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We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional
di	erential equations with two parameters, subject to coupled integral boundary conditions.

1. Introduction

Fractional di	erential equations describe many phenomena
in various 
elds of engineering and scienti
c disciplines
such as physics, biophysics, chemistry, biology, economics,
control theory, signal and image processing, aerodynamics,
viscoelasticity, and electromagnetics (see [1–5]). Integral
boundary conditions arise in thermal conduction problems,
semiconductor problems, and hydrodynamic problems (see,
e.g., [6–9]).

We consider the system of nonlinear fractional di	eren-
tial equations with parameters

��0+� (�) + �� (�, � (�) , V (�)) = 0, � ∈ (0, 1) ,
��0+V (�) + �	 (�, � (�) , V (�)) = 0, � ∈ (0, 1) , (
)

with the coupled integral boundary conditions

� (0) = �� (0) = ⋅ ⋅ ⋅ = �(�−2) (0) = 0,
�� (1) = ∫1

0
V (
) �� (
) ,

V (0) = V
� (0) = ⋅ ⋅ ⋅ = V

(�−2) (0) = 0,
V
� (1) = ∫1

0
� (
) �� (
) ,

(��)

where � ∈ (� − 1, �], � ∈ (� − 1,�], �,� ∈ N, �,� ≥ 3,
��0+ and ��0+ denote the Riemann-Liouville derivatives of
orders � and �, respectively, and the integrals from (��) are
Riemann-Stieltjes integrals. �e boundary conditions (��)
include multipoint and integral boundary conditions, as well
as the sum of these in a single framework.

Under some assumptions on the nonnegative functions� and 	, we present intervals for the parameters � and �
such that positive solutions of (
)-(��) exist. By a positive
solution of problem (
)-(��) we mean a pair of functions(�, V) ∈ �([0, 1];R+) × �([0, 1];R+) satisfying (
) and (��)
with �(�) > 0 for all � ∈ (0, 1] or V(�) > 0 for all � ∈ (0, 1].
�e nonexistence of positive solutions for (
)-(��) is also
investigated. �e existence, multiplicity, and nonexistence of
positive solutions (�(�), V(�) ≥ 0 for all � ∈ [0, 1] and(�, V) ̸= (0, 0)) for system (
)with di	erent coupled boundary
conditions, namely,

� (0) = �� (0) = ⋅ ⋅ ⋅ = �(�−2) (0) = 0,
� (1) = ∫1

0
V (
) �� (
) ,

V (0) = V
� (0) = ⋅ ⋅ ⋅ = V

(�−2) (0) = 0,
V (1) = ∫1

0
� (
) �� (
) ,

(��1)
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were investigated in [10, 11] (where � and 	 are nonnegative
and nonsingular functions) and in [12] (where � = � = 1
and �(�, �, V) and 	(�, �, V) are replaced by �̃(�, V) and 	̃(�, �),
respectively, with �̃ and 	̃ nonnegative functions, singular or
not). In this paper, Green’s functions associated with problem(
)-(��), the inequalities satis
ed by these functions, and the
cone de
ned in the proof of the main results are di	erent
than the corresponding ones that the authors used in [10–
12] for problem (
)-(��1). Existence results for the positive
solutions of problem (
)-(��), where � and 	 are sign-
changing functions which may be singular at � = 0 or � = 1
and satisfy some di	erent assumptions than those used in this
paper, were obtained in [13]. We also mention the paper [14],
where the authors studied the existence and multiplicity of
positive solutions for system (
) with � = �, � = � and the

boundary conditions �(�)(0) = V
(�)(0) = 0, � = 0, . . . , � − 2,�(1) = �V(�), and V(1) = ��(�), with �, � ∈ (0, 1), 0 <���� < 1, and � and 	 are sign-changing nonsingular or

singular functions. �e results obtained in [14] are relying
on a nonlinear alternative of Leray-Schauder type and the
Krasnosel’skii’s 
xed point theorem. For other recent results
concerning the coupled fractional boundary value problems
we refer the reader to [15–17].

�epaper is organized as follows. Section 2 contains some
auxiliary results which investigate a nonlocal boundary value
problem for fractional di	erential equations and presents the
properties of Green’s functions associated to our problem (
)-(��). In Section 3, we prove the main existence theorems
for the positive solutions with respect to a cone for (
)-(��) which are based on the Guo-Krasnosel’skii 
xed point
theorem, and then the nonexistence of positive solutions is
studied in Section 4. Finally, in Section 5, two examples are
given to illustrate our main results.

2. Auxiliary Results

In this section, we present some auxiliary results that will be
used to prove our main results.

We consider the fractional di	erential system

��0+� (�) + � (�) = 0, � ∈ (0, 1) ,
��0+V (�) +  (�) = 0, � ∈ (0, 1) , (1)

with the coupled integral boundary conditions

� (0) = �� (0) = ⋅ ⋅ ⋅ = �(�−2) (0) = 0,
�� (1) = ∫1

0
V (
) �� (
) ,

V (0) = V
� (0) = ⋅ ⋅ ⋅ = V

(�−2) (0) = 0,
V
� (1) = ∫1

0
� (
) �� (
) ,

(2)

where � ∈ (� − 1, �], � ∈ (� − 1,�], �,� ∈ N, �,� ≥ 3, and�,� : [0, 1] → R are functions of bounded variation.

Lemma 1 (see [13]). If �,� : [0, 1] → R are functions of

bounded variation, Δ = (� − 1)(� − 1) − (∫10 $�−1��($))(∫10 $�−1��($)) ̸= 0 and �,  ∈ �(0, 1) ∩ &1(0, 1), then the

pair of functions (�, V) ∈ �([0, 1]) × �([0, 1]) given by

� (�) = ∫1
0
'1 (�, 
) � (
) �
 + ∫

1

0
'2 (�, 
)  (
) �
,

� ∈ [0, 1] ,
V (�) = ∫1

0
'3 (�, 
)  (
) �
 + ∫

1

0
'4 (�, 
) � (
) �
,

� ∈ [0, 1] ,

(3)

is solution of problem (1)-(2), where

'1 (�, 
) = 	1 (�, 
) + ��−1
Δ (∫1

0
$�−1�� ($))

⋅ (∫1
0
	1 ($, 
) �� ($)) , ∀�, 
 ∈ [0, 1] ,

'2 (�, 
) = (� − 1) ��−1
Δ ∫1

0
	2 ($, 
) �� ($) ,

∀�, 
 ∈ [0, 1] ,
'3 (�, 
) = 	2 (�, 
) + ��−1

Δ (∫1
0
$�−1�� ($))

⋅ (∫1
0
	2 ($, 
) �� ($)) , ∀�, 
 ∈ [0, 1] ,

'4 (�, 
) = (� − 1) ��−1
Δ ∫1

0
	1 ($, 
) �� ($) ,

∀�, 
 ∈ [0, 1] ,

(4)

	1 (�, 
) = 1
Γ (�)

⋅ {{{
��−1 (1 − 
)�−2 − (� − 
)�−1 , 0 ≤ 
 ≤ � ≤ 1,
��−1 (1 − 
)�−2 , 0 ≤ � ≤ 
 ≤ 1,

	2 (�, 
) = 1
Γ (�)

⋅ {{{
��−1 (1 − 
)�−2 − (� − 
)�−1 , 0 ≤ 
 ≤ � ≤ 1,
��−1 (1 − 
)�−2 , 0 ≤ � ≤ 
 ≤ 1.

