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1 .  I n t r o d u c t i o n  

Let ,c2 ( R ~ be a bounded domain with smooth boundary and let o~ E C~(,Q). 
For  2 > 0, p > 1, n ~ 3 we consider the following problem 

- - A u  = u p + ;to~(x) u i n  .(2, 

u > 0 in .Q, (1.1) 

cgu 
= 0 on ~ .  

c% 

n + 2  
When p < - -  and ~(x) = --1, this problem has been discussed extensively 

n - - 2  
in the works of N~ [12], LIN & NI [10] and LIN, NI & TAKAGI [tl].  They have 
proved that there exist positive constants 2o and 21, with 2o ~ 21, such that 
(1.1) admits a non-constant solution for 2 ~ 2i and does not admit any non- 
constant solution for 2 < 2o. In view of their results, it was conjectured by LtN 

n @ 2  
& N1 [10] that a similar result holds even for p 

n - -  2" 

n + 2  
When p n -- 2 BREZlS [7] posed the question of finding conditions on 

and ,c2 for which (1.1) admits a solution. Clearly when c~(x) ~ 0, (1.1) does not 
admit any solution. Therefore we have to consider two cases: (i) c~(x) changes 
sign, (ii) ~(x) ~ 0. 

In case (i) some partial results have been obtained in [3] by using the variation- 
al methods of BREZIS & NIRENBERG [8]. To describe the results of [3], we further 
assume that f o~(x) dx < 0, that there exists an Xo C 0D such that o~(Xo) > 0, 

and that ~ is flat at Xo of order at least four. Under these assumptions, it was 
shown that for n ~ 4 there exists a 2* > 0 Such that (1.1) admits a solution 
if and only if 2 C (0, 2*). 
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In case (ii) the standard variational arguments do not seem to work. On the 
other hand, in this situation it is easy to construct an example (see Remark 2 at 
the end of Section 4) such that  for any D we can find a negative function 0~(x) 
for which (1.1) admits a solution. In view of this and the results of  DN, NI & TA- 
KAGI [11], we shall consider the very restricted case of  problem (1.1) when 2~(x) = 
--1,  s is a ball and the solution is radial. 

Let B(R) denote the ball of  radius R with center at the origin and let #~(R) 
be the first non-zero eigenvalue of the radial problem 

--A~p=/gq~ in B(R), 

(1.2) 
Ov 0 on OB(R). 

We consider the problem 

- - / ' k U  ~--  U ( n + z ) l ( n - 2 )  - -  U in B(R),  

u > 0, u is radial in B(R),  (1.3) 

Ou 
0v 0 on OB(R) 

and prove the following 

Theorem. Let p = (n + 2)/(n - -  2). The following conclusions hoM: 

(a) I f  n >= 3 and p -- 1 > #~(R), then (1.3) admits a solution which is radially 
increasing. 

(b) I f  n E {4, 5, 6} and p -- 1 < #I(R), then (1.3) admits a solution which is 
radially decreasing. 

(c) I f  n = 3, then there exists an R* > O such that for O < R < R*, (1.3) 
does not admit any nonconstant solution. 

Here we remark that  part  (a) of  the theorem has been proved by NI [121 and 
LIN & NI [10], and that  part  (b) gives a counter-example to a part  of  the conjecture 
of  LIN & NI [10]. 

Since we are looking for radial solutions, (1.3) reduces to studying the first 
turning point R~(7 ) of  v(r, 7), where v satisfies 

n -  1 n+2 
- - V  t t  - -  V t ~ V n - 2  - -  V ~  

r 

v'(0) = O, v(0) = 7 > 0 (1.4) 

and RIO') is defined by 

RIO, ) = sup{r;  v'(s, 7) 4 = 0 V sE (0, r)). (1.5) 

Because of the continuity of  7 --> R~@), we shall be able to deduce the theorem 
from knowledge of the behavior of  R1 (7) as 7 -+ 0, 1 and o~. Information about  
the behavior of  R1(7) as 7 -+ 0, 1 is available in the literature. Therefore the main 
difficulty lies in understanding its behavior at oc. We illustrate this for n = 6. 
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Let n = 6 ,  7 >  1, r / = v ( R l ( 7 ) , 7 )  and w = v - - ~ .  Then w satisfies 

--&w = w 2 + (2~1 --  1) w + r](~ --  1) in B(RI(~)) ,  

w > 0 in B(RIO')) ,  

~w 
w -  Ov - - 0 ,  on ~B(Ra(7)).  

Hence by Poho~aev's identity we have 

2(2~ 7 -- 1) f w 2 dx + 8~7(~1 -- 1) f w dx = O. 
B(R 1 (2')) B(R 1 (2")) 

This implies that ~ > 1/2 and hence v(r, 7) 3> 1/2 for all r E (0, RI(~,)). Now 
the asymptotic analysis of  ATKINSON & PELETmR [5] suggests that we can find 
positive constants d, C~, C2, Ca and 70 such that, for 7 > ~o and R(7) = C17 -116, 

R(y)  < RI(y),  (1.6) 

1 --  v(R(7), 7) >= ~, (1.7) 

61/7116 ~ ]vt(R(7), ~')l ~ C2/~ I]6" (1.8) 

Integrating (1.4) from R(7 ) to RI(7)  and using (1.6)-(1.8), we obtain for C = 
C~C2 that 

Rt(2") 
c/7 _-> - R ( T P  v'(R(7), 7) = ( r ~ (  1 v) dr > ~/12(R~(7) ~ --  CdT). 

