Existence and Nonexistence of Positive Radial Solutions of Neumann Problems with Critical Sobolev Exponents

Adimurthi \& S. L. Yadava

Communicated by J. Serrin

1. Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary and let $\alpha \in C^{\infty}(\Omega)$. For $\lambda>0, p>1, n \geqq 3$ we consider the following problem

$$
\begin{gather*}
-\Delta u=u^{p}+\lambda \alpha(x) u \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{1.1}\\
\frac{\partial u}{\partial v}=0 \quad \text { on } \partial \Omega .
\end{gather*}
$$

When $p<\frac{n+2}{n-2}$ and $\alpha(x)=-1$, this problem has been discussed extensively in the works of Ni [12], Lin \& Ni [10] and Lin, Ni \& TaKagi [11]. They have proved that there exist positive constants λ_{0} and λ_{1}, with $\lambda_{0} \leqq \lambda_{1}$, such that (1.1) admits a non-constant solution for $\lambda \geqq \lambda_{1}$ and does not admit any nonconstant solution for $\lambda<\lambda_{0}$. In view of their results, it was conjectured by LiN \& Ni [10] that a similar result holds even for $p \geqq \frac{n+2}{n-2}$.

When $p=\frac{n+2}{n-2}$, Brezis [7] posed the question of finding conditions on α and Ω for which (1.1) admits a solution. Clearly when $\alpha(x) \geqq 0$, (1.1) does not admit any solution. Therefore we have to consider two cases: (i) $\alpha(x)$ changes sign, (ii) $\alpha(x) \leqq 0$.

In case (i) some partial results have been obtained in [3] by using the variational methods of Brezis \& Nirenberg [8]. To describe the results of [3], we further assume that $\int_{S} \alpha(x) d x<0$, that there exists an $x_{0} \in \partial \Omega$ such that $\alpha\left(x_{0}\right)>0$, and that $\partial \Omega$ is flat at x_{0} of order at least four. Under these assumptions, it was shown that for $n \geqq 4$ there exists a $\lambda^{*}>0$ such that (1.1) admits a solution if and only if $\lambda \in\left(0, \lambda^{*}\right)$.

In case (ii) the standard variational arguments do not seem to work. On the other hand, in this situation it is easy to construct an example (see Remark 2 at the end of Section 4) such that for any Ω we can find a negative function $\alpha(x)$ for which (1.1) admits a solution. In view of this and the results of Lin, Ni \& TAKAGI [11], we shall consider the very restricted case of problem (1.1) when $\lambda \alpha(x) \equiv$ $-1, \Omega$ is a ball and the solution is radial.

Let $B(R)$ denote the ball of radius R with center at the origin and let $\mu_{1}(R)$ be the first non-zero eigenvalue of the radial problem

$$
\begin{align*}
-\Delta \varphi=\mu \varphi & \text { in } B(R) \\
\frac{\partial \varphi}{\partial v}=0 & \text { on } \quad \partial B(R) \tag{1.2}
\end{align*}
$$

We consider the problem

$$
\begin{gather*}
-\Delta u=u^{(n+2)(n-2)}-u \quad \text { in } B(R) \\
u>0, \quad u \text { is radial in } B(R) \tag{1.3}\\
\frac{\partial u}{\partial v}=0 \quad \text { on } \partial B(R)
\end{gather*}
$$

and prove the following
Theorem. Let $p=(n+2) /(n-2)$. The following conclusions hold:
(a) If $n \geqq 3$ and $p-1>\mu_{1}(R)$, then (1.3) admits a solution which is radially increasing.
(b) If $n \in\{4,5,6\}$ and $p-1<\mu_{1}(R)$, then (1.3) admits a solution which is radially decreasing.
(c) If $n=3$, then there exists an $R^{*}>0$ such that for $0<R<R^{*}$, (1.3) does not admit any nonconstant solution.

Here we remark that part (a) of the theorem has been proved by Ni [12] and Lin \& Ni [10], and that part (b) gives a counter-example to a part of the conjecture of Lin \& Ni [10].

Since we are looking for radial solutions, (1.3) reduces to studying the first turning point $R_{1}(\gamma)$ of $v(r, \gamma)$, where v satisfies

$$
\begin{align*}
& -v^{\prime \prime}-\frac{n-1}{r} v^{\prime}=v^{\frac{n+2}{n-2}}-v \\
& v^{\prime}(0)=0, \quad v(0)=\gamma>0 \tag{1.4}
\end{align*}
$$

and $R_{1}(\gamma)$ is defined by

$$
\begin{equation*}
R_{1}(\gamma)=\sup \left\{r ; v^{\prime}(s, \gamma) \neq 0 \quad \forall s \in(0, r)\right\} \tag{1.5}
\end{equation*}
$$

Because of the continuity of $\gamma \rightarrow R_{1}(\gamma)$, we shall be able to deduce the theorem from knowledge of the behavior of $R_{1}(\gamma)$ as $\gamma \rightarrow 0,1$ and ∞. Information about the behavior of $R_{1}(\gamma)$ as $\gamma \rightarrow 0,1$ is available in the literature. Therefore the main difficulty lies in understanding its behavior at ∞. We illustrate this for $n=6$.

Let $n=6, \gamma>1, \eta=v\left(R_{1}(\gamma), \gamma\right)$ and $w=v-\eta$. Then w satisfies

$$
\begin{gathered}
-\Delta w=w^{2}+(2 \eta-1) w+\eta(\eta-1) \quad \text { in } B\left(R_{\mathbf{1}}(\gamma)\right) \\
w>0 \quad \text { in } B\left(R_{\mathbf{1}}(\gamma)\right) \\
w=\frac{\partial w}{\partial v}=0, \quad \text { on } \partial B\left(R_{1}(\gamma)\right)
\end{gathered}
$$

Hence by Pohožaev's identity we have

$$
2(2 \eta-1) \int_{B\left(R_{1}(\gamma)\right)} w^{2} d x+8 \eta(\eta-1) \int_{B\left(R_{1}(\gamma)\right)} w d x=0 .
$$

This implies that $\eta>1 / 2$ and hence $v(r, \gamma)>1 / 2$ for all $r \in\left(0, R_{1}(\gamma)\right)$. Now the asymptotic analysis of Atkinson \& Peletier [5] suggests that we can find positive constants $\delta, C_{1}, C_{2}, C_{3}$ and γ_{0} such that, for $\gamma>\gamma_{0}$ and $R(\gamma)=C_{1} \gamma^{-1 / 6}$,

$$
\begin{gather*}
R(\gamma)<R_{1}(\gamma) \tag{1.6}\\
1-v(R(\gamma), \gamma) \geqq \delta \tag{1.7}\\
C_{1} / \gamma^{1 / 6} \leqq\left|v^{\prime}(R(\gamma), \gamma)\right| \leqq C_{2} / \gamma^{1 / 6} \tag{1.8}
\end{gather*}
$$

Integrating (1.4) from $R(\gamma)$ to $R_{1}(\gamma)$ and using (1.6)-(1.8), we obtain for $C=$ $C_{1}^{5} C_{2}$ that

$$
C / \gamma \geqq-R(\gamma)^{5} v^{\prime}(R(\gamma), \gamma)=\int_{R(\gamma)}^{R_{1}(\gamma)} r^{5} v(1-v) d r \geqq \delta / 12\left(R_{1}(\gamma)^{6}-C_{1} / \gamma\right)
$$

Hence

$$
\begin{equation*}
R_{1}(\gamma)^{6} \leqq\left(\frac{12 C}{\delta}+C_{1}\right) / \gamma \rightarrow 0 \quad \text { as } \gamma \rightarrow \infty \tag{1.9}
\end{equation*}
$$

When $n \leqq 5$ it may not be true that $v\left(R_{1}(\gamma), \gamma\right)$ is bounded away from zero as $\gamma \rightarrow \infty$, whereas estimates similar to (1.6)-(1.8) still hold. Therefore in this case we have to adopt a different procedure to study $R_{1}(\gamma)$ as $\gamma \rightarrow \infty$.

The paper is divided into two parts. In the first part (Section 3), we study the behavior of $R_{1}(\gamma)$ as $\gamma \rightarrow 0,1$. In the second part (Section 4), following the techniques developed in Atkinson \& Peletier [5], we obtain estimates similar to (1.6)-(1.8). Using these (see Section 2) we obtain the proof of the theorem.

In a forthcoming paper we shall study problem (1.3) when $-\triangle$ is replaced by the p-Laplacian for $p \leqq n$.

While revising this paper, we learned of a recent result of Budd, Knaap \& Peletier [9], which discusses the question of existence and non-existence of solutions of (1.3) when $u^{(n+2)(n-2)}-u$ is replaced by $u^{(n+2) /(n-2)}-u^{q}$ for $1<$ $q<4 /(n-2)$. This problem, for $q=4 /(n-2)$, has also been treated by Adimurthi, Knaap \& Yadava [4].

Recently, Adimurthi \& Mancini [1] have tackeled this problem in an arbitrary domain using variational techniques. We learned from Prof. J. Serrin that X. J. Wang [13] has also found related results.

