) = t—* y5p. Integrating W’
from Si(y) to oo and using (2.8), (2.18), (2.15) and (2.16), we obtain

y(810), ) B'(S1(») = v — i (f:o t=y°g dt

<y — [3Z,dt<y——L _[W—Z, + 80)Z

4 S1(;.£ ! 4 (y®—9) [y 1+ S1(¥) Z1]

— a ( y3 ) 7S, ()

I (ears) i en L yem gy VI

From (2.9) it follows that S;(y) = 0(y'®) as y->oco; hence we have

((ysyi ,,)) B0y fﬁ;z —pE ¢ (51")

as y — oo. This together with (2.20) and (i) of Lemma A implies that 5'(S;(y))<<0
for v large, and so Sy(y) = T,. This proves (2.19) and hence the lemma.

Lemma 2.3. If nc{4,5,6}, then
lim S,(y) = co. (2.21)
p->00

Proof. Suppose (2.21) is not true. Then for a sequence of values y — oo, we have
lim S,(y) < co. (2.22)
y-—)OO

For the sequel we use C, C, C,, etc., to denote positive constants independent
of y. Now from (2.8), (2.9) we have for & (S.(y), S¢»)),

W, y) = Zy(ty) = C,%' (2.23)
Let
H@) =4ty =Yy + 17" (py—p% — g) :
The_n H(co) =0 and H'(¢) = P ; ! t~*y2. Hence H(t) = 0. Now integrating

H'(¢) from S.(y) to S(y) and using (2.23), we obtain

—1 5® '
—H(S:() 23—— 24—k dt
Y ) y

S:(”)
Cc SO '
== [ kg = CQ(’; , (2.24)
7 81 N y
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where
S()
o) = E50)

SEYF — 8.7 if k< 3.

if k=3,

From (2.10), (2.11) and (2.22) we have

S
Cofy Z ¥ (S@),7) = f() (1 —y?~ Y *dr

é 1 1
k 1)’(31(7/) ) (Sl(,y)k—l - S(,y)k—l)

= Cy(S:(»), ¥).-
Hence

¥(S:(p), y)”")

—H(S;(») = S:()"* y(S:(»), »)? (% I

S1(V)l—k
,yZ
This combined with (2.24) gives

Si@F = Culoly). (2.25)

<Cs

Since Si(y) is bounded by assumption, it follows that o(y)—oo as y— oo,
Therefore from (2.25), S;(y)—~ 0 as y — oo, contradicting (2.12). This proves
the lemma.

Proof of the Theorem. For y £ 0, 1, let R;(y) and u(r, y) be defined by

u(r, y) = y(t, 7).

Then u satisfies
—Du =y D=y in B(R(y)),
u>0 in B(R(p),

ou

R
Define R; = [(n — 2)/z, "2 It is easy to see that u(R((»)) = (R(/R:i(y))*.
Since y — Ry(y) is continuous, (a) follows from (2.5) and (2.6), (b) follows from
(2.7) and (2.21), and (c) follows from Lemma 2.2. This proves the theorem.

O

on 2B(R,(7).-
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3. Proof of Lemma A

Let £> 2 andlet f:]R ->IR be a C'-function. For y > 0, let ¥(¢, ») be the

solution of
—Y" =t7Ff(Y),

Y(co) =y, Y'(c0)=0.
Let
F(s) = of f@dr,

H(@#)=%1tY?— LYY + 1% F(Y),
-k
Hl(t) = % tYy'? — —%‘ YY’ -+ m Yf(Y)
It is then easy to see that Y satisfies

lim H(t) = Jim H,(0) =0,

lim Y'(t,) £~ = (kf (_y)l),
H'(t) = $ 7 [YA(¥) — 2(k — 1) F(V)],
141—k
Hi(t) = =D [Yf(Y) — 2k — 3) ()],

Y'Ykl — 2@k — 1) 52 YK H, ().

(3.1

3.2)

(3.3)

(3.4)

3.5
(3.6)
3.7

(3.8)

From now on, we assume that f(0) = f(1) = 0 and f'(1) > 0. Furthermore,

we assume that
G—Dfs)>0 for s>0and s=+1.
For y >0, v &1, put
So(y,f) =inf{t; Y(s,) + 1, Y'(s,7) £0 Vs>1},
Sy, f) =inf{t; ¥(5,9) > 0, Y'(s5,) £0 Vs> ¢}
We then have the following

Lemma 3.1. For s =0, assume that f satisfies

sf'(s) — 2k — 3) f(s) = 0.