~2") 
Hence  

Rt(~') 6 ~ (l~_~_C @ C1)/~,____> 0 as 7 - + o o .  (1.9) 

When n ~ 5 it may not be true that V(Rl(7), ~') is bounded away from zero 
as 7---> 0% whereas estimates similar to (1.6)-(t.8) still hold. Therefore in this 
case we have to adopt a different procedure to study R1(7 ) as ~ -+  oo. 

The paper is divided into two parts. In the first part (Section 3), we study the 
behavior of R~(7 ) as ~, -+ 0, 1. In the second part (Section 4), following the tech- 
niques developed in ATKINSON ~% PELETIER [ 5 ] ,  w e  obtain estimates similar to 
(1.6)-(1.8). Using these (see Section 2) we obtain the proof  of  the theorem. 

In a forthcoming paper we shall study problem (1.3) when --iX is replaced by 
the p-Laplacian for p ~ n. 

While revising this paper, we learned of a recent result of BUDD, KNAAV & 
PZLETIER [9], which discusses the question of existence and non-existence of  solu- 
t ions  of (1.3) when u ("+2)/(~-2)- u is replaced by" u (h+2)/(~-2) - -  u ~ for 1 < 
q <  4 / ( n -  2). This problem, for q = 4 / ( n -  2), has  also been treated by 
ADIMURa'm, KNAAP & YAI)AVA [4]. 

Recently, ADIMUgTrII & MANCINI [1 ] have tackeled this problem in an arbitrary 
domain using variatio~ml techniques. We learned from Prof. J. SnRedN that 
X. J. WANG [13] has also found related results. 
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2. Proof of the Theorem 

In order  to prove the theorem, we make use of  the s tandard substitutions, 

[ n - - 2 \  n-2 2 ( n - - 1 )  n + 2  
t = ~- - - -7-}  k - -  - - ,  p - -  - -  - -  2k  - -  3, y(t ,  7) = v(r, 7) ,  

' n - - 2  n - - 2  

in t roduced in [5]. Then  f rom (1.4), y satisfies the Emden-Fowler  equat ion 

_ y "  = t - k ( y p - - y ) ,  

y ( ~ )  = 7 > o, y ' ( ~ )  = o. 
(2.1) 

Let  S~(7 ) be the first turning point  of  y(t,  7), defined by 

$1(7) = inf{t ;  y'(s, 7) ~= 0 V s E (t, cx~)}. (2.2) 

Let  ~ be the solution of  

--~0" = t -k  ~p in (0, oo) ,  

q0(cx~) = 1, ~0'(cx~) = 0 (2.3) 

and let 3o and ~ respectively be the first zero and first turning point  of  % i.e., 

Vo = inf  (t; q0(s) > 0 

v~ = inf{t ;  ~'(s) > 0 

for  s > t}, 

for  s > t}. 
(2.4) 

Then  we have 

Lemma A. Let  7 ~e O, 1. Then 

O) $1(7) exists and Y(SI(7),  7) > O. 

(ii) I f  ~' E (0, 1), then y is decreasing, with 

lim $1(7) = O, 
~/-+0 

lim $1(7) = (P - -  1) l/(k-2) "ti- 
T-+1 

(iii) I f  ~ > 1, then y is increasing, with 

lim S~(7, ) = (p - -  1) I / ( k - 2 ) ' r J .  

(2.5) 

(2.6) 

(2.7) 

This result is contained in the works of  NI [12] and LIN & NI [10]. Fo r  the sake 
of  completeness, we present the p roo f  in Section 3. 

Lemm a  B. Let  7 E (1, o<~). 

(i) For t >= $1(7), 

Then 

y(t ,  7) ~ Z l ( t ,  7'), (2.8) 
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where 

7t  
Z~(t, 7) = { t k - z  ~_ (7P-1 _ 1)/(k - -  1 ) }  l / ( k - 2 )  " 

(ii) 
that, for  all 7 >= 7o and S(7 ) = C~, l/(~-l), 

s,(7) < s(7), 

1 -- y(S(7), 7) ~ ~, 

c3/7 < y'(S(7), 7) <= c~/7, 

lim $1(7) ~ Ca. 

I f  3 <-- n <-- 6, there ex&t positive constants r}, C~, C2, C3, Ca and 70 such 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Assuming the validity of Lemmas A and B, we first complete the proof of the 
theorem. Since Lemma A gives the behavior of $1(7) as 7 -~ 0, 1, to prove the 
theorem we must study its behavior at ec. For this we need three further lemmas. 

Lemma 2.1. Let  Z1 be as defined in (2.8). Then 

" = ( ~  - -  ?~ t - k  Z~ in (0, cx~), (2.13) - -  Z 1 \ 7 p ] 

lim Z1 = ? ,  (2.14) 
t-O- (X) 

[ 7 --  Z l ( t ,  7) + tZ[(t ,  7) = \ 7p ] t 

_ 7  tk-1  
tZ'l(t, 7) - -  Z l ( t ,  ?) = {tk_ z ~_ (TV_ 1 __ 1)/(k -- 1)} Ck-x)/(k-2) " (2.16) 

This lemma follows easily from the definition of Z1. 

