# Existence and Nonexistence of Positive Radial Solutions of Neumann Problems with Critical Sobolev Exponents

## ADIMURTHI & S. L. YADAVA

Communicated by J. SERRIN

#### 1. Introduction

Let  $\Omega \subset \mathbb{R}^n$  be a bounded domain with smooth boundary and let  $\alpha \in C^{\infty}(\Omega)$ . For  $\lambda > 0$ , p > 1,  $n \ge 3$  we consider the following problem

$$-\Delta u = u^p + \lambda \alpha(x) u \quad \text{in } \Omega,$$

$$u > 0 \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial v} = 0 \quad \text{on } \partial \Omega.$$
(1.1)

When  $p < \frac{n+2}{n-2}$  and  $\alpha(x) = -1$ , this problem has been discussed extensively in the works of NI [12], LIN & NI [10] and LIN, NI & TAKAGI [11]. They have proved that there exist positive constants  $\lambda_0$  and  $\lambda_1$ , with  $\lambda_0 \le \lambda_1$ , such that (1.1) admits a non-constant solution for  $\lambda \ge \lambda_1$  and does not admit any non-constant solution for  $\lambda < \lambda_0$ . In view of their results, it was conjectured by LIN

& NI [10] that a similar result holds even for  $p \ge \frac{n+2}{n-2}$ .

When  $p = \frac{n+2}{n-2}$ , Brezis [7] posed the question of finding conditions on  $\alpha$  and  $\Omega$  for which (1.1) admits a solution. Clearly when  $\alpha(x) \ge 0$ , (1.1) does not admit any solution. Therefore we have to consider two cases: (i)  $\alpha(x)$  changes sign, (ii)  $\alpha(x) \le 0$ .

In case (i) some partial results have been obtained in [3] by using the variational methods of Brezis & Nirenberg [8]. To describe the results of [3], we further assume that  $\int_{\Omega} \alpha(x) \, dx < 0$ , that there exists an  $x_0 \in \partial \Omega$  such that  $\alpha(x_0) > 0$ , and that  $\partial \Omega$  is flat at  $x_0$  of order at least four. Under these assumptions, it was shown that for  $n \ge 4$  there exists a  $\lambda^* > 0$  such that (1.1) admits a solution if and only if  $\lambda \in (0, \lambda^*)$ .

In case (ii) the standard variational arguments do not seem to work. On the other hand, in this situation it is easy to construct an example (see Remark 2 at the end of Section 4) such that for any  $\Omega$  we can find a negative function  $\alpha(x)$  for which (1.1) admits a solution. In view of this and the results of Lin, Ni & Ta-KAGI [11], we shall consider the very restricted case of problem (1.1) when  $\lambda \alpha(x) \equiv -1$ ,  $\Omega$  is a ball and the solution is radial.

Let B(R) denote the ball of radius R with center at the origin and let  $\mu_1(R)$  be the first non-zero eigenvalue of the radial problem

$$-\Delta \varphi = \mu \varphi \quad \text{in } B(R),$$

$$\frac{\partial \varphi}{\partial v} = 0 \quad \text{on } \partial B(R).$$
(1.2)

We consider the problem

$$-\Delta u = u^{(n+2)/(n-2)} - u \quad \text{in } B(R),$$

$$u > 0, \quad u \text{ is radial in } B(R),$$

$$\frac{\partial u}{\partial v} = 0 \quad \text{on } \partial B(R)$$
(1.3)

and prove the following

**Theorem.** Let p = (n+2)/(n-2). The following conclusions hold:

- (a) If  $n \ge 3$  and  $p-1 > \mu_1(R)$ , then (1.3) admits a solution which is radially increasing.
- (b) If  $n \in \{4, 5, 6\}$  and  $p 1 < \mu_1(R)$ , then (1.3) admits a solution which is radially decreasing.
- (c) If n = 3, then there exists an  $R^* > 0$  such that for  $0 < R < R^*$ , (1.3) does not admit any nonconstant solution.

Here we remark that part (a) of the theorem has been proved by NI [12] and LIN & NI [10], and that part (b) gives a counter-example to a part of the conjecture of LIN & NI [10].

Since we are looking for radial solutions, (1.3) reduces to studying the first turning point  $R_1(\gamma)$  of  $v(r, \gamma)$ , where v satisfies

$$-v'' - \frac{n-1}{r}v' = v^{\frac{n+2}{n-2}} - v,$$

$$v'(0) = 0, \quad v(0) = \gamma > 0$$
(1.4)

and  $R_1(\gamma)$  is defined by

$$R_1(\gamma) = \sup\{r; v'(s, \gamma) \neq 0 \mid \forall s \in (0, r)\}.$$
 (1.5)

Because of the continuity of  $\gamma \to R_1(\gamma)$ , we shall be able to deduce the theorem from knowledge of the behavior of  $R_1(\gamma)$  as  $\gamma \to 0$ , 1 and  $\infty$ . Information about the behavior of  $R_1(\gamma)$  as  $\gamma \to 0$ , 1 is available in the literature. Therefore the main difficulty lies in understanding its behavior at  $\infty$ . We illustrate this for n = 6.

Let 
$$n=6$$
,  $\gamma>1$ ,  $\eta=v(R_1(\gamma),\gamma)$  and  $w=v-\eta$ . Then  $w$  satisfies 
$$-\Delta w=w^2+(2\eta-1)\,w+\eta(\eta-1)\quad\text{in }B(R_1(\gamma)),$$
 
$$w>0\quad\text{in }B(R_1(\gamma)),$$
 
$$w=\frac{\partial w}{\partial v}=0,\quad\text{on }\partial B(R_1(\gamma)).$$

Hence by Pohožaev's identity we have

$$2(2\eta - 1) \int_{B(R_1(\gamma))} w^2 dx + 8\eta(\eta - 1) \int_{B(R_1(\gamma))} w dx = 0.$$

This implies that  $\eta > 1/2$  and hence  $v(r, \gamma) > 1/2$  for all  $r \in (0, R_1(\gamma))$ . Now the asymptotic analysis of ATKINSON & PELETIER [5] suggests that we can find positive constants  $\delta$ ,  $C_1$ ,  $C_2$ ,  $C_3$  and  $\gamma_0$  such that, for  $\gamma > \gamma_0$  and  $R(\gamma) = C_1 \gamma^{-1/6}$ ,

$$R(\gamma) < R_1(\gamma), \tag{1.6}$$

$$1 - v(R(\gamma), \gamma) \ge \delta, \tag{1.7}$$

$$C_1/\gamma^{1/6} \le |v'(R(\gamma), \gamma)| \le C_2/\gamma^{1/6}.$$
 (1.8)

Integrating (1.4) from  $R(\gamma)$  to  $R_1(\gamma)$  and using (1.6)-(1.8), we obtain for  $C = C_1^5 C_2$  that

$$C/\gamma \ge -R(\gamma)^5 \, v'(R(\gamma), \gamma) = \int_{R(\gamma)}^{R_1(\gamma)} r^5 v(1-v) \, dr \ge \delta/12 (R_1(\gamma)^6 - C_1/\gamma).$$

Hence

$$R_1(\gamma)^6 \le \left(\frac{12C}{\delta} + C_1\right)/\gamma \to 0 \quad \text{as } \gamma \to \infty.$$
 (1.9)

When  $n \le 5$  it may not be true that  $v(R_1(\gamma), \gamma)$  is bounded away from zero as  $\gamma \to \infty$ , whereas estimates similar to (1.6)-(1.8) still hold. Therefore in this case we have to adopt a different procedure to study  $R_1(\gamma)$  as  $\gamma \to \infty$ .

The paper is divided into two parts. In the first part (Section 3), we study the behavior of  $R_1(\gamma)$  as  $\gamma \to 0$ , 1. In the second part (Section 4), following the techniques developed in ATKINSON & PELETIER [5], we obtain estimates similar to (1.6)–(1.8). Using these (see Section 2) we obtain the proof of the theorem.

