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Abstract

We discuss the problem of existence of solitary wave solutions to some higher
order model evolution equations arising from water wave theory. We introduce a simple
direct method for finding monotone solitary wave solutions, and illustrate by exhibiting
explicit necessary and sufficient conditions that a model admit exact sech? solitary wave
solutions. Moreover, we prove that the only fifth order perturbations of the Korteweg-
deVries equation which admit solitary wave solutions reducing to the usual one-soliton

solutions in the limit are those admitting families of explicit sech? solutions.
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1. Introduction.

In the study of equations modelling wave phenomena, one of the fundamental
objects of study is the travelling wave solution, meaning a solution of constant form
moving with a fixed velocity. The determination of such solutions is accomplished by
solving a reduced differential equation in one fewer independent variables. In particular,
the travelling wave solutions for a one-dimensional wave equation are found by solving a
connection problem for an associated ordinary differential equation. Of particular interest
are three types of travelling waves: the solitary waves, which are localized travelling
waves, asymptotically zero at large distances, the periodic waves, and the kink waves,
which rise or descend from one asymptotic state to another. All of these are, in the
completely integrable case, solitons, coming from the inverse scattering solution to an
eigenvalue problem, and depend on a free parameter. On the other hand, the existence of
these types of solutions is not dependent on integrability of the model, or the connection
with an inverse scattering transform method of solution, as evidenced by the (p4 theory,
cf. [37], [38], and examples described here. Except in the simplest instances, it is by no
means obvious that such types of travelling wave solutions even exist. In addition, once
existence is known, the delicacy of the connection problem to be solved makes their

numerical computation rather difficult to effect in an easy, practical manner.

In this paper, we concentrate on the determination of solitary waves, whose
importance for fluids came to the fore with Scott Russell’s experimental observation of
solitary water waves in the Edinburgh canal, [33]. Airy’s premature dismissal of these
solutions based on a linearized analysis of the free boundary problem necessitated the
construction of suitable models exhibiting such solutions. This was accomplished, in the
case of long waves over shallow water, through Boussinesq’s bidirectional models, and,
subsequently, the celebrated Korteweg-deVries model, whose solitary wave solutions are
explicit sech? solutions, which, moreover, have the remarkable soliton property of
interacting without change of form. More recently, Amick and Toland, [4], and others,
[1], [2], [19], have proved existence of such waves for the full water wave problem. For
small amplitude waves, the Korteweg-deVries solitons do a good job of modelling solitary
water waves, [13]. However, the model fails to replicate such important physical
phenomena as having a wave of maximal height, originally conjectured by Stokes, cf. [1],
and the breaking of large amplitude waves. Owing to the difficulty of analyzing the water
wave problem directly, the construction of suitable models is of great importance. One

possible approach is to retain higher order terms in the Boussinesq perturbation expansion,
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leading to fifth order model evolution equations. One of the principal purposes of this
paper is to show that there are definite difficulties with this procedure, in that for most of
these higher order models, solitary wave solutions of the appropriate form do not even
exist! Indeed, this holds for almost all versions of the models derived from the water wave
problem. (An alternative approach would be to employ the two-timing approach advocated
by Segur, [42], and others, in which the higher order terms in the expansion are forced
evolution equations governed by the leading order Korteweg-deVries equation. However,
it is hard to see how the requisite phenomena of maximal height and breaking would
manifest themselves in this approach.)

The present paper is devoted to the analysis of solitary wave solutions to a general
class of scalar fifth order evolution equations; see (2.1) below. We begin by discussing the
various models which are included in this class, such as the fifth order Korteweg-deVries
equations, other integrable equations, water wave models, and models from elastic media
with microstructure. The third section discusses known results on explicit solitary wave
solutions for certain models, numerical results, and a non-existence results of Amick and
McLeod for the critical surface tension water wave model. Next we present a simplified
approach to the determination of explicit monotone travelling wave solutions, which
reduces the fifth order evolution equation to a third order ordinary differential equation.
This leads to explicit criteria for the existence of exact sech? solitary wave solutions,
which imply that these models admit either 0, 1, 2, o0, or o + 1 exact sech? solitary
wave solutions. Here oo indicates a one-parameter family of solutions valid for a range of
wave speeds, and these particular models are explicitly characterized by a pair of simple
algebraic relations on the coefficients. Interestingly, even for fifth order Korteweg-deVries
models, there is the possibility of having more than one solitary wave solution for a given
wave speed, leading to unusual “bound state solutions”. Finally, we present a non-
existence result that says, in essence, that the only models which are perturbations of the
usual Korteweg-deVries equation which possess solitary wave solutions reducing, in the
limit, to Korteweg-deVries solitons are those that have a one-parameter family of explicit
sech? solitary waves. See Theorem 13 for a precise formulation. Our proof relies on a
general method introduced by the first author, [24], in a similar study of breather solutions
of Klein-Gordon equations, which we outline at the end of section 3. Our result does not
completely rule out all solitary wave solutions but only those which reduce to Korteweg-
deVries solitary waves in an appropriate scaling limit; nevertheless it does demonstrate that
“physically relevant” solitary wave solutions do not, in general, exist. This has some

interesting implications for perturbation theories, which we discuss in the final section.