Lemma2.2.  I f  n = 3  ( k = 4 ) ,  then 

1 
Proof.  Let /3(t) = t c o s h - - .  

t 

lim St(v)  < ~ .  
7-+00 

It is easy to verify that /3 satisfies 

/3" = t-a/3 in (0, o0), (2.17) 

limofl(t) = co, /3(0 = t § C(t), (2.18) 

where C(t)  >= O. Let To be such that ~3'(To) = O. Then the lemma follows if we 
can show that 

lira $1(7) ~ To. (2.19) 
~--~ OO 
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Let 14," = (yfl' --  fly'). Theft W(cx~) = 7 and W'(t)  = t -4 ySfl. Integrating W' 
from S~(7 ) to cx~ and using (2.8), (2.18), (2.15) and (2.16), we obtain 

y(S,(r), 7) Y ( s l ( 7 ) )  = r - 

o o  

f t-4ySfl dt 
S~('/) 

75 
7 -- t-aZ~ dt ~ 7 [7 -- Z~ q- S~(7) Z~] 

- -  s ~ (~ )  - ( 7  5 - 7 )  

- - 7 2 (  75 ) 7S~(7)3 (2.20) 
H ~  + ~ (s~(7) ~ + 31- ( <  - 1)) 3/~" 

From (2.9) it follows that S~(7 ) = 0 (71 /3 )  as 7 -+ c~; hence we have 

( ) (1) 
{s~(7) ~ + ~- (7" - 1)) ~2 = o 

as 7 -+ oo. This together with (2.20) and (i) of Lemma A implies that fl'($1(7))<0 
for 7 large, and so S~(7) =< To. This proves (2.19) and hence the lemma. 

Lemma 2.3. I f  n E {4, 5, 6}, then 

lim $1(7) = ~ .  (2.21) 

Proof. Suppose (2.21) is not true. Then for a sequence of values 7 -+ cx~, we have 

lim $1(7) < cx~. (2.22) 

For the sequel we use C, C~, C2, etc., to denote positive constants independent 
of 7- Now from (2.8), (2.9) we have for t E ($1(7), S(7)), 

Let 

t 
y(t, 7) >= Zl( t ,  7) :> C - - .  (2.23) 

7 

H(t) = �89 tY'z -- �89 YY ' @ t l -~  [ yp+l ~ )  

Then H ( o o ) =  0 and H ' ( t ) -  2 

H'( t )  from $1(7) to S(7 ) and using (2.23), we obtain 

p -- 1 t -k  y2. Hence H(t)  <= O. Now integrating 

C s(7~ C9(7) 
> - -  f t -~+2 (2.24) : 72 dt = 72 , 

SlO') 

�9 = - - - - f - -  f y 2 t - k d t  
Sz(7) 



Neumann Problems with Critical Sobolev Exponents 281 

where 

~(7) = 
, s o )  
log S - - ~  

( s ( T Y - k  _ & ( T Y  "~) 

if k = 3 ,  

if k <  3. 

From (2.10), (2.11) and (2.22) we have 

s(v) 
Ca/)' ->_- y'(S(y), 7) = f 

Si(~) 
y(1 -- yp-1) t - k  dt 

(1 
>= k - 1Y(&(7)' y) &({)k-1 s(  

Cy(SI(7), ~). 

Hence 

--O(Sl(~)) = Sl(7)l-'k y(SI(~)' 0)2 (�89 7 7  i ] 

S~0') i - k  

__<c~ 7 " 

This combined with (2.24) gives 

SI(~?) k-1 ~ C4/~(~2). (2.25) 

Since S~(7 ) is bounded by assumption, it follows that Q ( 7 ) - + ~  as 7 - +  cx~. 
Therefore from (2.25), $1(7)-+ 0 as 7 - +  ~ ,  contradicting (2.12). This proves 
the lemma. 

Proof of the Theorem. For  7 4= O, 1, let RIO') and u(r, 7) be defined by 

( n -  21"-2 ? -  2~ "-2 
t = \ 7 }  ' S l ( r ) = ~ R I ( 7 ) ]  ' 

u(r, 7) = y(t, y). 

Then u satisfies 

- -Au = u ('+2)/("-2) --  u in B(RI(y)), 

u > 0 in B(R~(y)), 

Ou 
~--; = 0 on ~B(RdT)). 

Define R1 = [(n -- 2)/r~] "-2. It is easy to see that #~(R~(v)) = (RdRI(v)) 2. 
Since 7 ~ R1(7) is continuous, (a) follows from (2.5) and (2.6), (b) follows from 
(2.7) and (2.21), and (c) follows from Lemma 2.2. This proves the theorem. 
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Let  k > 2 
solut ion of  

Let  

ADIMURTHI • S. L. YADAVA 

3. Proof of Lemma A 

and let f :  R -+  R be a C~-function. Fo r  7 > 0, 

- - y " =  t - k f ( y ) ,  

y(oo) = 7, y ' (oo)  --_ O. 

F(s) = f f ( r )  dr, 
o 

H ( t )  = �89 t Y  '2 - -  �89 Y Y '  + t 1-k F ( Y ) ,  

t l - -k  
H~(t)  = { t Y  '2 - -  { Y Y '  + - -  Y f ( Y ) .  

2(k - -  1) 

I t  is then easy to see tha t  Y satisfies 

l im H ( t ) =  lira H~(t)  = O, 

l im Y'(t ,  7) tk -1  - -  f(~') 
t - ~  (k - -  1) '  

H ' ( t )  = �89 t - k [ Y f ( Y )  - -  2(k - -  I) F(Y)],  

Y' t  1-k 
H~(t) - -  2(k - -  1----~ [ Y f ' ( Y )  - -  (2k - -  3 ) f (Y) ] ,  

( y ,  r l - k  tk--1), = - -2 (k  - -  1) t k-2  y - k  H~(t) .  

F r o m  now on, we assume that  f (0)  = f ( 1 )  = 0 and f ' ( 1 )  > 0. 
we assume tha t  

(s - -  1)f(s)  > 0 for  s > 0 and s ~= 1. 