(5)

Lemma 2 (see [13]). �e functions 	1, 	2 given by (5) have the
following properties:

(a) 	1, 	2 : [0, 1] × [0, 1] → R+ are continuous functions,
and 	1(�, s) > 0, 	2(�, 
) > 0 for all (�, 
) ∈ (0, 1] × (0, 1).

(b) 	1(�, 
) ≤ ℎ1(
), 	2(�, 
) ≤ ℎ2(
) for all (�, 
) ∈
[0, 1] × [0, 1], where ℎ1(
) = 
(1 − 
)�−2/Γ(�) and ℎ2(
) =

(1 − 
)�−2/Γ(�) for all 
 ∈ [0, 1].

(c) 	1(�, 
) ≥ ��−1ℎ1(
), 	2(�, 
) ≥ ��−1ℎ2(
) for all (�, 
) ∈[0, 1] × [0, 1].
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Lemma 3 (see [13]). If �,� : [0, 1] → R are nondecreasing
functions, and Δ > 0, then '�, (� = 1, . . . , 4) given by (4) are
continuous functions on [0, 1] × [0, 1] and satisfy '�(�, 
) ≥ 0
for all (�, 
) ∈ [0, 1] × [0, 1], (� = 1, . . . , 4). Moreover, if �,  ∈�(0, 1) ∩ &1(0, 1) satisfy �(�) ≥ 0,  (�) ≥ 0 for all � ∈ (0, 1),
then the solution (�, V) of problem (1)-(2) given by (3) satis
es�(�) ≥ 0, V(�) ≥ 0 for all � ∈ [0, 1].
Lemma 4. Assume that�,� : [0, 1] → R are nondecreasing
functions and Δ > 0. �en the functions '�, (� = 1, . . . , 4)
satisfy for all (�, 
) ∈ [0, 1] × [0, 1] the following relations:
(�1) '1(�, 
) ≤ C1(
), where C1(
) = ℎ1(
) +

(1/Δ)(∫10 $�−1��($))(∫10 	1($, 
)��($)).
(�2) '1(�, 
) ≥ ��−1C1(
).
(�1) '2(�, 
) ≤ C2(
), where C2(
) = ((� −

1)/Δ) ∫10 	2($, 
)��($).
(�2) '2(�, 
) = ��−1C2(
).
(D1) '3(�, 
) ≤ C3(
), where C3(
) = ℎ2(
) +

(1/Δ)(∫10 $�−1��($))(∫10 	2($, 
)��($)).
(D2) '3(�, 
) ≥ ��−1C3(
).
(�1) '4(�, 
) ≤ C4(
), where C4(
) = ((� −

1)/Δ) ∫10 	1($, 
)��($).
(�2) '4(�, 
) = ��−1C4(
).

Proof. �e above inequalities follow from the properties of
the functions 	�, (� = 1, . . . , 4) from Lemma 2.

Lemma 5. Assume that�,� : [0, 1] → R are nondecreasing

functions, Δ > 0, and �,  ∈ �(0, 1) ∩ &1(0, 1), �(�) ≥ 0,
and  (�) ≥ 0 for all � ∈ (0, 1). �en the solution (�(�), V(�)),� ∈ [0, 1] of problem (1)-(2) given by (3) satis
es the inequalities

�(�) ≥ ��−1�(��), V(�) ≥ ��−1V(��), for all �, �� ∈ [0, 1].
Proof. By using Lemma 4, we obtain for all �, �� ∈ [0, 1] the
following inequalities:

� (�) = ∫1
0
'1 (�, 
) � (
) �
 + ∫

1

0
'2 (�, 
)  (
) �


≥ ��−1 (∫1
0
C1 (
) � (
) �
 + ∫

1

0
C2 (
)  (
) �
)

≥ ��−1 (∫1
0
'1 (��, 
) � (
) �
 + ∫

1

0
'2 (��, 
)  (
) �
)

= ��−1� (��) ,
V (�) = ∫1

0
'3 (�, 
)  (
) �
 + ∫

1

0
'4 (�, 
) � (
) �


≥ ��−1 (∫1
0
C3 (
)  (
) �
 + ∫

1

0
C4 (
) � (
) �
)

≥ ��−1 (∫1
0
'3 (��, 
)  (
) �
 + ∫

1

0
'4 (��, 
) � (
) �
)

= ��−1V (��) .
(6)

In the proof of our main existence results we will use the
Guo-Krasnosel’skii 
xed point theorem presented below (see
[18]).

�eorem 6. LetG be a Banach space and let � ⊂ G be a cone
in G. Assume Ω1 and Ω2 are bounded open subsets of G with

0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2 and let A : � ∩ (Ω2 \ Ω1) → � be a
completely continuous operator such that either

(i) ‖A�‖ ≤ ‖�‖, � ∈ � ∩ KΩ1, and ‖A�‖ ≥ ‖�‖, � ∈� ∩ KΩ2, or
(ii) ‖A�‖ ≥ ‖�‖, � ∈ � ∩ KΩ1, and ‖A�‖ ≤ ‖�‖, � ∈� ∩ KΩ2.

�enA has a 
xed point in � ∩ (Ω2 \ Ω1).
3. Existence Results for the Positive Solutions

In this section, we will give su�cient conditions on �, �, �,
and 	 such that positive solutions with respect to a cone for
our problem (
)-(��) exist.

We present now the assumptions that we will use in the
sequel:

(H1) �,� : [0, 1] → R are nondecreasing functions and

Δ = (�−1)(�−1)−(∫10 $�−1��($))×(∫10 $�−1��($)) >0.
(H2) �e functions �, 	 : [0, 1] × [0,∞)× [0,∞) → [0,∞)

are continuous.

For D ∈ (0, 1), we introduce the following extreme limits:

��0 = lim sup
	+V→0+

max
�∈[0,1]

� (�, �, V)
� + V

,

	�0 = lim sup
	+V→0+

max
�∈[0,1]

	 (�, �, V)
� + V

,

��0 = lim inf
	+V→0+

min
�∈[
,1]

� (�, �, V)
� + V

,

	�0 = lim inf
	+V→0+

min
�∈[
,1]

	 (�, �, V)
� + V

,

��∞ = lim sup
	+V→∞

max
�∈[0,1]

� (�, �, V)
� + V

,

	�∞ = lim sup
	+V→∞

max
�∈[0,1]

	 (�, �, V)
� + V

,
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��∞ = lim inf
	+V→∞

min
�∈[
,1]

� (�, �, V)
� + V

,

	�∞ = lim inf
	+V→∞

min
�∈[
,1]

	 (�, �, V)
� + V

.
(7)

In the de
nitions of the extreme limits above, the variables �
and V are nonnegative.