In a forthcoming paper we shall study problem (1.3) when  $-\Delta$  is replaced by the p-Laplacian for  $p \leq n$ .

While revising this paper, we learned of a recent result of BUDD, KNAAP & PELETIER [9], which discusses the question of existence and non-existence of solutions of (1.3) when  $u^{(n+2)/(n-2)} - u$  is replaced by  $u^{(n+2)/(n-2)} - u^q$  for 1 < q < 4/(n-2). This problem, for q = 4/(n-2), has also been treated by ADIMURTHI, KNAAP & YADAVA [4].

Recently, ADIMURTHI & MANCINI [1] have tackeled this problem in an arbitrary domain using variational techniques. We learned from Prof. J. SERRIN that X. J. WANG [13] has also found related results.

#### 2. Proof of the Theorem

In order to prove the theorem, we make use of the standard substitutions,

$$t = \left(\frac{n-2}{r}\right)^{n-2}, \quad k = \frac{2(n-1)}{n-2}, \quad p = \frac{n+2}{n-2} = 2k-3, \quad y(t,\gamma) = v(r,\gamma),$$

introduced in [5]. Then from (1.4), y satisfies the Emden-Fowler equation

$$-y'' = t^{-k}(y^p - y),$$
  
  $y(\infty) = y > 0, \quad y'(\infty) = 0.$  (2.1)

Let  $S_1(\gamma)$  be the first turning point of  $y(t, \gamma)$ , defined by

$$S_1(\gamma) = \inf\{t; y'(s, \gamma) \neq 0 \quad \forall \ s \in (t, \infty)\}. \tag{2.2}$$

Let  $\varphi$  be the solution of

$$-\varphi'' = t^{-k} \varphi \quad \text{in } (0, \infty),$$
 
$$\varphi(\infty) = 1, \quad \varphi'(\infty) = 0 \tag{2.3}$$

and let  $\tau_0$  and  $\tau_1$  respectively be the first zero and first turning point of  $\varphi$ , i.e.,

$$\tau_0 = \inf\{t; \varphi(s) > 0 \text{ for } s > t\},$$

$$\tau_1 = \inf\{t; \varphi'(s) > 0 \text{ for } s > t\}.$$
(2.4)

Then we have

**Lemma A.** Let  $\gamma \neq 0, 1$ . Then

- (i)  $S_1(\gamma)$  exists and  $y(S_1(\gamma), \gamma) > 0$ .
- (ii) If  $\gamma \in (0, 1)$ , then y is decreasing, with

$$\lim_{\gamma \to 0} S_1(\gamma) = 0, \tag{2.5}$$

$$\lim_{\gamma \to 1} S_1(\gamma) = (p-1)^{1/(k-2)} \tau_1. \tag{2.6}$$

(iii) If  $\gamma > 1$ , then y is increasing, with

$$\lim_{\gamma \to 1} S_1(\gamma) = (p-1)^{1/(k-2)} \tau_1. \tag{2.7}$$

This result is contained in the works of NI [12] and LIN & NI [10]. For the sake of completeness, we present the proof in Section 3.

Lemma B. Let  $\gamma \in (1, \infty)$ . Then

(i) For  $t \ge S_1(\gamma)$ ,

$$y(t,\gamma) \ge Z_1(t,\gamma),$$
 (2.8)

where

$$Z_1(t,\gamma) = \frac{\gamma t}{\{t^{k-2} + (\gamma^{p-1} - 1)/(k-1)\}^{1/(k-2)}}.$$

(ii) If  $3 \le n \le 6$ , there exist positive constants  $\delta$ ,  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$  and  $\gamma_0$  such that, for all  $\gamma \ge \gamma_0$  and  $S(\gamma) = C_1 \gamma^{1/(k-1)}$ ,

$$S_1(\gamma) < S(\gamma), \tag{2.9}$$

$$1 - y(S(\gamma), \gamma) \ge \delta, \tag{2.10}$$

$$C_3/\gamma \le y'(S(\gamma), \gamma) \le C_2/\gamma,$$
 (2.11)

$$\lim_{\gamma \to \infty} S_1(\gamma) \ge C_4. \tag{2.12}$$

Assuming the validity of Lemmas A and B, we first complete the proof of the theorem. Since Lemma A gives the behavior of  $S_1(\gamma)$  as  $\gamma \to 0$ , 1, to prove the theorem we must study its behavior at  $\infty$ . For this we need three further lemmas.

## **Lemma 2.1.** Let $Z_1$ be as defined in (2.8). Then

$$-Z_{1}^{"} = \left(\frac{\gamma^{p} - \gamma}{\gamma^{p}}\right) t^{-k} Z_{1}^{p} \text{ in } (0, \infty), \tag{2.13}$$

$$\lim_{t \to \infty} Z_1 = \gamma, \tag{2.14}$$

$$\gamma - Z_1(t,\gamma) + tZ_1'(t,\gamma) = \left(\frac{\gamma^p - \gamma}{\gamma^p}\right) \int_t^\infty Z_1^p s^{-k+1} ds, \qquad (2.15)$$

$$tZ_1'(t,\gamma) - Z_1(t,\gamma) = \frac{-\gamma t^{k-1}}{\{t^{k-2} + (\gamma^{p-1} - 1)/(k-1)\}^{(k-1)/(k-2)}}.$$
 (2.16)

This lemma follows easily from the definition of  $Z_1$ .

**Lemma 2.2.** If n = 3 (k = 4), then

$$\overline{\lim_{\gamma \to \infty}} S_1(\gamma) < \infty$$
.

**Proof.** Let  $\beta(t) = t \cosh \frac{1}{t}$ . It is easy to verify that  $\beta$  satisfies

$$\beta'' = t^{-4} \beta$$
 in  $(0, \infty)$ , (2.17)

$$\lim_{t \to 0} \beta(t) = \infty, \quad \beta(t) = t + C(t), \tag{2.18}$$

where  $C(t) \ge 0$ . Let  $T_0$  be such that  $\beta'(T_0) = 0$ . Then the lemma follows if we can show that

$$\overline{\lim_{\gamma \to \infty}} S_1(\gamma) \le T_0. \tag{2.19}$$

Let  $W = (y\beta' - \beta y')$ . Then  $W(\infty) = \gamma$  and  $W'(t) = t^{-4} y^5 \beta$ . Integrating W' from  $S_1(\gamma)$  to  $\infty$  and using (2.8), (2.18), (2.15) and (2.16), we obtain

$$y(S_{1}(\gamma), \gamma) \beta'(S_{1}(\gamma)) = \gamma - \int_{S_{1}(\gamma)}^{\infty} t^{-4} \gamma^{5} \beta \, dt$$

$$\leq \gamma - \int_{S_{1}(\gamma)}^{\infty} t^{-3} Z_{1} \, dt \leq \gamma - \frac{\gamma^{5}}{(\gamma^{5} - \gamma)} [\gamma - Z_{1} + S_{1}(\gamma) Z'_{1}]$$

$$= -\frac{\gamma^{2}}{\gamma^{5} - \gamma} + \left(\frac{\gamma^{5}}{(\gamma^{5} - \gamma)}\right) \frac{\gamma S_{1}(\gamma)^{3}}{\{S_{1}(\gamma)^{2} + \frac{1}{3}(\gamma^{4} - 1)\}^{3/2}}. \quad (2.20)$$

From (2.9) it follows that  $S_1(\gamma) = 0(\gamma^{1/3})$  as  $\gamma \to \infty$ ; hence we have

$$\left(\frac{\gamma^5}{(\gamma^5-\gamma)}\right)\frac{\gamma S_1(\gamma)^3}{\{S_1(\gamma)^2+\frac{1}{3}\,(\gamma^4-1)\}^{3/2}}=O\left(\frac{1}{\gamma^4}\right)$$

as  $\gamma \to \infty$ . This together with (2.20) and (i) of Lemma A implies that  $\beta'(S_1(\gamma)) < 0$  for  $\gamma$  large, and so  $S_1(\gamma) \le T_0$ . This proves (2.19) and hence the lemma.

