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1 Introduction

In this paper, our main research is the existence and nonexistence of positive solutions for
the following fractional coupled system with generalized p-Laplacian involving Riemann-
Stieltjes integral conditions.

Dt (DG ul(e))) + Mfi(t, u(t), v(8)) = 0,
DE(@(DLv(R)) + Aofs(t,u(t), V(1) =0, 0<t<1,

u(0)=u'(0)=---u"?=0,  PDgiu(0)) = (p(Dg}u(1))) = 1)
v(0) =v/(0) =--- "2 =0, ( 0+V(0)) = (¢(D0+V(1)))/ =
u(l) = fo &i(s)v(s) dA;(s), = w2 [y @()uls) dAs(s),

where A; >0 (i =1,2) is a parameter, 1 < 8; <2, n—-1l<a; <mm-1<ay <m,nm>2,
D0+, Dg+ are the standard Riemann-Liouville derivatives. u; > 0 is a constant, g; : (0,1) —
[0, +00) is continuous with g; € L'(0,1), A; is right continuous on [0, 1), left continuous at
¢t =1, and nondecreasing on [0,1], A;(0) =0, fol x(s) dA(s) denotes the Riemann-Stieltjes
integrals of x with respect to A;, ¢ is a generalized p-Laplacian operator and satisfies the
following condition (Hp).

The positive solution (1, v) of system (1) means that (u,v) € C[0,1] x C[0,1], (&, v) satis-
fies system (1) and u(z) > 0, v(¢) > O for all £ € (0,1].
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(Hp) ¢ : R — R is an odd, increasing homeomorphism, and there exist two increasing

homeomorphisms ¥, ¥ : (0, +00) — (0, +00) such that

V1x)o () < P(xy) < Y2 (¥)9(y), %,y >0.
Moreover, ¢, ¢~ € C(R), where ¢! denotes the inverse of ¢ and R = (—o0, +00).

Lemma 1.1 ([1]) Assume that (Hg) holds. Then

vy )y < ¢ (2 () < Y x)y, %y >0.

For ¢ satisfying (Hy), we call it a generalized p-Laplacian operator, it contains two im-
portant special cases: ¢(u) = u and ¢(u) = |u|’2u (p > 1) (see [1]). Many researchers have
studied the existence of positive solutions for two above cases due to their great applica-
tion background (see [2-15]). Combined with the fractional calculus, the application of
the above two kinds of special circumstances becomes more extensive and practical. For

the sake of considering the turbulent flow in a porous medium, the governing equation

o [ou™
ox \ ox

was presented by Leibenson (see [2]). If p =1, m > 0, it is used as a nonlinear model for

ou"

o t ou <2 1 <p<l1 2)
I = yu,— 1, m y o
% Sy =S5 =P=

the dispersion of animals and insects (see [3]).
In [4], Lu et al. studied the existence of positive solution for the fractional boundary

value problem with a p-Laplacian operator:

Db (¢, (DS u(2) = f(t, u(t)), 0<t<],
u(0) = 4/'(0) = u(1) = 0, D§. u(0) = D, u(1) = 0,

3)

where2 <o <3,1< 8 <2,D§,, Dg+ are the standard Riemann-Liouville fractional deriva-
tives, @, (s) = [s[P s, p > 1, qb;l =@y, 1% + é =1,f:[0,1] x [0, +00) — [0, +00) is a continuous
function. By the properties of Green’s function and the Guo-Krasnosel’skii fixed point the-
orem, some results on the existence of positive solutions are obtained.

In [5], Wang et al. investigated the same equation as (3) for 1 <« <2, 0 < 8 <1, with
boundary value condition #(0) = 0, D§. u(0) = 0, u(1) = au(§), where 0 <a <1,0< £ <1,
f:10,1] x [0,+00) — [0, +00) is a continuous function. Through the application of the
Guo-Krasnosel’skii fixed point theorem and the Leggett-Williams theorem, sufficient con-
ditions for the existence of positive solutions are received.

In system (1), fol g1(s)v(s) dA(s), fol g2(s)u(s) dA,(s) denote the Riemann-Stieltjes inte-
grals, and A, is a function of bounded variation, which implies that dA; can be a signed
measure. Then, a multipoint boundary value problem and an integral boundary value

problem are included in our study, that is to say, system (1) includes more generalized
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boundary value conditions. Henderson and Luca in [16] considered the following system:

D u(t) + Mfi(t, u(e), v(¢)) = 0,

Div(e) + oo (8, u(t), v(t) =0, 0<t<l,
w(0)=uw/(0)=---u"? =0, u(l) =31 au&),
v(0)=v'(0)=---v"2 =, v(1) = X1, biv(ny),

where A; >0 (i =1,2) is a parameter, 1 — 1 <oy <nm,m—-1<ay <m, n,m > 2, Dgi, Dgi
are the standard Riemann-Liouville derivatives. a; > 0, b; > 0 are constants, f; : [0,1] x
[0, +00) x [0, +00) — [0, +00) is a continuous function. By the Guo-Krasnosel’skii fixed
point theorem, the authors in [16] got the existence of positive solutions on system (4).
System (4) with uncoupled and coupled multi-point boundary value conditions

u(©0)=u'(0)=--u"? =0,  u(l)=p [ uls)dA(s),
v(0)=V(0) =" D =0, (1) =y [y vls) dAs(s),

w0) =#(0) = u =0, u(l) = [y v(s)dAs(s),
v(0) =v(0) =+ V"D =0, v(1) = pus [, u(s) dAs(s)

has been studied in many papers, where u; > 0 is a constant, for p; = 1 as an exceptional
case ( see [17-23] and the references therein). However, these articles only study the exis-
tence of positive solutions for the system, and do not relate to the nonexistence of positive
solutions.