2. Proof of the Theorem

In order to prove the theorem, we make use of the standard substitutions,

$$
t=\left(\frac{n-2}{r}\right)^{n-2}, \quad k=\frac{2(n-1)}{n-2}, \quad p=\frac{n+2}{n-2}=2 k-3, \quad y(t, \gamma)=v(r, \gamma)
$$

introduced in [5]. Then from (1.4), y satisfies the Emden-Fowler equation

$$
\begin{gather*}
-y^{\prime \prime}=t^{-k}\left(y^{p}-y\right) \\
y(\infty)=\gamma>0, \quad y^{\prime}(\infty)=0 \tag{2.1}
\end{gather*}
$$

Let $S_{1}(\gamma)$ be the first turning point of $y(t, \gamma)$, defined by

$$
\begin{equation*}
S_{1}(\gamma)=\inf \left\{t ; y^{\prime}(s, \gamma) \neq 0 \quad \forall s \in(t, \infty)\right\} \tag{2.2}
\end{equation*}
$$

Let φ be the solution of

$$
\begin{array}{cc}
-\varphi^{\prime \prime}=t^{-k} \varphi & \text { in }(0, \infty) \\
\varphi(\infty)=1, & \varphi^{\prime}(\infty)=0 \tag{2.3}
\end{array}
$$

and let τ_{0} and τ_{1} respectively be the first zero and first turning point of φ, i.e.,

$$
\begin{array}{ll}
\tau_{0}=\inf \{t ; \varphi(s)>0 & \text { for } s>t\} \\
\tau_{1}=\inf \left\{t ; \varphi^{\prime}(s)>0\right. & \text { for } s>t\} \tag{2.4}
\end{array}
$$

Then we have
Lemma A. Let $\gamma \neq 0$, 1. Then
(i) $S_{1}(\gamma)$ exists and $y\left(S_{1}(\gamma), \gamma\right)>0$.
(ii) If $\gamma \in(0,1)$, then y is decreasing, with

$$
\begin{align*}
& \lim _{\gamma \rightarrow 0} S_{1}(\gamma)=0 \tag{2.5}\\
& \lim _{\gamma \rightarrow 1} S_{1}(\gamma)=(p-1)^{1 /(k-2)} \tau_{1} \tag{2.6}
\end{align*}
$$

(iii) If $\gamma>1$, then y is increasing, with

$$
\begin{equation*}
\lim _{\gamma \rightarrow 1} S_{1}(\gamma)=(p-1)^{1 /(k-2)} \tau_{1} \tag{2.7}
\end{equation*}
$$

This result is contained in the works of Ni [12] and Lin \& NI [10]. For the sake of completeness, we present the proof in Section 3.

Lemma B. Let $\gamma \in(1, \infty)$. Then
(i) For $t \geqq S_{1}(\gamma)$,

$$
\begin{equation*}
y(t, \gamma) \geqq Z_{1}(t, \gamma) \tag{2.8}
\end{equation*}
$$

where

$$
Z_{1}(t, \gamma)=\frac{\gamma t}{\left\{t^{k-2}+\left(\gamma^{p-1}-1\right) /(k-1)\right\}^{1 /(k-2)}}
$$

(ii) If $3 \leqq n \leqq 6$, there exist positive constants $\delta, C_{1}, C_{2}, C_{3}, C_{4}$ and γ_{0} such that, for all $\gamma \geqq \gamma_{0}$ and $S(\gamma)=C_{1} \gamma^{1 /(k-1)}$,

$$
\begin{gather*}
S_{1}(\gamma)<S(\gamma), \tag{2.9}\\
1-y(S(\gamma), \gamma) \geqq \delta, \tag{2.10}\\
C_{3} / \gamma \leqq y^{\prime}(S(\gamma), \gamma) \leqq C_{2} / \gamma, \tag{2.11}\\
\underline{\lim _{\gamma \rightarrow \infty}} S_{1}(\gamma) \geqq C_{4} . \tag{2.12}
\end{gather*}
$$

Assuming the validity of Lemmas A and B, we first complete the proof of the theorem. Since Lemma A gives the behavior of $S_{1}(\gamma)$ as $\gamma \rightarrow 0,1$, to prove the theorem we must study its behavior at ∞. For this we need three further lemmas.

Lemma 2.1. Let Z_{1} be as defined in (2.8). Then

$$
\begin{gather*}
-Z_{1}^{\prime \prime}=\left(\frac{\gamma^{p}-\gamma}{\gamma^{p}}\right) t^{-k} Z_{1}^{p} \text { in }(0, \infty), \tag{2.13}\\
\lim _{t \rightarrow \infty} Z_{1}=\gamma, \tag{2.14}\\
\gamma-Z_{1}(t, \gamma)+t Z_{1}^{\prime}(t, \gamma)=\left(\frac{\gamma^{p}-\gamma}{\gamma^{p}}\right) \int_{t}^{\infty} Z_{1}^{p} s^{-k+1} d s, \tag{2.15}\\
t Z_{1}^{\prime}(t, \gamma)-Z_{1}(t, \gamma)=\frac{-\gamma t^{k-1}}{\left\{t^{k-2}+\left(\gamma^{p-1}-1\right) /(k-1)\right\}^{(k-1) /(k-2)}} . \tag{2.16}
\end{gather*}
$$

This lemma follows easily from the definition of Z_{1}.
Lemma 2.2. If $n=3 \quad(k=4)$, then

$$
\varlimsup_{\gamma \rightarrow \infty} S_{1}(\gamma)<\infty
$$

Proof. Let $\beta(t)=t \cosh \frac{1}{t}$. It is easy to verify that β satisfies

$$
\begin{gather*}
\beta^{\prime \prime}=t^{-4} \beta \quad \text { in }(0, \infty) \tag{2.17}\\
\lim _{t \rightarrow 0} \beta(t)=\infty, \quad \beta(t)=t+C(t) \tag{2.18}
\end{gather*}
$$

where $C(t) \geqq 0$. Let T_{0} be such that $\beta^{\prime}\left(T_{0}\right)=0$. Then the lemma follows if we can show that

$$
\begin{equation*}
\overline{\lim }_{\gamma \rightarrow \infty} S_{1}(\gamma) \leqq T_{0} \tag{2.19}
\end{equation*}
$$

Let $W=\left(y \beta^{\prime}-\beta y^{\prime}\right)$. Then $W(\infty)=\gamma$ and $W^{\prime}(t)=t^{-4} y^{5} \beta$. Integrating W^{\prime} from $S_{1}(\gamma)$ to ∞ and using (2.8), (2.18), (2.15) and (2.16), we obtain

$$
\begin{align*}
y\left(S_{1}(\gamma), \gamma\right) \beta^{\prime}\left(S_{1}(\gamma)\right) & =\gamma-\int_{S_{1}(\gamma)}^{\infty} t^{-4} y^{5} \beta d t \\
& \leqq \gamma-\int_{S_{1}(\gamma)}^{\infty} t^{-3} Z_{1} d t \leqq \gamma-\frac{\gamma^{5}}{\left(\gamma^{5}-\gamma\right)}\left[\gamma-Z_{1}+S_{1}(\gamma) Z_{1}^{\prime}\right] \\
& =-\frac{\gamma^{2}}{\gamma^{5}-\gamma}+\left(\frac{\gamma^{5}}{\left(\gamma^{5}-\gamma\right)}\right) \frac{\gamma S_{1}(\gamma)^{3}}{\left\{S_{1}(\gamma)^{2}+\frac{1}{3}\left(\gamma^{4}-1\right)\right\}^{3 / 2}} \tag{2.20}
\end{align*}
$$

From (2.9) it follows that $S_{1}(\gamma)=O\left(\gamma^{1 / 3}\right)$ as $\gamma \rightarrow \infty$; hence we have

$$
\left(\frac{\gamma^{5}}{\left(\gamma^{5}-\gamma\right)}\right) \frac{\gamma S_{1}(\gamma)^{3}}{\left\{S_{1}(\gamma)^{2}+\frac{1}{3}\left(\gamma^{4}-1\right)\right\}^{3 / 2}}=O\left(\frac{1}{\gamma^{4}}\right)
$$

as $\gamma \rightarrow \infty$. This together with (2.20) and (i) of Lemma A implies that $\beta^{\prime}\left(S_{1}(\gamma)\right)<0$ for γ large, and so $S_{1}(\gamma) \leqq T_{0}$. This proves (2.19) and hence the lemma.

