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EXISTENCE AND NONEXISTENCE
OF POSITIVE SOLUTIONS FOR
SINGULAR SEMILINEAR ELLIPTIC
BOUNDARY VALUE PROBLEMS

S. B. Cui(Cui Shangbin, Cui ShangBin)

(Department of Mathematics, Lanzhou University,
Lanzhou, Gansu 730000, People’s Republic of China)

Abstract

In this paper we study existence of positive solutions to singular elliptic boundary
value problems involving divergence terms in general domains. By constructing suitable
upper and lower solutions and making comparison, we obtain sufficient conditions for
existence and nonexistence of solutions. We also study a concrete example to show
that the conditions imposed on parameters appearing in the structure conditions of
nonlinear terms are optimal and our results can be used to get boundary regularity of
solutions.

Key words and phrases: Singular elliptic equation, boundary value problem,
positive solution, existence, nonexistence.

AMS 1991 classification number: 35J25.

1 Introduction

The purpose of this paper is to investigate the existence of solutions to the problem

Lu+ f(z,u,Du) =0, u>0, in Q, (L.1)

U=, on 09,

where (2 is a bounded smooth domain in R™, L is a second order elliptic partial differential
operator on {2, ¢ is a nonnegative function defined on 092, and f(z,u,§) is a continuous
function defined on Q x (0,00) x R™. We are interested in the case where f(z,u,§) has
singularities on 9 (2 x (0,00) x R"), i.e., (1.1) is a singular boundary value problem. This
kind of problem arises in many applicational fields (c.f.[1-18]).

A typical example of the above problem is as follows:

Au+a(z)u? =0, uw>0, in Q,
u =0, on (9(%,

(1.2)



2 SINGULAR BOUNDARY VALUE PROBLEMS

where a(z) is locally Holder continuous and positive in Q and p < 0. This problem was first
studied by Crandall et ol in 1977 in the case where @ = B = {x € R™ : |z| < 1} under
the assumption that a(z) € C*(B) and min_ g a(x) > 0. They obtained a unique existence
theorem ([1]). Later in 1979 Taliaferro considered the case n = 1 and = (0, 1), permitting
a(z) to be singular at z = 0 and z = 1. He proved that a necessary and sufficient condition
for the existence of a solution was

/0 (1 - 2)a(z)dz < oo ([2)). (1.3)

Taliaferro’s this result was extended by Usami in 1989 to the case n > 2 and Q = B ([3]).
In fact he considered a more general problem of the form

Au+ f(z,u) =0, u>0 in B,
u=0, on OB.

(1.4)

His results are as follows. Suppose that f(z,u) is locally Holder continuous with respect to
(z,u) in B x (0, 00) and locally Lipchitz continuous with respect to u in (0, c0) and satisfies

0 < fullel,u) < f(z,u) < f*(Je|,u),  for (z,u) € B x(0,00),

where f, and f* have similar continuity with f and are strictly monotonically decreasing
with respect to u in (0, 00). Then a sufficient condition for the existence of a solution to the
problem (1.4) is that for some € € (0,1) and all u > 0,

— [ (ogt)f*(t,u)dt < 00, if n=2,

L . (1.5)
Ji (A =t)f*(t,u)dt < oo, if n>2;

if inaddition f*(¢,u) is convex with respect to v and

fr(t,u)

SUDie(o,1), u>0 A < 00,
b)

then the condition (1.5) is also necessary. For other related results on the problem (1.4) and
the more general problem (1.1) we refer the reader to see [4-9,11,12,14-22].

In this paper, which is a continuation of our previous work ([19,20,23]), we study the
general problem (1.1) in general domains. Our focus attention is paid on how the divergence
term Du affects existence of solutions. We prove some existence and nonexistence theorems.
These results can be best illustrated by their applications to the following model problem:

Au+ a(z)uP(1 + |Dul>)¥2 =0, in Q,

(1.6)
u=0, on 99,
where p < 1, ¢ < 2 and a(z) is locally Holder continuous in Q and satisfies
Cid(z,090)” < a(z) < Cod(z,0Q)°, VzeQ, (1.7

with C2 > C; > 0 and 8 € (—00,00). Here and hereafter we use the notation d(z,9Q) to
denote the distance of € 2 to the boundary of 2. By our results we have the following
conclusions:
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(i) f p<1—gqand > q— 2, then (1.6) has a unique solution;

(i) if p>1—q and B8 > —p—1, then (1.6) has at least one solution if Cs is sufficiently
small;

(iii) if either p<1—qgand 8 <¢g—2o0rp>1—gand B8 < —p—1, then (1.6) has no
solution.

From these conclusions we see that in order to get a solution the condition (1.5) can be
weakened if f(z,u, &) decreases to zero as |{| — oo, but should be strengthened if f(z,u,&)
increases to infinitive as |{| — co. Besides, these conclusions show that the conditions im-
posed in our existence and nonexistence theorems on parameters appearing in the structure
conditions of f(z,u,&) are optimal in certain sense.

The existence theorems established in this paper are refinement and generalizations of
those obtained in our previous work ([19,20]). The nonexistence theorem is thoroughly fresh;
it is derived from the comparison theorem proved in our another piece of work [23] where
uniqueness of solutions to the problem (1.1) is discussed.

To benefit the reader who wants to get an understanding to the problem (1.2) with
a(z) singular on 9Q and p > 1, we mention the work of Senba et al [13]. They proved that
for Q=B,if 1 <p < (N+2)/(N—2)and f > max(—2,—p— 1) then (1.2) has a solution.
We also mention that in the case p = 2 the problem (1.2) is greatly interested by statists
(cf.[10] and the references cited therein). For general problem (1.1) where f(z,u,£) is only
singular with respect to  on 99 and tends to co as u — oo at the rate u? with p > 1, to
the best of our knowledge, no results are obtained up to now except in the case n = 1.

The plan of the following sections are as follows. In Section 2 we enumerate our main
results. The other sections are devoted to the proofs of these results.