Up to now, coupled boundary value conditions for a fractional differential system with
generalized p-Laplacian like system (1) have seldom been considered when 14, A, are dif-
ferent. Motivated by the results mentioned above, in this paper, we obtain several new
existence and nonexistence results for positive solutions in terms of different values of the
parameter A; by using the properties of Green’s function and the Guo-Krasnosel’skii fixed
point theorem on cone. Especially, paying attention to the nonlinear operator Dg+ (9(D5.))
with the discussion in (1), we can convert it to the linear operator D§+Df)‘+ ,if (1) = u, and
the additive index law

DB, D&, u(t) = DI’ u(t)

holds under some reasonable constraints on the function u (see [24]). Therefore, our ar-

ticle promotes, includes and improves the previous results in a certain degree.

2 Preliminaries and lemmas
For convenience of the reader, we present some necessary definitions about fractional cal-
culus theory.

Definition 2.1 ([24, 25]) Let « > 0 and u be piecewise continuous on (0, +00) and inte-
grable on any finite subinterval of [0, +00). Then, for ¢ > 0, we call

1% u(t) = ﬁ /0 (t — 5)?u(s) ds,

the Riemann-Liouville fractional integral of u of order «.
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Definition 2.2 ([24, 25]) The Riemann-Liouville fractional derivative of order « > 0,
n—-1<a<n neN,isdefined as

o e — L (AN [T et
DOM(t)_F(n—a)( t) /O(t s) u(s) ds,

where N denotes the natural number set, the function u(t) is # times continuously differ-
entiable on [0, +00).

Lemma 2.1 ([24, 25]) Let o > 0, if the fractional derivatives Dg:lu(t) and D{j, u(t) are con-
tinuous on [0, +00), then

I8, D%, u(t) = u(t) + et + Ct% 2 4t
where c1, ¢, ..., ¢y € (—00,+00), 1 is the smallest integer greater than or equal to «.

Similarly to the proofin [22], it enables us to obtain the following Lemmas 2.2, 2.3 and
Remark 2.1.

Lemma 2.2 Assume that the following condition (Hy) holds.

(Hyp) 1

1
ki = / a2 dA(t) > 0, ko = / SO dAL () > 0,
0 0

1 - pipakiky > 0.

Let h; € C(0,1) N L(0,1) (i =1,2), then the system with the coupled boundary conditions

Dt u(t) + () =0, Div(t) + ha(8) =0, 0<t<l,
w(0)=/(0)=---u"? =0, u(l) = folgl(s)v(s) dAi(s), (5)
w(0)=v/(0) =2 =0, W)= p, [ g2(s)uls) dAs(s)

has a unique integral representation

u(t) = [y Ku(t,9)h(s)ds + [ Hi(t,5)ha(s) ds,

(6)
We) = [y Ko(t,s)ha(s)ds + [ Ha(t, s)hi(s) ds,
where
papokiga — —
Ki(t,s) = m/ £)Gi(t,5) dAs(t) + Gi(¢, 5),
- M1M2R1RK2 JO
toq—l 1 _
Hi(t,s) = ll;lm/ a(t)Ga(2,5) dA1(2),
- M1 0
(7)
k taz—l 1 _ _
Ky(t,s) = % / a()Ga(t,5) dAL(t) + Galt, ),
- M1M2R1R2 Jo
totz—l 1 _
i) = 2 / @G5 dAs (1),
- 0

Page 4 of 19
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and

_ 1 tl-s)]% - (t-95)%1, 0<s<t<l,
Gi(t,s) = [« ) ( ) - i=1,2.
Tlai) | (e - )%, 0<t<s<],

Lemma 2.3 Fort,s € [0,1], the functions K;(t,s) and H(t,s) (i = 1,2) defined as (7) satisfy

Ki(t,s), Ha(t,s) < ps(1—s)"7", Ky (t,s), Hi(t,s) < ps(1—s)"27",
I<l(t’ S)le(t’ S) =< pt¢1171; 1<2(t)S)IH2(t7S) = ptazilr
Ki(t,s) > ot“17ts(1 — 5)4171, Hy(t,s) > ot*> 1s(1 - 5)4171,

Ky(t,s) > Qt"‘z’ls(l —s) H;(t,s) > Qt”‘l’ls(l —s)®L

where
o= max{ F(all— ) (1 —l;lﬁjj;kg /:gz(f) dA,(t) + 1>,
1
a1 = i) /o a0 dh e,
1
F(Olzl— 1) (1 —l;zlluﬂlzklilkz /o a @A)+ 1>’
1
(o - 1)(1M—2 paprakikz) /o &) dAZ(t)}’
0= min{ X (ﬂﬁz P /0 1gz(t)(l — 7 dA (8),
111