**Lemma 2.3.** If  $n \in \{4, 5, 6\}$ , then

$$\lim_{\gamma \to \infty} S_1(\gamma) = \infty. \tag{2.21}$$

**Proof.** Suppose (2.21) is not true. Then for a sequence of values  $\gamma \to \infty$ , we have

$$\lim_{\gamma \to \infty} S_1(\gamma) < \infty. \tag{2.22}$$

For the sequel we use C,  $C_1$ ,  $C_2$ , etc., to denote positive constants independent of  $\gamma$ . Now from (2.8), (2.9) we have for  $t \in (S_1(\gamma), S(\gamma))$ ,

$$y(t,\gamma) \ge Z_1(t,\gamma) \ge C \frac{t}{\gamma}$$
 (2.23)

Let

$$H(t) = \frac{1}{2} t y'^2 - \frac{1}{2} y y' + t^{1-k} \left( \frac{y^{p+1}}{p+1} - \frac{y^2}{2} \right).$$

Then  $H(\infty) = 0$  and  $H'(t) = \frac{p-1}{2}t^{-k}y^2$ . Hence  $H(t) \le 0$ . Now integrating H'(t) from  $S_1(\gamma)$  to  $S(\gamma)$  and using (2.23), we obtain

$$-H(S_1(\gamma)) \ge \frac{p-1}{2} \int_{S_1(\gamma)}^{S(\gamma)} y^2 t^{-k} dt$$

$$\ge \frac{C}{\gamma^2} \int_{S_1(\gamma)}^{S(\gamma)} t^{-k+2} dt = C \frac{\varrho(\gamma)}{\gamma^2}, \tag{2.24}$$

where

$$\varrho(\gamma) = \begin{cases} \log \frac{S(\gamma)}{S_1(\gamma)} & \text{if } k = 3, \\ (S(\gamma)^{3-k} - S_1(\gamma)^{3-k}) & \text{if } k < 3. \end{cases}$$

From (2.10), (2.11) and (2.22) we have

$$C_2/\gamma \ge y'(S(\gamma), \gamma) = \int_{S_1(\gamma)}^{S(\gamma)} y(1 - y^{p-1}) t^{-k} dt$$

$$\ge \frac{\delta}{k-1} y(S_1(\gamma), \gamma) \left( \frac{1}{S_1(\gamma)^{k-1}} - \frac{1}{S(\gamma)^{k-1}} \right)$$

$$\ge Cy(S_1(\gamma), \gamma).$$

Hence

$$-H(S_1(\gamma)) = S_1(\gamma)^{1-k} y(S_1(\gamma), \gamma)^2 \left(\frac{1}{2} - \frac{y(S_1(\gamma), \gamma)^{p-1}}{p+1}\right)$$

$$\leq C_3 \frac{S_1(\gamma)^{1-k}}{\gamma^2}.$$

This combined with (2.24) gives

$$S_1(\gamma)^{k-1} \le C_4/\varrho(\gamma). \tag{2.25}$$

Since  $S_1(\gamma)$  is bounded by assumption, it follows that  $\varrho(\gamma) \to \infty$  as  $\gamma \to \infty$ . Therefore from (2.25),  $S_1(\gamma) \to 0$  as  $\gamma \to \infty$ , contradicting (2.12). This proves the lemma.

**Proof of the Theorem.** For  $\gamma \neq 0, 1$ , let  $R_1(\gamma)$  and  $u(r, \gamma)$  be defined by

$$t = \left(\frac{n-2}{r}\right)^{n-2}, \quad S_1(\gamma) = \left(\frac{n-2}{R_1(\gamma)}\right)^{n-2},$$
$$u(r,\gamma) = y(t,\gamma).$$

Then u satisfies

$$-\Delta u = u^{(n+2)/(n-2)} - u \quad \text{in } B(R_1(\gamma)),$$

$$u > 0 \quad \text{in } B(R_1(\gamma)),$$

$$\frac{\partial u}{\partial \nu} = 0 \quad \text{on } \partial B(R_1(\gamma)).$$

Define  $R_1 = [(n-2)/\tau_1]^{n-2}$ . It is easy to see that  $\mu_1(R_1(\gamma)) = (R_1/R_1(\gamma))^2$ . Since  $\gamma \to R_1(\gamma)$  is continuous, (a) follows from (2.5) and (2.6), (b) follows from (2.7) and (2.21), and (c) follows from Lemma 2.2. This proves the theorem.

## 3. Proof of Lemma A

Let k > 2 and let  $f: \mathbb{R} \to \mathbb{R}$  be a  $C^1$ -function. For  $\gamma > 0$ , let  $Y(t, \gamma)$  be the solution of

$$-Y'' = t^{-k} f(Y),$$
  

$$Y(\infty) = \gamma, \quad Y'(\infty) = 0.$$
(3.1)

Let

$$F(s) = \int_0^s f(r) dr,$$

$$H(t) = \frac{1}{2} t Y'^2 - \frac{1}{2} YY' + t^{1-k} F(Y), \tag{3.2}$$

$$H_1(t) = \frac{1}{2} t Y'^2 - \frac{1}{2} YY' + \frac{t^{1-k}}{2(k-1)} Yf(Y).$$
 (3.3)

It is then easy to see that Y satisfies

$$\lim_{t \to \infty} H(t) = \lim_{t \to \infty} H_1(t) = 0, \tag{3.4}$$

$$\lim_{t \to \infty} Y'(t, \gamma) t^{k-1} = \frac{f(\gamma)}{(k-1)}, \tag{3.5}$$

$$H'(t) = \frac{1}{2} t^{-k} [Yf(Y) - 2(k-1) F(Y)], \tag{3.6}$$

$$H_1'(t) = \frac{Y't^{1-k}}{2(k-1)} [Yf'(Y) - (2k-3)f(Y)], \tag{3.7}$$

$$(Y'Y^{1-k}t^{k-1})' = -2(k-1)t^{k-2}Y^{-k}H_1(t).$$
(3.8)

From now on, we assume that f(0) = f(1) = 0 and f'(1) > 0. Furthermore, we assume that

$$(s-1) f(s) > 0$$
 for  $s > 0$  and  $s \neq 1$ . (3.9)

For  $\gamma > 0$ ,  $\gamma \neq 1$ , put

$$S_0(\gamma, f) = \inf\{t; Y(s, \gamma) \neq 1, Y'(s, \gamma) \neq 0 \quad \forall s > t\},$$
 (3.10)

$$S_1(\gamma, f) = \inf\{t; Y(s, \gamma) > 0, Y'(s, \gamma) \neq 0 \quad \forall s > t\}.$$
 (3.11)

We then have the following

**Lemma 3.1.** For  $s \ge 0$ , assume that f satisfies

$$sf'(s) - (2k - 3)f(s) \ge 0.$$
 (3.12)

Then

$$Y(t,\gamma) \ge \eta_1(t,\gamma) \tag{3.13}$$

for  $\gamma > 1$  and  $t \ge S_1(\gamma, f)$ , where

$$\eta_1(t,\gamma) = \frac{\gamma t}{\left\{t^{k-2} + \frac{f(\gamma)}{(k-1)\gamma}\right\}^{1/(k-2)}}.$$

**Proof.** Let  $t > S_1(\gamma, f)$ . Since  $\gamma > 1$ , it follows from (3.9) that  $Y'(t, \gamma) > 0$ . Therefore from (3.12) and (3.7),  $H'_1(t) \ge 0$ . Hence  $H_1$  is increasing and from (3.4),  $H_1(t) \le 0$ . From (3.8), we have

$$(Y'Y^{1-k}t^{k-1})' \geq 0.$$

Integrating this twice from t to  $\infty$  and using (3.5), we obtain

$$\frac{1}{Y^{k-2}} - \frac{1}{\gamma^{k-2}} \le \frac{\gamma^{1-k} f(\gamma)}{(k-1) t^{k-2}},$$

which gives

$$Y(t,\gamma) \ge \frac{\gamma t}{\left\{t^{k-2} + \frac{f(\gamma)}{(k-1)\gamma}\right\}^{1/(k-2)}}.$$

This proves the lemma.