2 The Main Results

Hereafter we always assume that L has form

L= Z ““(w)axiax,- +sz’($)%,

where a;;(z), bi(z) € C%(Q) for some a € (0,1), a;;(z) = a;i(x), and there exists a constant
Ao > 0 such that

Z aij(z)&& > Xol€)?, Vz €Q, VEe€R™
ij=1

We always assume that 0 is of C1T“-class for some a € (0, 1) unless otherwise assumption
is specially made. We denote by \; the smallest eigenvalue of the operator —L : H}(Q) —
H~'(), and by ¢(z) the corresponding eigenfunction satisfying max, g (z) = 1. It is
well-known that ¢ (z) € C?t%*(Q) N C*(Q) and satisfies

o

P(z) >0, for z € P(z) =0, o

() <0, for ze€ 0N. (2.1)
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Here n represents the outward-pointwising unit normal vector on 9. From (2.1) we see
that there exist constants C; > 0 and Cy > 0 such that

C19(z) < d(z,090) < Cotp(z), Vz € Q. (2.2)

In existence theorems to be stated below, a basic assumption is that the function
f(z,u,§) satisfies the following two conditions:

(D1) f(z,u,&) is locally Holder continuous in  x (0,00) x R™ and continuously dif-
ferentiable with respect to the variables u and &;

(D3) for any Q3 CC Q and any a, b € (0,00) (a < b) there exists a corresponding
constant C' = C(€y,a,b) > 0 such that

£(@,u,8)] < CL+[ER), Voel, Vuelab], VEe R™ (2.3)
These conditions are imposed to guarantee the upper and lower solutions theorem for singular
elliptic boundary value problems (see Lemma 3) can be employed.
The existence results are the following three theorems:
Theorem 1 Suppose that f satisfies the conditions (D;), (D2) and (D3), (D4) stated
below:
(D3) there exist constants A >0, M >0, k<1 and 3 € (—o0, ) such that
f(z,u,&) > Ad(z,0Q)Pu*, VYreQ, VYue (0,M], V¢ < M; (2.4)
(D4) There exist constants B; > 0 (i = 1,2,---,m) and v;, pi, ¢ (1 = 0,1,---,m)
satisfying
pz<1, qz<m1n(2,1—p,), ",’z>qz—2 (1/:1,2,",771)
such that
m
fl@,u,8) < Bid(z,00)"uP (1 + )%, Vz€Q, Vu>0, VE€R*.  (2.5)
i=1

Then for ¢ = 0 the problem (1.1) has a classical solution u satisfying the following condition:
for any p > max(1,3/(1—k)) and any v € (0,1)N(0, v*] there exist corresponding constants
€ >0 and E > 0 such that

ed(z, 00)* < u(z) < Ed(z,00)”, VzeQ. (2.6)
Here )
V" = min (u) _
1<i<m \1—p; — ¢i

Moreover, there exists 6 > 0 such that for any nonnegative ¢ € C't%(9Q) satisfying
llllci+a(an) < 0 the problem (1.1) has a classical solution u satisfying

w(z) + ed(z, Q)" < u(z) < w(z) + Ed(z,00)", (2.7)

where w is the solution of the problem Lw = 0 in Q and w|sq = ¢, and u, v, € and E are
constants similar to those appearing in (2.6).

Theorem 2 Suppose that f satisfies the conditions (D1), (D3) and (Dj), (D}) stated
below:
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(D3%) For any given M > 0, there exist corresponding constants k < 1, [ € (—o0,00)
and A > 0 such that

f(z,u, &) > Ad(z,00)Pu*, VreQ, Yue (0,M], V| <M. (2.8)

(D}) There exist constants B; > 0 (i = 1,2,---,m) and v;, pi, ¢ (1 = 0,1,---,m)
satisfying

pi < ]-7 q; < min(2a 1 _Pi), Yi > maX(_2,Qi - 2) (7’ = 1’27 o '7m)

such that

f(z,u,8) <Y Bid(z,00)"uP (1 + €))%, VzeQ, Yu>0, VEeR".  (29)

=1
Then for any nonnegative ¢ € C'+*(8) the problem (1.1) has a classical solution u satis-
fying (2.7)

Theorem 3 Suppose that f satisfies the conditons (D1), (D3), (D3) and (DY) stated
below:

(DY) There exist constants B; > 0 (i = 1,2,---,m) and 7;, pi, ¢ (i = 0,1,---,m)
satisfying
pi<l, 1—-p;<¢; <2, v>-p;i—1 (i=1,2,---,m)

such that

fla,u,8) < Bid(,00)"u (1 + [£)%, Vo e, Vu>0, VE€R"  (2.10)

i=1

Then there exists Bf > 0 (i = 1,2,---,m) such that the problem (1.1) with ¢ = 0 has a
classical solution u satisfying (2.6) provided B; < B (i =1,2,---,m). If in addition all p;’s
appearing in the conditon (D)) are non-positive, then there exist 6 > 0 and B} > 0 (1 =
1,2,---,m) such that for any nonnegative ¢ € C'**(0Q) satisfying ||¢||c1+«(9q) < & the
problem (1.1) has a classical solution u satisfying (2.7) provided B; < B} (1 =1,2,---,m).

Remark. A similar result as Theorem 1 above is obtained in [20] (i.e. Theorem 1
therein). As one sees easily, the two conditions (D3) and (D4) are respectively weaker than
the corresponding conditions required by Theorem 1 of [20]. Thus Theorem 1 above can be
regarded as a refinement to that theorem. Theorem 2 and Theorem 3 are entirely new.

The nonexistence result, which is the main contribution of this paper, is as follows.

Theorem 4 Suppose that the function f satisfies the following condtion:

(Ds) there exist constants A > 0 and 3, p and q satisfying either
(1) p<l,g<1—p,B<qg—2,0r

(i) p<1l,g>1-p, B<—p-1

such that

f(z,u,&) > Ad(z,0Q)PuP(1 + €))7, VzeQ, Yu>0, V&€ R (2.11)
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Then the problem (1.1) has no classical solution for any nonnegative ¢ € C(99).
Applying these results to the problem (1.6), we obtain

Theorem 5 Suppose that a(z) € C*(Q) for some a € (0,1) and satisfies the condition
(1.7). Suppose furthermore that p < 1 and q < 2. Then the following conclusions hold:

(?) If eitherg < 1—pand 8 <qg—2o0rq>1—-pand 8 < —p—1, then the problem
(1.6) has no positive classical solution.