Fo r  7 > 0 ,  7 : ~ 1 ,  put  

S o ( 7 , f )  = inf{t ;  Y(s, Y) =4= 1, Y'(s,  7) ~ 0 

$ 1 ( 7 , f )  = in f ( t ;  Y(s, 7) > O, Y'(s, Y) ~ 0 

We then have the following 

Lemma 3.1. For s ~ O, 

Then 
r(t, 7) >= ~(t, 7) 

f o r  7 > 1 and t >= S l ( v , f ) ,  where 

7t  
~ ( t ,  7) = 

f (7 )  11/(k-2) " 
tk -2  ( k - - 1 ) y j  + 

assume that f satisfies 

sfi'(s) - -  (2k - -  3) f (s )  ~ O. 

V s ~  t}, 

V s ~ t } .  

let Y(t, y) be the 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Fur the rmore ,  

(3.9) 

(3.1o) 

(3.11) 

(3.12) 

(3.13) 
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Proof. Let t > S~(7, f  ). Since 7 > 1, it follows from (3.9) that Y'(t, 7) > O. 
Therefore from (3.12) and (3.7), H~(t) ~ O. Hence H~ is increasing and from (3.4), 
Hi(t)  <= O. From (3.8), we have 

(y ,  y l - k  t~-I), >= O. 

Integrating this twice from t to ~ and using (3.5), we obtain 

_ _  ~,1 -~ f (2 )  ) 1 1 < 
yk-2  7 k-2 = (k -- 1) t k-2,  

which gives 

Y(t,v)>= 

This proves the lemma. 

7t 

f ( r )  11/(*-'>" 
t k - - 2 + ( k _ _  1)71 

Lemma 3.2. For s ~ 0, assume that f satisfies 

sf'(s + 1) -- (2k -- 3)f(s -r 1) ~ 0. 

Then 
Y(t, 7) ~ 1 + ~72(t, 7), 

for 7 > 1 and t ~ S~(~,,f), where 

(7 -- 1) t 
~Tz(t, 7) = f(T) ~II(k-2)" 

tk-2 -~ (k -- 1) (7 -- 1)J 

(3.14) 

(3.15) 

Proof .  Let V =  Y--  1, f l ( s ) = f ( s  + 1). Then V satisfies 

- -  V"  = t - ~  f ~ ( V ) ,  

V(oo) = 7 -- 1, V'(oo) = 0. (3.16) 

Since 7 > 1, from (3.9), we get Y(t, 7) ~ 1 and Y'(t, 7) > 0 for t >= So(7,f). 
Hence V(t) ~ 0 and V'(t) > 0. Therefore for t >= So(7,f), we have from (3.16), 
(3.7) and (3.14) that H;(t) ~ O. So we deduce that Hi(t)  >= 0 from (3.4) and 
that 

(V 'V  1-k tk-1) ' <= 0 

from (3.8). Integrating twice and using (3.5) we obtain for all t ~ S0(7,f) that 

V(t,  y)  =< 
t k - 2  @ 

that is, for t ~ So(7,f), 

( 7  - 1)  t 

f(7) 
(k - -  1) (~ - -  1)/ 

Y(t, 7) ~ 1 + ~2(t, y). (3.17) 
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Since Y(t, 7) ~ 1 for t C [S~(7,f), So(7,f ) ] ,  inequality (3.17) continues to hold 
for t ~ S~(7,f) .  This proves the lemma. 

As an immediate  consequence of  these lemmas we have the following 

Lemma 3.3. Let 7 > 1 and let y(t, 7) satisfy (2.1). 

(i) y(t, 7) ~= Zx(t, 7) if n ~= 3. 
(ii) y(t, 7) ~ 1 + Z2(t, 7) i f  3 <-- n ~ 6, 

where 

Zl( t ,  7) =" 

z ~ ( t ,  7)  = 

For t>=$1(7), 

7t 
7 2 ( k - - 2 )  _ _  1}1/( k-2)' 

{ tk-~+ ~ - i 3  

(7 - 1)t 
7(72(k--2) __ 1) ll/(k--2)" 

{ t k - ~ + ( k  - 1)(7 -- g! 

(3.18) 

(3.19) 

Proof .  Let  p = 2k --  3 and f(s)  = s p -- s for  s ~ 0. E x t e n d f a s  a CX-function 
to R. Then  clearly f satisfies (3.9), and for  s ~ 0, 

sf'(s) --  (2k - -  3)f(s)  = 2(k --  2) s ~ 0. 

Hence,  (3.18) follows from Lemma 3.1. 

For  s ~  1, n ~ 6 ,  let h ( s ) = - - p s  p - l + ( p -  1) s +  1. Since n ~ 6  we 
have p ~ 2 .  Therefore  h " ( s ) = - - p ( p - -  1 ) ( p - - 2 ) s  p 3 ~ 0  and h e n c e h i s  
concave. Since h ( 1 ) =  0 and h ' ( 1 ) = - - ( p -  1) 2, we have h ( s ) < ~ - - ( p - - 2 )  2 
( s -  1 ) < o .  

For  s ~ 0 ,  we have 

sf ' (s  q- 1) - -  ( 2 k - -  3) f (s  + 1) = --p(s ~- 1) p-1 + (p - -  1) (s + 1) -]- 1 

= h(s + 1) <= o. 

Hence (3.19) follows f rom Lemma 3.2. This proves the lemma. 