By using Lemma 1, a solution of the following nonlinear
system of integral equations

� (�) = �∫1
0
'1 (�, 
) � (
, � (
) , V (
)) �


+ �∫1
0
'2 (�, 
) 	 (
, � (
) , V (
)) �
,

� ∈ [0, 1] ,
V (�) = �∫1

0
'3 (�, 
) 	 (
, � (
) , V (
)) �


+ �∫1
0
'4 (�, 
) � (
, � (
) , V (
)) �
,

� ∈ [0, 1] ,

(8)

is a solution for problem (
)-(��).
We consider the Banach space G = �([0, 1]) with the

supremum norm ‖ ⋅ ‖ and the Banach space M = G × G with
the norm ‖(�, V)‖� = ‖�‖ + ‖V‖. We de
ne the cone N ⊂ M by

N = {(�, V) ∈ M; � (�) ≥ ��−1 ‖�‖ , V (�) ≥ ��−1 ‖V‖ , ∀�
∈ [0, 1]} . (9)

For �, � > 0, we introduce the operators Q1, Q2 : M → G
andT : M → M de
ned by

Q1 (�, V) (�) = �∫
1

0
'1 (�, 
) � (
, � (
) , V (
)) �


+ �∫1
0
'2 (�, 
) 	 (
, � (
) , V (
)) �
,

0 ≤ � ≤ 1,
Q2 (�, V) (�) = �∫

1

0
'3 (�, 
) 	 (
, � (
) , V (
)) �


+ �∫1
0
'4 (�, 
) � (
, � (
) , V (
)) �
,

0 ≤ � ≤ 1,

(10)

andT(�, V) = (Q1(�, V), Q2(�, V)), (�, V) ∈ M. It is clear that if(�, V) is a 
xed point of operator T, then (�, V) is a positive
solution of problem (
)-(��).
Lemma 7. If (�1)-(�2) hold, thenT : N → N is a completely
continuous operator.

Proof. Let (�, V) ∈ N be an arbitrary element. BecauseQ1(�, V)
andQ2(�, V) satisfy problem (1)-(2) for �(�) = ��(�, �(�), V(�)),� ∈ [0, 1], and  (�) = �	(�, �(�), V(�)), � ∈ [0, 1], then by
Lemma 5, we obtain

Q1 (�, V) (�) ≥ ��−1Q1 (�, V) (��) ,
Q2 (�, V) (�) ≥ ��−1Q2 (�, V) (��) ,

∀�, �� ∈ [0, 1] ,
(11)

and so

Q1 (�, V) (�) ≥ ��−1 RRRRQ1 (�, V)RRRR ,
Q2 (�, V) (�) ≥ ��−1 RRRRQ2 (�, V)RRRR ,

∀� ∈ [0, 1] .
(12)

By (�2) and the above inequalities, we deduce that
T(�, V) ∈ N. Hence, we get T(N) ⊂ N. By using standard
arguments, we can easily show that Q1 and Q2 are completely
continuous, and then T is a completely continuous opera-
tor.

For D ∈ (0, 1), we denote S = ∫10 C1(
)�
, � = ∫10 C2(
)�
,� = ∫10 C3(
)�
, � = ∫10 C4(
)�
, S̃ = ∫1
 C1(
)�
, �̃ =
∫1
 C2(
)�
, �̃ = ∫1
 C3(
)�
, and �̃ = ∫1
 C4(
)�
, where C�, � =1, . . . , 4, are de
ned in Section 2 (Lemma 4).

For ��0 , 	�0, ��∞, 	�∞ ∈ (0,∞) and numbers �1, �2 ∈ [0, 1],�3, �4 ∈ (0, 1), � ∈ [0, 1], and � ∈ (0, 1), we de
ne the
numbers

&1 = max{ ��1
V��∞S̃ ,

(1 − �) �2
V��∞�̃ } ,

&2 = min{ ��3��0S,
(1 − �) �4��0� } ,

&3 = max{� (1 − �1)V	�∞�̃ , (1 − �) (1 − �2)V	�∞�̃ } ,

&4 = min{� (1 − �3)	�0� , (1 − �) (1 − �4)	�0� } ,

&�2 = min{ �
��0S,

(1 − �)
��0� } ,

&�4 = min{ �
	�0�,

(1 − �)
	�0� } ,

(13)

where V = min{D�−1, D�−1}.
�eorem 8. Assume that (�1) and (�2) hold, D ∈ (0, 1),�1, �2 ∈ [0, 1], �3, �4 ∈ (0, 1), and � ∈ [0, 1] and � ∈ (0, 1).

(1) If��0 , 	�0, ��∞, 	�∞ ∈ (0,∞), &1 < &2, and &3 < &4, then,
for each � ∈ (&1, &2) and � ∈ (&3, &4), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).
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(2) If ��0 = 0, 	�0, ��∞, 	�∞ ∈ (0,∞) and &3 < &�4, then,
for each � ∈ (&1,∞) and � ∈ (&3, &�4), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(3) If 	�0 = 0, ��0 , ��∞, 	�∞ ∈ (0,∞), and &1 < &�2, then,
for each � ∈ (&1, &�2) and � ∈ (&3,∞), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(4) If ��0 = 	�0 = 0, ��∞, 	�∞ ∈ (0,∞), then, for each� ∈ (&1,∞) and � ∈ (&3,∞), there exists a positive solution(�(�), V(�)), � ∈ [0, 1] for (
)-(��).
(5) If {��0 , 	�0, ��∞ ∈ (0,∞), 	�∞ = ∞} or {��0 , 	�0, 	�∞ ∈

(0,∞), ��∞ = ∞} or {��0 , 	�0 ∈ (0,∞), ��∞ = 	�∞ = ∞}, then,
for each � ∈ (0, &2) and � ∈ (0, &4), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(6) If {��0 = 0, 	�0, ��∞ ∈ (0,∞), 	�∞ = ∞} or {��0 = 0, ��∞ =
∞, 	�0, 	�∞ ∈ (0,∞)} or {��0 = 0, 	�0 ∈ (0,∞), ��∞ = 	�∞ = ∞},
then, for each � ∈ (0,∞) and � ∈ (0, &�4), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(7) If {��0 , ��∞ ∈ (0,∞), 	�0 = 0, 	�∞ = ∞} or {��0 , 	�∞ ∈
(0,∞), 	�0 = 0, ��∞ = ∞}, or {��0 ∈ (0,∞), 	�0 = 0, ��∞ =
	�∞ = ∞}, then, for each � ∈ (0, &�2) and � ∈ (0,∞), there
exists a positive solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(8) If {��0 = 	�0 = 0, ��∞ ∈ (0,∞), 	�∞ = ∞} or {��0 = 	�0 =0, ��∞ = ∞, 	�∞ ∈ (0,∞)} or {��0 = 	�0 = 0, ��∞ = 	�∞ = ∞},
then, for each � ∈ (0,∞) and � ∈ (0,∞), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).
Proof. We consider the above cone N ⊂ M and the operatorsQ1, Q2, and T. Because the proofs of the above cases are
similar, in what follows we will prove one of them, namely,

Case (2). So, we suppose ��0 = 0 and 	�0, ��∞, 	�∞ ∈ (0,∞). Let
� ∈ (&1,∞) and � ∈ (&3, &�4). We choose �̃3 ∈ (0, 1−�	�0�/�)
and �̃4 ∈ (0, 1−�	�0�/(1−�)). Let X > 0 be a positive number

such that X < �i

∞, X < 	�∞ and

��1V (��∞ − X) S̃ ≤ �,
� (1 − �1)
V (	�∞ − X) �̃ ≤ �,
(1 − �) �2V (��∞ − X) �̃ ≤ �,

(1 − �) (1 − �2)
V (	�∞ − X) �̃ ≤ �,

��̃3XS ≥ �,
� (1 − �̃3)(	�0 + X) � ≥ �,
(1 − �) �̃4X� ≥ �,

(1 − �) (1 − �̃4)(	�0 + X) � ≥ �.