1
op—1
F(aZ)(l_M1M2k11<2)/(; g1 -2 dA(2),

paprks
o)1 = papakiks

1
) / a1 -0 dA(2),
0

M2
o)1 — pipakiky

1

[ a-oe dAz(t)}-
0

Remark 2.1 From Lemma 2.3, for ¢,7,s € [0,1], we have

Ki(t,s) > wt*'K;(t,s), Hi(t,s) > ot 'H,(T,s), i=1,2,
Ki(t,s) > ot ' Hy(t,s),  Ha(t,s) > ot Ki(Z,5),

Ky(t,8) > wt® ' Hi (%, s), Hi(t,s) > ot Ky (3, 5),
where w = %, 0, p are defined as in Lemma 2.3,0 <w < 1.

From Lemmas 2.1 and 2.2, we obtain the following Lemma 2.4.
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Lemma24 Letl< B, <2,n—-1<oy<nm-1<ay<m,h; € C(0,1)NLO,1) (i=1,2),
the following system of fractional differential equations

DB (oD u(t))) + M (t) = 0, DD v(t)) + Aaha() =0, 0<t<]1,
w0)=u'(0) =1 =0, $(DGiu(0)) = (H(Diu(1) =0,
v(0)=v(0)=--- V"2 =0,  ¢(Dg?1(0)) = (p(Dgiv(1))) =0,

u(@) = i fy v9) dA(s), V(1) = pa f, u(s) dAs(s)

has a unique integral representation

ult) = [y Ki(t, )¢~ (01 fy Gi(s, ©)(v) d) ds

+ [3 Hi(t,9)¢ 7 (ha [y Gals, T)ha(t) dT) s,
We) = [o Ka(t,8)p ™ (ha [y Gals, T)ha(7) d) ds

+ [ Ha(t, )97 (0 [y Gi(s, 0 (v) dt) dis,

where

1 |slsQ-0)fi2-(s-7)f7l, 0<t<s<],
LB | ss(1-1)1F2, 0<s<t<l,

Gi(s, ) = i=1,2. (8)

Lemma 2.5 ([26]) The function G;(s, t) defined as (8) is continuous on [0,1] x [0,1], and
fors,t €[0,1], G(s, T) satisfies

1) Gis,T)=0; (2) Gis,T) < Gi(r,7); B3) Gils, 1) > s Gi(L, 7).

In the rest of the paper, we always suppose that the following assumption holds:
(Hy) f;:10,1] x [0,+00) x [0, +00) — [0, +00) is continuous.

Let X = C[0,1] x C[0,1], then X is a Banach space with the norm

|G, v)|| = max{Jull, v}, Nl = gggﬁu(t) s vll= trél[g}]}V(t)L
Denote
K= {(u, V) eX:u(t) > ot ! || (u,v)|,v(t) > wt©! H(u, v)|,t€[0,1] },

where w is defined as Remark 2.1. It is easy to see that K is a positive cone in X. Under
the above conditions (Ho)(H;)(Hzy), for any (u,v) € K, we can define an integral operator
T:K — X by

T(u,v)(t) = (T1(w,v)(@), Ta(w,v)(t)), 0<t<1, ©)
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1 1
Tl(u,v)(t)z/(; Kl(t,s)¢1(kl/(; Gi(s, T)fs (7, u(r), v(7)) dr) ds
1 1
+/ Hl(t,s)¢‘1(sz Ga(s, T)fa (7, u(1), ¥(7)) dr) ds,
0 0 (10)

1 1
Ty (u,v)(t) = /0 Ky(t,s)p~" (Ag/o Ga(s, T)fa (7, u(t), v(7)) dr) ds

1 1
+ / Hy(t,s)p~" (Al f Gi(s, T)fi (7, u(r), v(7)) dr) ds,
0 0

we know that (u,v) is a positive solution of system (1) if and only if (&, v) is a fixed point of
TinK.

Lemma 2.6 Assume that (Hy)(H;)(Hy) hold. Then T : K — K is a completely continuous
operator.

Proof By the routine discussion, we know that T': K — X is well defined, so we only prove
T(K) € K. For any (u,v) € K, 0 < t,7 < 1, by Remark 2.1, we have

1 1
T1(u, v)(2) :/0 Kl(t,s)qb_l()q/o Gi(s, Dfi(t, u(r),v(7)) dr) ds
1 1
+/ Hl(t,s)q&_l(Ag/ GQ(S,T)fg('(,M(T),V(T))dT) ds
0 0
1 1
2/ wtallKI(E,s)qﬁl(Mf Gl(s,r)ﬁ(r,u(r),v(t))dt)ds
0 0
1 1
+/ wtal—lHl(Z,s)¢—1<A2/ Gz(S,‘L’)fz(‘L’,u(T),V(T)) dr) ds
0 0
1 1
> @t </0 Ki(£,s)p7 (AI/O Gi(s, 1) 1(r,u(t),v(r)) dr) ds