() If g <1 —p and B > q — 2, then the problem (1.6) has a unique positive classical
solution u(z). Moreover, this solution satisfies

Chd(z,00) =0/ (1=p=0) < y(z) < Cod(x, dN)2HA~D/A=P=0 = vz e Q,

if g—2<B<—p-1; (2.12)
C1d(z,090) <u(z) < C,d(z,0Q)", VreQ, VYve(,1),
if —p—1<B8<—-p+1; (2.13)
Cid(z,0Q)P/17P) < y(z) < Cod(z,09), Vz € Q,
if 3> —p+1. (2.14)

(7917) If ¢ > 1—p and 8 > —p—1, then the problem (1.6) has at least one positive classical
solution u(z) when Cy appearing in (1.7) is sufficiently small. Moeover, this solution satisfies

Cird(z, 8Q)™x(LB/(1-P) < y(z) < Cd(z,00)", Yz e Q, Yve (0,1). (2-15)

In the above C4, C> and C, represent positive constants (Cy and Cy are different from those
appearing in (1.7)).

The next result is concerned with regularity of solutions to (1.6) obtained by Theorem
5. It is arranged to show that the kinds of estimates like (2.12)—(2.15) can be employed to
study boundary regularity of solutions.

Theorem 6 Suppose that the boundary of Q) is sufficiently smooth. Suppose that
a(z) is locally Hélder continuous in Q) and satisfies the condition (1.7). Suppose furthermore
thatn > 2, p<1, ¢<1 andeitherq<1—p, 8>q—20rq>1—p, 8> —p—1. Let u(z)
be the solution of the problem (1.6) obtained by Theorem 5. Then we have the following
conclusions:

(1) If g <1—p and B > max(q — 2, ¥, — 2), then u(z) € C*(Q) for some o € (0,1).

(i4) If 3 > —p — 1, then u(z) € C1+*(Q) for some a € (0,1).
(#43) If there exists a function d(z) € C1(Q) satisfying

Cid(z,09Q) < d(z) < Cod(z,00), Yz e (2.16)

(C1 and C; are positive constants) such that a(z)/ d(z)? is uniformly Hélder continuous in
), and in addition, 8 > —p, then u(z) € C?t%(Q) for some a € (0,1).

In the last theorem we have used the notation C*(Q) to denote the set of functions on
Q which are uniformly Holder continuous in Q of order a, i.e., u(z) € C*(Q) if and only if
u(z) can be extended to Q such that the extension is Holder continuous on Q of order a.
The notation C*+2(Q), C?*(Q) has similar meaning.
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Remark. We note that if ¢ — 2 < < —p — 1 then by (2.12) we have |Du| — oo as
z — 0. Therefore, u(z) ¢ C1(Q) in this case. We also note that if —p — 1 < 3 < —p then
u € C1(Q) by the conclusion (i7) and a(z)u? — oo as z — 9Q by (2.13) and (2.15), which
implies that Au — —oo as  — 9. Therefore, u & C2(Q) in this case.

3 The Proofs of Theorem 1, 2 and 3

To prove these theorems we first establish three lemmas.

Lemma 1 Suppose that the function f(z,u,§) satisfies the condition (D3). Then
for any p > max(1,3/(1 — k)) there exists a corresponding €* > 0 such that for every
€ € (0,e*], u(z) =eyp(x)* is a lower solution of the problem (1.1) with ¢ = 0.

Proof. First we note that

Du(z)= epp(z)# "} D (a),
Lu(z)= epp(2)“ L Lop(z) + el — V()2 L7, ai(@) 32 (@) F2 (=)
> —epp(z).

Now let ¢ > 0 be so small that both it and eumax  5|D¥(z)| are not greater than the
number M appearing in (2.4). Then we have

Lu + f(z,u, Du)> —eA pap(z)* + Aekd(z, 0Q)Pp(x)*
> Alehip(z)PTrk — Xy pap(a)®
> cEp() LA~ Nyt @),

where A’ = AC? (if 8 > 0) or AC? (if B < 0). Since u(1—k) —8 > 0 and 0 < ¢(z) < 1,
we see that 1 (z)*(1—%)—# < 1. Thus

Lu+ f(z,u, Dw) > ePp(a)PHE[A' = Ay’ =H),
which combined with the fact £ < 1 implies that for sufficiently small £ > 0,
Lu+ f(z,u,Du) >0, in Q,

namely, u(z) = eyp(z)* is a lower solution of the problem (1.1) with ¢ =0. Q. E. D.

Lemma 2 Suppose that the function f(z,u, &) satisfies the condition (D4). Then for
any v € (0,1) N (0,v*], where v* is as in Theorem 1, there exist a corresponding constant
E? > 0 such that for every E > E, u(z) = Ev(z)” is an upper solution of the problem
(1.1) with ¢ = 0.

Proof. Without loss of generality we assume that

¢ <0(=1,2,---,49) and ¢;>0(i=4p+1,---,m),
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where 0 < {9 < m. Then for arbitrary £ > 1 we have

Lu+ f(z,u, Du)<—MvEy(z)” —v(l —v)Eyp(z)’ 2 2?,3:1 aij (w)%(w)%(w)

+ Y2, BiEP d(z, 09) "4 (2) 7 (1 + Evip(a)’ | De(x)|)“

+ Y041 BiEPd(z,0Q) 4 (2)"P (1 + Evyp(z)" | Dy(z))"
<=MvEp(z)” — Aov(l - v)Ep(z)"~?| Dp(z)[?

+ 312, BiEPp () vtvri— (= (y(e) =7 + v| Dip(a)|)

+ g1 BIEPT i) (g)vitvpim (1m0 ((a) Y + | Dy(x)|) "
<E¢(z)""*{~v (M (2)? + Xo(1 = v)|Dip(2)[?)

+ 3000, BE0m(a)iu—0nma (y(a)' = + 1| Dy(e))) "

Y e BB ma) (22470 (e (o)1 4 o] Dip(a) )" .