Y(ta V) g 7]1(t, 7)
for y>1 and t = Si(v,f), where

Then

_ tdd
it y) = o 70) }ll(k—Z)'
k—1y

(3.9)

(3.10)
(3.11)

(3.12)

(3.13)
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Proof. Let ¢> Si(y,f). Since y > 1, it follows from (3.9) that Y'(z,7) > 0.
Therefore from (3.12) and (3.7), H{(¢) = 0. Hence H, is increasing and from (3.4),
H,(t) = 0. From (3.8), we have

(Yryl—-k tk—l)! 2 0.
Integrating this twice from ¢ to oo and using (3.5), we obtain

L1
Yk-—2 Vk_2 = (k _ 1) tk—2 ’

which gives
yt

. o)
b +&—UJ

Y(t,y) =

This proves the lemma.

Lemma 3.2. For s =0, assume that [ satisfies

'+ 1) —Qk—3)fs+ 1) =0. (3.14
Then
Y(t> Y) g 1 + 7]2(’5 y)a (315)
for y>1 and t = S,(y,f), where
(y—Dt
728, 9) = 4 f(y)) —=2"
tk_2 +
{ k—-D@E-—-1D

Proof. Let V=Y — 1, fi(s) = f(s + 1). Then V satisfies
—V =1k,
V(o) =y —1, V(o) =0. (3.16)

Since y > 1, from (3.9), we get Y(f,7) = 1 and Y'(¢,y) > 0 for 7= So(y, /).
Hence V(1) = 0 and V'(¢r) > 0. Therefore for ¢ = So(y, f), we have from (3.16),
(3.7) and (3.14) that H;(t) < 0. So we deduce that H,(t) =0 from (3.4) and
that

(V/Vl—k zk—-l)/ é 0
from (3.8). Integrating twice and using (3.5) we obtain for all = S,(y, f) that

—1
en = v f(y)) t s = 126 9),

=z S
{ TE=De—D
that is, for t = So(y,f),

YO, ) =1+ 9.5 9). (3.17)
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Since Y(t,7) =1 for 7€ [Si(¥,/), So(y,f)], inequality (3.17) continues to hold
for t = Si(y,f). This proves the lemma.

As an immediate consequence of these lemmas we have the following

Lemma 3.3. Let y > 1 and let y(t, y) satisfy (2.1). For t = Si(y),

@ ye.N=Z(t,y) ifn=3. (3.18)
G) Y&, =1+ 2Z,(t,y) if3=n=6, (.19
where
{
Z(t,y)= - ,yz(k—;zj) — D>
{’ =) }
(y—Dt
Zy(t,y) = L D D))
:’ TE—Do = 1)}

Proof. Let p = 2k — 3 and f(s) = s — s for s = 0. Extend f'as a C'-function
to R. Then clearly f satisfies (3.9), and for s =0,

sy — Ck—3)fls) =2(k —2)s = 0.

Hence, (3.18) follows from Lemma 3.1.

For s=>1, n=<6, let h(s) = —ps® ' +(p—1)s-+ 1. Since n <6 we
have p=2. Therefore #'(s)= —p(p — 1) (p — 2)s» > <0 and hence % is
concave. Since A(1) =0 and A'(1) = —(p — 1)?, we have Ah(s) = —(p — 2)*
s—Dn=o0.

For s =0, we have

S+ D—QRk—3)fs+D=—p+ D"+ (@—-DG+1+1
= h(s 4 1) < 0.

Hence (3.19) follows from Lemma 3.2. This proves the lemma.

For i= 1,2, and »;> 0 let 9;:]R, —R be continuous functions. Let ¢,
satisfy
—gi =t 0t) s

@i(00) = y;,  @i(c0) = 0. (3.20)

Denote by Ty, and T ; respectively the first zero and first turning point of g, (see
(2.4)). Then

Lemma 3.4. (i) Assume that T, exists and also that 0,(¢t) = 0.(t) for t = Top,.
Then Ty, >0 and To, = Ty

(ii) Assume that Ty, and Ty exist and also that 0,(t) = 0.(¢) for t = Ty,. Then
T1,2 >0 and T1,2 % Tl,l-
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Proof. Let W = gp, — @,¢,. Then W(oo) =0 and

W(t) = tﬁk(Qz —01) 9192 (3.21)

Suppose that (i) is not true. Then T,, << T, andhence from (3.21), W'(t) =0
for all t=To;. Therefore W(T,;)=0. But W(Tp;) = ¢1(To.)pATo.) > 0,
which is a contradiction. This proves (i).