1 1
+f Hl(f,s)¢1<A2/ GZ(S,T)fQ('C,M(‘E),V(T))d‘L’) ds)
0 0

> wt Ty (u,v) (6). (11)

On the other hand,

1 1
T1(u, v)(t) 2/ wt”‘l_le(E,sW‘l(Al/ Gi(s, DA (T, u(), v(1)) dr) ds
0 0
1 1
+/ wtal—le(ZS)qs—l(Az/ Gz(S,‘L')fz(‘L',M(T),V(T))dT)dS
0 0
1 1
> w1 </ Hy (£, s)¢™" ()»1/ Gi(s, D)fi (7, u(t), v(1)) df) ds
0 0

1 1
+/ Kyt s)p7t ()»2/ Ga(s, T)fo (7, u(7), v(7)) dr) ds)
0 0

> Wt Ty (1, v) (7). (12)

Page 7 of 19
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Then we have

Ty (u, v)(t) > wt17! || T1(u,v)

v T v)(©) = ot Ta(u,v)

’

T1(u,v)(t) = 0t | (T1(, v), To(u,v)) | .
In the same way as (11) and (12), we can prove that
Ty (u, v)(£) > wt*™ || (Tl(u, v), To(u, V)) ||
Therefore, we have T(K) C K.
According to the Ascoli-Arzela theorem, we can easily get that T': K — K is completely

continuous. The proof is completed. d

In order to obtain the existence of the positive solutions of system (1), we will use the
following cone compression and expansion fixed point theorem.

Lemma 2.7 ([27]) Let P be a positive cone in a Banach space E, Q, and Q0 are bounded
open sets in E, 0 € Q1, @, C Qa, A: PN Q\Q — P is a completely continuous operator. If
the following conditions are satisfied:

[Axl < llxll, VxePNo, [Ax|| = llxll, Vxe€PNa2y,
or

Ax|l = llx[l, Vx €PN, [Ax| < llxll, Vxe€PNas2,

then A has at least one fixed point in PN (2\2)).

3 Mainresults

Denote
fio =liminf  inf JM, flo =limsup sup M,
x—>0* refablc(0))  P(x) 20t refoy] Q)
y€[0,+00) y€[0,+00)
foo =liminf inf fz(t,x,y), £ =limsup sup fz(t,x,y),
y—>0% telaplc01) () y—=0+  te[0,1] o)
x€[0,+00) x€[0,+00)
fioo = liminf  inf S x,y), £ =limsup sup A x,y)’
x—+00 tela,b]C(01)  P(x) x—>+00  te[0,1] o(x)
y€[0,+00) y€[0,+00)
froo = liminf  inf L, x,y)’ f5° =limsup sup L x,y)’
y—>+00 tea,b]C(0,1) ¢()/) y—>+00  te[0,1] (»b(y)
x€[0,+00) x€[0,+00)

1 1
L= max{2p¢1‘1 (/ Gl(r,t)dt),2pg01‘1 (/ Gz(l’,‘[)dt) },
0 0
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1
Ly =min{2ga)92f o G D </ Gi(1, r)dr) ds,
0

1
2Qw92/ <pz_1(sﬂ2 ) b2 1(0_1(/ G- (1, ‘L')d‘l.’) ds},
0

1
L3 = min{ZQG/ (pz_l(sﬁl_l)s(l —s)‘“_lgoz_l </ Gi(1, T)d‘t') ds,
2@0/ (P )s(1 - 9)*2 My (f G, (1, T)dl’) ds}, 6 = min {£7, 27},

tela,b]
3.1 Existence of system (1)
Theorem 3.1 Assume that (Ho)(H1)(Hy) hold and fieop1(LTY) > fl.ogoz(Lgl), then system (1)
has at least one positive solution for

A (‘/’Z;Lzl), %](ill))' 1)

where we imposeji =0 if fioo = +00 andf% =+00 iff? =0 (i=1,2).
Proof For any A; satisfying (13), there exists &9 > 0 such that

¢2(L3") << @il

< . (14)
fioo —&o ' f,'O +&o

By the definition of fio, there exists r; > 0 such that

filtsx,y) < (f2 + o) max{o(x),¢(»)}, 0=<x,y=<r,te[0,1]. (15)

Let K, = {(u,v) e K : ||(i,v)|| < r1}. For any (u,v) € dK,,, t € [0,1], by the definition of || - ||,
we know that

u(t) < |u@®)| < lull < |@v)| <r,

(16)
v(t) < v < Ivll < | v)| <, €011,

Thus, for any (4,v) € 3K,,, by (15), (16) and (Hy), we have
St u@®),v(®)) < (f° +£0)gp(r), te[0,1]. (17)
Hence, for any (u, v) € 9K,,, by Lemmas 1.1, 2.3, 2.5 and (17), we conclude that
/ Ki(t,s)¢ < folGl(s,r)ﬁ(r,u(r),v(r)) dt) ds
+ /0 Hl(t,s)qb-l()\z /O Gz(s,r)z(r,u(r),v(t))dr> ds
52}3’1‘]/ pt1 g ( 1/01 Gl(f,r)(ﬂ0+80)¢(r1)dr) ds
/0 pt 1 1p ( 2/01G2(r,r)(}3°+80)¢>(r1)dr) ds