**Lemma 3.2.** For  $s \ge 0$ , assume that f satisfies

$$sf'(s+1) - (2k-3)f(s+1) \le 0.$$
 (3.14)

Then

$$Y(t,\gamma) \leq 1 + \eta_2(t,\gamma), \tag{3.15}$$

for  $\gamma > 1$  and  $t \ge S_1(\gamma, f)$ , where

$$\eta_2(t,\gamma) = \frac{(\gamma - 1) t}{\left\{t^{k-2} + \frac{f(\gamma)}{(k-1)(\gamma - 1)}\right\}^{1/(k-2)}}.$$

**Proof.** Let V = Y - 1,  $f_1(s) = f(s + 1)$ . Then V satisfies

$$-V'' = t^{-k} f_1(V),$$

$$V(\infty) = \gamma - 1, \quad V'(\infty) = 0.$$
(3.16)

Since  $\gamma > 1$ , from (3.9), we get  $Y(t, \gamma) \ge 1$  and  $Y'(t, \gamma) > 0$  for  $t \ge S_0(\gamma, f)$ . Hence  $V(t) \ge 0$  and V'(t) > 0. Therefore for  $t \ge S_0(\gamma, f)$ , we have from (3.16), (3.7) and (3.14) that  $H'_1(t) \le 0$ . So we deduce that  $H_1(t) \ge 0$  from (3.4) and that

$$(V'V^{1-k}t^{k-1})' \le 0$$

from (3.8). Integrating twice and using (3.5) we obtain for all  $t \ge S_0(\gamma, f)$  that

$$V(t,\gamma) \leq \frac{(\gamma-1) t}{\left\{t^{k-2} + \frac{f(\gamma)}{(k-1)(\gamma-1)}\right\}^{1/(k-2)}} = \eta_2(t,\gamma),$$

that is, for  $t \ge S_0(\gamma, f)$ ,

$$Y(t,\gamma) \le 1 + \eta_2(t,\gamma). \tag{3.17}$$

Since  $Y(t, \gamma) \le 1$  for  $t \in [S_1(\gamma, f), S_0(\gamma, f)]$ , inequality (3.17) continues to hold for  $t \ge S_1(\gamma, f)$ . This proves the lemma.

As an immediate consequence of these lemmas we have the following

**Lemma 3.3.** Let  $\gamma > 1$  and let  $y(t, \gamma)$  satisfy (2.1). For  $t \ge S_1(\gamma)$ ,

(i) 
$$y(t, \gamma) \ge Z_1(t, \gamma)$$
 if  $n \ge 3$ . (3.18)

(ii) 
$$y(t, \gamma) \le 1 + Z_2(t, \gamma)$$
 if  $3 \le n \le 6$ , (3.19)

where

$$Z_1(t,\gamma) = rac{\gamma t}{\left\{t^{k-2} + rac{\gamma^{2(k-2)} - 1}{(k-1)}
ight\}^{1/(k-2)}}, \ Z_2(t,\gamma) = rac{(\gamma - 1) t}{\left\{t^{k-2} + rac{\gamma(\gamma^{2(k-2)} - 1)}{(k-1)(\gamma - 1)}
ight\}^{1/(k-2)}}.$$

**Proof.** Let p = 2k - 3 and  $f(s) = s^p - s$  for  $s \ge 0$ . Extend f as a  $C^1$ -function to  $\mathbb{R}$ . Then clearly f satisfies (3.9), and for  $s \ge 0$ ,

$$sf'(s) - (2k-3)f(s) = 2(k-2) s \ge 0.$$

Hence, (3.18) follows from Lemma 3.1.

For  $s \ge 1$ ,  $n \le 6$ , let  $h(s) = -ps^{p-1} + (p-1)s + 1$ . Since  $n \le 6$  we have  $p \ge 2$ . Therefore  $h''(s) = -p(p-1)(p-2)s^{p-3} \le 0$  and hence h is concave. Since h(1) = 0 and  $h'(1) = -(p-1)^2$ , we have  $h(s) \le -(p-2)^2(s-1) \le 0$ .

For  $s \ge 0$ , we have

$$sf'(s+1) - (2k-3)f(s+1) = -p(s+1)^{p-1} + (p-1)(s+1) + 1$$
$$= h(s+1) \le 0.$$

Hence (3.19) follows from Lemma 3.2. This proves the lemma.

For i = 1, 2, and  $\gamma_i > 0$  let  $\varrho_i : \mathbb{R}_+ \to \mathbb{R}$  be continuous functions. Let  $\varphi_i$  satisfy

$$-\varphi_i^{"} = t^{-k} \varrho_i(t) \varphi_i,$$
  

$$\varphi_i(\infty) = \gamma_i, \quad \varphi_i^{'}(\infty) = 0.$$
(3.20)

Denote by  $T_{0,i}$  and  $T_{1,i}$  respectively the first zero and first turning point of  $\varphi_i$  (see (2.4)). Then

**Lemma 3.4.** (i) Assume that  $T_{0,1}$  exists and also that  $\varrho_2(t) \ge \varrho_1(t)$  for  $t \ge T_{0,2}$ . Then  $T_{0,2} > 0$  and  $T_{0,2} \ge T_{0,1}$ .

(ii) Assume that  $T_{0,1}$  and  $T_{1,1}$  exist and also that  $\varrho_2(t) \ge \varrho_1(t)$  for  $t \ge T_{1,2}$ . Then  $T_{1,2} > 0$  and  $T_{1,2} \ge T_{1,1}$ .

**Proof.** Let  $W = \varphi_1' \varphi_2 - \varphi_1' \varphi_2$ . Then  $W(\infty) = 0$  and

$$W'(t) = t^{-k}(\varrho_2 - \varrho_1) \, \varphi_1 \varphi_2. \tag{3.21}$$

Suppose that (i) is not true. Then  $T_{0,2} < T_{0,1}$  and hence from (3.21),  $W'(t) \ge 0$  for all  $t \ge T_{0,1}$ . Therefore  $W(T_{0,1}) \le 0$ . But  $W(T_{0,1}) = \varphi_1'(T_{0,1})\varphi_2(T_{0,1}) > 0$ , which is a contradiction. This proves (i).

Suppose that (ii) is not true. Then  $T_{1,2} < T_{1,1}$ . From (i) it follows that  $T_{0,1} < T_{0,2}$ . Using (3.21), we obtain  $W'(t) \ge 0$  for  $t \in [T_{1,1}, T_{0,1}]$ . Therefore we have

$$0 < -\varphi_1(T_{1,1}) \, \varphi_2'(T_{1,1}) = W(T_{1,1}) \le W(T_{0,1})$$
  
=  $\varphi_1'(T_{0,1}) \, \varphi_2(T_{0,1}) < 0$ ,

which is a contradiction. This proves (ii) and hence the lemma.