Lemma 2.3. If $n \in\{4,5,6\}$, then

$$
\begin{equation*}
\lim _{\gamma \rightarrow \infty} S_{1}(\gamma)=\infty \tag{2.21}
\end{equation*}
$$

Proof. Suppose (2.21) is not true. Then for a sequence of values $\gamma \rightarrow \infty$, we have

$$
\begin{equation*}
\lim _{\gamma \rightarrow \infty} S_{1}(\gamma)<\infty \tag{2.22}
\end{equation*}
$$

For the sequel we use C, C_{1}, C_{2}, etc., to denote positive constants independent of γ. Now from (2.8), (2.9) we have for $t \in\left(S_{1}(\gamma), S(\gamma)\right)$,

$$
\begin{equation*}
y(t, \gamma) \geqq Z_{1}(t, \gamma) \geqq C \frac{t}{\gamma} \tag{2.23}
\end{equation*}
$$

Let

$$
H(t)=\frac{1}{2} t y^{\prime 2}-\frac{1}{2} y y^{\prime}+t^{1-k}\left(\frac{y^{p+1}}{p+1}-\frac{y^{2}}{2}\right)
$$

Then $H(\infty)=0$ and $H^{\prime}(t)=\frac{p-1}{2} t^{-k} y^{2}$. Hence $H(t) \leqq 0$. Now integrating $H^{\prime}(t)$ from $S_{1}(\gamma)$ to $S(\gamma)$ and using (2.23), we obtain

$$
\begin{align*}
-H\left(S_{1}(\gamma)\right) & \geqq \frac{p-1}{2} \int_{S_{1}(\gamma)}^{S(\gamma)} y^{2} t^{-k} d t \\
& \geqq \frac{C}{\gamma^{2}} \int_{S_{1}(\gamma)}^{S(\gamma)} t^{-k+2} d t=C \frac{\varrho(\gamma)}{\gamma^{2}} \tag{2.24}
\end{align*}
$$

where

$$
\varrho(\gamma)= \begin{cases}\log \frac{S(\gamma)}{S_{1}(\gamma)} & \text { if } k=3 \\ \left(S(\gamma)^{3-k}-S_{1}(\gamma)^{3-k}\right) & \text { if } k<3\end{cases}
$$

From (2.10), (2.11) and (2.22) we have

$$
\begin{aligned}
C_{2} / \gamma & \geqq y^{\prime}(S(\gamma), \gamma)=\int_{S_{1}(\gamma)}^{S(\gamma)} y\left(1-y^{p-1}\right) t^{-k} d t \\
& \geqq \frac{\delta}{k-1} y\left(S_{1}(\gamma), \gamma\right)\left(\frac{1}{S_{1}(\gamma)^{k-1}}-\frac{1}{S(\gamma)^{k-1}}\right) \\
& \geqq C y\left(S_{1}(\gamma), \gamma\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
-H\left(S_{1}(\gamma)\right) & =S_{1}(\gamma)^{1-k} y\left(S_{1}(\gamma), \gamma\right)^{2}\left(\frac{1}{2}-\frac{y\left(S_{1}(\gamma), \gamma\right)^{p-1}}{p+1}\right) \\
& \leqq C_{3} \frac{S_{1}(\gamma)^{1-k}}{\gamma^{2}}
\end{aligned}
$$

This combined with (2.24) gives

$$
\begin{equation*}
S_{1}(\gamma)^{k-1} \leqq C_{4} / \varrho(\gamma) \tag{2.25}
\end{equation*}
$$

Since $S_{1}(\gamma)$ is bounded by assumption, it follows that $\varrho(\gamma) \rightarrow \infty$ as $\gamma \rightarrow \infty$. Therefore from (2.25), $S_{1}(\gamma) \rightarrow 0$ as $\gamma \rightarrow \infty$, contradicting (2.12). This proves the lemma.

Proof of the Theorem. For $\gamma \neq 0,1$, let $R_{1}(\gamma)$ and $u(r, \gamma)$ be defined by

$$
\begin{gathered}
t=\left(\frac{n-2}{r}\right)^{n-2}, \quad S_{1}(\gamma)=\left(\frac{n-2}{R_{1}(\gamma)}\right)^{n-2} \\
u(r, \gamma)=y(t, \gamma)
\end{gathered}
$$

Then u satisfies

$$
\begin{aligned}
-\Delta u=u^{(n+2) /(n-2)}-u & \text { in } B\left(R_{1}(\gamma)\right) \\
u>0 & \text { in } B\left(R_{1}(\gamma)\right) \\
\frac{\partial u}{\partial v}=0 & \text { on } \partial B\left(R_{1}(\gamma)\right)
\end{aligned}
$$

Define $R_{1}=\left[(n-2) / \tau_{1}\right]^{n-2}$. It is easy to see that $\mu_{1}\left(R_{1}(\gamma)\right)=\left(R_{1} / R_{1}(\gamma)\right)^{2}$. Since $\gamma \rightarrow R_{1}(\gamma)$ is continuous, (a) follows from (2.5) and (2.6), (b) follows from (2.7) and (2.21), and (c) follows from Lemma 2.2. This proves the theorem.

3. Proof of Lemma A

Let $k>2$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{1}-function. For $\gamma>0$, let $Y(t, \gamma)$ be the solution of

$$
\begin{gather*}
-Y^{\prime \prime}=t^{-k} f(Y) \\
Y(\infty)=\gamma, \quad Y^{\prime}(\infty)=0 \tag{3.1}
\end{gather*}
$$

Let

$$
\begin{gather*}
F(s)=\int_{0}^{y} f(r) d r \\
H(t)=\frac{1}{2} t Y^{\prime 2}-\frac{1}{2} Y Y^{\prime}+t^{1-k} F(Y) \tag{3.2}\\
H_{1}(t)=\frac{1}{2} t Y^{\prime 2}-\frac{1}{2} Y Y^{\prime}+\frac{t^{1-k}}{2(k-1)} Y f(Y) \tag{3.3}
\end{gather*}
$$

It is then easy to see that Y satisfies

$$
\begin{gather*}
\lim _{t \rightarrow \infty} H(t)=\lim _{t \rightarrow \infty} H_{1}(t)=0, \tag{3.4}\\
\lim _{t \rightarrow \infty} Y^{\prime}(t, \gamma) t^{k-1}=\frac{f(\gamma)}{(k-1)}, \tag{3.5}\\
H^{\prime}(t)=\frac{1}{2} t^{-k}[Y f(Y)-2(k-1) F(Y)], \tag{3.6}\\
H_{1}^{\prime}(t)=\frac{Y^{\prime} t^{1-k}}{2(k-1)}\left[Y f^{\prime}(Y)-(2 k-3) f(Y)\right], \tag{3.7}\\
\left(Y^{\prime} Y^{1-k} t^{k-1}\right)^{\prime}=-2(k-1) t^{k-2} Y^{-k} H_{1}(t) . \tag{3.8}
\end{gather*}
$$

From now on, we assume that $f(0)=f(1)=0$ and $f^{\prime}(1)>0$. Furthermore, we assume that

$$
\begin{equation*}
(s-1) f(s)>0 \quad \text { for } s>0 \text { and } s \neq 1 \tag{3.9}
\end{equation*}
$$

For $\gamma>0, \gamma \neq 1$, put

$$
\begin{array}{ll}
S_{0}(\gamma, f)=\inf \left\{t ; Y(s, \gamma) \neq 1, Y^{\prime}(s, \gamma) \neq 0\right. & \forall s>t\} \\
S_{1}(\gamma, f)=\inf \left\{t ; Y(s, \gamma)>0, Y^{\prime}(s, \gamma) \neq 0\right. & \forall s>t\} \tag{3.11}
\end{array}
$$

We then have the following
Lemma 3.1. For $s \geqq 0$, assume that f satisfies

Then

$$
\begin{equation*}
s f^{\prime}(s)-(2 k-3) f(s) \geqq 0 \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
Y(t, \gamma) \geqq \eta_{1}(t, \gamma) \tag{3.13}
\end{equation*}
$$

for $\gamma>1$ and $t \geqq S_{1}(\gamma, f)$, where

$$
\eta_{1}(t, \gamma)=\frac{\gamma t}{\left\{t^{k-2}+\frac{f(\gamma)}{(k-1) \gamma}\right\}^{1 /(k-2)}}
$$

Proof. Let $t>S_{1}(\gamma, f)$. Since $\gamma>1$, it follows from (3.9) that $Y^{\prime}(t, \gamma)>0$. Therefore from (3.12) and (3.7), $H_{1}^{\prime}(t) \geqq 0$. Hence H_{1} is increasing and from (3.4), $H_{1}(t) \leqq 0$. From (3.8), we have

$$
\left(Y^{\prime} Y^{1-k} t^{k-1}\right)^{\prime} \geqq 0
$$

Integrating this twice from t to ∞ and using (3.5), we obtain

$$
\frac{1}{Y^{k-2}}-\frac{1}{\gamma^{k-2}} \leqq \frac{\gamma^{1-k} f(\gamma)}{(k-1) t^{k-2}}
$$

which gives

$$
Y(t, \gamma) \geqq \frac{\gamma t}{\left\{t^{k-2}+\frac{f(\gamma)}{(k-1) \gamma}\right\}^{1 /(k-2)}}
$$

This proves the lemma.
Lemma 3.2. For $s \geqq 0$, assume that f satisfies

$$
\begin{equation*}
s f^{\prime}(s+1)-(2 k-3) f(s+1) \leqq 0 \tag{3.14}
\end{equation*}
$$