1T v)(®)| = max
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< prigy (M(f +€0))or (f Gi(r, r)dr>
+prior (A (fy + 0))or (/ G, (7, ‘L')dt)

L L
<rer (R + 80))?1 + o (A2 (fy) + 80))71

<rn=|wv)|. (18)
Similarly to (18), for any (1,v) € K, we also have
| T2 =1 =G0
Consequently, we have

|| T(u,v) || = max{ || T1(u,v)

Wt <n= (,v) € IK;,. 19)
On the other hand, by the definition of fi.,, there exist ry, 4, > 0 such that

fEx,9) > (o —€0)p(x), x>71,y>0,t€[a,b] C(0,1),
fZ(t,x’y) > (ono _80)¢(y)7 y > ’/rx > O,t € [ﬂ,b] C (0:1)'

(20)

r

& %,2n}. Let K, = {(4,v) € K : ||(u,v)|| < r2}. For any (u,v) € dK,,, by
the definition of || - ||, we have

Choose ry = max{

u(t) > ot (u,v)|| = wbry > 1,

(21)
v(t) = 0t |(u,v)| = wry =7, tea,b] C(0,1).
Thus, for any (4, v) € 9K,,, by (20), (21) and (Hy), we have
fl(t u(t), v(t) ) (fico — €0)¢ (u(t)) > (floo — €0)P(w0r3), t€la,b] C(0,1), 22)

L6 u®),v(®) = (froo — £0)¢ (V(£)) = (fao — €0)Pp(@Ors),  t € [a,b] C (0,1).
Hence, for any (u,v) € 3K,,, by Lemmas 1.1, 2.3, 2.5 and (22), we have
| T2 (e, )@

> min
tela,b]

1 1
+ / ot s(1 — )21t <A2/ $P271Gy (1, T) (Froo — £0)(wT) dr) ds
0 0

1 1
/ ot s(1 - 5)1 7! (M/ MG D) (i — 80)¢(w9r2)df) ds
0

0

1 1
> gw@%/ o i K (/ Gi(1, r)dr) dsr3" (M (fiso — €0))
0

1
+Qa)92r2/ goz’l(sﬂ2 )552 lfpl(/ G,(1, r)dr) dsyry (Az(fzoo—so))
0

Ly
2
>r =) (23)

> 1205 (M (fioo = 80))L— + 7205 (A2 (Fooo — €0)) —
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Therefore, we obtain

|| T(u,v) || = max{ || T1(z,v)

, |T2(u, V) ||} >7ry = || (u,v) || for any (u,v) € 0K,,.  (24)

It follows from the above discussion, (18), (24), Lemmas 2.6 and 2.7 that, for any A; €
(w2 t3) , m(Ll ), T has a fixed point (&, v) € K,2 \ K;,, so system (1) has at least one positive

solutlon (u v); moreover, (u,v) satisfies r; < ||(&,v)|| < r,. The proof is completed. a

Remark 3.1 From the proof of Theorem 3.1, if we choose

1
L, :Qa)OZ/ (pz_l(sﬁl ) - 1(,0_1(/ Gi(1, r)dr) ds, 6= min {t“l_l,t”_l}, (25)
0

tela,b]

—1
then for A; € (%,
loo

-1 -1
M), Ay € (0, (pl;LOl )), the conclusion of Theorem 3.1 is valid.
Or we choose :

flo

tela,b]

1
Zzzga)é?z/ <p2’1(s‘32 )S’SZ ©; (f G,(1, r)dr) ds, 0= min {t"‘"l,taz’l}, (26)
0

then, for A; € (0, (m ) Ay € w2f2L2 ), w1;L0 ), the conclusion of Theorem 3.1 is valid.

Theorem 3.2 Assume that (Ho)(H1)(Ha) hold and fiopr (L) > £ (L3, then system (1)
has at least one positive solution for

(L) €01(L1_1))
Ale( fo )

wherewelmpose —Olff0_+ooandfoo_+oosz°° 0,i=1,2.

The proof of Theorem 3.2 is similar to that of Theorem 3.1, and so we omit it.

_ 1 -1
Remark 3. 2 Similar to Remark 3.1, if we choose L, as (25), then for A; € ("]2};2 ), w;ﬁ.} )),
1

Az € (0, ‘plfoc ), the conclusion of Theorem 3.2 is valid.

Or we choose L, as (26), then for A, € (0, (plfoo ), Ao € (

e@3H) alh
o 7 K

), the conclusion of
Theorem 3.2 is valid.