Let  $\varphi$ ,  $\tau_0$ ,  $\tau_1$  be as in (2.3) and (2.4). For a > 0, denote  $\varphi(t, a) = \varphi(at)$  and let  $\tau_{0,a}$  and  $\tau_{1,a}$  be the first zero and first turning point of  $\varphi(\cdot, a)$ . Then we have

$$\tau_{0,a} = \frac{\tau_0}{a}, \quad \tau_{1,a} = \frac{\tau_1}{a},$$

$$-\varphi''(\cdot, a) = a^{2-k} t^{-k} \varphi(\cdot, a),$$

$$\varphi(\infty, a) = 1, \quad \varphi'(\infty, a) = 0.$$
(3.22)

Let  $y(t, \gamma)$  and  $S_1(\gamma)$  be as in (2.1) and (2.2). Define

$$S_0(\gamma) = \inf\{t, y(s, \gamma) \neq 1, y'(s, \gamma) \neq 0 \quad \forall s > t\}.$$
 (3.23)

We then have

**Lemma 3.5.** If  $\gamma \neq 0, 1$ , then  $S_0(\gamma)$  exists and

$$\lim_{\gamma\to 0} S_0(\gamma) = 0.$$

**Proof.** First consider the case  $\gamma > 1$ . Let

$$\varphi_2(t) = y(t, \gamma) - 1,$$

$$\varrho_2(t) = \frac{(\varphi_2 + 1)^p - (\varphi_2 + 1)}{\varphi_2}.$$

Then  $\varphi_2$  satisfies

$$-\varphi_2^{\prime\prime} = t^{-k} \varrho_2 \varphi_2,$$
  
$$\varphi_2(\infty) = \gamma - 1, \quad \varphi_2^{\prime}(\infty) = 0.$$

From (3.23) it follows that  $S_0(\gamma)$  is the first zero of  $\varphi_2$  and that  $\varrho_2(t) \ge (p-1)$  for  $t \ge S_0(\gamma)$ . Taking  $\varrho_1 = (p-1)$ ,  $\varphi_1(t) = \varphi(t, (p-1)^{-1/(k-2)})$  in (i) of Lemma 3.4, we conclude that  $S_0(\gamma)$  exists and

$$(p-1)^{1/(k-2)} \tau_0 \le S_0(\gamma). \tag{3.24}$$

Now consider the case  $0 < \gamma < 1$ . Let

$$\varphi_2 = 1 - y(t, \gamma),$$

$$\varrho_2(t) = \frac{(1 - \varphi_2) - (1 - \varphi_2)^p}{\varphi_2}.$$

Then  $\varphi_2$  satisfies

$$-\varphi_2^{\prime\prime} = t^{-k} \varrho_2(t) \varphi_2,$$
 
$$\varphi_2(\infty) = 1 - \gamma, \quad \varphi_2^{\prime}(\infty) = 0,$$

with  $S_0(\gamma)$  as its first zero. By taking  $\varrho_1 = \min \{\varrho_2(t), t \geq S_0(\gamma)\}, \ \varphi_1(t) = \varphi(t, \varrho_1^{1/(k-2)})$  in (i) of Lemma 3.4, we obtain the existence of  $S_0(\gamma)$ . Since  $\varrho_2(t) \leq (p-1)$  for  $t \geq S_0(\gamma)$ , again from (i) of Lemma 3.4, we obtain

$$S_0(\gamma) \le (p-1)^{1/(k-2)} \tau_0.$$
 (3.25)

Now suppose that  $S_0(\gamma)$  does not tend to zero as  $\gamma$  approaches zero. Then by going to a subsequence and using (3.25), we have

$$\lim_{\gamma \to 0} S_0(\gamma) = S_0 > 0. \tag{3.26}$$

Since the boundedness of y implies that y' and y'' are uniformly bounded in  $(S_0(y), \infty)$ , the Arzelà-Ascoli Theorem implies that there exists a subsequence such that  $y(t, \gamma) \to y_0(t)$  uniformly on compact sets and that  $y_0$  satisfies

$$-y_0'' = t^{-k}(y_0^p - y_0) \quad \text{in } (S_0, \infty),$$

$$y_0(\infty) = y_0'(\infty) = 0.$$
(3.27)

From the uniqueness of the solution of (3.27),  $y_0 \equiv 0$ . But  $y_0(S_0) = 1$ . This contradiction proves the lemma.

**Proof of the Lemma A.** From (2.1), it follows that y is increasing for  $\gamma > 1$ , and y is decreasing for  $\gamma < 1$ .

First consider the case  $\gamma > 1$ . Suppose  $S_1(\gamma) = 0$ . Then  $y(t, \gamma) > 0$  for t > 0 by (3.18), and  $y(t, \gamma)$  is an increasing function by (2.1). Since  $y(S_0(\gamma), \gamma) = 1$ , from Lemma 3.5 we can find a C > 0 such that for  $t \in 0$ ,  $(S_0(\gamma)/2)$ ,

$$1 - y^{p-1}(t, \gamma) \ge C. \tag{3.28}$$

From (3.18), we can find a  $C_1 > 0$  such that for  $t \in (0, S_0(\gamma)/2)$ ,

$$y(t,\gamma) \ge C_1 t. \tag{3.29}$$

Integrating (2.1) and using (3.28) and (3.29), we have

$$\infty > y'(S_0(\gamma)/2, \gamma) \ge \int_0^{S_0(\gamma)/2} t^{-k} y(1 - y^{p-1}) dt$$
$$\ge CC_1 \int_0^{S_0(\gamma)/2} t^{-k+1} dt = \infty,$$

which is a contradiction. Hence  $S_1(\gamma) > 0$ ; from (3.18), we have  $y(S_1(\gamma), \gamma > 0)$ .

Let v = y - 1 and  $f_1(s) = (s + 1)^p - (s + 1)$ . Then  $v(\infty) = \gamma - 1$ ,  $v'(\infty) = 0$ , and  $S_0(\gamma)$  and  $S_1(\gamma)$  respectively are the first zero and first turning points of v. Moreover, v satisfies

$$-v'' = t^{-k} \left( \frac{f_1(v)}{v} \right) v. {(3.30)}$$

Now integrating (3.30) and using (3.24), we can find a C > 0 such that, for all  $1 < \gamma \le 2$ ,

$$v'(S_0(\gamma)) = \int_{S_0(\gamma)}^{\infty} t^{-k} \left( \frac{f_1(v)}{v} \right) v \, dt \le C(\gamma - 1). \tag{3.31}$$

Since

$$\sup \left\{ \frac{f_1(v)}{v} ; t \ge S_0(\gamma), \gamma \in (1, 2] \right\} < \infty,$$

as a consequence of (i) of Lemma 3.4,  $S_0(\gamma)$  is bounded for  $\gamma \in (0, 2]$ . From this and from (3.31), we can find a  $C_1 > 0$  such that for  $1 < \gamma \le 2$ ,

$$|v(S_1(\gamma))| \le v'(S_0(\gamma)) (S_0(\gamma) - S_1(\gamma)) \le C(\gamma - 1).$$
 (3.32)

This inequality implies that for any  $\varepsilon > 0$ , we can find a  $\delta > 0$  such that whenever  $\gamma - 1 \le \delta$ ,  $t \ge S_1(\gamma)$ ,

$$(1-\varepsilon)(p-1) \leq \frac{f_1(v(t))}{v(t)} \leq (1+\varepsilon)(p-1). \tag{3.33}$$

From (3.22), (3.33) and (ii) of Lemma 3.4, we obtain

$$[(1-\varepsilon)(p-1)]^{1/(k-2)}\tau_1 \leq S_1(\gamma) \leq [(1+\varepsilon)(p-1)]^{1/(k-2)}\tau_1$$

for  $\gamma \leq 1 + \delta$ . This inequality implies that

$$\lim_{n \to 1} S_1(\gamma) = (p-1)^{1/(k-2)} \tau_1. \tag{3.34}$$

Now consider the case in which  $0 < \gamma < 1$ . Suppose  $S_1(\gamma) = 0$ . From Lemma 3.5,  $S_0(\gamma)$  exists and  $y(S_0(\gamma), \gamma) = 1$ . Hence from (2.1),

$$-y'(t,\gamma) \le -y'(S_0(\gamma),\gamma) \tag{3.35}$$

for all  $t \in (0, (S_0(\gamma)))$ . Also we can find a C > 0 such that for  $t \in (0, S_0(\gamma)/2)$ ,

$$y^{p}(t,\gamma) - y(t,\gamma) \ge C. \tag{3.36}$$

Integrating (2.1) and using (3.35) and (3.36), we have

$$-y'((S_0(\gamma), \gamma) \ge -y'(t, \gamma) \ge \int_t^{S_0(\gamma)/2} s^{-k}(y^p - y) dt$$
$$\ge C \left[ \frac{1}{t^{k-1}} - \left( \frac{2}{S_0(\gamma)} \right)^{k-1} \right] \to \infty$$

as  $t \to 0$ , which is a contradiction. This implies that  $S_1(\gamma)$  exists.