Let
M, = rneig (M9p(2)? + Xo(L = v)|DY(2) %), My = ineig (¥(2)' " +v|[Dy(2)])
My = max ((2)" " + v|Dy(2)]) - (3.1)
zEQ

It is obvious that My > 0, M; > 0 and M> < co. Therefore, since all the exponents of 1 (z)
in the big brackets are nonnegative, we have

io m
Lu + f(z,4,Du) < Ep(z)” *{-vMo+ > BMFEE (P) 4+ N BIMFE (ria)}
i=1 i=t0+1

By the hypothesis, all the exponents of E in the last pair of brackets are negative. Hence,
for sufficiently large E we have

Lu+ f(z,u,Du) <0, in

namely, u(z) = Ev(z)” is an upper solution for sufficiently large E. Q. E. D.

Lemma 3 Suppose that the function f satisfies the conditions (D1) and (D2). Suppose
furthermore that the problem (1.1) has a pair of upper and lower solutions T(z) and u(z)
satisfying the conditions

(1) w(z), u(z) € C*(Q)NC(Q);
(2) 0<u(z) <a(z), VreQ;
() u(z) = u(z) = o(z), Vze o
Then this problem has a solution u(z) belonging to C27*(Q) N C(Q) and satisfying
u(z) <u(z) <u(z), VzeQ.

This lemma is due to Li Jian-zhang. It can be proved by utilizing the domain approx-
imation method ([3,19,20,24]). Since it has been actually proved in [20], we omit its proof
here.
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Proof of Theorem 1. The first conclusion of Theorem 1 follows directly from Lemma 1,
2 and 3. To prove the second conclusion, we denote g(z,v,n) = f(z,v + w(z),n + Dw(z)),
where w is as in Theorem 1. Let § > 0 be sufficiently small such that max__g{w(z), |Dw(z)[}<
min{1/2, M/2} when ||¢||c1+e(a0) < J, where M is the constant involved in the condition
(D3). Now let ¢ satisfies this condition. Then since w(z) > mingcpq ¢(z) > 0 by maximum
principle, we have

(v +w(z)"” > Vz e, V0O<v< —;
Mk, if k<0, 2
Di vPi, if p; <0,
(v+w(z))™ < Ve e Q, Vv > 0;

o+ (M) 0 <p < 1,

)" @+ )%, if 0<g <2
(D" A+ )%, if @<,

Applying these inequalities, we get from (2.4) and (2.5) respectively

(1 +|n + Dw(z)])* < Vz € Q, VneR"

g(z,v,m)=f(z,v + w(z),n + Dw(z)) > Ad(z,00)" (v + w(z))"
>Ald(z,00)Pv%, Yz eQ, Yoe (0,Y], vy <X,

9(z,v,m) <3, Bid(2,0Q)" (v + w(z)))? (1 + |n + Dw(z)|)*
<™. Bld(z,0Q)" 0" (1+ n))%, Vz € Q, Vv >0, VneR",

where k' = k for k > 0 and O for k < 0, m’ is a positive integer, v}, p}, ¢; (1 =1,2,---,m') are
constants satisfying some inequalities similar to those satisfied by ~;, pi, ¢; (¢ =1,2,---,m)
in the condition (D4), and A’ and B; (¢ = 1,2,---,m') are positive constants. Therefore,
g(z,v,n) satisfies the condition (D3) and (D4). Consequently, by Lemma 1 and 2 we see
that there exist p > 1 and v € (0,1) such that for sufficiently small ¢ > 0 and sufficiently
large E > 0, v(z) = eyp(z)* and v(z) = Ey(z)” are respectively lower and upper solutions
of the problem

Lv+g(z,v,Dv) =0, v >0, in Q,
v=0, on 9N.

(3.2)

Hence, by Lemma 3, (3.2) has a classical solution v satisfying eyp(2)* < v(z) < Ey(z)”.
Evidently, v = v + w is then a solution to the problem (1.1) satisfying (2.7). This finishes
the proof of Theorem 1. Q. E. D.

Proof of Theorem 2. Let the notation be as above. Let N = max_ s{w(z),|Dw(z)[}.
Then we have

; ’Upia if D S 07
(v +w(z))P < Vz € Q, Vv > 0;
o+ NP if 0<p; <1,

14+ N)%(1+ )%, if0< g <2,
(4 |n+ Du@))s < 4 TNEAFID® A0S a <2 o pn
1, ifg; <0,
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By applying these inequalities one may verify that the condition (D)) implies that g(z,v,n)
satisfies the condition (D4). Therefore, by Lemma 2 we see that there exists v € (0,1) such
that for sufficiently large E, 7(z) = E(z)” is an upper solution of the problem (3.2). Next
we take M = N + 1 and apply the condition (D}). Then we get

Ad(z,00)Pv*, if 0<k<1 and ve (0,1), |n| <1,

g(z,v,m) >
Ad(z,00)PMF*, if k<0 and v € (0,1), || < 1.

This shows that g(z,v,n) satisfies the condition (D3) with £k = k for 0 < k < 1 and 0 for
k < 0. Therefore, by Lemma 1 we see that there exists g > 1 such that for sufficiently small
€ >0, v(z) = eyp(z)* is a lower solution of the problem (3.2). Now by an similar argument
as we have made in the proof of Theorem 1 we get the conclusion of Theorem 2. Q. E. D.