Theorem 3.3 Assume that (Hy)(H;)(Hy) hold and there exist R > r > 0 such that

te[a,b]C(0,1)
wlr<x,y<r 0§x SR

r
A; min f(t,x,y)zgi)(L—), A max filt,x,y <¢)( ), i=1,2. (27)
° Yy
Then system (1) has at least one positive solution (u,v); moreover, (u,v) satisfies r <
[(u, V)| <R

Proof Set K, = {(u,v) € K : ||(u,v)|| < r}. For any (u,v) € 9K, by the definition of || - ||, we
have

w0r <ot = ot ()| <u@) <,

Wty = @2 || (s, v)|| <v(@t)<r, tela,b]C(0,1).
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Thus, for any (&, v) € dK,, by the first inequality of (27), we have

r
A min (& u(t),v(t)) > — ), i=12. 28
i (s u) ())_¢(L3) i (28)
wOr<u(t),v(t)<r

Hence, for any (,v) € 0K,, by Lemmas 1.1, 2.3, 2.5 and (28), we have

| T2 ) @]

> min
tela,b)

1 1
/ ot (1 — 5)a1p! ()\1 / 171G, T)f (T, u(e), v(2)) dr) ds

0 0

1 1
+ / ot ts(1 —5)2 gt (kz / s$£271G,(, ‘L')fz(l', u(t), V(T)) dr) ds
0 0

1 1
> 00 / s(1-s)1 g™t (Al / 171G, ) min fl(r, u(1), v(t)) dr) ds
0 0 t€la,b]C(0,1)
wr=<u(t),v(r)<r

1 1
+ 00 / s(1—s)2 g (Az / 771G, (1, 1) min fz(r, u(t), v(r)) dt) ds
0 0 t€la,b]C(0,1)
wr<u(t),W(t)<r

L
> ’1()» min T, u(t),v(t )—3
z¢ ! t€la,b]c(0,1) fl( ) ()) 2

wr<u(t)v(t)<r

L

-1 . 3

+ A min 7,u(t),v(t )—

¢ ( 2 t€la,b]C(0,1) fz( ( ) ( )) 2
or<u(t),W(t)<r

>r=| ). (29)

Therefore, we obtain

|| T(u,v) || = max{ || T1(u,v)

, || T>(u,v) ||} >r= ||(u, V) || for any (u,v) € 9K,. (30)

Choose Kz = {(u,v) € K : ||(4,v)|| < R}. For any (u,v) € 0Kz, t € [0,1], by the definition of
Il - I, we know that

u(t) < [u@®)| < llull < ||@v)| <R,

(31)
v(t) < [v@®)| < vl < || v)| <R, t€(0,1].
Thus, for any (#,v) € 9Ky, by the first inequality of (27) and (31), we have
A Sfi(tu@),ve) <¢ R i =1,2 (32)
i max i\, ) - =1, 4.
! te[g,l] (B V) = L !

0=<u(t),v(t)<R

Hence, for any (i, v) € 0Kg, by Lemmas 1.1, 2.3, 2.5 and (32), we can gain

1 1
[ oo (i [ Gen ma st ds
0 0 7€[0,1]

0<u(t),v(t)<R

|71 @) < max

1 1
+/ ptal—1¢—1<A2/ Ga(t,r)  max  fo(r,u(r),v(r)) dl') ds
0 0 7€[0,1]

0<u(r)v(t)<R
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< qﬁ‘l(kl max ﬁ(r u(t), V(‘L’)))
€(0,1]
0<u(t),v(r)<R

=1
2

L
+ 7t ()\2 fr?[%’i] Si(r,u(o), v(t))) ?1
OSM(I),V'(T)SR
<R=|@mv)]|. (33)

Similarly to (33), for any («,v) € 3K, we also have
[72609)] <R~ ).
Consequently, we have

|7 @, v)| = max{| Ti(w,)|, | T2, V)| } <R = ||(w,v)|, (w,v) € K. (34)

It follows from the above discussion, (30), (34), Lemmas 2.6 and 2.7 that T has a fixed
point (u,v) € Kz \ K, so system (1) has at least one positive solution (x, v); moreover, (x, v)
satisfies r < ||(u,v)|| < R. The proof is completed. O

Remark 3.3 From the proof of Theorem 3.3, if we choose

1 1
Ls =00 / S (M7 s(1 - )17 gy (/ Gi(1, r)dr) ds,
0

0 = min {171, g2 1] 35
te[a,b]{ } ( )

then for

A omin fi(tx, )>¢< ) Ai max fi(t, %, )<¢( ), i=1,2,
te[a,b)C(0,1) Ly
wr<x,y<r 0<xy<R

the conclusion of Theorem 3.3 is valid.

Or we choose

1 1
Zg =06 / (pz_l (s’grl)s(l - s)”‘z'l(pz_1 </ Go(1, T)dT) ds,
0 0

6 = min {¢7, 27} (36)
tela,b]

Then, for

R

A min t,x,y) > , A max fi(t,x,y) < — ), i=12,

® telablc 01)f2 Nz ¢( ) ’te[o,uf’( ) ¢(L1> '
Wr<x,y<r ng,ng

the conclusion of Theorem 3.3 is valid.