Let v = 1 - y and  $f_1(s) = (1 - s) - (1 - s)^p$ . Then  $v(\infty) = 1 - \gamma$ ,  $v'(\infty) = 0$ ,  $S_0(\gamma)$  and  $S_1(\gamma)$  are the first zero and first turning points of v. Moreover, v satisfies

$$-v^{\prime\prime} = t^{-k} \left( \frac{f_1(v)}{v} \right) v. \tag{3.37}$$

Since

$$\inf\left\{\frac{f_1(v)}{v}\;;\;t\geq S_0(\gamma),\,\frac{1}{2}\leq\gamma<1\right\}>0,$$

by Lemma 3.4(i) and by (3.22) we have

inf 
$$\{S_0(\gamma); \frac{1}{2} \le \gamma < 1\} > 0$$
.

Therefore by integrating (3.37), we have for some constant C > 0,

$$v'(S_0(\gamma)) = \int_{S_0(\gamma)}^{\infty} t^{-k} \left( \frac{f_1(v)}{v} \right) v \, dt \le C(1 - \gamma). \tag{3.38}$$

From (3.25), (3.38) and the mean value theorem, we can find a  $C_1 > 0$  such that

$$|v(S_1(\gamma))| \leq |v'(S_0(\gamma))| (S_0(\gamma) - S_1(\gamma)) \leq C_1(1-\gamma).$$

This implies that for every  $\varepsilon > 0$ , we can find a  $\delta > 0$  such that

$$(1-\varepsilon)(p-1) \le \frac{f_1(v)}{v} \le (1+\varepsilon)(p-1) \tag{3.39}$$

whenever  $1 - \gamma \le \delta$  and  $t \ge S_1(\gamma)$ . From (3.22), (3.39), and Lemma 3.4(ii) we obtain

$$[(1-\varepsilon)(p-1)]^{1/(k-2)}\,\tau_1\leqq S_1(\gamma)\leqq [(1+\varepsilon)(p-1)]^{1/(k-2)}\,\tau_1$$

for  $1 - \gamma \leq \delta$ . This inequality implies that

$$\lim_{\gamma \to 1} S_1(\gamma) = (p-1)^{1/(k-2)} \tau_1. \tag{3.40}$$

Since  $S_1(\gamma) < S_0(\gamma)$ , from Lemma 3.5 we have  $\lim_{\gamma \to 0} S_1(\gamma) = 0$ . Now the lemma follows from (3.34) and (3.40).

### 4. Proof of Lemma B

Let  $n \le 6$  and  $\gamma > 1$ . Let  $y(t, \gamma)$ ,  $S_1(\gamma)$ , and  $S_0(\gamma)$  be as in (2.1), (2.2), (3.23), respectively. For the sequel we use  $C, C_1, C_2$ , etc., to denote positive constants independent of  $\gamma$ , but which may be different in different inequalities. We have the following

**Lemma 4.1.** For  $\gamma$  large,

$$S_0(\gamma) = O(\gamma), \tag{4.1}$$

$$y(t, \gamma) \le 1 + Ct/\gamma \quad \text{for } t \ge S_0(\gamma),$$
 (4.2)

$$\nu(\gamma^2, \gamma) \ge C\gamma, \tag{4.3}$$

$$C_1/\gamma \le \gamma'(2S_0(\gamma), \gamma) \le C_2/\gamma. \tag{4.4}$$

For  $t \in (2S_0(\gamma), \gamma^2)$ 

$$1 + \frac{C_1(t - S_0(\gamma))}{\gamma} \le y(t, \gamma) \le 1 + \frac{C_2(t - S_0(\gamma))}{\gamma}.$$
 (4.5)

**Proof.** By Lemma (3.5),  $S_0(\gamma)$  exists and from (3.18),

$$Z_1(S_0(\gamma), \gamma) \le y(S_0(\gamma), \gamma) = 1.$$
 (4.6)

This implies that

$$S_0(\gamma)^{k-2} \le \frac{\gamma^{p-1}}{(k-1)(\gamma^{k-2}-1)}. (4.7)$$

Since p = 2k - 3, it follows from (4.7) that  $S_0(\gamma) = O(\gamma)$  as  $\gamma \to \infty$ . This proves (4.1).

For large  $\gamma$  we have,  $\frac{\gamma^p - \gamma}{(k-1)(\gamma-1)} \ge C\gamma^{2(k-2)}$  and hence from (3.19),

$$y(t,\gamma) \leq 1 + \frac{\gamma t}{\left\{t^{k-2} + \frac{\gamma^p - \gamma}{(k-1)(\gamma - 1)}\right\}^{1/(k-2)}} \leq 1 + \frac{Ct}{\gamma}.$$

for all  $t \ge S_0(\gamma)$ . This proves (4.2).

Again from (3.18), we have

$$y(\gamma^2, \gamma) \ge Z_1(\gamma^2, \gamma) \ge C\gamma$$

for  $\gamma$  large. This proves (4.3).

From the concavity of y in  $[S_0(\gamma), 2S_0(\gamma)]$  and from (4.2) we have for large  $\gamma$  that

$$y'(2S_0(\gamma), \gamma) \le \frac{y(2S_0(\gamma), \gamma) - 1}{S_0(\gamma)} \le \frac{C_2S_0(\gamma)}{\gamma S_0(\gamma)} = \frac{C_2}{\gamma}.$$
 (4.8)

Again, from the concavity of y in  $[2S_0(\gamma), \gamma^2]$  and from (4.1)-(4.3), we have for large  $\gamma$  that

$$y'(2S_0(\gamma), \gamma) \ge \frac{y(\gamma^2, \gamma) - y(2S_0(\gamma), \gamma)}{\gamma^2 - 2S_0(\gamma)} \ge \frac{C\gamma + O(1)}{\gamma^2 + O(\gamma)} \ge \frac{C_1}{\gamma}.$$

This together with (4.8 )proves (4.4).

Let  $t \in [2S_0(\gamma), \gamma^2]$ . From (4.2), we then have

$$y(t,\gamma) \le 1 + \frac{Ct}{\gamma} = 1 + \frac{C(t - S_0(\gamma))}{\gamma} \frac{t}{(t - S_0(\gamma))} \le 1 + C_2 \frac{(t - S_0(\gamma))}{\gamma}.$$
 (4.9)

From the concavity of y in  $[S_0(\gamma), \gamma^2]$  and from (4.1)-(4.3), it follows that

$$\frac{y(t,\gamma) - y(S_0(\gamma),\gamma)}{t - S_0(\gamma)} \ge \frac{y(\gamma^2,\gamma) - y(S_0(\gamma),\gamma)}{\gamma^2 - S_0(\gamma)}$$
$$\ge \frac{C\gamma + O(1)}{\gamma^2 + O(\gamma)} \ge \frac{C_1}{\gamma}$$

for  $\gamma$  large and for  $t \in [S_0(\gamma), \gamma^2]$ . Hence

$$y(t,\gamma) \ge 1 + \frac{C_1(t-S_0(\gamma))}{\gamma}.$$

This together with (4.9) proves (4.5) and hence the lemma.

Lemma 4.2.  $\lim_{\gamma \to \infty} S_0(\gamma) > 0$ .