Suppose that (i) isnot true. Then T , << T ;. From (i) it follows that T, ;< TO 2e
Using (3.21), we obtain W’(t) =0 for 1€ [Ty, Ty,]. Therefore we have

0< —i(T1,0) (T, 1) = W(T1 1) < W(Ty,)
= 1(To,1) 9(To ) < 0,

which is a contradiction. This proves (ii) and hence the lemma.

Let ¢, 7o, 7( be as in (2.3) and (2.4). For a > 0, denote ¢(t, a) = ¢(at) and
let 7o, and 7, , be the first zero and first turning point of (-, @). Then we have

To 7
TO,a :79 Tl,a :_a—:
—¢"'(,a) = a* t7*¢(, a), (3.22)

p(co,a) =1, ¢'(c0,a)=0.
Let y(f, ¥) and S;(y) be as in (2.1) and (2.2). Define
So(y) =inf{t, y(s,y) = 1L,y (s,7) =0 Vs>1}. (3.23)
We then have
Lemma 3.5. If y 30,1, then Sy(y) exists and
lim So(y) = 0.
Proof. First consider the case y > 1. Let

9.() = y(t,y) — 1

(p2 + D7 — (g2 + 1)
@2 ’

0:(t) =
Then ¢, satisfies
— ¢y =1t 00,
pa(e0) =y — 1,  @y(o0) =0.

From (3.23) it follows that So(y) is the first zero of ¢, and that g,(t) = (p — 1)
for 7= So(y). Taking ¢ =(p — 1), ¢,(t) =g (p — D7 ) in (i) of
Lemma 3.4, we conclude that Sy(y) exists and

(p — D2 75 < S(y). (329
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Now consider the case 0 <<y << 1. Let

Py = 1 ‘“J’(t, y)s
(I —95) = (1 — )"
P2 ’

02(1) =
Then ¢, satisfies
—¢3 =t 0:(1) 92,
9a(0) =1—7, gyc0) =0,

with So(y) as its first zero. By taking o, = min {0,(¢), t = So(p)}, @.(t) =
@(t,01/*"?) in (i) of Lemma 3.4, we obtain the existence of So(y). Since
0:(t)=(p—1) for t= So(y), again from (i) of Lemma 3.4, we obtain

So) = (p — DVED 7, (3.25)

Now suppose that Sy(y) does not tend to zero as ¢ approaches zero. Then by
going to a subsequence and using (3.25), we have

3}_}113 So(y) = S, > 0. (3.26)
Since the boundedness of y implies that »" and y”’ are uniformly bounded in

(So(y), o), the Arzela-Ascoli Theorem implies that there exists a subsequence
such that y(z,9) = yo(t) uniformly on compact sets and that y, satisfies

—ys =t 58— yo)  in (S,,00), (3.27)
Yo(00) = yg(oe) = 0.
From the uniqueness of the solution of (3.27), y,==0. But y,(S;) = 1. This

contradiction proves the lemma.

Proof of the Lemma A. From (2.1), it follows that y is increasing for » > 1,
and y is decreasing for y <C 1.

First consider the case y > 1. Suppose Si(y) =0. Then y(t,y) > 0 for
t >0 by (3.18), and y(z, y) is an increasing function by (2.1). Since y(So(y),y) = 1,
from Lemma 3.5 we can find a C> 0 such that for 7€ 0, (So()/2),

1—y?~ !, y) = C. (3.28)
From (3.18), we can find a C; > 0 such that for 7€ (0, So(y)/2),
W1, y) = Cyt. (3.29)
Integrating (2.1) and using (3.28) and (3.29), we have
So()/2
00 > y'(So(7)/2, ¥) = Of t5y(1 — y?7h) at
So()/2

=cc, [ " di=oo,
0

which is a contradiction. Hence S;(y) > 0; from (3.18), we have p(S:(»),y > 0).
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Let v=y—1 and fi(s)=(@G+ 1)’  —(+1). Then vec)=y—1,
v'(c0)== 0, and Sy{y) and S;(y) respectively are the first zero and first turning
points of v. Moreover, v satisfies

—v" =¢7F (]”1_151?) v. (3.30)

Now integrating (3.30) and using (3.24), we can find a C > 0 such that, for all
I<y=2,

b'(So(y)) == f t“k(]%(;z)vdtﬁ Cly —1). (3.31)
Soly)

Since

sup {f 1(v)