Theorem 3.4 Assume that (Ho)(H:)(Hy) hold and fiy = fis, = +00, then there exists A} > 0
such that system (1) has at least two positive solutions for 1; € (0,1}), i =1,2.
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Proof Choose r > 0, define

r
xi(r) = sup ) , i=1,2.
>0 ¢2(L1)maxote[o,1] filt,x,9)
=<x,y=<r

In view of the continuity of f; and f = ficc = +00, we know x;(r) : (0, +00) — (0, +00) is

continuous and
lim x;(r) = lim x;(r) =0.
t—>0% t—+00

So, there exists r* € (0, +00) such that x;(r*) = sup,. xi(r) = A}. Therefore, for A; € (0, 1)),

we can find r1, r, (0 <1 < r* <1y < +00) satisfying x;(r1) = A1, xi(r2) = A2. Thus, by (Hy),

we have
¢ () (rl)
A1 max fi(t,x,y) < =< — ) 37
' iefon) Jilt:%7) @2(L1) ¢ L 57)
0=<x,y<r;
#(ra) <rz)
Ao max fi(t,x,y) < < — P 38
Zoze[o,u filt:x7) @2(L1) ¢ L (38)
<xy<ry

From the condition fjy = fi.oc = +00, there exist Ry, Ry (0 < Ry <1 <r* <ry <Ry < +00)

satisfying
filt,x,9) 1
e > @ La) (%, 9) € [0, R] U [Ry, +00), ¢ € [a,b] C (0,1),
Albxy) ! (x,9) € [0,R1] U [Ry, +00), £ € [a,b] C (0,1).

d0) T hagi(wd)ei(Ls)’

Hence, by (Hy), we get

R,

X; min i(L,%,y) = - ) 39
! te[a,b]C(O,l)fl( »9) 2 ¢<L3> )
WOHR) <x,y<R;

. R

A; min i(tx,y) > - ] 40

lte[a,h]c(o,l)ﬁ &%) ¢(Ls) o)
wORy <x,y<Ry

By (37) and (39), (38) and (40), combining with Lemmas 2.6, 2.7 and Theorem 3.3, sys-
tem (1) has at least two positive solutions for A; € (0,1}), i = 1,2. The proof is completed. (J

Remark 3.4 From the proof of Theorem 3.4, assume that (Ho)(H;)(Hy) hold, if fip = +00
or fiso = +00, then there exists A > 0 such that system (1) has at least one positive solution
for A; € (0,A]),i=1,2.

3.2 Nonexistence of system (1)
Theorem 3.5 Assume that (Ho)(H;)(Hy) hold and £ < +0o, f° < +00, then there exists
Aio > 0 such that for A; € (0, Ly) (i = 1,2), system (1) has no positive solution.
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Proof From the definitions of £°, £°, which are finite, there exist positive constants M},
M? and Ry, R; (R < R;) such that

filt,%,9) < M} max{¢(x),¢(»)}, 0<xy<Ry,te(0,1],
filt,x,y) < M? max{¢(x),¢(y)}, X%y >Ry, t €0,1].

i (%
Set M} = max{M}, M?, maX;e[0,1),, <xy<Rk %}, we have

filt,x,y) < M) max{¢(x),¢(»)}, xy=>0,te(0,1].

Assume that (u,v) is a positive solution of system (1), we will show that this leads to a
contradiction. Define A;g = (M?)_lwl (LTY), since A; € (0, Xj0), by Lemmas 1.1, 2.3 and 2.5,
we conclude that

u(t) = Ti(u,v)(t)

/11<1(t,s)¢_1 (Al fl Gi(s, ) 1(7,', u(r),v(t)) dr) ds
0 0

1 1
+ / Hi(t,s)p™! (Az / Ga(s, T)fo (7, u(7), v(7)) dr) ds
0 0

1 1
5/(; pta1_1¢—1<A1/ Gl(t,r)M?max{zb(u(t)),zf)(v(r))}dr) ds

0

1 1
+/ pt“l_lqb_l(AZ/ Gz(t,r)Mgmax{qﬁ(u(r)),qﬁ(v(r))}dt) ds
0 0
1
< ol ot Gt ([ i oy )

1
+ o ()| o1 (AaM3) 1 (/o Ga(z, r)dr)

< o (a3 + o (228) - )

Therefore, we conclude

= ) a8) 5 + ) (203)
< o (oM 2 + e (r208) 2 = )| (2)
Similarly to (41) (42), we also have
vl < || (e, v)|. (43)
Hence, by (42) (43), we get
| e v) | = max{fjull, IvI1} < || @), (44)

which is a contradiction. Therefore, system (1) has no positive solution. The proofis com-
pleted. O
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Theorem 3.6 Assume that (Ho)(H;)(Hy) hold and fios > 0, fio > 0, fi(t,x,9) >0 for t €
[a,b] C(0,1),x>0,y>00rte[ab] C(0,1), x>0,y >0, then there exists L. >0 such
that for A; € (A, +00) (i =1,2), system (1) has no positive solution.

Proof From the definitions of fi~, fio, which are finite, there exist positive constants m},
m? and Rs, Ry (R3 < Ry) such that

filt,x,y) = mip(x), 0<wxy<Rstelab]c(01),

filt,x,9) > m%¢3(x), %,y > Ry, t € [a,b] C (0,1).