Then

$$
\begin{equation*}
Y(t, \gamma) \leqq 1+\eta_{2}(t, \gamma), \tag{3.15}
\end{equation*}
$$

for $\gamma>1$ and $t \geqq S_{1}(\gamma, f)$, where

$$
\eta_{2}(t, \gamma)=\frac{(\gamma-1) t}{\left\{t^{k-2}+\frac{f(\gamma)}{(k-1)(\gamma-1)}\right\}^{1 /(k-2)}}
$$

Proof. Let $V=Y-1, f_{1}(s)=f(s+1)$. Then V satisfies

$$
\begin{gather*}
-V^{\prime \prime}=t^{-k} f_{1}(V) \\
V(\infty)=\gamma-1, \quad V^{\prime}(\infty)=0 \tag{3.16}
\end{gather*}
$$

Since $\gamma>1$, from (3.9), we get $Y(t, \gamma) \geqq 1$ and $Y^{\prime}(t, \gamma)>0$ for $t \geqq S_{0}(\gamma, f)$. Hence $V(t) \geqq 0$ and $V^{\prime}(t)>0$. Therefore for $t \geqq S_{0}(\gamma, f)$, we have from (3.16), (3.7) and (3.14) that $H_{1}^{\prime}(t) \leqq 0$. So we deduce that $H_{1}(t) \geqq 0$ from (3.4) and that

$$
\left(V^{\prime} V^{1-k} t^{k-1}\right)^{\prime} \leqq 0
$$

from (3.8). Integrating twice and using (3.5) we obtain for all $t \geqq S_{0}(\gamma, f)$ that

$$
V(t, \gamma) \leqq \frac{(\gamma-1) t}{\left\{t^{k-2}+\frac{f(\gamma)}{(k-1)(\gamma-1)}\right\}^{1 /(k-2)}}=\eta_{2}(t, \gamma)
$$

that is, for $t \geqq S_{0}(\gamma, f)$,

$$
\begin{equation*}
Y(t, \gamma) \leqq 1+\eta_{2}(t, \gamma) \tag{3.17}
\end{equation*}
$$

Since $Y(t, \gamma) \leqq 1$ for $t \in\left[S_{1}(\gamma, f), S_{0}(\gamma, f)\right]$, inequality (3.17) continues to hold for $t \geqq S_{1}(\gamma, f)$. This proves the lemma.

As an immediate consequence of these lemmas we have the following
Lemma 3.3. Let $\gamma>1$ and let $y(t, \gamma)$ satisfy (2.1). For $t \geqq S_{1}(\gamma)$,
(i) $y(t, \gamma) \geqq Z_{1}(t, \gamma) \quad$ if $n \geqq 3$.
(ii) $y(t, \gamma) \leqq 1+Z_{2}(t, \gamma)$ if $3 \leqq n \leqq 6$,
where

$$
\begin{aligned}
& Z_{1}(t, \gamma)=\frac{\gamma t}{\left\{t^{k-2}+\frac{\gamma^{2(k-2)}-1}{(k-1)}\right\}^{1 /(k-2)}} \\
& Z_{2}(t, \gamma)=\frac{(\gamma-1) t}{\left\{t^{k-2}+\frac{\gamma\left(\gamma^{2(k-2)}-1\right)}{(k-1)(\gamma-1)}\right\}^{1 /(k-2)}}
\end{aligned}
$$

Proof. Let $p=2 k-3$ and $f(s)=s^{p}-s$ for $s \geqq 0$. Extend f as a C^{1}-function to \mathbb{R}. Then clearly f satisfies (3.9), and for $s \geqq 0$,

$$
s f^{\prime}(s)-(2 k-3) f(s)=2(k-2) s \geqq 0 .
$$

Hence, (3.18) follows from Lemma 3.1.
For $s \geqq 1, n \leqq 6$, let $h(s)=-p s^{p-1}+(p-1) s+1$. Since $n \leqq 6$ we have $p \geqq 2$. Therefore $h^{\prime \prime}(s)=-p(p-1)(p-2) s^{p-3} \leqq 0$ and hence h is concave. Since $h(1)=0$ and $h^{\prime}(1)=-(p-1)^{2}$, we have $h(s) \leqq-(p-2)^{2}$ $(s-1) \leqq 0$.

For $s \geqq 0$, we have

$$
\begin{aligned}
s f^{\prime}(s+1)-(2 k-3) f(s+1) & =-p(s+1)^{p-1}+(p-1)(s+1)+1 \\
& =h(s+1) \leqq 0
\end{aligned}
$$

Hence (3.19) follows from Lemma 3.2. This proves the lemma.
For $i=1,2$, and $\gamma_{i}>0$ let $\varrho_{i}: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be continuous functions. Let φ_{i} satisfy

$$
\begin{align*}
-\varphi_{i}^{\prime \prime} & =t^{-k} \varrho_{i}(t) \varphi_{i} \\
\varphi_{i}(\infty) & =\gamma_{i}, \quad \varphi_{i}^{\prime}(\infty)=0 \tag{3.20}
\end{align*}
$$

Denote by $T_{0, i}$ and $T_{1, i}$ respectively the first zero and first turning point of φ_{i} (see (2.4)). Then

Lemma 3.4. (i) Assume that $T_{0,1}$ exists and also that $\varrho_{2}(t) \geqq \varrho_{1}(t)$ for $t \geqq T_{0,2}$. Then $T_{0,2}>0$ and $T_{0,2} \geqq T_{0,1}$.
(ii) Assume that $T_{0,1}$ and $T_{1,1}$ exist and also that $\varrho_{2}(t) \geqq \varrho_{1}(t)$ for $t \geqq T_{1,2}$. Then $T_{1,2}>0$ and $T_{1,2} \geqq T_{1,1}$.

Proof. Let $W=\varphi_{1}^{\prime} \varphi_{2}-\varphi_{1}^{\prime} \varphi_{2}$. Then $W(\infty)=0$ and

$$
\begin{equation*}
W^{\prime}(t)=t^{-k}\left(\varrho_{2}-\varrho_{1}\right) \varphi_{1} \varphi_{2} \tag{3.21}
\end{equation*}
$$

Suppose that (i) is not true. Then $T_{0,2}<T_{0,1}$ and hence from (3.21), $W^{\prime}(t) \geqq 0$ for all $t \geqq T_{0,1}$. Therefore $W\left(T_{0,1}\right) \leqq 0$. But $W\left(T_{0,1}\right)=\varphi_{1}^{\prime}\left(T_{0,1}\right) \varphi_{2}\left(T_{0,1}\right)>0$, which is a contradiction. This proves (i).

Suppose that (ii) is not true. Then $T_{1,2}<T_{1,1}$. From (i) it follows that $T_{0,1}<T_{0,2}$. Using (3.21), we obtain $W^{\prime}(t) \geqq 0$ for $t \in\left[T_{1,1}, T_{0,1}\right]$. Therefore we have

$$
\begin{aligned}
0<-\varphi_{1}\left(T_{1,1}\right) \varphi_{2}^{\prime}\left(T_{1,1}\right) & =W\left(T_{1,1}\right) \leqq W\left(T_{0,1}\right) \\
& =\varphi_{1}^{\prime}\left(T_{0,1}\right) \varphi_{2}\left(T_{0,1}\right)<0
\end{aligned}
$$

which is a contradiction. This proves (ii) and hence the lemma.
Let $\varphi, \tau_{0}, \tau_{1}$ be as in (2.3) and (2.4). For $a>0$, denote $\varphi(t, a)=\varphi(a t)$ and let $\tau_{0, a}$ and $\tau_{1, a}$ be the first zero and first turning point of $\varphi(\cdot, a)$. Then we have

$$
\begin{gather*}
\tau_{0, a}=\frac{\tau_{0}}{a}, \quad \tau_{1, a}=\frac{\tau_{1}}{a} \\
-\varphi^{\prime \prime}(\cdot, a)=a^{2-k} t^{-k} \varphi(\cdot, a) \tag{3.22}\\
\varphi(\infty, a)=1, \quad \varphi^{\prime}(\infty, a)=0
\end{gather*}
$$

Let $y(t, \gamma)$ and $S_{1}(\gamma)$ be as in (2.1) and (2.2). Define

$$
\begin{equation*}
S_{0}(\gamma)=\inf \left\{t, y(s, \gamma) \neq 1, y^{\prime}(s, \gamma) \neq 0 \quad \forall s>t\right\} . \tag{3.23}
\end{equation*}
$$

We then have
Lemma 3.5. If $\gamma \neq 0,1$, then $S_{0}(\gamma)$ exists and

$$
\lim _{\gamma \rightarrow 0} S_{0}(\gamma)=0
$$

Proof. First consider the case $\gamma>1$. Let

$$
\begin{gathered}
\varphi_{2}(t)=y(t, \gamma)-1 \\
\varrho_{2}(t)=\frac{\left(\varphi_{2}+1\right)^{p}-\left(\varphi_{2}+1\right)}{\varphi_{2}} .
\end{gathered}
$$