Proof of Theorem 3. Letv; =(¢i—2—vi)/(pi+¢i—1)ifg >1—p; and v; = —oc0 if
gi=1-p; (i=1,2,---,m). Let v, = maxi<ij<m ¥;. Choose a number v € (0, 1) such that
v > v,. Since obviously v, < 1, such v exists. Let u(z) = ¢(x)”, and let My, M> be as in
(3.1). Then we have

Lu + f (2,3, DI)<—Mvyp” — v(1 = v)hoyp” 2| DyJ?
+ iy B P (L + vy DY)

<—vMpp" 2+ 30, Bz{Mgidervm—(l—u)q.-

=p*~2{—vMy + ZZ’;I B;qui¢2+’7i—lli+"(?i+4i—1)},
where B, = B;CJ* (if v; > 0) or B;C]* (if 74 < 0). Since 2 +v; —¢; + v(p; + ¢; — 1) >
247 —qi+vi(pi+qi—1) > 0, we see that o2 +7i~¢:+»(pi+ai—1) < 1, Therefore, T(z) = ()" is
an upper solution of the problem (1.1) with ¢ = 0 when B} < vMy/mMj*. Now by making
application of Lemma 1 and 3 we get the first conclusion of Theorem 3. To prove the
second conclusion, let w(z) and g(z,v,7n) be as in the proof of Theorem 1 and suppose that
max, s |Dw(z)| < min{1l, M/2}, where M is the number appearing in the condition (D3).
Since p; <0(:=1,2,---,m)and ¢; >1—p; >0 (3 =1,2,---,m), we have

9(z,v,m) <303%, Bid(z, 00) (v + w(z))™ (1+ |+ Dw()|)*
<37 Bid(z, 0Q)wPi (2 + [n])%, Vo e Q, Yo >0, VneR™

Thus by a similar argument as we have made above shows that there exist B} > 0 (i =
1,2,---,m) such that when B; < B} (1=1,2,---,m), 7(z) = ¢(z)” is an upper solution of
the problem (3.2), where v is as above. Besides, from the proof of the second conclusion of
Theorem 1 we see that there exists p € (0,1) such that v(z) = ey(z)* is a lower solution of
the problem (3.2). Therefore, by repeating the argument we have made in the proof of the
second conclusion of Theorem 1 we get the second conclusion of Theorem 3. Q. E. D.

4 The Proof of Theorem 4

The proof of Theorem 4 is based on comparison between upper and lower solutions of
the following problem:

Lu+ h(z,u,Du) =0, u>0, in Q,
u=¢>0, on 0,

(4.1)
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where
h(z,u,€) = AY(z)PuP (1 + €))%, A>0,p<1,¢<1-p, € (—o0,00).
() is as before. For this problem we have

Lemma 4 Suppose that the above conditions for p and q are satisfied. Then we have
the following comparison: if two functions u(z), u(x) € C*(Q)NC(Q) are respectively upper
and lower solutions of the problem (4.1)—(4.2), then @(z) > u(z) for all z € Q.

Proof. Choose a positive number p such that

p<pu<l, if ¢<0:
p/(1—q) < p<1, if 0<qg<1;
pw<l, if ¢g=1;

p <min(l,-p/(¢g—1)), if ¢>1

Then g(s) = s* is a test function (c.f [23] for the definition of this concept). One may
easily verify that the function h(z,u, &) = Ay (z)PuP(1 + |£])9 satisfies the condition of [23,
Theorem 2.1] with g(s) taken in this form (c.f. the proof of [23, Theorem 4.1]). Therefore,
by applying [23, Theorem 2.1] we get the conclusion of the above lemma. Q. E. D.

Proof of Theorem 4. By virtue of (2.2), the inequality (2.11) can be rewritten as
f(z,u,8) > AY(@)’u?(1+ €))7, Vo eQ, Yu>0, V€€ R, (4.2)

where A’ > 0. We first assume that p, ¢ and 8 satisfy the condition (¢), namely, p < 1,
g<1l-pand B < q—2. Let us denote

No = max (M¢(z)” + Xo|D9(2)*) , N1 = min (¢(z) + |Dy(z)]), N> =max(1+|Dy(z)]),
zeN €N e

h(z,u,€) = A'p(z)PuP (1 + (€))7, (4.3)

where )\ and \; are as in the previous section. It is evident that Ny < oo, N; > 0 and
Ns < 0o. We now make the discussion according to the four different cases p > 0, ¢ > 0;
p>0,g<0; p<0,g>0andp<0, qg<0 separately.

Case 1: p > 0 and ¢ > 0. In this case we choose a number £ € (0,1) so small that
C'N} —e'"P74Ny > 0. Since p + q < 1, this is feasible. With ¢ taken in this way, for each
v e (0,1) we denote u, (z) = ev/("Ply)(z)”. Then by (4.2) we have

Lu, + h(z,u,, Du,) ==X\ ev= Y/ O=P) Tl (z) — Nger =t/ (=P (1 — v)op(2)" 2| Dyp(2)|?
+A'ePy=P/(A=P)ep(g) P (1 4 ey 1/ A-P) Ly (g)r 1 |D1/J(a:)|)q
>—ev PP () % (Myp(2)? + Xo| DY(2)[?)

AP Oy (D) ()840 (1 (2) ' + | Dy ()
>—eNov =/ (1=P)oj(2)"=2 A NiePtay—p/(1=P)q)(g)f+vp—(1-7)a
=gPtay—p/(1-p)g)y(g)B+vp—(1-v)af A' NT

—e'"PmINyy(z)V (AP D) +a—A-2}
>ePtay—p/(1=p)g)y(g)P+vP—(1=V)af AINT _ g1=P=a N, }.
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The last inequality is due to the fact that 1 —p—g¢g > 0 and ¢ — 8 — 2 > 0. By the choice of
the number £, we see that

Lu, + h(z,u,, Du,) > 0, in Q,

which implies that u,(z) is a lower solution of the problem (4.1) with h(z,u,&) given by
(4.4). On the other hand, it is evident that if u(z) is a classical solution of the problem
(1.1), then it is an upper solution of the problem (4.1). Therefore, by Lemma 3 we conclude
that u(z) > u,(z) in Q, namely,

u(z) > v~V Py(z)",  Vzeq.

Since this inequality holds for all v € (0, 1), by letting v — 0 we get u(z) = oo, Vz € Q.
This is an absurdity. Hence (1.1) and (1.2) can not have a classical solution.

Case 2: p > 0 and ¢ < 0. In this case we choose a number £ € (0,1) so small that
C'N§ — e'=PN,y > 0, and then for each v € (0,1) let u,(z) = ev~(1=9/0=P=0)4)(z)”. Then
we have

Lu, + h(z,u,, Du,)=—X\ev (1-0/0-p=a)+1y(g)

—ogy =10/ U=P=0HL (1 — v)e)(2)"~?| Dip ()
+A'ePy—P(1=0)/(1=p=0) gy (z)P+vp
(L4 ey (a/@ratly(g)7 1 Dy()])”

>—ev PPy (2)" 2 (Me(2)® + Xo|Dyp(2)[?)
+A'gPy=2(1=9)/(1=p=0)=pa/(1=p=0) 4y (g)B+vP=(1-7)q
. (VP/(l—p—Q)w(x)l—u + |D1/J(x)|)q

>ePy=P/(1=P=0) o)(g)P+vp—(1=)af AN, — g1=P N}

By the choice of ¢, we see that
Lu, + h(z,u,,Du,) >0, in Q.