(14)

By using (�2) and the de
nitions of��0 and 	�0, we deduce
that there exists Y1 > 0 such that �(�, �, V) ≤ X(� + V) and	(�, �, V) ≤ (	�0 + X)(� + V) for all � ∈ [0, 1], �, V ∈ R+ with 0 ≤�+V ≤ Y1. We de
ne the setΩ1 = {(�, V) ∈ M, ‖(�, V)‖� < Y1}.
Now let (�, V) ∈ N∩KΩ1, that is, (�, V) ∈ Nwith ‖(�, V)‖� = Y1
or equivalently ‖�‖ + ‖V‖ = Y1. �en �(�) + V(�) ≤ Y1 for all� ∈ [0, 1], and by Lemma 4, we obtain

Q1 (�, V) (�) = �∫
1

0
'1 (�, 
) � (
, � (
) , V (
)) �


+ �∫1
0
'2 (�, 
) 	 (
, � (
) , V (
)) �


≤ �∫1
0
C1 (
) � (
, � (
) , V (
)) �


+ �∫1
0
C2 (
) 	 (
, � (
) , V (
)) �


≤ �∫1
0
C1 (
) X (� (
) + V (
)) �


+ �∫1
0
C2 (
) (	�0 + X) (� (
) + V (
)) �


≤ �X∫1
0
C1 (
) (‖�‖ + ‖V‖) �


+ � (	�0 + X) ∫
1

0
C2 (
) (‖�‖ + ‖V‖) �


= [�XS + � (	�0 + X) �] ‖(�, V)‖�
≤ [��̃3 + � (1 − �̃3)] ‖(�, V)‖�
= � ‖(�, V)‖� , � ∈ [0, 1] .

(15)

�erefore, ‖Q1(�, V)‖ ≤ �‖(�, V)‖�.
In a similar manner, we conclude

Q2 (�, V) (�) = �∫
1

0
'3 (�, 
) 	 (
, � (
) , V (
)) �


+ �∫1
0
'4 (�, 
) � (
, � (
) , V (
)) �


≤ �∫1
0
C3 (
) 	 (
, � (
) , V (
)) �


+ �∫1
0
C4 (
) � (
, � (
) , V (
)) �


≤ �∫1
0
C3 (
) (	�0 + X) (� (
) + V (
)) �


+ �∫1
0
C4 (
) X (� (
) + V (
)) �


≤ � (	�0 + X) ∫
1

0
C3 (
) (‖�‖ + ‖V‖) �


+ �X∫1
0
C4 (
) (‖�‖ + ‖V‖) �
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= [� (	�0 + X) � + �X�] ‖(�, V)‖�
≤ [(1 − �) (1 − �̃4) + (1 − �) �̃4] ‖(�, V)‖�
= (1 − �) ‖(�, V)‖� , � ∈ [0, 1] .

(16)

Hence, ‖Q2(�, V)‖ ≤ (1 − �)‖(�, V)‖�.
�en, for (�, V) ∈ N ∩ KΩ1, we deduce

‖T (�, V)‖� = RRRRQ1 (�, V)RRRR + RRRRQ2 (�, V)RRRR
≤ � ‖(�, V)‖� + (1 − �) ‖(�, V)‖�
= ‖(�, V)‖� .

(17)

By the de
nitions of ��∞ and 	�∞, there exists Y2 > 0 such
that�(�, �, V) ≥ (��∞−X)(�+V) and 	(�, �, V) ≥ (	�∞−X)(�+V)
for all �, V ≥ 0with �+V ≥ Y2 and � ∈ [D, 1].We considerY2 =
max{2Y1, Y2/V} and we de
ne Ω2 = {(�, V) ∈ M, ‖(�, V)‖� <Y2}. �en for (�, V) ∈ N with ‖(�, V)‖� = Y2, we obtain

� (�) + V (�) ≥ ��−1 ‖�‖ + ��−1 ‖V‖
≥ D�−1 ‖�‖ + D�−1 ‖V‖ ≥ V (‖�‖ + ‖V‖)
= V ‖(�, V)‖� = VY2 ≥ Y2, ∀� ∈ [D, 1] .

(18)

�en, by Lemma 4, we conclude

Q1 (�, V) (1)
≥ �∫1
0
C1 (
) � (
, � (
) , V (
)) �


+ �∫1
0
C2 (
) 	 (
, � (
) , V (
)) �


≥ �∫1


C1 (
) � (
, � (
) , V (
)) �


+ �∫1


C2 (
) 	 (
, � (
) , V (
)) �


≥ �∫1


C1 (
) (��∞ − X) (� (
) + V (
)) �


+ �∫1


C2 (
) (	�∞ − X) (� (
) + V (
)) �


≥ �V (��∞ − X)∫
1



C1 (
) ‖(�, V)‖� �


+ �V (	�∞ − X)∫
1



C2 (
) ‖(�, V)‖� �


= [�V (��∞ − X) S̃ + �V (	�∞ − X) �̃] ‖(�, V)‖�
≥ [��1 + � (1 − �1)] ‖(�, V)‖� = � ‖(�, V)‖� .

(19)

So, ‖Q1(�, V)‖ ≥ Q1(�, V)(1) ≥ �‖(�, V)‖�.

In a similar manner, we deduce

Q2 (�, V) (1)
≥ �∫1
0
C3 (
) 	 (
, � (
) , V (
)) �


+ �∫1
0
C4 (
) � (
, � (
) , V (
)) �


≥ �∫1


C3 (
) 	 (
, � (
) , V (
)) �


+ �∫1


C4 (
) � (
, � (
) , V (
)) �


≥ �∫1


C3 (
) (	�∞ − X) (� (
) + V (
)) �


+ �∫1


C4 (
) (��∞ − X) (� (
) + V (
)) �


≥ �V (	�∞ − X)∫
1



C3 (
) ‖(�, V)‖� �


+ �V (��∞ − X)∫
1



C4 (
) ‖(�, V)‖� �


= [�V (	�∞ − X) �̃ + �V (��∞ − X) �̃] ‖(�, V)‖�
≥ [(1 − �) (1 − �2) + (1 − �) �2] ‖(�, V)‖�
= (1 − �) ‖(�, V)‖� .