For  i = 1, 2, and 7; > 0 let Pi : R + - +  ~ be continuous functions. Let  ~i 
satisfy 

pt 
--qJi = t - k  9i(t ) ~Oi, 

t q~i(c~) = 7~, q~t(cx~) = 0. (3.20) 

Denote  by To,i and TI,~ respectively the first zero and first turning point  of  ~i (see 
(2.4)). Then  

Lemma 3.4. (i) Assume that To,x exists and also that ~o2(t) ~ Ol(t) for t ~ To,2. 
Then To,2 > 0 and To,2 ~ To, l. 
(ii) Assume that To, l and T~,t exist and also that O2(t) ~ ~ol(t) for t ~ 7"1,2. Then 
7'1, 2 > 0 and T1, 2 ~ Tl,x. 
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! ! 
Proof .  Let  W = qhq~2 --  q~lqo2. Then  W ( ~ )  = 0 and 

W'(t) = t -k (~2  - -  ~1) ~a~2-  (3.21) 

Suppose that  (i) is not  true. Then To,2 "< To,1 and hence f rom (3.21), W'(t) >= 0 
for  all t >= To,1. Therefore  W(To,1) <= O. But W(To,O = tP;(To3)q~2(To, a) > 0, 
which is a contradict ion.  This proves (i). 

Suppose that  (ii) is not  true. Then  T~,2 ~ T13. From (i) it follows that  To, z ~ To.2. 
Using (3.21), we obtain W'(t) ~ 0 for  t E [T1,1, T0,1]. Therefore  we have 

0 < --~1(T1,1) q~2(Tl,1) = W(TI,1) ~ W(To,1) 

= ~o;(To,1)q92(To,1) < 0,  

which is a contradict ion.  This proves (ii) and hence the lemma. 

Let  q~, %, % be as in (2.3) and (2.4). For  a > 0, denote  ~o(t, a) = ep(at) and 
let %,, and -q,~ be the first zero and first turning point  of  ~0(., a). Then  we have 

To T1 
TO, a ~ - - ~  T l , a  ~ - -  

a a 

--9~"(., a) = a z-~ t -k  ~(., a), (3.22) 

~o(~, a) = 1, ~0'(c,% a) = 0. 

Let  y(t, y) and Sl(y)  be as in (2.1) and (2.2). Define 

So(y) = inf{t,  y(s, y) ~ 1, y'(s, y) @ 0 V s > t}. (3.23) 

We then have 

Lemma 3.5. I f  y ~ 0, I, then So(y ) exists and 

lim So(y) = 0. 
y - + 0  

Proof .  First consider the case Y > 1. Let  

Then  ~2 satisfies 

q~2(t) = y(t, 7) -- 1, 

~o~(t) = 
(9,2 § 1) p - (~o~ § 1) 

tp2 

" = t - k  - -  ~0 z ~O2~02 , 

! 
~ 2 ( ~ )  = y - 1, ~ 2 ( ~ )  = 0 .  

From  (3.23) it follows that  So(y) is the first zero of  ~02 and that  ~o2(t ) ~ (p - -  1) 
for  t ~ S o ( y ) .  Taking 91 = ( P - -  1), ~ ( t ) = ~ ( t , ( p - - 1 )  -1/(1'-2)) in (i) of  
Lemma 3.4, we conclude that  So(7) exists and 

(P - -  1) 1/(k-2) "Co ~ So(y) .  (3.24) 
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NOW consider the case 0 < y < 1. Let  

cp2 = 1 -- y(t, y),  

(1  - ~ 2 )  - (1  - ~ 2 )  p 
Q2(t) = 

~02 

Then  ~o 2 satisfies 

- ~ 4 '  = t -k  92(0 ~02, 
t 

~o2(e~) = 1 - -  y, ~o2(e~ ) = 0, 

with So(y) as its first zero. By taking 91 = min{~2(t) ,  t ~  So(y)}, q01(t)----- 
~0(t, 9]/(k-2)) in (i) o f  L e m m a  3.4, we obta in  the existence of  So(y). Since 
~o2(t) ~ (p - -  1) for  t ~ So(y), again f rom (i) o f  L e m m a  3.4, we obtain  

So(y) ~ (p - -  1) 1/(/c-2) "to. (3.25) 

N o w  suppose  tha t  So(y) does not  tend to zero as 7 approaches  zero. Then by 
:going to a subsequence and using (3.25), we have 

l im 0 So(y) = So ~ 0. (3.26) 

iSince the boundedness  of  y implies that  y '  and y "  are uni formly  bounded  in 
.(So(y), cx~), the Arzel~-Ascoli  Theo rem implies that  there exists a subsequence 
such that  y(t, y ) -+  yo(t) uniformly  on compac t  sets and tha t  Yo satisfies 

--Yo' = t-~(Y~ -- Yo) in (So, eo) ,  (3.27) 
! 

y0(c~) = y0(cx~) = 0. 

F r o m  the uniqueness of  the solution of  (3.27), Yo ~ 0. But yo(So) = 1. This 
contradic t ion proves  the lemma.  

P r o o f  of  the L e m m a  A. F r o m  (2.1), it follows tha t  y is increasing for  y > 1, 
a n d  y is decreasing for  y < 1. 

First  consider the case 7 > 1. Suppose S , (y)  = 0. Then y( t , y )  > 0 for  
t > 0 by (3.18), and y(t, y) is an increasing funct ion by (2.1). Since y(So(y), y) = 1, 
f r o m  L e m m a  3.5 we can find a C > 0 such that  for  t E 0, (So(y)/2), 

1 -- yP-1(t,  y) ~ C. (3.28) 

F r o m  (3.18), we can find a C1 ~ 0 such that  for  tE (0, So(y)/2), 

y(t, ~) ~ C~t. (3.29) 