From this, by a similar deduction as in the case 1 we get the conclusion that the problem
(1.1) can not have a classical solution.

Case 3: p < 0 and ¢ > 0. In this case we still let u,(z) = ev~(1~9/A=P=D ()7,
where v is as before, but ¢ is determined by the conditions A'N} — el 9Ny > 0 and
0 < e < 1. Then we have

Luy + h(z,uy, Du,)=—ev =P/ =P=Dy(2)"=2 (A\13p(2)2 + Ao | D9 (2)|?)

+AlepyP(1=0)/(1=p=0) gy ()PP

(L4 ev P/ Dy (2)" 1 DyY(a)])*
>—ev~P/1=P=04)(2)" =2 (M9p(2)? + do| Dyp(2)[?)

+ AlePtay=p/(1=p=0)q))(z)B+vp=(1-v)g

. (Eflyp/(lfp*q)w(x)lfu + |D’(/J(x)|)q
ng-i-qV—p/(l—p—q)w(x)ﬂ-i-tfp—(l—u)q{AIN{I —e!'7P7ING}
>0, in Q.
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Consequently, the problem (1.1) can not have a classical solution.

Case 4: p < 0 and ¢ < 0. In this case we let u,(z) as in the case 1, i.e. u,(z) =
ev—1/(1=P)y)(z)”, but with £ determined by the conditions A'NJ—£'~"PNy > 0and 0 < € < 1.
Then we have

Luy + h(z,uy, Du,)=—ev=P/A=P)yp(2)v=2 (A\19p(2)? + Ao| Dy(2) ?)

+A'ePy=?/(=P)yp(z)P+vP (1 + 61/*7’/(1*1’)1/1(1)”*1|Dz/1(m)|)q
>—ev PPy (2)" % (Mgp(2)? + Ao DY(2) )
AP/ A=D) ()00 ()1 + |Dy(2)])°
>ePy—P/(1=P)g)y(g)+vP—(1-V)af AT NI — e1=P N}
>0, in Q.

Consequently, the problem (1.1) can not have a classical solution.

Next we assume that p, ¢ and § satisfy the condition (i7), namely, p < 1, ¢ > 1—p and
B < —p—1. From 8 < —p — 1 we see that 5+ 2 < 1 — p. Thus a number g; can be chosen
such that 8+ 2 < ¢; <1 — p. We denote

h(z,u, ) = A'p() uP (1 + €))7 (4.4)

Suppose that the problem (1.1) has a classical solution u(z). Then

Lu + h(z,u, Du)=—f(z,u, Du) + A" (z)PuP(1 + |Du|)"
<—A"p(z)PuP(1 + |Du|)? + A'y(z)PuP (1 + | Dul)
=A"y(z)PuP(1 + |Du|)?{—1+ (1 + |Du|)~4-9)}
<0 (because ¢ >1—p> q).

Hence u(z) is an upper solution of the problem (4.1) with hA(z,u, &) given by (4.4). Now,
since f+2 < ¢; < 1—p, by following the argument we have made under the condition (z) we
are reduced to absurdity. Therefore, the problem (1.1) still can not have a classical solution
under the condition (i7). The proof of Theorem 4 is finished. Q. E. D.

5 The Proofs of Theorem 5 and 6

The nonexistence conclusion of Theorem 5 is a corollary of Theorem 4. The existence
conclusions are corollaries of Theorem 1 and 3. The uniqueness conclusion is a corollary of
Lemma 4. Besides, from the proofs of Theorem 1 and 3 one sees directly that (2.13), (2.15)
and the first inequality in (2.14) are valid. Thus to complete the proof of Theorem 5 the
remaining thing is to prove (2.12) and the second inequality in (2.14).

Proof of (2.12). Let

v=02+B-9q)/(1-p—9q),
Ky =min(\9? + (1 - v)[Dy?), Ky = max(\g? + (1 —v)|Dy[?),
Q Q

K3 = min(y**~") + 2| Dy|?), K4 =max(y**~") + 2 |Dy[?),
Q Q
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where ) is the smallest eigenvalue of the operator —A : H}(Q) - H=1(Q. Since 0 < v < 1
by virtue of the hypothesis, we have K; > 0, K; < 00, K3 > 0 and K; < co. Besides, we
have

B+vp+(v—-1)g=(B+2p+q)/(1-p—q) =v-2.
Now take a number ¢ € (0, 1) sufficiently small such that

CIKY? — yKyel P >0, if ¢ <0,

/2 (5.1)
CIK{'® —vKse' P79 >0, if ¢>0;
and take another number F > 1 sufficiently large such that
CLKY? —yK \E'"P <0, if ¢<0, 52)
CLKY? — yK,E'-P=1 <0, if ¢>0. '
In the above C] and C} are the positive constants such that
C19(z)’ <a(z) < Copp(e)’, Ve e, (5.3)

which is guaranteed by (1.7) and (2.2). With v, € and E taken in this way, we assert that
u(z) = eyp(z)” and w(z) = E(x)” are a pair of lower and upper solutions of the problem
(1.6). In fact, by (5.3) we have

Au+ a(z)uP (1 + | Duf?)4/?
>—Mvey” — v(l = v)ey” ?|Dy? + CieryP (1 + >V Dy 2)e/2

(—vey -2 (M9? + (1 = v)|Dy[?) +CiepypPrvtl=Da(y2(=v) 1 2| Dep|?)a/2,
>4 if ¢ <0,
2 —1/61/1”_2 (/\11/12 +(1- y)|D¢|2) +C{6p+'1¢ﬂ+up+(v—l)q(¢2(1—u) + 1/2|D1/1|2)‘1/2,
\ if ¢g>0
[y =20} (200 4+ 02 DY) —vet=? (\y? + (1 - )| DY)},
S if ¢ <0,
| errayr2{C] (2 + V2|Dz/)|2)q/2—1/61*”*q (My? + (1 —v)|Dy?)},
if ¢g>0

Py’ {CI KL — vKe' P, if ¢ <0,
E”"'qw”_z{C{Kg/Z —vKye!'=P79} if ¢ >0
>0.
Hence u(z) = ey(2)” is a lower solution of the problem (1.6). In a similar way we can prove

that w(z) = Ev(z)” is an upper solution of the problem (1.6). This proves our assertion.
Consequently, by comparison (Lemma 4) we get (2.12). Q. E. D.