(20)

So, ‖Q2(�, V)‖ ≥ Q2(�, V)(1) ≥ (1 − �)‖(�, V)‖�.
Hence, for (�, V) ∈ N ∩ KΩ2, we obtain

‖T (�, V)‖� = RRRRQ1 (�, V)RRRR + RRRRQ2 (�, V)RRRR
≥ � ‖(�, V)‖� + (1 − �) ‖(�, V)‖�
= ‖(�, V)‖� .

(21)

By using (17), (21), Lemma 7, and �eorem 6(i), we

conclude thatT has a 
xed point (�, V) ∈ N ∩ (Ω2 \ Ω1) such
that Y1 ≤ ‖�‖ + ‖V‖ ≤ Y2, �(�) ≥ ��−1‖�‖, and V(�) ≥ ��−1‖V‖
for all � ∈ [0, 1]. If ‖�‖ > 0 then �(�) > 0 for all � ∈ (0, 1], and
if ‖V‖ > 0 then V(�) > 0 for all � ∈ (0, 1].

In what follows, for ��0, 	�0, ��∞, 	�∞ ∈ (0,∞) and numbers�1, �2 ∈ [0, 1], �3, �4 ∈ (0, 1), � ∈ [0, 1], and � ∈ (0, 1), we
de
ne the numbers

&̃1 = max{ ��1
V��0S̃ ,

(1 − �) �2
V��0�̃ } ,

&̃2 = min{ ��3��∞S,
(1 − �) �4��∞� } ,

&̃3 = max{� (1 − �1)V	�0�̃ , (1 − �) (1 − �2)V	�0�̃ } ,

&̃4 = min{� (1 − �3)	�∞� , (1 − �) (1 − �4)	�∞� } ,
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&̃�2 = min{ �
��∞S,

1 − �
��∞�} ,

&̃�4 = min{ �
	�∞�,

1 − �
	�∞�} .

(22)

�eorem 9. Assume that (�1) and (�2) hold, D ∈ (0, 1),�1, �2 ∈ [0, 1], �3, �4 ∈ (0, 1), � ∈ [0, 1], and � ∈ (0, 1).
(1) If ��0, 	�0, ��∞, 	�∞ ∈ (0,∞) and &̃1 < &̃2 and &̃3 < &̃4,

then, for each � ∈ (&̃1, &̃2) and � ∈ (&̃3, &̃4), there exists a
positive solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(2) If ��0, 	�0, ��∞ ∈ (0,∞), 	�∞ = 0, and &̃1 < &̃�2, then,
for each � ∈ (&̃1, &̃�2) and � ∈ (&̃3,∞), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(3) If ��0, 	�0, 	�∞ ∈ (0,∞), ��∞ = 0, and &̃3 < &̃�4, then,
for each � ∈ (&̃1,∞) and � ∈ (&̃3, &̃�4), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(4) If ��0, 	�0 ∈ (0,∞), ��∞ = 	�∞ = 0, then for each

� ∈ (&̃1,∞) and � ∈ (&̃3,∞), there exists a positive solution(�(�), V(�)), � ∈ [0, 1] for (
)-(��).
(5) If {��0 = ∞, 	�0, ��∞, 	�∞ ∈ (0,∞)} or {��0, ��∞, 	�∞ ∈

(0,∞), 	�0 = ∞} or {��0 = 	�0 = ∞,��∞, 	�∞ ∈ (0,∞)}, then,
for each � ∈ (0, &̃2) and � ∈ (0, &̃4), there exists a positive
solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(6) If {��0 = ∞, 	�0, ��∞ ∈ (0,∞), 	�∞ = 0} or {��0, ��∞ ∈
(0,∞), 	�0 = ∞, 	�∞ = 0} or {��0 = 	�0 = ∞,��∞ ∈
(0,∞), 	�∞ = 0}, then, for each � ∈ (0, &̃�2) and � ∈ (0,∞),
there exists a positive solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(7) If {��0 = ∞, 	�0, 	�∞ ∈ (0,∞), ��∞ = 0} or {��0, 	�∞ ∈
(0,∞), 	�0 = ∞,��∞ = 0} or {��0 = 	�0 = ∞,��∞ = 0, 	�∞ ∈
(0,∞)}, then, for each � ∈ (0,∞) and � ∈ (0, &̃�4), there exists
a positive solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).

(8) If {��0 = ∞, 	�0 ∈ (0,∞), ��∞ = 	�∞ = 0} or {��0 ∈(0,∞), 	�0 = ∞,��∞ = 	�∞ = 0} or {��0 = 	�0 = ∞,��∞ = 	�∞ =0}, then, for each � ∈ (0,∞) and � ∈ (0,∞), there exists a
positive solution (�(�), V(�)), � ∈ [0, 1] for (
)-(��).
Proof. We consider again the above cone N ⊂ M and the
operatorsQ1,Q2, andT. Because the proofs of the above cases
are similar, in what followswewill prove one of them, namely,

the 
rst case of (6). So, we suppose ��0 = ∞, 	�0, ��∞ ∈ (0,∞),
and 	�∞ = 0. Let � ∈ (0, &̃�2) and � ∈ (0,∞). We choose�̃3 ∈ (���∞S/�, 1) and �̃4 ∈ (���∞�/(1 − �), 1), and let X > 0
be a positive number such that X < 	�0, X ≤ �VS̃ and

��̃3(��∞ + X)S ≥ �,
� (1 − �̃3)X� ≥ �,

(1 − �) �̃4(��∞ + X)� ≥ �,
(1 − �) (1 − �̃4)X� ≥ �.

(23)

By using (�2) and the de
nitions of��0 and 	�0, we deduce
that there exists Y3 > 0 such that �(�, �, V) ≥ (1/X)(� + V) and	(�, �, V) ≥ (	�0 − X)(� + V) for all �, V ≥ 0 with 0 ≤ � + V ≤ Y3
and � ∈ [D, 1]. We denote Ω3 = {(�, V) ∈ M, ‖(�, V)‖� < Y3}.
Let (�, V) ∈ N with ‖(�, V)‖� = Y3, that is, ‖�‖ + ‖V‖ = Y3.
Because �(�) + V(�) ≤ ‖�‖ + ‖V‖ = Y3 for all � ∈ [0, 1], then, by
using Lemma 4, we obtain

Q1 (�, V) (1) ≥ �∫
1

0
C1 (
) � (
, � (
) , V (
)) �


+ �∫1
0
C2 (
) 	 (
, � (
) , V (
)) �


≥ �∫1
0
C1 (
) � (
, � (
) , V (
)) �


≥ �∫1
0
C1 (
) 1X (� (
) + V (
)) �


≥ �
X ∫
1



C1 (
) (D�−1 ‖�‖ + D�−1 ‖V‖) �


≥ �V
X S̃ ‖(�, V)‖� ≥ ‖(�, V)‖� .