LEx9)y \ve have
x) 17

Set m{ = min{m}, m3, Minse(ap]c(0,1),Rs <xy<Rs
filt,x,y) = mdp(x), xy>0,telab]c(01).

p) txy)

Similarly, set 75 = min{mm}, 13, minse(a,p)c(0.),Rs xy<ry 455) ) We have

folt,x,y) > mgqb(y), x%,y>0,t € [a,b] C(0,1).

Assume that (u,v) is a positive solution of system (1), we will show that this leads to a
contradiction. Define A, = (m?)_lgoz (L3Y), since A; € (A, +00), by Lemmas 1.1, 2.3 and 2.5,
we conclude that

| T2

1 1
min f ot 751 —5)M gt (AI/ 171G, r)m?q)(u(r)) dr) ds
0

telab] Jo

1 1
N / ot 15(1 = 521! ()\2/ s771G, (1, 1)myg (v(7)) dr) ds
0 0

flael

v

1
> Qw92|| u, V)”/ ﬁl Loyt </ Gl(l,r)dr) dswz'l(klm?)
+ owh? ” u,v ||/ /32 1§0_1 </ G.(1, ‘[)dt) dsyry ()»271’12)

= [ () 2+ 9 o7 i) 2 > )| )
Similarly to (45), we also have
Vil > || G ). (46)
Hence, by (45) (46), we get

(47)

|, v)|| = max{l|ul, v}

which is a contradiction. Therefore, system (1) has no positive solution. The proofis com-
pleted. 0

Similar to the proof of Theorem 3.6, we obtain the following Theorems 3.7 and 3.8.
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Theorem 3.7 Assume that (Ho)(Hy)(Hy) hold and fix > 0, fio > 0, fi(t,x,y) >0 for t €
[a,b] € (0,1),x>0,y>0o0rt € [a,b] C(0,1), x>0,y >0, then there exists Ay, > 0 such
that for Ay € (A4, +00), Ay € (0, +00), system (1) has no positive solution.

Theorem 3.8 Assume that (Ho)(H1)(Hy) hold and fono > 0, fo0 > 0, fo(t,x,y) > 0 for t €
[a,b] C(0,1),x>0,y>0o0rte [a,b] C(0,1), x>0,y >0, then there exists Ay, > 0 such
that for Ay € (Aax, +00), A1 € (0, +00), system (1) has no positive solution.

Remark 3.5 From the proof of Theorems 3.1-3.8, if we choose

fio =liminf inf ﬁ(t,x,y)’ 2 =limsup sup fl(t,x,y)’
y—>0* telablc01)  @(y) y—0  tef0]  P)
x€[0,+00) 2€[0,+00)
foo =liminf  inf VAGLS)) £ =limsup sup £ x,y),
20 telablc0)  ¢p(x) w0t refo1] D)
y€[0,+00) y€[0,+00)
fico =liminf  inf fl(t,x,y)’ S =limsup sup fl(t,x,y),
y—+00 telablc(0))  P(Y) yotoo  tef0l] PO)
x€[0,+00) x€(0,+00)
frso =liminf inf A x,y)’ f5° =limsup sup A x,y)’
¥—>+00 telablc(01)  P(x) x—io0 ref01]  P*)
y€[0,+00) y€[0,+00)

then all the conclusion of Theorems 3.1-3.8 are valid.

4 Example

Consider the fractional differential system

DD ult)) + mfit, ult), () = 0,

D5 (D§+ W(B) + Ao (b u(®),v() =0, 0<t<l,
wW0)=w(©)=0,  DLu(0)=(DLu() =0,  u(l)=
W0)=v(0)=0,  DZv(0)=(DEv)Y =

L (48)
5 Jo t2v(e)dt,

v(1) = [} u®)dez,

%, M1 = %: M2 =1, Al(t) =

where 1; > 0 (i = 1,2) is a parameter, o) = oty = %, BL=pa=
t = ¢y (x) = x. Then we have

Ay(t) = t%, a(t) = ‘%,gz(t) =1, ¢(x) = x, choose ¢ (x)

1
kl =/ gl(t)taz_l dAl(t) =/ t_fti dt_ 0’
0 0

1
2
/ :—>0

w
wh—

1
o = / @O dAy () - / dat=2 [

15
1- kiky = — >0.
M1M2K1K2 16

So, condition (H;) holds. Next, in order to demonstrate the application of our main results
obtained in Section 3, we choose two different sets of functions f; (i = 1,2) such that f;
satisfies the conditions of Theorems 3.1 and 3. 5

Case 1. Let fi(t,x,9) = 1 +xs1ny,f2 Lx,y) = +ysmx, choose [ , %] C [0,1], we know

fioo = +00, £ = 0. Then, by Theorem 3.1, system (48) has at least one positive solution for
Ai €(0,400) (i=1,2).
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Case 2. Let fi(t,x,y) = mlif—i'lsmy) folt,x,y) = W therefore, we have £, = 40,

f2=3,£°=30,f =2, and for x,y <0, we get x < filt,x,y) < 40x, y < fo(t,x,y) < 30y.

By calculation, we obtain L; = 2.2445 fl Tz(l;t dt ~ 0.6632. Then, by Theorem 3.5,
2

system (4:8) has no positive solution for X; € (0,0.0377), Az € (0,0.0503).
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