The second inequality in (2.14) can be proved similarly. Namely, we can prove that for
sufficiently large E, the function u(z) = Ev(z) is an upper solution of the problem (1.6).
Since the proof is simple, we omit it here.
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In order to prove Theorem 6, we need the following two prelimilary lemmas:

Lemma 5 Let Q be an bounded open set in R"™. Let d(z) = d(z,0). Suppose that
u € W2T(Q) for some r € (1,00). Then it follows that

ld(z) Dullzr(9) < C (ld(z)* Aullzr) + llullzr@)) * el g
(@)

where C is a constant independent of ) and u.

This lemma is a corollary of [25, Theorem 17.1.3, p.6]. From this lemma we see that
for any € > 0, there exists a corresponding constant C(g) independent of Q and u such that

”d(x)Du”LT(Q) < 5||d(x)2Au”LT(Q) + C(E)HUHLT(Q)-

Lemma 6 Let(Q be a as before. Letu € WOI’T(Q) and Au € L"(Q) for somer € (1,00).
Then u € W>"(Q) and the following inequality is valid:

llullwzr@) < C (|1Au|Lr@) + llullz@)) »
where C is a constant independent of u.

This lemma is a corollary of the well-known Agman-Douglis-Nirenberg Theorem (c.f.[26]
for instance).

We now establish two lemmas which give us more information about the boundary
regularity of solutions of (1.6) than Theorem 6. In fact, Theorem 6 is actually a corollary
of the second lemma. In the following we always briefly write d(z,9Q) as d(z)

Lemma 7 Suppose that a(z) is locally Héolder continuous in Q. Suppose that p <
1, ¢ <1 and eitherg <1—p, 8 >max(q -2, —2) org>1-p, B> —p— 1. Let u(z)
be the solution of (1.6) obtained by Theorem 5. Then we have

/ |d(z)?Au|"dz < 00, Vr € [1,00); (5.4)
Q

/ |d(z)Du|"dz < 00, Vr € [1,00). (5.5)
Q

Proof. We only give the proof under the assumption ¢ < 1 —p. When ¢ > 1 —p
the proof is similar and is left to the reader. Let us make discussion according to different
situations of the range of p, ¢ and 3 differently.

Situation 1: ¢ <0, % —2< B < —p—1. Let for sufficiently large k, Q = {z: z €
Q, d(z) > 1/k}. Let di(z) = d(z,0) (z € Q). Then by (1.6), (1.7) and (2.12) we have
/ dy(@)20uds < [ di(z)?a(z) uPdz < C / d(z) 2Bz (5.6)
Qg Q. Q
where v = (24 8 — q)/(1 — p — q). As one may easily verify, the assumption § > % -2
implies that 2 + 8 + vp > 0. Therefore, the last integral in (5.6) is finite. Now let £ — oo.
Then we obtain (5.4). To get (5.5) we apply Lemma 5 and (5.6) and obtain

/ |di () Du|"dz < C / d(z) ARy 4 C.
Qe Q
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Thus by letting kK — oo again we get (5.5).
Situation 2: 0< g<1, ¢g—2< < —p—1. In this situation we have

/ |di (2)2 Aul"dz < C / d(z) APy 4 C / d(z)CHA+vP=aT g4, (2) Du|dz, (5.7)
Qr Q Qp

(24+8-q9)(1—q)

where v is as above. Since 2+ 8+ vp—q = T—p—g

> 0, we get

q
/ |dy(2)* Au|"dz < C + C’/ |dk(z)Du|?"dz < C +C (/ |dk(x)Du|de> ,
Qp Qp Qp

where C represents constant independent of k and u. Now we first apply Lemma 5 and then
apply Young’s inequality. Then we get

/ |dy,(2)?Au|"dz < C.
Qp

As we have seen, (5.4) follows from a limitation process and (5.5) follows from an application
of Lemma, 5 and a similar limitation process.

Situation 3: ¢ <0, —p—1< 8 <1—p. In this situation by (2.13) we have
/ |dy, (z)? Au|"dz < C,, / d(z)@HB+nprgg, (5.8)
o Q

where v; = v € (0,1) for p > 0 and 1 for p < 0, and C,, represents constant depending on
the choice of v. Since 8 > —p—1, we have 2+ 3+ v1p > 0if v is taken to be sufficiently near
to 1. Consequently, the integral on the right hand side of (5.8) is finite. Now by repeating
the argument in the first situation we obtain (5.4) and (5.5).

Situation 4: 0 < g<1, —p—1< B <1—p. In this situation we have

ka |d (z)2 Au|rdz<C fg d(x)(2+ﬁ+u1p)rdm + Cfﬂ,c d(z‘)(2+ﬁ+"”’*q”|dk(:c)Du|qu:p

(2+B+vip—a)r 1-¢ q (5.9)
<C+0C, (ka d(z) 22 dx) (fﬂk |dk(m)Du|rdac) ,
where v; is as before. Since 8> —p—1and 1—¢q > 0, we have 2+ 8+ wv1p—q > 0if v
for p > 0 is taken sufficiently near to 1. Hence by repeating the argument in situation 2 we
again get (5.4) and (5.5).

Situation 5: B > 1 —p. The proof is similar. We thus omit it here. Q. E. D.

Lemma 8 Suppose that a(z) is locally Hélder continuous in Q. Suppose that n >
2, p<1, ¢ <1 and eitherq <1—p, ﬂ>max(q—2,%—2) org>1—p, B> —p—1. Let
u(x) be the solution of (1.6) obtained by Theorem 5. Then there exists ro € (%, 00] such
that

/ |Aul"dz < 00, Vr € [l,ro). (5.10)
Q

Moreover, r¢ >n if 3 > —p — 1.