In tegra t ing  (2.1) and using (3.28) and (3.29), we have 
So(~')/2 

oo > y'(So(y)/2, ~) ~ f t -~ y(1 -- yp-1) dt 
0 

So(~)/2 

CCI f t -t '+l dt : cx~, 
0 

which  is a contradict ion.  Hence  S~(y) > 0; f rom (3.18), we have y(Sx(~), y ~ 0). 
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Let  v = y - -  1 and f a ( s ) = ( s §  1) p - ( s +  1). Then  v ( c x 0 = 7 ' - -  1, 
v'(cx~)= 0, and So(y) and $1(7,) respectively are the first zero and first turning 
points of  v. Moreover ,  v satisfies 

Now integrating (3.30) and using (3.24), we can find a C > 0 such that,  for  all 
I<7,_--<2, 

co 

So(r') 

Since 

f A ( v )  } 
sup t v ; t ~ S o ( 7 , ) , 7 ' E ( 1 , 2 ]  <cx~ ,  

as a consequence o f  (i) of  Lemma  3.4, So(7,) is bounded for  7, E (0, 2]. F r o m  
this and f rom (3.31), we can find a C 1 > 0  such that  for  1 < 7 , ~ 2 ,  

[v(S~@))l <= v'(So(7,)) (So(7,) - -  S~@)) ~ C(7 , - -  1). (3.32) 

This inequality implies tha t  for  any e > 0, we can find a ~ > 0 such that  when- 
ever y - -  1 ~ ,  t ~ S l ( y ) ,  

(i - -  e) (p - -  1) < f l (v( t ) )  < (1 + e) (p - -  1). (3.33) 
= v( t )  = 

From  (3.22), (3.33) and (ii) o f  Lemma 3.4, we obtain 

[(1 - -  e) (p - -  1)] 1/(1'-2) v l  ~ S1(7,  ) ~ [(1 -]- e) (p  - -  l ) ]  1 / (k-2)  "~'1 

fo r  7, ~ 1 + O. This inequality implies that  

lim $1(7, ) = (p - -  1) 1/(k-z) ~'l. (3.34) 
y---~ 1 

Now consider the case in which 0 <  y < 1. Suppose $1(7 , )=  0. F rom 
Lemm a  3.5, So(y) exists and y(So(7,), y) = 1. Hence f rom (2.1), 

-y'(t ,  y) <= -y'(So(7,), y) (3.35) 

for  all t E (0, (So(7,)). Also we can find a C > 0 such that  for  t E (0, So(7,)/2), 

yV(t, 7') _ y(t, 7") ~ C. (3.36) 

Integrating (2.1) and using (3.35) and (3.36), we have 

So(~')/2 

--y'((So(y),  7") ~ --y'( t ,  7") ~ f s -~(y  p --  y) dt 
t 

->- C - F ~  --  --~ ~ 
- \So(y)~ J 

as t--> O, which is a contradict ion.  This implies that  S~(y) exists. 
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Let v =  1 - - y  and f ~ ( s ) = ( 1 - - s ) - - ( 1 - - s ) C  Then v(cx~)= 1 - - 7 ,  
v'(cx~) -= O, So(7) and SI(y) are the first zero and first turning points ofv. Moreover, 
v satisfies 

- - v " =  t -k  ( f ~ )  V. (3.37) 

Since 

�9 f tA(v) } m I - 7 -  ; t > So(7), ~ < 7 < 1. > o, 

by Lemma 3.4(i) and by (3.22) we have 

inf{Xo(7); �89 < 7 < 1} > 0. 

Therefore by integrating (3.37), we have for some constant C > 0, 

v'(So(7)) : ? t-~ ( ~ )  v dt ~ C(1--7) .  (3.38) 
So(,~) 

From (3.25), (3.38) and the mean value theorem, we can find a C1 > 0 such 
that 

[~(s,(7))l < [~'(So(~)) I (So(7) - s , (7 ) )  _-< c , (~  - 7). 

This implies that for  every s > 0 ,  we can find a 3 > 0  such that 

(1 -- e) (p -- 1) ~ f~(v) ~ (1 + e) (p -- 1) (3.39) 
V 

whenever 1 -- 7 ~ 3 and t >= S~(7 ). From (3.22), (3.39), and Lemma 3.4(ii) we 
obtain 

[(1 - -  e) ( p  - -  1)] l /(k-2) 721 G S l ( y )  G [(1 -}- e) (p  - -  1)] l/(k-2) z" 1 

for 1 --  V G 3. This inequality implies that 

lim SI(V) = (p -- 1) 1/(Ir f t .  (3.40) 
?--->- 1 

Since S~(7) < So(V), from Lemma 3.5 we have lira S~(V) : 0. Now the 
lemma follows from (3.34) and (3.40). ~-.0 

4. Proof of Lemma B 

Let n ~ 6 and 7 > 1. Let y(t,v), SI(y), and So(7) be as in (2.1), (2.2), 
(3.23), respectively. For  the sequel we use C, C~, C2, etc., to denote positive constants 
independent of 7, but which may be different in different inequalities. We have the 
following 

Lemma 4.1. For 7 large, 
So(y) = 0(7), (4.1) 

y(t, Y) G 1 -4:- Ct/v for t >= So(7), (4.2) 

Y(72, 7) ~ C7, (4.3) 

Ct/7 <= y'(2So(7), 7) <= C2/7. (4.4) 
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For t E (2So(7), yz) 

G(t  - so(y)) 
1 -~ <= y(t, 7) ~ 1 + 

7 

c2(t  - so(r)) 
(4.5) 

Proof. By Lemma (3.5), So(7) exists and from (3.t8), 

Z,(So(7), 7) ~ y(So(y), r )  = 1. 