**Proof.** Integrating (2.1) and using (4.4) and (4.5) we obtain for  $\gamma$  large that

$$\frac{C_2}{\gamma} \ge y'(2S_0(\gamma), \gamma) = \int_{2S_0(\gamma)}^{\infty} t^{-k}(y^p - y) dt 
\ge (p-1) \int_{2S_0(\gamma)}^{\gamma^2} t^{-k}(y-1) dt \ge \frac{C}{\gamma} \int_{2S_0(\gamma)}^{\gamma^2} t^{-k}(t-S_0(\gamma)) dt 
\ge \frac{CS_0(\gamma)^{2-k}}{\gamma} \int_{2S_0(\gamma)}^{\gamma^2/S_0(\gamma)} t^{-k}(t-1) dt \ge \frac{CS_0(\gamma)^{2-k}}{\gamma},$$

which implies that  $\lim_{\gamma \to \infty} S_0(\gamma) \ge C_4 > 0$ , since  $\gamma^2/S_0(\gamma) \to \infty$  as  $\gamma \to \infty$  and k > 2. This proves the lemma.

Lemma 4.3. For  $\gamma$  large,

$$C_1 \gamma \leqq S_0(\gamma) \leqq C_2 \gamma, \tag{4.10}$$

$$C_1/\gamma \le y'(S_0(\gamma), \gamma) \le C_2/\gamma. \tag{4.11}$$

**Proof.** Let v = y - 1 and  $f_1(s) = (s + 1)^p - (s + 1)$ . Then v satisfies

$$-v'' = t^{-k} f_1(v),$$

$$v(\infty) = \gamma - 1, \quad v'(\infty) = 0$$

$$(4.12)$$

and  $S_0(\gamma)$  is the first zero of v. Let  $F_1(s)$  be the primitive of  $f_1$  and let

$$H(t) = \frac{1}{2} t v'^2 - \frac{1}{2} v v' + t^{1-k} F_1(v).$$

Then from (3.6) we have

$$-H'(t) = \frac{t^{-k}}{2}h(v+1), \tag{4.13}$$

where

$$h(s) = s^p - \frac{p-1}{2}s^2 - s + \left(\frac{p-1}{2}\right).$$

Since  $n \le 6$ , we have  $p \ge 2$ , and therefore we obtain that h is convex for  $s \ge 1$  and satisfies

$$h(s) \ge C(s-1)^p \tag{4.14}$$

for  $s \ge 1$ . Integrating (4.13) and using (4.14) and (4.5) we obtain

$$H(2S_{0}(\gamma)) = \int_{2S_{0}(\gamma)}^{\infty} t^{-k} h(v+1) dt$$

$$\geq C \int_{S_{0}(\gamma)}^{\gamma^{2}} t^{-k} \frac{(t-S_{0}(\gamma))^{p}}{\gamma} dt$$

$$= \frac{CS_{0}(\gamma)^{p-k+1}}{\gamma^{p}} \int_{\gamma^{2}/(2S_{0}(\gamma))}^{\gamma^{2}/S_{0}(\gamma)} t^{-k+p} dt = C/\gamma, \qquad (4.15)$$

since p = 2k - 3. On the other hand, we have from (4.1) and (4.4), that

$$H(2S_0(\gamma)) \leq S_0(\gamma) v'(S_0(\gamma))^2 + 2^{1-k} S_0(\gamma)^{1-k} F_1(v(2S_0(\gamma)))$$

$$\leq C_1 \left\{ \frac{S_0(\gamma)}{\gamma^2} + S_0(\gamma)^{1-k} F_1\left(C_2 \frac{S_0(\gamma)}{\gamma}\right) \right\}. \tag{4.16}$$

Now we assert that

$$\lim_{\gamma \to \infty} \frac{S_0(\gamma)}{\gamma} > 0. \tag{4.17}$$

Suppose (4.17) is not true. Then for a subsequence  $\gamma \rightarrow \infty$ , we can find  $C_3 > 0$  such that

$$F_1\left(C_2\frac{S_0(\gamma)}{\gamma}\right) \le C_3\left(\frac{S_0(\gamma)}{\gamma}\right)^2.$$
 (4.18)

From (4.15), (4.16) and (4.18) we have

$$C/\gamma \leq H(2S_0(\gamma)) \leq C_4 \left\{ \frac{S_0(\gamma)}{\gamma^2} + S_0(\gamma)^{1-k} \left( \frac{S_0(\gamma)}{\gamma} \right)^2 \right\}$$
$$\leq \frac{C_4}{\gamma} \left( \frac{S_0(\gamma)}{\gamma} \right) \left\{ 1 + \frac{1}{S_0(\gamma)^{k-2}} \right\}.$$

This, together with Lemma (4.2), implies that

$$0 < C_5 \leq \left(\frac{S_0(\gamma)}{\gamma}\right) \to 0$$

as  $\gamma \to \infty$ , which is a contradiction. This proves (4.17). Now (4.10) follows from (4.1) and (4.17).

From the concavity of y and (4.4), we have

$$y'(S_0(\gamma), \gamma) \ge y'(2S_0(\gamma), \gamma) \ge \frac{C_1}{\gamma}. \tag{4.19}$$

For  $\gamma$  large it follows from (4.2) and (4.1) that  $y(t, \gamma) \leq C$  for  $t \in [S_0(\gamma), 2S_0(\gamma)]$ . Hence from (4.4) and (4.10) we have

$$y'(S_0(\gamma), \gamma) = y'(2S_0(\gamma), \gamma) + \int_{S_0(\gamma)}^{2S_0(\gamma)} t^{-k}(y^p - y) dt$$
$$\leq \frac{C}{\gamma} + O\left(\frac{1}{\gamma^{k-1}}\right) \leq \frac{C_2}{\gamma}.$$

This, together with (4.19), proves (4.11) and the lemma.

**Proof of Lemma B.** Inequality (2.8) follows from (3.18).

Let  $t_0 \in [S_1(\gamma), S_0(\gamma)]$  be such that

$$y'(t_0, \gamma) = \frac{y'(S_0(\gamma), \gamma)}{2}. \tag{4.20}$$

Then from (4.11), (4.20), and the restriction that  $0 < y \le 1$ , we obtain for  $\gamma$  large that

$$C_1/\gamma \leq \frac{y'(S_0(\gamma), \gamma)}{2} = \int_{t_0}^{S_0(\gamma)} t^{-k}(y - y^p) dt \leq \frac{C}{t_0^{k-1}},$$

that is,

$$t_0 \le C_1 \gamma^{1/(k-1)}. \tag{4.21}$$

Let  $S(\gamma) = C_1 \gamma^{1/(k-1)}$ ; then clearly from (4.20) we have

$$S_1(\gamma) \le S(\gamma), \tag{4.22}$$

$$C_3/\gamma \le \frac{y'(S_0(\gamma), \gamma)}{2} = y'(t_0, y)$$
  
$$\le y'(S(\gamma), \gamma) \le y'(S_0(\gamma), \gamma) \le C_4/\gamma.$$
 (4.23)

This, together with (4.21) and (4.22), proves (2.9) and (2.11).

Now from the convexity of y in  $[S_1(\gamma), S_0(\gamma)]$  and (4.23) we have

$$\frac{1 - y(S(\gamma), \gamma)}{S_0(\gamma) - S(\gamma)} \ge y'(S(\gamma), \gamma) \ge C_3/\gamma. \tag{4.24}$$

From (4.24) and (4.10), we have

$$1 - y(S(\gamma), \gamma) \ge C - O\left(\frac{1}{\gamma^{(k-2)/(k-1)}}\right).$$

Hence we can find a  $\delta > 0$  such that for  $\gamma$  large,  $1 - y(S(\gamma), \gamma) \ge \delta$  and this proves (2.10).

Since 
$$S(\gamma) = O\left(\gamma^{\frac{1}{(k-1)}}\right)$$
, from (3.18) we get 
$$y(t, \gamma) \ge Z_1(t, \gamma) \ge Ct/\gamma. \tag{4.25}$$

for all  $t \in [S_1(\gamma), S(\gamma)]$ . From (2.9), (2.10), (2.11) and (4.25) we have

$$C/\gamma \ge y'(S(\gamma), \gamma) = \int_{S_1(\gamma)}^{S(\gamma)} t^{-k} y(1 - y^{p-1}) dt \ge \frac{C_1}{\gamma} \int_{S_1(\gamma)}^{S(\gamma)} t^{-k+1} dt$$
$$\ge \frac{C_2}{\gamma} \left( \frac{1}{S_1(\gamma)^{k-2}} - \frac{1}{S(\gamma)^{k-2}} \right).$$

This implies that

$$\lim_{\gamma\to\infty}S_1(\gamma)>0.$$

This proves (2.12) and hence the lemma.