(24)

�erefore, ‖Q1(�, V)‖ ≥ Q1(�, V)(1) ≥ ‖(�, V)‖�.
�us, for an arbitrary element (�, V) ∈ N∩KΩ3, we deduce
‖T (�, V)‖� = RRRRQ1 (�, V)RRRR + RRRRQ2 (�, V)RRRR ≥ RRRRQ1 (�, V)RRRR

≥ ‖(�, V)‖� . (25)

Now, we de
ne the functions �∗, 	∗ : [0, 1] ×
R+ → R+, �∗(�, �) = max0≤	+V≤��(�, �, V), 	∗(�, �) =
max0≤	+V≤�	(�, �, V), � ∈ [0, 1], � ∈ R+. �en �(�, �, V) ≤�∗(�, �), 	(�, �, V) ≤ 	∗(�, �) for all � ∈ [0, 1], � ≥ 0, V ≥ 0, and�+V ≤ �.�e functions�∗(�, ⋅), 	∗(�, ⋅) are nondecreasing for
every � ∈ [0, 1], and they satisfy the conditions

lim sup
�→∞

max
�∈[0,1]

�∗ (�, �)
� ≤ ��∞,

lim sup
�→∞

max
�∈[0,1]

	∗ (�, �)
� = 0.

(26)

�erefore, for X > 0, there exists Y4 > 0 such that, for all� ≥ Y4 and � ∈ [0, 1], we have
�∗ (�, �)

� ≤ lim sup
�→∞

max
�∈[0,1]

�∗ (�, �)
� + X ≤ ��∞ + X,

	∗ (�, �)
� ≤ lim sup

�→∞
max
�∈[0,1]

	∗ (�, �)
� + X = X,

(27)

and so �∗(�, �) ≤ (��∞ + X)� and 	∗(�, �) ≤ X�.
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We consider Y4 = max{2Y3, Y4} and we denote Ω4 ={(�, V) ∈ M, ‖(�, V)‖� < Y4}. Let (�, V) ∈ N ∩ KΩ4. By the
de
nitions of �∗ and 	∗, we obtain

� (�, � (�) , V (�)) ≤ �∗ (�, ‖(�, V)‖�) ,
	 (�, � (�) , V (�)) ≤ 	∗ (�, ‖(�, V)‖�) ,

∀� ∈ [0, 1] .
(28)

�en, for all � ∈ [0, 1], we conclude

Q1 (�, V) (�) ≤ �∫
1

0
C1 (
) � (
, � (
) , V (
)) �


+ �∫1
0
C2 (
) 	 (
, � (
) , V (
)) �


≤ �∫1
0
C1 (
) �∗ (
, ‖(�, V)‖�) �


+ �∫1
0
C2 (
) 	∗ (
, ‖(�, V)‖�) �


≤ � (��∞ + X) ∫
1

0
C1 (
) ‖(�, V)‖� �


+ �X∫1
0
C2 (
) ‖(�, V)‖� �


= [� (��∞ + X)S + �X�] ‖(�, V)‖�
≤ [��̃3 + � (1 − �̃3)] ‖(�, V)‖�
= � ‖(�, V)‖� .

(29)

�erefore, ‖Q1(�, V)‖ ≤ �‖(�, V)‖�.
In a similar manner, we deduce

Q2 (�, V) (�) ≤ �∫
1

0
C3 (
) 	 (
, � (
) , V (
)) �


+ �∫1
0
C4 (
) � (
, � (
) , V (
)) �


≤ �∫1
0
C3 (
) 	∗ (
, ‖(�, V)‖�) �


+ �∫1
0
C4 (
) �∗ (
, ‖(�, V)‖�) �


≤ �X∫1
0
C3 (
) ‖(�, V)‖� �


+ � (��∞ + X) ∫
1

0
C4 (
) ‖(�, V)‖� �


= [�X� + � (��∞ + X)�] ‖(�, V)‖�

≤ [(1 − �) (1 − �̃4) + (1 − �) �̃4] ‖(�, V)‖�
= (1 − �) ‖(�, V)‖� .

(30)

So, ‖Q2(�, V)‖ ≤ (1 − �)‖(�, V)‖�.
�en, for (�, V) ∈ N ∩ KΩ4, it follows that

‖T (�, V)‖� = RRRRQ1 (�, V)RRRR + RRRRQ2 (�, V)RRRR
≤ � ‖(�, V)‖� + (1 − �) ‖(�, V)‖�
= ‖(�, V)‖� .

(31)

By using (25), (31), Lemma 7, and �eorem 6(ii), we

conclude thatT has a 
xed point (�, V) ∈ N ∩ (Ω4 \ Ω3) such
that Y3 ≤ ‖(�, V)‖� ≤ Y4.
4. Nonexistence Results for

the Positive Solutions

Wepresent in this section intervals for� and� forwhich there
exists no positive solution of problem (
)-(��) that can be
viewed as 
xed point of operatorT.

�eorem 10. Assume that (�1) and (�2) hold, and D ∈ (0, 1).
If��0 , ��∞, 	�0, 	�∞ < ∞, then there exist positive constants�0,�0
such that, for every � ∈ (0, �0) and � ∈ (0, �0), the boundary
value problem (
)-(��) has no positive solution.
Proof. In a similar manner as in the proof of �eorem 3.1
from [11], we can show that �0 = min{1/(4b1S), 1/(4b1�)}
and �0 = min{1/(4b2�), 1/(4b2�)}, where S = ∫10 C1(
)�
,� = ∫10 C2(
)�
,� = ∫10 C3(
)�
, and� = ∫10 C4(
)�
, satisfy the
conditions of our theorem.

�eorem 11. Assume that (�1) and (�2) hold, and D ∈ (0, 1).
If ��0, ��∞ > 0 and �(�, �, V) > 0 for all � ∈ [D, 1], � ≥ 0, V ≥ 0,
and � + V > 0, then there exists a positive constant �̃0 such
that, for every � > �̃0 and � > 0, the boundary value problem(
)-(��) has no positive solution.
Proof. From the assumptions of the theorem, we deduce
that there exists �1 > 0 such that �(�, �, V) ≥ �1(� +
V) for all � ∈ [D, 1] and �, V ≥ 0. We de
ne �̃0 =
min{1/(V�1S̃), 1/(V�1�̃)}, where S̃ = ∫1
 C1(
)�
 and �̃ =
∫1
 C4(
)�
. We will show that, for every � > �̃0 and � > 0,
problem (
)-(��) has no positive solution.

Let � > �̃0 and � > 0. We suppose that (
)-(��) has a
positive solution (�(�), V(�)), � ∈ [0, 1].

If S̃ ≥ �̃, then �̃0 = 1/(V�1S̃), and therefore, we obtain

� (1) = (Q1 (�, V)) (1)
= �∫1
0
'1 (1, 
) � (
, � (
) , V (
)) �


+ �∫1
0
'2 (1, 
) 	 (
, � (
) , V (
)) �
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≥ �∫1
0
'1 (1, 
) � (
, � (
) , V (
)) �


≥ �∫1


'1 (1, 
) � (
, � (
) , V (
)) �


≥ ��1 ∫
1



'1 (1, 
) (� (
) + V (
)) �


≥ ��1 ∫
1



C1 (
) (� (
) + V (
)) �


≥ ��1V∫
1



C1 (
) (‖�‖ + ‖V‖) �


= ��1VS̃ ‖(�, V)‖� .
(32)

�en we conclude

‖�‖ ≥ � (1) ≥ ��1VS̃ ‖(�, V)‖� > �̃0�1VS̃ ‖(�, V)‖�
= ‖(�, V)‖� ,

(33)

and so, ‖(�, V)‖� = ‖�‖ + ‖V‖ ≥ ‖�‖ > ‖(�, V)‖�, which is a
contradiction.