Then φ_{2} satisfies

$$
\begin{gathered}
-\varphi_{2}^{\prime \prime}=t^{-k} \varrho_{2} \varphi_{2} \\
\varphi_{2}(\infty)=\gamma-1, \quad \varphi_{2}^{\prime}(\infty)=0 .
\end{gathered}
$$

From (3.23) it follows that $S_{0}(\gamma)$ is the first zero of φ_{2} and that $\varrho_{2}(t) \geqq(p-1)$ for $t \geqq S_{0}(\gamma)$. Taking $\varrho_{1}=(p-1), \quad \varphi_{1}(t)=\varphi\left(t,(p-1)^{-1 /(k-2)}\right)$ in (i) of Lemma 3.4, we conclude that $S_{0}(\gamma)$ exists and

$$
\begin{equation*}
(p-1)^{1 /(k-2)} \tau_{0} \leqq S_{0}(\gamma) \tag{3.24}
\end{equation*}
$$

Now consider the case $0<\gamma<1$. Let

$$
\begin{gathered}
\varphi_{2}=1-y(t, \gamma) \\
\varrho_{2}(t)=\frac{\left(1-\varphi_{2}\right)-\left(1-\varphi_{2}\right)^{p}}{\varphi_{2}}
\end{gathered}
$$

Then φ_{2} satisfies

$$
\begin{gathered}
-\varphi_{2}^{\prime \prime}=t^{-k} \varrho_{2}(t) \varphi_{2} \\
\varphi_{2}(\infty)=1-\gamma, \quad \varphi_{2}^{\prime}(\infty)=0
\end{gathered}
$$

with $S_{0}(\gamma)$ as its first zero. By taking $\varrho_{1}=\min \left\{\varrho_{2}(t), t \geqq S_{0}(\gamma)\right\}, \quad \varphi_{1}(t)=$ $\varphi\left(t, \varrho_{1}^{1 /(k-2)}\right)$ in (i) of Lemma 3.4, we obtain the existence of $S_{0}(\gamma)$. Since $\varrho_{2}(t) \leqq(p-1)$ for $t \geqq S_{0}(\gamma)$, again from (i) of Lemma 3.4, we obtain

$$
\begin{equation*}
S_{0}(\gamma) \leqq(p-1)^{1 /(k-2)} \tau_{0} \tag{3.25}
\end{equation*}
$$

Now suppose that $S_{0}(\gamma)$ does not tend to zero as γ approaches zero. Then by going to a subsequence and using (3.25), we have

$$
\begin{equation*}
\lim _{\gamma \rightarrow 0} S_{0}(\gamma)=S_{0}>0 \tag{3.26}
\end{equation*}
$$

Since the boundedness of y implies that y^{\prime} and $y^{\prime \prime}$ are uniformly bounded in $\left(S_{0}(\gamma), \infty\right)$, the Arzelà-Ascoli Theorem implies that there exists a subsequence such that $y(t, \gamma) \rightarrow y_{0}(t)$ uniformly on compact sets and that y_{0} satisfies

$$
\begin{gather*}
-y_{0}^{\prime \prime}=t^{-k}\left(y_{0}^{p}-y_{0}\right) \quad \text { in }\left(S_{0}, \infty\right) \tag{3.27}\\
y_{0}(\infty)=y_{0}^{\prime}(\infty)=0
\end{gather*}
$$

From the uniqueness of the solution of (3.27), $y_{0} \equiv 0$. But $y_{0}\left(S_{0}\right)=1$. This contradiction proves the lemma.

Proof of the Lemma A. From (2.1), it follows that y is increasing for $\gamma>1$, and y is decreasing for $\gamma<1$.

First consider the case $\gamma>1$. Suppose $S_{1}(\gamma)=0$. Then $y(t, \gamma)>0$ for $t>0$ by (3.18), and $y(t, \gamma)$ is an increasing function by (2.1). Since $y\left(S_{0}(\gamma), \gamma\right)=1$, from Lemma 3.5 we can find a $C>0$ such that for $t \in 0,\left(S_{0}(\gamma) / 2\right)$,

$$
\begin{equation*}
1-y^{p-1}(t, \gamma) \geqq C \tag{3.28}
\end{equation*}
$$

From (3.18), we can find a $C_{1}>0$ such that for $t \in\left(0, S_{0}(\gamma) / 2\right)$,

$$
\begin{equation*}
y(t, \gamma) \geqq C_{1} t \tag{3.29}
\end{equation*}
$$

Integrating (2.1) and using (3.28) and (3.29), we have

$$
\begin{aligned}
\infty>y^{\prime}\left(S_{0}(\gamma) / 2, \gamma\right) & \geqq \int_{0}^{S_{0}(\gamma) / 2} t^{-k} y\left(1-y^{p-1}\right) d t \\
& \geqq C C_{1} \int_{0}^{S_{0}(\gamma) / 2} t^{-k+1} d t=\infty
\end{aligned}
$$

which is a contradiction. Hence $S_{1}(\gamma)>0$; from (3.18), we have $y\left(S_{1}(\gamma), \gamma>0\right)$.

Let $\quad v=y-1 \quad$ and $\quad f_{1}(s)=(s+1)^{p}-(s+1)$. Then $\quad v(\infty)=\gamma-1$, $v^{\prime}(\infty)=0$, and $S_{0}(\gamma)$ and $S_{1}(\gamma)$ respectively are the first zero and first turning points of v. Moreover, v satisfies

$$
\begin{equation*}
-v^{\prime \prime}=t^{-k}\left(\frac{f_{1}(v)}{v}\right) v \tag{3.30}
\end{equation*}
$$

Now integrating (3.30) and using (3.24), we can find a $C>0$ such that, for all $1<\gamma \leqq 2$,

$$
\begin{equation*}
v^{\prime}\left(S_{0}(\gamma)\right)=\int_{s_{0}(\gamma)}^{\infty} t^{-k}\left(\frac{f_{1}(v)}{v}\right) v d t \leqq C(\gamma-1) \tag{3.31}
\end{equation*}
$$

Since

$$
\sup \left\{\frac{f_{1}(v)}{v} ; t \geqq S_{0}(\gamma), \gamma \in(1,2]\right\}<\infty
$$

as a consequence of (i) of Lemma 3.4, $S_{0}(\gamma)$ is bounded for $\gamma \in(0,2]$. From this and from (3.31), we can find a $C_{1}>0$ such that for $1<\gamma \leqq 2$,

$$
\begin{equation*}
\left|v\left(S_{1}(\gamma)\right)\right| \leqq v^{\prime}\left(S_{0}(\gamma)\right)\left(S_{0}(\gamma)-S_{1}(\gamma)\right) \leqq C(\gamma-1) \tag{3.32}
\end{equation*}
$$

This inequality implies that for any $\varepsilon>0$, we can find a $\delta>0$ such that whenever $\gamma-1 \leqq \delta, t \geqq S_{1}(\gamma)$,

$$
\begin{equation*}
(1-\varepsilon)(p-1) \leqq \frac{f_{1}(v(t))}{v(t)} \leqq(1+\varepsilon)(p-1) \tag{3.33}
\end{equation*}
$$

From (3.22), (3.33) and (ii) of Lemma 3.4, we obtain

$$
[(1-\varepsilon)(p-1)]^{1 /(k-2)} \tau_{1} \leqq S_{1}(\gamma) \leqq[(1+\varepsilon)(p-1)]^{1 /(k-2)} \tau_{1}
$$

for $\gamma \leqq 1+\delta$. This inequality implies that

$$
\begin{equation*}
\lim _{\gamma \rightarrow 1} S_{1}(\gamma)=(p-1)^{1 /(k-2)} \tau_{1} \tag{3.34}
\end{equation*}
$$

Now consider the case in which $0<\gamma<1$. Suppose $S_{1}(\gamma)=0$. From Lemma 3.5, $S_{0}(\gamma)$ exists and $y\left(S_{0}(\gamma), \gamma\right)=1$. Hence from (2.1),

$$
\begin{equation*}
-y^{\prime}(t, \gamma) \leqq-y^{\prime}\left(S_{0}(\gamma), \gamma\right) \tag{3.35}
\end{equation*}
$$

for all $t \in\left(0,\left(S_{0}(\gamma)\right)\right.$. Also we can find a $C>0$ such that for $t \in\left(0, S_{0}(\gamma) / 2\right)$,

$$
\begin{equation*}
y^{p}(t, \gamma)-y(t, \gamma) \geqq C \tag{3.36}
\end{equation*}
$$

Integrating (2.1) and using (3.35) and (3.36), we have

$$
\begin{aligned}
-y^{\prime}\left(\left(S_{0}(\gamma), \gamma\right)\right. & \geqq-y^{\prime}(t, \gamma) \geqq \int_{t}^{S_{0}(\gamma) / 2} s^{-k}\left(y^{p}-y\right) d t \\
& \geqq C\left[\frac{1}{t^{k-1}}-\left(\frac{2}{S_{0}(\gamma)}\right)^{k-1}\right] \rightarrow \infty
\end{aligned}
$$

as $t \rightarrow 0$, which is a contradiction. This implies that $S_{1}(\gamma)$ exists.