This implies that 

(4.6) 

7p-- 1 

S~ G ( k -  1)(7 k - 2 -  1)" (4.7) 

Since p = 2k -- 3, it follows from (4.7) that 5'o(7) = O(y) as V --> oo. This proves 
(4.1). 

yP --  y 
For  large 7 we have, (k -- 1) (7 -- 1) ~ Cy2(k-2) and hence from (3.19), 

7t Ct 
y(t, r) <= 1 + { YP -- 7 t I/(k-2) <-- 1 + -7-" 

tk-2 -+ (k -- 1) (7 --  1)J 
x 

for all t ~ So(y). This proves (4.2). 
Again from (3.18), we have 

y(yL r) >= zl(y 2, 7) => c7 

for r large. This proves (4.3). 
From the concavity of y in [So(7), 2So(7)] and from (4.2) we have for large 7 

that 

y(2So(7), 7) -- 1 C2So(r) C2 
- -  (4.8) y'(2So(7), 7) ~ So(V) ySo(y) r 

Again, from the concavity of y in [2So(7), 7 2] and from (4.1)-(4.3), we have for 
large 7 that 

--  Cy + O(1) C, y'(2So(y), 7) > Y(r2' y) y(2So(r),7) > > _ _  
= yZ _ 2So(y) -- 72 + 0(7) = 7 

This together with (4.8)proves (4.4). 
Let t E [2So(y),72]. From (4.2), we then have 

c ( t -  So(y)) t ( t -  So(y)) Ct 1 + < I + C 2  (4.9) 
y(t, y) ~ 1 + 7 7 (t -- So(y) 7 

From the concavity of y in [So(y), 72] and from (4.1)-(4.3), it follows that 

y(t, 7 ) -  y(So(y), 7) > y(yZ, 7) _ y(So(7), 7) 
t - -  So(y) y2 _ So(y) 

> c y  + o(1) > c___L~ 

= y2 + O(7)  = y 
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for )' large and for t E [So(y), )'2]. Hence 

y ( t ,  ),) >= 1 -~ 
c ~ ( t -  SoOt)) 

), 

This together with (4.9) proves (4.5) and hence the lemma. 

L e m m a  4.2 .  lira So(?') > 0. 
},--~ CO 

Proof. Integrating (2.1) and using (4.4) and (4.5) we obtain for ), large that 

C2 
y'(2So0,), ),) = f t - k ( y  p - -  y )  dt 

77 2so(~) 
~2 C ~,2 

> (p - 1) f t-~(y - 1) dt > - -  f t -~(t  -- So(v)) dt 
2So(~') ) '  2So(7') 

CSo()')2-k 72/So(~) CSo(),) 2-1c 
f t - k ( t - -  1 ) d t ~  

), 2 ), 

which implies that lim So()') ~ C4 > 0, since ),2/S00,) ---> ec as ), --> ~ and 
~,--*- oo 

k > 2. This proves the lemma. 

L e m m a  4.3. For ), large, 

c~7 =< So(7) < c2)', 

c , /) ,  =</(SoOt), ),) =< c2/),. 

(4.10) 

(4.11) 

Proof. Let v = y - -  1 and f l ( s ) = ( s +  1) p - ( s +  1). Then v satisfies 

- - v "  = t - k  f t ( v ) ,  

V ( ~ )  = )" - -  1, V'(oo) = 0 

and So()') is the first zero of v. Let F~(s) be the primitive o f f1  and let 

H ( t )  = �89 tv 'z - -  �89 vv'  q- t 1 -k  FI (v ) .  

Then from (3.6) we have 

where 

(4.12) 

h(s)=sP P--2 ls2--s+~T)" 
Since n ~ 6, we have p ~ 2, and therefore we obtain that h is convex for s ~ 1 
and satisfies 

h(s) >= C(s  - -  1) p (4.14) 

t--k 
- -H ' ( t )  = -5--h(v + 1), (4.13) 
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for  s _> 1. Integrating (4.13) and using (4.14) and (4.5) we obtain 

o o  

/4(2So(~))  = f t -k h(v + 1) at 
2SoCD 

� 8 9  
~ 2 

I t - ~  (t - So(e))" dt 
so(e)'l 

CSo(y)~-k+l e21s,(7) 
f t -~+p dt = C/y, 

e2/(2So(e)) 

(4.15) 

since p = 2k -- 3. On the other band, we have from (4.1) and (4.4), that 

H(2So(}')) ~ So(y) v'(So(y)) 2 -t- 21-~ So(y)'-k Fl(v(2So(},)) ) 

Now we assert that 

So(),) 
lim > 0. (4.17) 

Suppose (4.17) is not true. Then for a subsequence y--> 0% we can find C3 > 0 
such that 

From (4.15), (4.16) and (4.18) we have 

c/~ <~ H(2So(~)) <= c ,  s ) + ~-- -~/  ) 

~< C" (S~ + So(;)k_2} �9 
- - 7 \ ~ /  

This, together with Lemma (4.2), implies that 

as 7 -+ 0% which is a contradiction. This proves (4.17). Now (4.10) follows from 
(4.1) and (4.17). 

From the concavity of y and (4.4), we have 

Y'(So(7), 7) >~ y'(2So(7), 7) >= (21. (4.19) 
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For 2: large it follows from (4.2)and (4.1) that y(t, 2:) ~ C for t E [So(y), 2So(y)]. 
Hence from (4.4) and (4.10) we have 

2So(z,) 

Y'(So(2:), 7) = y'(2So(2:), 7) + f t-~(y p -- y) dt 
So(y) 

< - - ~ + 0  
- -2:  = 2 : "  

This, together with (4.19), proves (4.11) and the lemma. 

Proof of LemmaB. Inequality (2.8) follows from (3.18). 