If S̃ < �̃, then �̃0 = 1/(V�1�̃), and therefore, we deduce

V (1) = (Q2 (�, V)) (1)
= �∫1
0
'3 (1, 
) 	 (
, � (
) , V (
)) �


+ �∫1
0
'4 (1, 
) � (
, � (
) , V (
)) �


≥ �∫1
0
'4 (1, 
) � (
, � (
) , V (
)) �


≥ �∫1


'4 (1, 
) � (
, � (
) , V (
)) �


≥ ��1 ∫
1



'4 (1, 
) (� (
) + V (
)) �


≥ ��1 ∫
1



C4 (
) (� (
) + V (
)) �


≥ ��1V∫
1



C4 (
) (‖�‖ + ‖V‖) �


= ��1V�̃ ‖(�, V)‖� .

(34)

�en we conclude

‖V‖ ≥ V (1) ≥ ��1V�̃ ‖(�, V)‖� > �̃0�1V�̃ ‖(�, V)‖�
= ‖(�, V)‖� ,

(35)

and so, ‖(�, V)‖� = ‖�‖ + ‖V‖ ≥ ‖V‖ > ‖(�, V)‖�, which is a
contradiction.

�erefore, the boundary value problem (
)-(��) has no
positive solution.

�eorem 12. Assume that (�1) and (�2) hold, and D ∈ (0, 1).
If 	�0, 	�∞ > 0 and 	(�, �, V) > 0 for all � ∈ [D, 1], � ≥ 0, V ≥ 0,
and � + V > 0, then there exists a positive constant �̃0 such
that, for every � > �̃0 and � > 0, the boundary value problem(
)-(��) has no positive solution.
Proof. From the assumptions of the theorem, we deduce that
there exists�2 > 0 such that 	(�, �, V) ≥ �2(� + V) for all � ∈
[D, 1] and�, V ≥ 0.We de
ne �̃0 = min{1/(V�2�̃), 1/(V�2�̃)},
where �̃ = ∫1
 C2(
)�
 and �̃ = ∫1
 C3(
)�
. Using a similar

approach as that used in the proof of�eorem 11, we can show
that, for every � > �̃0 and � > 0, problem (
)-(��) has no
positive solution.

�eorem 13. Assume that (�1) and (�2) hold, and D ∈ (0, 1).
If ��0, ��∞, 	�0, 	�∞ > 0 and �(�, �, V) > 0, 	(�, �, V) > 0 for all� ∈ [D, 1], � ≥ 0, V ≥ 0, and � + V > 0, then there exist positive

constants �̂0 and �̂0 such that, for every � > �̂0 and � > �̂0, the
boundary value problem (
)-(��) has no positive solution.
Proof. From the assumptions of the theorem, we deduce that
there exist �1, �2 > 0 such that �(�, �, V) ≥ �1(� + V) and	(�, �, V) ≥ �2(� + V), for all � ∈ [D, 1] and �, V ≥ 0.

We de
ne �̂0 = 1/(2V�1S̃) and �̂0 = 1/(2V�2�̃), whereS̃ = ∫1
 C1(
)�
 and �̃ = ∫1
 C3(
)�
.�en, for every � > �̂0 and� > �̂0, problem (
)-(��) has no positive solution. Indeed, let
� > �̂0 and � > �̂0. We suppose that (
)-(��) has a positive
solution (�(�), V(�)), � ∈ [0, 1]. In a similar manner as that
used in the proofs of �eorems 11 and 12, we obtain

‖�‖ ≥ � (1) ≥ ��1VS̃ ‖(�, V)‖� ,
‖V‖ ≥ V (1) ≥ ��2V�̃ ‖(�, V)‖� ,

(36)

and so

‖(�, V)‖� = ‖�‖ + ‖V‖
≥ ��1VS̃ ‖(�, V)‖� + ��2V�̃ ‖(�, V)‖�
> �̂0�1VS̃ ‖(�, V)‖� + �̂0�2V�̃ ‖(�, V)‖�
= 1
2 ‖(�, V)‖� +

1
2 ‖(�, V)‖� = ‖(�, V)‖� ,

(37)

which is a contradiction. �erefore, the boundary value
problem (
)-(��) has no positive solution.

We can also de
ne �̂�0 = 1/(2V�1�̃) and �̂�0 = 1/(2V�2�̃),
where �̃ = ∫1
 C2(
)�
 and �̃ = ∫1
 C4(
)�
. �en, for every

� > �̂�0 and� > �̂�0, problem (
)-(��)has nopositive solution.
Indeed, let � > �̂�0 and � > �̂�0. We suppose that (
)-(��) has
a positive solution (�(�), V(�)), � ∈ [0, 1]. In a similar manner
as that used in the proofs of �eorems 11 and 12, we obtain

‖V‖ ≥ V (1) ≥ ��1V�̃ ‖(�, V)‖� ,
‖�‖ ≥ � (1) ≥ ��2V�̃ ‖(�, V)‖� ,

(38)
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and so

‖(�, V)‖� = ‖�‖ + ‖V‖
≥ ��2V�̃ ‖(�, V)‖� + ��1V�̃ ‖(�, V)‖�
> �̂�0�2V�̃ ‖(�, V)‖� + �̂�0�1V�̃ ‖(�, V)‖�
= 1
2 ‖(�, V)‖� +

1
2 ‖(�, V)‖� = ‖(�, V)‖� ,

(39)

which is a contradiction. �erefore, the boundary value
problem (
)-(��) has no positive solution.
5. Examples

Let � = 5/2 (� = 3), � = 7/3 (� = 3), �(�) = �3,�(�) = {0, � ∈ [0, 1/3); 1, � ∈ [1/3, 2/3); 2, � ∈ [2/3, 1]},
for all � ∈ [0, 1]. �en ∫10 �(
)��(
) = �(1/3) + �(2/3) and
∫10 V(
)��(
) = 3 ∫10 
2V(
)�
.