Let $\quad v=1-y \quad$ and $\quad f_{1}(s)=(1-s)-(1-s)^{p}$. Then $\quad v(\infty)=1-\gamma$, $v^{\prime}(\infty)=0, S_{0}(\gamma)$ and $S_{1}(\gamma)$ are the first zero and first turning points of v. Moreover, v satisfies

$$
\begin{equation*}
-v^{\prime \prime}=t^{-k}\left(\frac{f_{1}(v)}{v}\right) v \tag{3.37}
\end{equation*}
$$

Since

$$
\inf \left\{\frac{f_{1}(v)}{v} ; t \geqq S_{0}(\gamma), \frac{1}{2} \leqq \gamma<1\right\}>0
$$

by Lemma 3.4(i) and by (3.22) we have

$$
\inf \left\{S_{0}(\gamma) ; \frac{1}{2} \leqq \gamma<1\right\}>0
$$

Therefore by integrating (3.37), we have for some constant $C>0$,

$$
\begin{equation*}
v^{\prime}\left(S_{0}(\gamma)\right)=\int_{S_{0}(\gamma)}^{\infty} t^{-k}\left(\frac{f_{1}(v)}{v}\right) v d t \leqq C(1-\gamma) \tag{3.38}
\end{equation*}
$$

From (3.25), (3.38) and the mean value theorem, we can find a $C_{1}>0$ such that

$$
\left|v\left(S_{1}(\gamma)\right)\right| \leqq\left|v^{\prime}\left(S_{0}(\gamma)\right)\right|\left(S_{0}(\gamma)-S_{1}(\gamma)\right) \leqq C_{1}(1-\gamma)
$$

This implies that for every $\varepsilon>0$, we can find a $\delta>0$ such that

$$
\begin{equation*}
(1-\varepsilon)(p-1) \leqq \frac{f_{1}(v)}{v} \leqq(1+\varepsilon)(p-1) \tag{3.39}
\end{equation*}
$$

whenever $1-\gamma \leqq \delta$ and $t \geqq S_{1}(\gamma)$. From (3.22), (3.39), and Lemma 3.4(ii) we obtain

$$
[(1-\varepsilon)(p-1)]^{1 /(k-2)} \tau_{1} \leqq S_{1}(\gamma) \leqq[(1+\varepsilon)(p-1)]^{1 /(k-2)} \tau_{1}
$$

for $1-\gamma \leqq \delta$. This inequality implies that

$$
\begin{equation*}
\lim _{\gamma \rightarrow 1} S_{1}(\gamma)=(p-1)^{1 /(k-2)} \tau_{1} \tag{3.40}
\end{equation*}
$$

Since $S_{1}(\gamma)<S_{0}(\gamma)$, from Lemma 3.5 we have $\lim _{\gamma \rightarrow 0} S_{1}(\gamma)=0$. Now the lemma follows from (3.34) and (3.40).

4. Proof of Lemma B

Let $n \leqq 6$ and $\gamma>1$. Let $y(t, \gamma), S_{1}(\gamma)$, and $S_{0}(\gamma)$ be as in (2.1), (2.2), (3.23), respectively. For the sequel we use C, C_{1}, C_{2}, etc., to denote positive constants independent of γ, but which may be different in different inequalities. We have the following

Lemma 4.1. For γ large,

$$
\begin{gather*}
S_{0}(\gamma)=O(\gamma) \tag{4.1}\\
y(t, \gamma) \leqq 1+C t / \gamma \quad \text { for } t \geqq S_{0}(\gamma) \tag{4.2}\\
y\left(\gamma^{2}, \gamma\right) \geqq C \gamma \tag{4.3}\\
C_{1} / \gamma \leqq y^{\prime}\left(2 S_{0}(\gamma), \gamma\right) \leqq C_{2} / \gamma \tag{4.4}
\end{gather*}
$$

For $t \in\left(2 S_{0}(\gamma), \gamma^{2}\right)$

$$
\begin{equation*}
1+\frac{C_{1}\left(t-S_{0}(\gamma)\right)}{\gamma} \leqq y(t, \gamma) \leqq 1+\frac{C_{2}\left(t-S_{0}(\gamma)\right)}{\gamma} \tag{4.5}
\end{equation*}
$$

Proof. By Lemma (3.5), $S_{0}(\gamma)$ exists and from (3.18),

$$
\begin{equation*}
Z_{1}\left(S_{0}(\gamma), \gamma\right) \leqq y\left(S_{0}(\gamma), \gamma\right)=1 \tag{4.6}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
S_{0}(\gamma)^{k-2} \leqq \frac{\gamma^{p-1}}{(k-1)\left(\gamma^{k-2}-1\right)} \tag{4.7}
\end{equation*}
$$

Since $p=2 k-3$, it follows from (4.7) that $S_{0}(\gamma)=O(\gamma)$ as $\gamma \rightarrow \infty$. This proves (4.1).

For large γ we have, $\frac{\gamma^{p}-\gamma}{(k-1)(\gamma-1)} \geqq C \gamma^{2(k-2)}$ and hence from (3.19),

$$
y(t, \gamma) \leqq 1+\frac{\gamma t}{\left\{t^{k-2}+\frac{\gamma^{p}-\gamma}{(k-1)(\gamma-1)}\right\}^{1 /(k-2)}} \leqq 1+\frac{C t}{\gamma}
$$

for all $t \geqq S_{0}(\gamma)$. This proves (4.2).
Again from (3.18), we have

$$
y\left(\gamma^{2}, \gamma\right) \geqq Z_{1}\left(\gamma^{2}, \gamma\right) \geqq C \gamma
$$

for γ large. This proves (4.3).
From the concavity of y in $\left[S_{0}(\gamma), 2 S_{0}(\gamma)\right]$ and from (4.2) we have for large γ that

$$
\begin{equation*}
y^{\prime}\left(2 S_{0}(\gamma), \gamma\right) \leqq \frac{y\left(2 S_{0}(\gamma), \gamma\right)-1}{S_{0}(\gamma)} \leqq \frac{C_{2} S_{0}(\gamma)}{\gamma S_{0}(\gamma)}=\frac{C_{2}}{\gamma} . \tag{4.8}
\end{equation*}
$$

Again, from the concavity of y in $\left[2 S_{0}(\gamma), \gamma^{2}\right]$ and from (4.1)-(4.3), we have for large γ that

$$
y^{\prime}\left(2 S_{0}(\gamma), \gamma\right) \geqq \frac{y\left(\gamma^{2}, \gamma\right)-y\left(2 S_{0}(\gamma), \gamma\right)}{\gamma^{2}-2 S_{0}(\gamma)} \geqq \frac{C \gamma+O(1)}{\gamma^{2}+O(\gamma)} \geqq \frac{C_{1}}{\gamma} .
$$

This together with (4.8) proves (4.4).
Let $t \in\left[2 S_{0}(\gamma), \gamma^{2}\right]$. From (4.2), we then have

$$
\begin{equation*}
y(t, \gamma) \leqq 1+\frac{C t}{\gamma}=1+\frac{C\left(t-S_{0}(\gamma)\right)}{\gamma} \frac{t}{\left(t-S_{0}(\gamma)\right.} \leqq 1+C_{2} \frac{\left(t-S_{0}(\gamma)\right)}{\gamma} \tag{4.9}
\end{equation*}
$$

From the concavity of y in $\left[S_{0}(\gamma), \gamma^{2}\right]$ and from (4.1)-(4.3), it follows that

$$
\begin{aligned}
\frac{y(t, \gamma)-y\left(S_{0}(\gamma), \gamma\right)}{t-S_{0}(\gamma)} & \geqq \frac{y\left(\gamma^{2}, \gamma\right)-y\left(S_{0}(\gamma), \gamma\right)}{\gamma^{2}-S_{0}(\gamma)} \\
& \geqq \frac{C \gamma+O(1)}{\gamma^{2}+O(\gamma)} \geqq \frac{C_{1}}{\gamma}
\end{aligned}
$$

for γ large and for $t \in\left[S_{0}(\gamma), \gamma^{2}\right]$. Hence

$$
y(t, \gamma) \geqq 1+\frac{C_{1}\left(t-S_{0}(\gamma)\right)}{\gamma}
$$

This together with (4.9) proves (4.5) and hence the lemma.
Lemma 4.2. $\lim _{\gamma \rightarrow \infty} S_{0}(\gamma)>0$.
Proof. Integrating (2.1) and using (4.4) and (4.5) we obtain for γ large that

$$
\begin{aligned}
\frac{C_{2}}{\gamma} & \geqq y^{\prime}\left(2 S_{0}(\gamma), \gamma\right)=\int_{2 S_{\mathrm{c}}(\gamma)}^{\infty} t^{-k}\left(y^{p}-y\right) d t \\
& \geqq(p-1) \int_{2 S_{0}(\gamma)}^{\gamma^{2}} t^{-k}(y-1) d t \geqq \frac{C}{\gamma} \int_{2 S_{0}(\gamma)}^{\gamma^{2}} t^{-k}\left(t-S_{0}(\gamma)\right) d t \\
& \geqq \frac{C S_{0}(\gamma)^{2-k}}{\gamma} \int_{2}^{\gamma^{2} / S_{0}(y)} t^{-k}(t-1) d t \geqq \frac{C S_{0}(\gamma)^{2-k}}{\gamma}
\end{aligned}
$$

which implies that $\lim _{\gamma \rightarrow \infty} S_{0}(\gamma) \geqq C_{4}>0$, since $\gamma^{2} / S_{0}(\gamma) \rightarrow \infty$ as $\gamma \rightarrow \infty$ and $k>2$. This proves the lemma.