Let to E [S~(y), So(y)] be such that 

y ' ( S o ( y ) ,  2:) (4.20) 
y'(to, 2:) -- 2 

Then from (4.11), (4.20), and the restriction that 0-< y ~ 1, we obtain for 2: 
large that 

' S so(~,) 

C1/2: : < y ( o(2:),2 2:) _ ,of t-~(y __ yV) dt =< tokC1, 

that is, 

to <~ C~y 1/(k-l). (4.21) 

Let S(Y) = C171/(~-I); then clearly from (4.20) we have 

S,(Y) ~ S(2:), (4.22) 

' S  < Y (o(y) ,  2:) = y'(to, y) 
Ca~2: = 2 

y'(S(y), 2:) <= y'(So(2:), 7) <= C,/2:. (4.23) 

This, together with (4.21) and (4.22), proves (2.9) and (2.11). 
Now from the convexity of y in [Sl(y), So(7)] and (4.23) we have 

1 -- y(S(7), 2:) > 2:) > Ca/yy. (4.24) 
S o ( 7 )  - s (2:)  = y ' ( S ( y ) ,  = 

From (4.24) and (4.10), we have 

1 - y (S (2 : ) ,  7 )  > c - o 

Hence we can find a ~ > 0 such that for ~ large, 1 -- y(S(7), 7) ~ ~) and this 
proves (2.10). 

Since S(2:) = O 7 (-F-2--g-1) , from (3.18) we get 

y(t, 2:) ~ Zl(t ,  2:) ~ Ct/2:. (4.25) 



Neumann Problems with Critical Sobolev Exponents 293 

for all tE [$1(7), S(7)]. From (2.9), (2.10), (2.11) and (4.25) we have 

s(v) C~ (} s(7) 
C/7 > Y'(S(7), 7) = f t-kY( 1 -- YP-~) dt ~ f t -h+'  dt 

s~(y) 7 sl(,~) 

~ C a (  1 _ _  1 ) 

- 7 s ( 7 )  " 

This implies that 

lim Sa(7) > 0. 

This proves (2.12) and hence the lemma. 

R e m a r k l .  Let n ~ 3 and p >  1. Then there exists an Ro > O such that for  
0 < R < Ro, the problem 

- -Au  = u" -- u in B(R),  

u > O, u is radial in B(R),  (4.26) 

Ou 
@~ 0 in OB(R) 

does not admit any solution u such that u' changes sign. 

n + 2  n + 2  
Proof. We consider two cases: l < p < - -  and p > - -  

n - - 2  = n - - 2 "  
n + 2  

Case 1. 1 <~ p < - -  In this situation, by a result of LIN, NI & TAGAKI [11] 
n - - 2 "  

there exists an Ro > 0 such that for 0 <~ R < Ro, problem (4.26) does not admit 
a nonconstant solution. This proves the remark. 

n + 2  
Case 2. p > Let v(r, 7) denote the solution of 

= n - - 2 "  

n -- 1 ) 
- -  v " +  r v' = v  p - v  in  (0, o o ) ,  

v(o)  = 7 > o ,  v'(O) = o .  

Let R1(7) < R2(7) < ... be the turning points (i.e., v'(RiO,), 7) = 0) of v(r,7). 
From the result of NI [12], we know that v(r, 7 ) > O  for all 7 > 0 .  

Now the remark follows from the following 

Assert ion .  There exists a constant C > 0 such that 

sup R2(7) ~ C. 
7~(0, er 

(4.27) 
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To prove this we adopt the method used in ATKINSON, BREZIS & PELETIER [6] 
and in ADIMURTHI & YADAVA [2]. Proceeding as in Lemma A, we obtain 

v-,01im R1(%) = co, ~im 1R~(7 ) > 0. 

Therefore it is sufficient to prove that 

sup R2(~,) > C. (4.28) 
v~(1, oo) 

Let w(r, 7) = v(r, y) --  1 and let T~(7) and T2(%) respectively be the first and second 
zeros of w(r, 7). Then 

T~(~) < Rl(r)  < T~0,) < R~(;,). 

Therefore, in order to prove (4.28), it is sufficient to show that 

sup T2(7) ~ C. (4.29) 
',/C-( 1, e~) 

Since v(r, 7 ) > O  for all 7 >  1, we get 

sup {Iw(r, 901; Z~(r) < r <  T2(~,)} ~ 1. (4.30) 
ye(1,oo) 

= . Then Z satisfies 

Z " + ( ~ r  1 )Z '+ �88  i n ( 0 ,  oo), (4.31) 

lim Z(r) = co.  
r--~0 

From (4.30) and (4.31) we can choose an ro > 0 such that for all 7 > 1 and 
r E (0, ro) A [rl(~), r2(7)], 

(w + 1)" - (w + 1) < �88 Z(r) 41(n-2. 
w 

Now by Sturm's comparison theorem, there exists a C > 0 such that (4.29) holds. 
This completes the proof  of the remark. 

Remark 2. Given any ~, we can construct a negative function o~ E C~(O) such that 
the problem 

- - & u  = u p + o~(x) u in ~ ,  

u > 0 in #2, (4.32) 

~u 
- - =  0 on 90  Ov 

admits a solution. 
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The construction of 0~ is similar to the construction given by BREZIS [7] for the 
Dirichlet problem. 

Let a E C~176 be such that a changes sign in f2 and f a(x) dx  < O. By the 
.Q 

result of HESS & SENN [14] there exists a 21($2) > 0 such that 

--Av = 21(O) a(x) v in O,  

v > 0 in g2 and 

admits a solution. Define 

- - =  0 on 0s 6v 

~(x) = 21(~2) a(x) --  # p - l  vp-1, u = #v ,  

where/z is a positive real number. Obviously u satisfies (4.32). By choosing # 
large, we get o~ < 0. 
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