Proof. Again we only give the proof under the assumption ¢ < 1 — p. We make
discussion according to different cases of the range of p, ¢ and 3 differently.
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Case 1: ¢ <0, % —2 < < —p—1. Inthis case we denote ro = —n(l—p—gq)/{B(1 -
q) +p(2—q)}. It is not difficult to verify that n/2 < ro < n. By making application of (1.6),
(1.7) and (2.12) we obtain

/ |Aul"dz < C/ d(z) PP de, Vr e (1,70),
Q Q

where v = (24+8—q)/(1—p—q). As one may easily verify, r < ro implies that (8+vp)r > —n.
Therefore, the integral on the right hand side of the above inequality is finite. This proves
(5.10).

Case 2: 0<g<1, ¢g—2< < —p—1. In this case we denote ro = n(l—p—gq)/{2(1—
p—q)—(24+8—-q)(1—q)}. It is evident that n/2 < rg < n. Again by (1.6), (1.7) and (2.12)
we have

/ |Aul"de < C f d(z) PPz 4 C / d(z)B+P=97 |d(e) Du|T dz, ¥r € (1, 7o),
Q Q Q

where v is as in Case 1. As one may easily verify, r < r¢ implies that (8 + vp — ¢)r > —n.
Now we choose a number s > 1 sufficiently near to 1 such that (8 + vp — ¢)rs > —n and
denote by s' the dual number of s. Then by applying Holder inequality we get

-

7

/ |Au"dz < C +C (/ |d(x)Du|W’dx> " vre (1,m).
Q Q

Thus by virtue of Lemma 7 we obtain (5.10).

Case 3 ¢ <0, B> —p—1. Inthis case we denote ro = —n/(B+p) for —p—1 < B < —p
and rg = oo for B > —p. Since B+ p > —1, we have 79 > n. Now for any r € [1,79) we
choose for p > 0 a number v € (0, 1) sufficiently near to 1 such that (8 + vp)r > —n. Then
by (1.6), (1.7), (2.13) and (2.14) we have

/ |Aul"dz < C’/ d(z) PP dg < co.
Q Q

Hence (5.10).

Case 4: 0 < ¢ < B+ p+ 1. In this case we denote ro = —n/(8 + p — q) for —1 <
B+p—g<0and rg=o0for B+p—g>0. Then ro > n. For any r € [1,7r9) we choose for
p > 0 anumber v € (0,1) sufficiently near to 1 such that (8 + vp—gq)r > —n. Then we have

[ |1Aul"dz<C [, d(z)B+"Prdg + C [, d(z)P+1P)7| Du|? dz
1

<C + C ([, d(z)P+r-0rsdz) ( I, ld(z) Dular dm) <

-

where s € (1, 00) is sufficiently near to 1 such that (8 + v1p — q)rs > —n and s’ is the dual
number of s. By (5.4), we again get (5.10).

Case 5: ¢ >0and ¢ /(1+q+--+qg™ ) <B+p+1<qg™/(1+qg+---+¢™2)
(m=2,3,---). In this case we prove by induction that

/ |Au[fdz < oo, if1<r<n/{¢"—(1+qg+---+d")B+p+1)+1},
Q

k=1,2,--,m. (5.11)
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Indeed, from the deduction in Case 4 we see that (5.11) is valid for ¥ = 1. Suppose that
(5.11) is valid for a K < m — 1. Then by Lemma 6 and Sobolev’s embedding theorem we get

/ |Du|"dz < 00, if1<r<n/{¢F—(1+qg+---+F)B+p+1)} (5.12)
Q

Nowlet 1 <r<n/{¢"*"' —(1+q+---+¢*)(B+p+1)+1}. Then

{¢*—Q+qg+---+¢HB+p+1)}gr N ~(B+p)r _
n n

1. (5.13)

We have
k

¢! g
1< < <---<g< 1.
B+p+1< TTqt 1gn? STgqtr T T Sa<

Therefore, both terms in the left hand side of (5.13) are nonnegative, which implies that
there exists a number A € (0,1) such that

k _ 1 k—1 1
Loy & -0tagt--+a)(B+p+ )}qr, /\>_(ﬂ+p)r,
n n
or equivalently,
qr n (8+p)r
< , > —n.
1-X " ¢F=(Q+g+---+N)B+p+1) A "

With A taken in this way, we choose for p > 0 a number v € (0, 1) sufficiently near to 1 such
that M > —n. Then from (5.12) we get

fo |Au["dz<C [, d(z)B+"Prdg + C [, d(z)P+1P)"| Du|? dz
sipr .\ e \1-A
<C+C (fﬂ d(z) 5 dac) (fﬂ |Du|mdx) < 0.

Therefore, (5.11) holds for every k= 1,2,---,m.

Now we denote
n

"= (1+g+-+gmr)B+p+ 1) +1

It is obvious that rq > n and (5.10) follows from (5.11) by taking ¥ = m. The proof of
(5.10) is finished. Q. E. D.

Proof of Theorem 6. The conclusions (i) and (3¢) follow directly from Lemma 8, Lemma
6 and Sobolev—Morrey embedding theorem. We now give the proof of conclusion (i4%).
Denote

To =

/(@) = a(@)u(z)?(1 + | Du(e))#,
and write _ _
/(@) = a(@)d(@) ™ - d(z) u(@)? - (1 + |Du(z)*)?. (5.14)
Since B + p > 0, by making application of (2.13), (2.14), (2.15) and (2.16) we see that for
r > n sufficiently near to n,

/Q 1D (d(e)u(2)) ['dz < ( /Q ()P u(z)?|"dz + /Q |J(x)ﬁu(x)f’—1|"dx) < .

Therefore, d(z)?u(z)? € C*(Q) for some o € (0,1). Thus from (5.14) we see that f(z) €
C*(Q) for some a € (0,1). The conclusion (7i7) then follows from the well-known Holder’s
regularity theorem for elliptic boundary value problems (c.f.[26] for instance). Q. E. D.
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