**Remark 1.** Let  $n \ge 3$  and p > 1. Then there exists an  $R_0 > 0$  such that for  $0 < R < R_0$ , the problem

$$-\Delta u = u^p - u \quad \text{in } B(R),$$

$$u > 0, \text{ } u \text{ is } radial \quad \text{in } B(R),$$

$$\frac{\partial u}{\partial v} = 0 \quad \text{in } \partial B(R)$$

$$(4.26)$$

does not admit any solution u such that u' changes sign.

**Proof.** We consider two cases:  $1 and <math>p \ge \frac{n+2}{n-2}$ .

Case 1.  $1 . In this situation, by a result of Lin, Ni & TAGAKI [11] there exists an <math>R_0 > 0$  such that for  $0 < R < R_0$ , problem (4.26) does not admit a nonconstant solution. This proves the remark.

Case 2.  $p \ge \frac{n+2}{n-2}$ . Let  $v(r, \gamma)$  denote the solution of

$$-\left(v'' + \frac{n-1}{r}v'\right) = v^p - v \quad \text{in } (0, \infty),$$
$$v(0) = \gamma > 0, \quad v'(0) = 0.$$

Let  $R_1(\gamma) < R_2(\gamma) < \dots$  be the turning points (i.e.,  $v'(R_i(\gamma), \gamma) = 0$ ) of  $v(r, \gamma)$ . From the result of NI [12], we know that  $v(r, \gamma) > 0$  for all  $\gamma > 0$ . Now the remark follows from the following

**Assertion.** There exists a constant C > 0 such that

$$\sup_{\gamma \in (0,\infty)} R_2(\gamma) \ge C. \tag{4.27}$$

To prove this we adopt the method used in ATKINSON, BREZIS & PELETIER [6] and in ADIMURTHI & YADAVA [2]. Proceeding as in Lemma A, we obtain

$$\lim_{\gamma\to 0}R_1(\gamma)=\infty,\quad \lim_{\gamma\to 1}R_1(\gamma)>0.$$

Therefore it is sufficient to prove that

$$\sup_{\gamma \in (1,\infty)} R_2(\gamma) \ge C. \tag{4.28}$$

Let  $w(r, \gamma) = v(r, \gamma) - 1$  and let  $T_1(\gamma)$  and  $T_2(\gamma)$  respectively be the first and second zeros of  $w(r, \gamma)$ . Then

$$T_1(\gamma) < R_1(\gamma) < T_2(\gamma) < R_2(\gamma).$$

Therefore, in order to prove (4.28), it is sufficient to show that

$$\sup_{\gamma \in (1,\infty)} T_2(\gamma) \ge C. \tag{4.29}$$

Since  $v(r, \gamma) > 0$  for all  $\gamma > 1$ , we get

$$\sup_{\gamma \in (1,\infty)} \{ |w(r,\gamma)|; T_1(\gamma) < r < T_2(\gamma) \} \le 1.$$
 (4.30)

Let  $Z(r) = \left(\frac{n-2}{r}\right)^{\frac{n-2}{2}}$ . Then Z satisfies

$$Z'' + \left(\frac{n-1}{r}\right)Z' + \frac{1}{4}Z^{4/(n-2)}Z = 0 \quad \text{in } (0, \infty), \tag{4.31}$$

$$\lim_{r\to 0} Z(r) = \infty.$$

From (4.30) and (4.31) we can choose an  $r_0 > 0$  such that for all  $\gamma > 1$  and  $r \in (0, r_0) \cap [T_1(\gamma), T_2(\gamma)]$ ,

$$\frac{(w+1)^p-(w+1)}{w}<\tfrac{1}{4}\,Z(r)^{4/(n-2}.$$

Now by Sturm's comparison theorem, there exists a C > 0 such that (4.29) holds. This completes the proof of the remark.

**Remark 2.** Given any  $\Omega$ , we can construct a negative function  $\alpha \in C^{\infty}(\Omega)$  such that the problem

$$-\Delta u = u^p + \alpha(x) u \quad \text{in } \Omega,$$

$$u > 0 \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial v} = 0 \quad \text{on } \partial \Omega$$

$$(4.32)$$

admits a solution.

The construction of  $\alpha$  is similar to the construction given by Brezis [7] for the Dirichlet problem.

Let  $a \in C^{\infty}(\Omega)$ , be such that a changes sign in  $\Omega$  and  $\int_{\Omega} a(x) dx < 0$ . By the result of Hess & Senn [14] there exists a  $\lambda_1(\Omega) > 0$  such that

$$-\Delta v = \lambda_1(\Omega) \ a(x) \ v \quad \text{in } \Omega,$$
  $v > 0 \quad \text{in } \Omega \text{ and}$   $rac{\partial v}{\partial v} = 0 \quad \text{on } \partial \Omega$ 

admits a solution. Define

$$\alpha(x) = \lambda_1(\Omega) \ a(x) - \mu^{p-1} \ v^{p-1}, \quad u = \mu v,$$

where  $\mu$  is a positive real number. Obviously u satisfies (4.32). By choosing  $\mu$  large, we get  $\alpha < 0$ .

Acknowledgement. We thank Dr. VEERAPPA GOWDA for assisting us in doing some numerical computation for this problem and also for several discussions.

#### References

- 1. ADIMURTHI & G. MANCINI, The Neumann problem for elliptic equations with critical non-linearity, preprint.
- ADIMURTHI & S. L. YADAVA, Elementary proof of the non-existence of nodal solutions for the semilinear elliptic equations with Critical Sobolev exponent, *Nonlin. Anal.*, T.M.A. 14 (1990), 785-787.
- 3. Additional & S. L. Yadava, Critical Sobolev exponent problem in  $\mathbb{R}^n$   $(n \ge 4)$  with Neumann boundary condition, *Proc. Ind. Acad. of Sci.*, to appear.
- 4. ADIMURTHI, M. C. KNAAP & S. L. YADAVA, A note on a critical exponent problem with Neumann boundary conditions, preprint.
- F. V. ATKINSON & L. A. PELETIER, Emden-Fowler equations involving critical exponents, Nonlin. Anal. T.M.A. 10 (1986), 755-776.
- F. V. ATKINSON, H. Brrezis & L. A. Peletier, Solutions qui changent de signe d'equations elliptiques avec exposant de Sobolev critique, C. R. Acad. Sci., Paris 306 (1988), 711-714.
- H. Brezis, Nonlinear elliptic equations involving the Critical Sobolev exponent survey and perspectives, *Directions in partial differential equations*, edited by M. G. Crandall et al. 1987, 17–36.
- 8. H. Brezis & L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, *Comm. Pure Appl. Math.* 36 (1983), 437–477.
- 9. C. Budd, M. C. Knaap & L. A. Peletier, Asymptotic behaviour of solutions of elliptic equations with critical exponents and Neumann boundary conditions, preprint.
- 10. C. S. Lin & W. M. Ni, On the diffusion coefficient of a semilinear Neumann problem, *Springer Lecture Notes* **340**, 1986.

- 11. C. S. Lin, W. M. Ni & I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Diff. Eqns. 72 (1988), 1-27.
- 12. W. M. NI, On he positive radial solutions of some semilinear elliptic equations on  $\mathbb{R}^n$ , *Appl. Math. Optim.* 9 (1983), 373–380.
- 13. X. J. Wang, Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, *J. Diff. Eqns.*, to appear.
- 14. P. Hess & S. Senn, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, *Math. Annalen* 258 (1982), 459–470.

Tata Institute of Fundamental Research
Post. Box 1234
Bangalore-560 012
INDIA

(Received January 2, 1991)