Lemma 4.3. For γ large,

$$
\begin{gather*}
C_{1} \gamma \leqq S_{0}(\gamma) \leqq C_{2} \gamma \tag{4.10}\\
C_{1} / \gamma \leqq y^{\prime}\left(S_{0}(\gamma), \gamma\right) \leqq C_{2} / \gamma . \tag{4.11}
\end{gather*}
$$

Proof. Let $v=y-1$ and $f_{1}(s)=(s+1)^{p}-(s+1)$. Then v satisfies

$$
\begin{gather*}
-v^{\prime \prime}=t^{-k} f_{1}(v) \tag{4.12}\\
v(\infty)=\gamma-1, \quad v^{\prime}(\infty)=0
\end{gather*}
$$

and $S_{0}(\gamma)$ is the first zero of v. Let $F_{1}(s)$ be the primitive of f_{1} and let

$$
H(t)=\frac{1}{2} t v^{\prime 2}-\frac{1}{2} v v^{\prime}+t^{1-k} F_{1}(v)
$$

Then from (3.6) we have

$$
\begin{equation*}
-H^{\prime}(t)=\frac{t^{-k}}{2} h(v+1) \tag{4.13}
\end{equation*}
$$

where

$$
h(s)=s^{p}-\frac{p-1}{2} s^{2}-s+\left(\frac{p-1}{2}\right) .
$$

Since $n \leqq 6$, we have $p \geqq 2$, and therefore we obtain that h is convex for $s \geqq 1$ and satisfies

$$
\begin{equation*}
h(s) \geqq C(s-1)^{p} \tag{4.14}
\end{equation*}
$$

for $s \geqq 1$. Integrating (4.13) and using (4.14) and (4.5) we obtain

$$
\begin{align*}
H\left(2 S_{0}(\gamma)\right) & =\int_{2 S_{0}(\gamma)}^{\infty} t^{-k} h(v+1) d t \\
& \geqq C \int_{S_{0}(\gamma)}^{\gamma^{2}} t^{-k} \frac{\left(t-S_{0}(\gamma)\right)^{p}}{\gamma} d t \\
& =\frac{C S_{0}(\gamma)^{p-k+1}}{\gamma^{p}} \int_{\gamma^{2} /\left(2 S_{0}(\gamma)\right)}^{\gamma^{2} / S_{0}(\gamma)} t^{-k+p} d t=C / \gamma, \tag{4.15}
\end{align*}
$$

since $p=2 k-3$. On the other hand, we have from (4.1) and (4.4), that

$$
\begin{align*}
H\left(2 S_{0}(\gamma)\right) & \leqq S_{0}(\gamma) v^{\prime}\left(S_{0}(\gamma)\right)^{2}+2^{1-k} S_{0}(\gamma)^{1-k} F_{1}\left(v\left(2 S_{0}(\gamma)\right)\right) \\
& \leqq C_{1}\left\{\frac{S_{0}(\gamma)}{\gamma^{2}}+S_{0}(\gamma)^{1-k} F_{1}\left(C_{2} \frac{S_{0}(\gamma)}{\gamma}\right)\right\} \tag{4.16}
\end{align*}
$$

Now we assert that

$$
\begin{equation*}
\lim _{\gamma \rightarrow \infty} \frac{S_{0}(\gamma)}{\gamma}>0 \tag{4.17}
\end{equation*}
$$

Suppose (4.17) is not true. Then for a subsequence $\gamma \rightarrow \infty$, we can find $C_{3}>0$ such that

$$
\begin{equation*}
F_{1}\left(C_{2} \frac{S_{0}(\gamma)}{\gamma}\right) \leqq C_{3}\left(\frac{S_{0}(\gamma)}{\gamma}\right)^{2} . \tag{4.18}
\end{equation*}
$$

From (4.15), (4.16) and (4.18) we have

$$
\begin{aligned}
C / \gamma & \leqq H\left(2 S_{0}(\gamma)\right) \leqq C_{4}\left\{\frac{S_{0}(\gamma)}{\gamma^{2}}+S_{0}(\gamma)^{1-k}\left(\frac{S_{0}(\gamma)}{\gamma}\right)^{2}\right\} \\
& \leqq \frac{C_{4}}{\gamma}\left(\frac{S_{0}(\gamma)}{\gamma}\right)\left\{1+\frac{1}{S_{0}(\gamma)^{k-2}}\right\} .
\end{aligned}
$$

This, together with Lemma (4.2), implies that

$$
0<C_{5} \leqq\left(\frac{S_{0}(\gamma)}{\gamma}\right) \rightarrow 0
$$

as $\gamma \rightarrow \infty$, which is a contradiction. This proves (4.17). Now (4.10) follows from (4.1) and (4.17).

From the concavity of y and (4.4), we have

$$
\begin{equation*}
y^{\prime}\left(S_{0}(\gamma), \gamma\right) \geqq y^{\prime}\left(2 S_{0}(\gamma), \gamma\right) \geqq \frac{C_{1}}{\gamma} . \tag{4.19}
\end{equation*}
$$

For γ large it follows from (4.2) and (4.1) that $y(t, \gamma) \leqq C$ for $t \in\left[S_{0}(\gamma), 2 S_{0}(\gamma)\right]$. Hence from (4.4) and (4.10) we have

$$
\begin{aligned}
y^{\prime}\left(S_{0}(\gamma), \gamma\right) & =y^{\prime}\left(2 S_{0}(\gamma), \gamma\right)+\int_{S_{0}(\gamma)}^{2 S_{0}(\gamma)} t^{-k}\left(y^{p}-y\right) d t \\
& \leqq \frac{C}{\gamma}+O\left(\frac{1}{\gamma^{k-1}}\right) \leqq \frac{C_{2}}{\gamma} .
\end{aligned}
$$

This, together with (4.19), proves (4.11) and the lemma.
Proof of Lemma B. Inequality (2.8) follows from (3.18).
Let $t_{0} \in\left[S_{1}(\gamma), S_{0}(\gamma)\right]$ be such that

$$
\begin{equation*}
y^{\prime}\left(t_{0}, \gamma\right)=\frac{y^{\prime}\left(S_{0}(\gamma), \gamma\right)}{2} \tag{4.20}
\end{equation*}
$$

Then from (4.11), (4.20), and the restriction that $0<y \leqq 1$, we obtain for γ large that

$$
C_{1} / \gamma \leqq \frac{y^{\prime}\left(S_{0}(\gamma), \gamma\right)}{2}=\int_{t_{0}}^{S_{0}(\gamma)} t^{-k}\left(y-y^{p}\right) d t \leqq \frac{C}{t_{0}^{k-1}}
$$

that is,

$$
\begin{equation*}
t_{0} \leqq C_{1} \gamma^{1 /(k-1)} \tag{4.21}
\end{equation*}
$$

Let $S(\gamma)=C_{1} \gamma^{1 /(k-1)}$; then clearly from (4.20) we have

$$
\begin{gather*}
S_{1}(\gamma) \leqq S(\gamma) \tag{4.22}\\
C_{3} / \gamma \leqq \frac{y^{\prime}\left(S_{0}(\gamma), \gamma\right)}{2}=y^{\prime}\left(t_{0}, y\right) \\
\leqq y^{\prime}(S(\gamma), \gamma) \leqq y^{\prime}\left(S_{0}(\gamma), \gamma\right) \leqq C_{4} / \gamma . \tag{4.23}
\end{gather*}
$$

This, together with (4.21) and (4.22), proves (2.9) and (2.11).
Now from the convexity of y in $\left[S_{1}(\gamma), S_{0}(\gamma)\right]$ and (4.23) we have

$$
\begin{equation*}
\frac{1-y(S(\gamma), \gamma)}{S_{0}(\gamma)-S(\gamma)} \geqq y^{\prime}(S(\gamma), \gamma) \geqq C_{3} / \gamma \tag{4.24}
\end{equation*}
$$

From (4.24) and (4.10), we have

$$
1-y(S(\gamma), \gamma) \geqq C-O\left(\frac{1}{\gamma^{(k-2) /(k-1)}}\right)
$$

Hence we can find a $\delta>0$ such that for γ large, $1-y(S(\gamma), \gamma) \geqq \delta$ and this proves (2.10).