Pz s e <o,

as a consequence of (i) of Lemma 3.4, Sy(y) is bounded for y € (0, 2]. From
this and from (3.31), we can find a C, > 0 such that for 1 <<y =<2,

[2(S1 )| = V'(So) (Soy) — S1(») = C(y — D). (3.32)

This inequality implies that for any ¢ > 0, we can find a 6 > 0 such that when-
ever y — 1 =6, t = Si(y),

u~@@—n§é%gga+@@—n. (3.33)

From (3.22), (3.33) and (ii) of Lemma 3.4, we obtain
[A—e)(p— D" < Si(p) =1+ (p— D' 27,
for y =<1 4. This inequality implies that
lim §,() = (p — D=2, (3.34)

Now consider the case in which 0<<y << 1. Suppose S;(y) =0. From
Lemma 3.5, Su(y) exists and y(So(y), v) = 1. Hence from (2.1),

V', ) = =y (Se), ¥) (3.35)
for all t¢€ (0, (So(y)). Also we can find a C > 0 such that for 7€ (0, So(y)/2),
v, y) — ) = C. (3.36)

Integrating (2.1) and using (3.35) and (3.36), we have
So(¥)/2 B
=y (Se)sv) = =y, )= [ sTROP—y) dt

7

=C -—-1— ————2 - —~ 00
=Tt (SO(V)>

as t— 0, which is a contradiction. This implies that S;(y) exists.
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Let v=1—y and fi(s)=(0—5)—(1—57" Then v(c)=1—y,
v'(00) = 0, So(y)and S, (y) are the first zero and first turning points of v, Moreover

v satisfies
—o" =1tk (f—liv)) v. (3.37)

Since

{f‘() 1= So), 2£y<1} >0,

by Lemma 3.4(i) and by (3.22) we have
inf{Se(y); 3=y <1}>0.

Therefore by integrating (3.37), we have for some constant C > 0,

v'(So(y)) = f 1=+ (inlf-@)u dt = C(1 — y). (3.38)
So(¥)

From (3.25), (3.38) and the mean value theorem, we can find a C; > 0 such
that

(SN = [0 (So()) | (Se®) — S1() = C1(1 — ).
This implies that for every &> 0, we can find a 6 > 0 such that

t-00-n=P<a1+9p-1 (3.39)

whenever 1 —y = ¢ and ¢ = S;(y). From (3.22), (3.39), and Lemma 3.4(ii) we
obtain

[ =& (p— D27, < 5,60 < [(1+ ) (p — DIV,
for 1 —y = 4. This inequality implies that
lim Sy =(p — D2 ¢, (3.40)

Since Si(p) < So(y), from Lemma 3.5 we have hm Si(y) = 0. Now the
lemma follows from (3.34) and (3.40).

4. Proof of Lemma B

Let n=6 and » > 1. Let y(t,9), Si(y), and Sy(y) be as in (2.1), (2.2),
(3.23), respectively. For the sequel we use C, Cy, C,, etc., to denote positive constants
independent of v, but which may be different in different inequalitics. We have the
following

Lemma 4.1. For y large,

So(y) = O(), “.1)
Y,y =1+ Ctfy  for t = So(p), 4.2)
@2y = Cy, (4.3)

Cify = y'2So(y), v) = Cofy. 4.4)
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For te (2S,(»), v

Ci(t — So(»)) Co(t — So(»)) _

14 . =yt =1+ (4.5)
Proof. By Lemma (3.5), So(y) exists and from (3.18),
Z(So»), 7) = ¥(Soly), v) = 1. (4.6)
This implies that
P!
Soy) 2= “.7

k=D =1
Since p = 2k — 3, itfollows from (4.7) that So(y) = O(y) asy —>oo, This proves
4.1).

P __
For large y we have, y 7 = Cy** =2 and hence from (3.19),

k—-—DE-—-1D)—

vt Ct

PP — 1/(k—2) =1+ ?
167

for all 7= So(y). This proves (4.2).
Again from (3.18), we have

Y2 y) = Z.(y% y) = Cy

for y large. This proves (4.3).
From the concavity of y in [So(y), 2S,(»)] and from (4.2) we have for large y
that

Wy)=1-+
ltk-?. +

J’(ZSO(V), y) — 1 - C2S8o0(y) . _Clz_
So®) = Sly) v

Again, from the concavity of y in [2S5,()), 2] and from (4.1)-(4.3), we have for
large y that

V'(2So(y),y) =

(4.8)