We consider the system of fractional di	erential equa-
tions

�5/20+ � (�) + �� (�, � (�) , V (�)) = 0, � ∈ (0, 1) ,
�7/30+ V (�) + �	 (�, � (�) , V (�)) = 0, � ∈ (0, 1) , (
0)

with the boundary conditions

� (0) = �� (0) = 0,
�� (1) = 3∫1

0

2V (
) �
,

V (0) = V
� (0) = 0,

V
� (1) = � (13) + � (

2
3) . (��0)

�en we obtain Δ = (� − 1)(� − 1) −
(∫10 
�−1��(
))(∫10 
�−1��(
)) = (26√3−6√2−3)/13√3 > 0.
�e functions� and� are nondecreasing, and so assumption(�1) is satis
ed. Besides, we deduce

	1 (�, 
) = 1
Γ (5/2)

⋅ {{{
�3/2 (1 − 
)1/2 − (� − 
)3/2 , 0 ≤ 
 ≤ � ≤ 1,
�3/2 (1 − 
)1/2 , 0 ≤ � ≤ 
 ≤ 1,

	2 (�, 
) = 1
Γ (7/3)

⋅ {{{
�4/3 (1 − 
)1/3 − (� − 
)4/3 , 0 ≤ 
 ≤ � ≤ 1,
�4/3 (1 − 
)1/3 , 0 ≤ � ≤ 
 ≤ 1,

ℎ1 (
) = 
 (1 − 
)1/2
Γ (5/2) ,

ℎ2 (
) = 
 (1 − 
)1/3
Γ (7/3) .

(40)

We also obtain

C1 (
) =

{{{{{{{{{{{{{{{{{{{{{

4
3√j
 (1 − 
)1/2 +

4
(26√3 − 6√2 − 3)√j [(1 + 2√2) (1 − 
)1/2 − (1 − 3
)3/2 − (2 − 3
)3/2] , 0 ≤ 
 < 1

3 ,
4

3√j
 (1 − 
)1/2 +
4

(26√3 − 6√2 − 3)√j [(1 + 2√2) (1 − 
)1/2 − (2 − 3
)3/2] , 1
3 ≤ 
 < 2

3 ,
4

3√j
 (1 − 
)1/2 +
4

(26√3 − 6√2 − 3)√j (1 + 2√2) (1 − 
)1/2 , 2
3 ≤ 
 ≤ 1,

C2 (
) = 52√3
(26√3 − 6√2 − 3) Γ (7/3) [

3
13 (1 − 
)1/3 −

3
13 (1 − 
)13/3 −

3
5
 (1 − 
)10/3 −

3
7
2 (1 − 
)7/3] ,

C3 (
) = 
 (1 − 
)1/3
Γ (7/3) + 13 (1 + 2√2)

(26√3 − 6√2 − 3) Γ (7/3) [
3
13 (1 − 
)1/3 −

3
13 (1 − 
)13/3 −

3
5
 (1 − 
)10/3 −

3
7
2 (1 − 
)7/3] ,

C4 (
) = 26
3 (26√3 − 6√2 − 3)√j

{{{{{{{{{{{{{{{

(1 + 2√2) (1 − 
)1/2 − (1 − 3
)3/2 − (2 − 3
)3/2 , 0 ≤ 
 < 1
3 ,

(1 + 2√2) (1 − 
)1/2 − (2 − 3
)3/2 , 1
3 ≤ 
 < 2

3 ,
(1 + 2√2) (1 − 
)1/2 , 2

3 ≤ 
 ≤ 1.

(41)
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For D = 1/2, we deduce V = 1/(2√2). A�er some

computations, we conclude S = ∫10 C1(
)�
 ≈ 0.31258448,
S̃ = ∫11/2 C1(
)�
 ≈ 0.18323168, � = ∫10 C2(
)�
 ≈ 0.20906868,
�̃ = ∫11/2 C2(
)�
 ≈ 0.13212807, � = ∫10 C3(
)�
 ≈ 0.38549139,
�̃ = ∫11/2 C3(
)�
 ≈ 0.25157025,� = ∫10 C4(
)�
 ≈ 0.24263144,
and �̃ = ∫11/2 C4(
)�
 ≈ 0.12808534.
Example 1. We consider the functions

� (�, �, V) = √� [p1 (� + V) + 1] (� + V) (q1 + sin V)
� + V + 1 ,

	 (�, �, V) = 3√� [p2 (� + V) + 1] (� + V) (q2 + cos �)
� + V + 1 ,

(42)

for � ∈ [0, 1], �, V ≥ 0, where p1, p2 > 0 and q1, q2 > 1.
We have ��0 = q1, 	�0 = q2 + 1, ��∞ = (1/√2)p1(q1 − 1),

and 	�∞ = (1/ 3√2)p2(q2 − 1). We take � = � = �1 = �2 =�3 = �4 = 1/2; then we obtain &1 = 1/(p1(q1 − 1)�̃), &2 =1/(4q1S), &3 = 1/(21/6p2(q2 − 1)�̃), and &4 = 1/(4(q2 + 1)�).
�e conditions &1 < &2 and &3 < &4 become p1(q1 − 1)/q1 >4S/�̃ andp2(q2−1)/(q2+1) > 211/6�/�̃. Ifp1(q1−1)/q1 ≥ 10
and p2(q2 − 1)/(q2 + 1) ≥ 11, then the above conditions are
satis
ed. �erefore, by �eorem 8(1), for each � ∈ (&1, &2)
and � ∈ (&3, &4), there exists a positive solution (�(�), V(�)),� ∈ [0, 1] for problem (
0)-(��0). For example, if q1 = 2, q2 =3, p1 = 20, and p2 = 22, then we obtain &1 ≈ 0.39036474,&2 ≈ 0.39989189, &3 ≈ 0.15324297, and &4 ≈ 0.16213072.

Besides, because ��0 = q1, 	�0 = q2 + 1, ��∞ =p1(q1 + 1), and 	�∞ = p2(q2 + 1), we can apply �eorem 10.
So, we conclude that there exist �0, �0 > 0 such that,
for every � ∈ (0, �0) and � ∈ (0, �0), the bound-
ary value problem (
0)-(��0) has no positive solution. By
�eorem 10, the positive constants �0 and �0 are given by�0 = min{1/(4b1S), 1/(4b1�)} = 1/(4b1S) and �0 =
min{1/(4b2�), 1/(4b2�)} = 1/(4b2�). For example, ifp1 = 20, p2 = 22, q1 = 2, and q2 = 3, then we obtainb1 = 60,b2 = 88, �0 ≈ 13.33 ⋅ 10−3, and �0 ≈ 7.37 ⋅ 10−3.
Example 2. We consider the functions

� (�, �, V) = (� + 1)�̃ (�2 + V
2) ,

	 (�, �, V) = ��̃ (r	+V − 1) ,
� ∈ [0, 1] , �, V ≥ 0,

(43)

where �̃, �̃ > 0.
We have ��0 = 0, 	�0 = 1, and ��∞ = 	�∞ = ∞. For � = 1/2,

we obtain &�4 = 1/(2�) ≈ 1.2970458. �en, by�eorem 8, (6)
we conclude that, for each � ∈ (0,∞) and � ∈ (0, &�4), there
exists a positive solution (�(�), V(�)), � ∈ [0, 1] for problem(
0)-(��0).

Because 	�0 = 2−�̃ and 	�∞ = ∞, we can apply�eorem 12.
�en there exists �̃0 such that, for every � > �̃0 and � > 0,
problem (
0)-(��0) has no positive solution. For example, if

�̃ = 1, then we deduce �2 = 1/2 and �̃0 = 1/(V�2�̃) ≈22.486.
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