Since $S(\gamma)=O\left(\gamma^{\frac{1}{(k-1)}}\right)$, from (3.18) we get

$$
\begin{equation*}
y(t, \gamma) \geqq Z_{1}(t, \gamma) \geqq C t / \gamma \tag{4.25}
\end{equation*}
$$

for all $t \in\left[S_{1}(\gamma), S(\gamma)\right]$. From (2.9), (2.10), (2.11) and (4.25) we have

$$
\begin{aligned}
C / \gamma \geqq y^{\prime}(S(\gamma), \gamma) & =\int_{S_{1}(\gamma)}^{S(\gamma)} t^{-k} y\left(1-y^{p-1}\right) d t \geqq \frac{C_{1} \delta}{\gamma} \int_{S_{1}(\gamma)}^{S(\gamma)} t^{-k+1} d t \\
& \geqq \frac{C_{2}}{\gamma}\left(\frac{1}{S_{1}(\gamma)^{k-2}}-\frac{1}{S(\gamma)^{k-2}}\right) .
\end{aligned}
$$

This implies that

$$
\lim _{\gamma \rightarrow \infty} S_{1}(\gamma)>0
$$

This proves (2.12) and hence the lemma.

Remark 1. Let $n \geqq 3$ and $p>1$. Then there exists an $R_{0}>0$ such that for $0<R<R_{0}$, the problem

$$
\begin{gather*}
-\triangle u=u^{p}-u \quad \text { in } B(R) \\
u>0, u \text { is radial } \quad \text { in } B(R), \tag{4.26}\\
\frac{\partial u}{\partial v}=0 \quad \text { in } \partial B(R)
\end{gather*}
$$

does not admit any solution u such that u^{\prime} changes sign.

Proof. We consider two cases: $1<p<\frac{n+2}{n-2}$ and $p \geqq \frac{n+2}{n-2}$.
Case 1. $1<p<\frac{n+2}{n-2}$. In this situation, by a result of Lin, Ni \& TAGAKi [11] there exists an $R_{0}>0$ such that for $0<R<R_{0}$, problem (4.26) does not admit a nonconstant solution. This proves the remark.
Case 2. $p \geqq \frac{n+2}{n-2}$. Let $v(r, \gamma)$ denote the solution of

$$
\begin{gathered}
-\left(v^{\prime \prime}+\frac{n-1}{r} v^{\prime}\right)=v^{p}-v \quad \text { in }(0, \infty) \\
v(0)=\gamma>0, \quad v^{\prime}(0)=0
\end{gathered}
$$

Let $R_{1}(\gamma)<R_{2}(\gamma)<\ldots$ be the turning points (i.e., $v^{\prime}\left(R_{i}(\gamma), \gamma\right)=0$) of $v(r, \gamma)$. From the result of Ni [12], we know that $v(r, \gamma)>0$ for all $\gamma>0$.

Now the remark follows from the following

Assertion. There exists a constant $C>0$ such that

$$
\begin{equation*}
\sup _{\gamma \leqslant(0, \infty)} R_{2}(\gamma) \geqq C . \tag{4.27}
\end{equation*}
$$

To prove this we adopt the method used in Atkinson, Brezis \& Peletier [6] and in Adimurthi \& Yadava [2]. Proceeding as in Lemma A, we obtain

$$
\lim _{\gamma \rightarrow 0} R_{1}(\gamma)=\infty, \quad \lim _{\gamma \rightarrow 1} R_{1}(\gamma)>0
$$

Therefore it is sufficient to prove that

$$
\begin{equation*}
\sup _{\gamma \in(1, \infty)} R_{2}(\gamma) \geqq C . \tag{4.28}
\end{equation*}
$$

Let $w(r, \gamma)=v(r, \gamma)-1$ and let $T_{1}(\gamma)$ and $T_{2}(\gamma)$ respectively be the first and second zeros of $w(r, \gamma)$. Then

$$
T_{1}(\gamma)<R_{1}(\gamma)<T_{2}(\gamma)<R_{2}(\gamma)
$$

Therefore, in order to prove (4.28), it is sufficient to show that

$$
\begin{equation*}
\sup _{\gamma \in(1, \infty)} T_{2}(\gamma) \geqq C . \tag{4.29}
\end{equation*}
$$

Since $v(r, \gamma)>0$ for all $\gamma>1$, we get

$$
\begin{equation*}
\sup _{\gamma \in(1, \infty)}\left\{|w(r, \gamma)| ; T_{1}(\gamma)<r<T_{2}(\gamma)\right\} \leqq 1 \tag{4.30}
\end{equation*}
$$

Let $Z(r)=\left(\frac{n-2}{r}\right)^{\frac{n-2}{2}}$. Then Z satisfies

$$
\begin{gather*}
Z^{\prime \prime}+\left(\frac{n-1}{r}\right) Z^{\prime}+\frac{1}{4} Z^{4 /(n-2)} Z=0 \quad \text { in }(0, \infty) \tag{4.31}\\
\lim _{r \rightarrow 0} Z(r)=\infty
\end{gather*}
$$

From (4.30) and (4.31) we can choose an $r_{0}>0$ such that for all $\gamma>1$ and $r \in\left(0, r_{0}\right) \cap\left[T_{1}(\gamma), T_{2}(\gamma)\right]$,

$$
\frac{(w+1)^{p}-(w+1)}{w}<\frac{1}{4} Z(r)^{4 /(n-2} .
$$

Now by Sturm's comparison theorem, there exists a $C>0$ such that (4.29) holds. This completes the proof of the remark.

Remark 2. Given any Ω, we can construct a negative function $\alpha \in C^{\infty}(\Omega)$ such that the problem

$$
\begin{gather*}
-\Delta u=u^{p}+\alpha(x) u \quad \text { in } \Omega \\
u>0 \quad \text { in } \Omega \tag{4.32}\\
\frac{\partial u}{\partial v}=0 \quad \text { on } \partial \Omega
\end{gather*}
$$

admits a solution.

The construction of α is similar to the construction given by Brezis [7] for the Dirichlet problem.

Let $a \in C^{\infty}(\Omega)$, be such that a changes sign in Ω and $\int_{\Omega} a(x) d x<0$. By the result of Hess \& Senn [14] there exists a $\lambda_{1}(\Omega)>0$ such that

$$
\begin{aligned}
-\Delta v & =\lambda_{1}(\Omega) a(x) v \quad \text { in } \Omega, \\
v & >0 \quad \text { in } \Omega \text { and } \\
\frac{\partial v}{\partial v} & =0 \quad \text { on } \partial \Omega
\end{aligned}
$$

admits a solution. Define

$$
\alpha(x)=\lambda_{1}(\Omega) a(x)-\mu^{p-1} v^{p-1}, \quad u=\mu v,
$$

where μ is a positive real number. Obviously u satisfies (4.32). By choosing μ large, we get $\alpha<0$.

Acknowledgement. We thank Dr. Veerappa Gowda for assisting us in doing some numerical computation for this problem and also for several discussions.

References

1. Adimurthi \& G. Mancini, The Neumann problem for elliptic equations with critical non-linearity, preprint.
2. Adimurthi \& S. L. Yadava, Elementary proof of the non-existence of nodal solutions for the semilinear elliptic equations with Critical Sobolev exponent, Nonlin. Anal., T.M.A. 14 (1990), 785-787.
3. Adimurthi \& S. L. Yadava, Critical Sobolev exponent problem in $\mathbb{R}^{n}(n \geqq 4)$ with Neumann boundary condition, Proc. Ind. Acad. of Sci, to appear.
4. Adimurthi, M. C. Knaap \& S. L. Yadava, A note on a critical exponent problem with Neumann boundary conditions, preprint.
5. F. V. Atkinson \& L. A. Peletier, Emden-Fowler equations involving critical exponents, Nonlin. Anal. T.M.A. 10 (1986), 755-776.
6. F. V. Atkinson, H. Brezzis \& L. A. Peletier, Solutions qui changent de signe d'equations elliptiques avec exposant de Sobolev critique, C. R. Acad. Sci., Paris 306 (1988), 711-714.
7. H. Brezis, Nonlinear elliptic equations involving the Critical Sobolev exponent survey and perspectives, Directions in partial differential equations, edited by M. G. Crandall et al. 1987, 17-36.
8. H. Brezis \& L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
9. C. Budd, M. C. Knaap \& L. A. Peletier, Asymptotic behaviour of solutions of elliptic equations with critical exponents and Neumann boundary conditions, preprint.
10. C. S. Lin \& W. M. Ni, On the diffusion coefficient of a semilinear Neumann problem, Springer Lecture Notes 340, 1986.
11. C. S. Lin, W. M. Ni \& I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Diff. Eqns. 72 (1988), 1-27.
12. W. M. Ni, On he positive radial solutions of some semilinear elliptic equations on \mathbb{R}^{n}, Appl. Math. Optim. 9 (1983), 373-380.
13. X. J. Wang, Neumann problem of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eqns., to appear.
14. P. Hess \& S. Senn, On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions, Math. Annalen 258 (1982), 459-470.

Tata Institute of Fundamental Research
Post. Box 1234
Bangalore-560 012
INDIA