2 ) — p(2So(»), Cy-o0()_ C
Y (2So), 7) ZV(V 9/2) y(2So(y), ) > 92’ (1) > G
7? — 28o(y) 4+ 0G) vy
This together with (4.8 )proves (4.4).
Let £€ [28:(»),y?]. From (4.2), we then have

C(t — So(») 4 <iLcC (t — So(y))
(t— Soly) — o Y

Ct
y(t,7)§1+—y—=1+ . (4.9)

From the concavity of y in [Sy(y), 2] and from (4.1)—(4.3), it follows that

2t 7). — ¥(So@), 7) - Y% ») — ¥(So(®), )
t— So») = y* = So(»)
= toh) G
P00 Ty
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for o large and for ¢ [So(y), ¥2]. Hence

Cy(t — So(y))
-

This together with (4.9) proves (4.5) and hence the lemma.

yt,y) =1+

Lemma 4.2. lim S,(y) > 0.

y—+co

Proof. Integrating (2.1) and using (4.4) and (4.5) we obtain for y large that
C oo
72 = y'(250(7), y) = f 175 — y) dt

=((p—1) f Ty — Ddt = —q f t 75t — So(p)) dt

280(») 250(»)

_ CSo(yf~* 7i15e CSoy ™

7R — Ddt = ———,
( Yt = ”

4 )
which implies that lim So(y) = C, >0, since y?/Sy(y)—>occ as y-—oco and
y—>o0

k > 2. This proves the lemma.

Lemma 4.3. For y large,
Cy = So() = Coy, (4.10)

Cily =¥ (So@), 7) = Cafy. (4.11)
Proof. Let v =y — 1 and fi(s) = (s + 1) — (s + 1). Then v satisfies
= t—kfl(v)a

p(oo) =y —1, v'(c0) =0 @12
and So(y) is the first zero of v. Let Fy(s) be the primitive of f; and let
Ht)=4tw?— Lw' + 1'% F(v).
Then from (3.6) we have
—H'(t) = ;h(v + 1), 4.13)

where

—1 p—1 1
h(s) = s7 — s — 5= .
2
Since n =<6, we have p = 2, and therefore we obtain that 4 is convex for s = 1
and satisfies

h(s) = C(s — 1) 4.14)
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for s = 1. Integrating (4.13) and using (4.14) and (4.5) we obtain

H(2S,(y)) = f £ by + 1) dt
280(y)

so [ S0,

So(®) L4
72[Sa(y)

t5P dt = Cly, (4.15)
Y2(280())

CSo(y)"~**!
=T

since p == 2k — 3. On the other hand, we have from (4.1) and (4.4), that

HQ2So)) = So() v'(So))* + 2" F So()' % F,(v(2S0(»)))

S S
= e 22 4 sy ﬂ(q °(”)}. 4.16)
v Y
Now we assert that
hY
tim 2% . 4.17)
7w Y

Suppose (4.17) is not true. Then for a subsequence y— oo, we can find C; > 0

such that
F, (C2 So(») )§ C, (So()’) )2 ) (4.18)
Y 7

From (4.15), (4.16) and (4.18) we have

2
iy = HESi) = €[22 + 5,71~ (So(y)) }

14
Cy (So(») 1
§“7( 14 >{1+So(7)"“2}'

This, together with Lemma (4.2), implies that

0<C, g(S"JEy))—w

as y —>oo, which is a contradiction. This proves (4.17). Now (4.10) follows from
(4.1) and (4.17).
From the concavity of y and (4.4), we have

Cy
Y (So), ) = ¥ 2Se), 7) = —- (4.19)
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For y large it follows from (4.2) and (4.1) that (¢, y) = C for 1€ [So(p), 2S0(»)].
Hence from (4.4) and (4.10) we have

280
Y'(So(), ¥) = ¥'(2So(»), v) + Sf t~Hp? — y) dt

o)

<<y 0( kl_l)g—ci.
b4 Y 4

This, together with (4.19), proves (4.11) and the lemma.

Proof of Lemma B. Inequality (2.8) follows from (3.18).

Let 2, € [S1(y), So(3)] be such that

’ SO s
(o) = D). (420)

Then from (4.11), (4.20), and the restriction that 0 < y =< 1, we obtain for y
large that

Y (Solp)y) TP c
Cl/yé—‘)T——>= J TR =y dr =
to 0
that is,
o =< CyME=D, 4.21)
Let S(y) = CyV*—1; then clearly from (4.20) we have
S:(y) = SO, 4.22)
Y'(So»), ¥ ,
Cify = L"—z——> = y'(to, )
= V(8@ 7) = ¥ (S v) = Cafy. (4.23)

This, together with (4.21) and (4.22), proves (2.9) and (2.11).
Now from the convexity of y in [S;(), So(y)] and (4.23) we have

L—y(S0.» _
S0 — S0 =y (S, y) = Cafy. 4.24)

From (4.24) and (4.10), we have

o1
I =y 8,y =C— O(Wk_—_ﬁ)'

Hence we can find a 6 > 0 such that for y large, 1 — p(S(y),y) == 6 and this

proves (2.10).
1

Since S(y) = O (y("’l)), from (3.18) we get

¥, ) = Zu(ty) = Ctfy. (4.25)
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for all 1€ [S,(), S(»)]. From (2.9), (2.10), (2.11) and (4.25) we have

, N . . Cl S 5@) et
Cly=Zy(S@),y)= [ t71 —y»Ndt = [ % ar
S:() 7 s

1 1
= 7(&@)"-2 - S(y)k-2>'

This implies that
lim S,(y) > 0.

Py 0

This proves (2.12) and hence the lemma.
Remark 1. Let n=3 and p > 1. Then there exists an Ro > 0 such that for
0< R<< Ry, the problem
—~Du=u"—u in B(R),
u>0, uis radial in B(R), (4.26)

3u_

7 =0 in 8B(R)

does not admit any solution u such that u' changes sign.

Proof. We consider two cases: 1 << p <<

2 2
niz and p2n+

n “n—2

n-42
Casel. 1<p< 11__;—2 In this situation, by a result of LiN, Ni & TaGaki [11]
there exists an R, > 0 such that for 0 << R << R,, problem (4.26) does not admit
a nonconstant solution. This proves the remark.

2
Case 2. p g'—;—i:—z. Let v(r, ) denote the solution of

n—1 .
— (v” + v’) =v?P—v in (0,00),

P
v0)=y>0, ¢'(0)=0.
Let R,(y) < R,(y) << ... be the turning points (i.e., v'(R;(%),y) = 0) of v(r,y).

From the result of Ni [12], we know that o(r,y)> 0 for all y > 0.
Now the remark follows from the following

Assertion, There exists a constant C > 0 such that

sup R,(p) = C. 4.27)

y&(0,00)
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To prove this we adopt the method used in ATKINSON, BREZIS & PELETIER [6]
and in ADIMURTHI & YADAvA [2]. Proceeding as in Lemma A, we obtain
lim Ry(y) = o0, lim Ry(y) > 0.
y=>0 1
Therefore it is sufficient to prove that

sup R,(y) = C. (4.28)

v&(l, o0)

Let w(r,y) = v(r, y) — 1 and let T;(y) and T,(y) respectively be the first and second
zeros of w(r,y). Then

Ti(y) < Ri(y) < To(y) < Ra(p).
Therefore, in order to prove (4.28), it is sufficient to show that

sup Tu(y) = C. (4.29)

ve(l, )

Since o(r,y) > 0 for all y > 1, we get

sup W, N T <r<LO}=1. (4.30)
ye(l, o
n— ne=2 ]
Let Z(r) = 2 | Then Z satisfies
—1
Z" + (n ¥ )Z, +324PZ =0 in (0,00), (4.31)

li_zl(} Z(r) = co.
From (4.30) and (4.31) we can choose an 7, > 0 such that for all y > 1 and
r 6 (O, rO) /\ [Tl(y)a Tz(V)],

w17 —w+1)

LZ 4/(n—2.
W <+ Z(r)

Now by Sturm’s comparison theorem, there exists a € > 0 such that (4.29) holds.
This completes the proof of the remark.

Remark 2. Given any £, we can construct a negative function o € C*(£2) such that
the problem

—Nu=v"+a(x)u in 2,

u>0 in Q, 4.32)
ou
o = 0 on 80

admits a solution.
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The construction of « is similar to the construction given by Brgzis [7] for the

Dirichlet problem.

Let ac C*(£), be such that a changes sign in £ and f a(x) dx < 0. By the

Q
result of HEess & SENN [14] there exists a 4,(2) > 0 such that

—M =1 ax)v in Q,
v>0 in £ and

Jv

5;=0 on 89

admits a solution. Define

o(x) = 2 () a(x) — pP ' P, u= v,

where p is a positive real number. Obviously u satisfies (4.32). By choosing u
large, we get « << 0.,
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