2. Higher Order Model Equations.

We will consider a class of fifth order model evolution equations of the general
form

U + Hug,, +ou + Buu,,

4 —_—
XXX XXXXX +d Uy Uxx + P (u) U =

X

= u + [Huy + uy,, + Buu,, + yu% +Pw], = 0. (21)
Here o, B, 7,6 =27+, and p are assumed to be constants, and P(u) is an analytic
function of the dependent variable. Many of these models require that P be a cubic
polynomial:

P(u) = pu+qu2+ru3, (2.2)

where p, q, r are constants, although this will not be necessary for most of our analysis.
(However, only these models will admit explicit sech? solitary waves.) Note that we can
assume without loss of generality that p=0 by going to a suitable moving coordinate
frame. In the models derived by perturbation expansions, the coefficients in (2.1) will
depend on a small parameter, €, in terms of which p is O(1), g, i are of order €, and
o B, 8 and r of order &2,

The general class of equations (2.1) includes many well-known equations which
have been studied at length in the literature. If the €2 terms are absent, the model (2.1)

reduces to the well known Korteweg-deVries equation

u +pu,+ pu, +2quu, =0, (2.3)

XXX

which serves to model many different wave phenomena requiring a balance between
dispersion and nonlinearity, [33], [46]. Also of note is the modified Korteweg-deVries

equation

u + pu, + puxxx+3ru2ux = 0. (2.4)

Both the Korteweg-deVries and modified Korteweg-deVries equation are known to be
integrable via inverse scattering techniques, [33], [42], [46], the scattering operator for the
Korteweg-deVries equation being the well studied Schrodinger operator L = D2 +v,
where the potential v(x, t) is a suitable multiple of u(x, t), and D =d /dx. In particular,

their solitary wave solutions are solitons, and interact without change of form. Their speed



is related to the value of the associated spectral parameter (eigenvalue). There are additional
integrable models included in the class (2.1). The particular parameter values

10

B:%Ka, 8 = 3 xa, r=15—8‘C2°" q = 5 KU, (2.5)

N —

where K # 0, describe a four-parameter family of integrable fifth order Korteweg-deVries
equations, [33], which are soluble by the scattering problem associated with the same
Schrodinger operator. (More accurately, the models given by (2.5) are linear combinations
of purely fifth order (corresponding to the parameter o) and third order (corresponding to
the parameter p) Korteweg-deVries equations.) The Sawada-Kotera equation, [41],

u U, + 30uu,, +30u u  + 180uu, = 0, (2.6)
and the Kaup equation, [21],
u U, + 30uu,, +75u u_ + 180uu, = 0, 2.7)

are also known to be integrable, being associated with the scattering problem for the third
order operator M = D} +vD+ w, cf. [21]. For the Sawada-Kotera equation, v==6u,
and w =0, whereas for the Kaup equation v=6u and w =3 u,. However, in contrast
to the higher order Korteweg-deVries equations, one cannot add in third order terms to

these equations without destroying their integrability.

Other models of the general form (2.1) which are (almost certainly) not integrable
also arise in applications. In [34], [35], the second author proposed certain special cases of
the general fifth order model (2.3) as models for the unidirectional propagation of shallow
water waves over a flat surface. (See [29] for extensions which include bottom
topography.) These arose from two sources: first as the second-degree correction to the
standard Korteweg-deVries model for the unidirectional propagation of long waves in
shallow water arising in the Boussinesq expansion for the full water wave problem.
Second, using a general theory of non-canonical perturbation expansions of Hamiltonian
systems, these types of models appear as “Hamiltonian versions” of the Korteweg-deVries
model, incorporating the correct first degree expansions of both the water wave
Hamiltonian functional (energy) and the Hamiltonian operator. Indeed, whereas the full
water wave problem admits a Hamiltonian structure due to Zakharov, [50], and the
Korteweg-de Vries equation admits two distinct Hamiltonian structures, [36], neither of
these matches the perturbation expansion of Zakharov’s structure. Alternatively, one can



verify that the first order perturbation expansion of the water wave energy functional is not
conserved under the Korteweg-deVries flow. The Hamiltonian models attempt to rectify
these unexpected difficulties. In the water wave models, u(x,t) represents either the
surface elevation, or the horizontal velocity measured at a fraction 0 <6 <1 of the
undisturbed fluid depth. There are two small parameters, called a, B in [34], [35], but, to
avoid confusion, we denote them here by €, which measures the ratio of wave amplitude
to undisturbed fluid depth, and x, which measures the square of the ratio of fluid depth to
wave length. In the shallow water regime, € and k are assumed to have the same order
of magnitude. The Bond number, which represents a dimensionless magnitude of surface
tension, is denoted by 1. In all models, the leading order (Korteweg-deVries) terms are all
the same:

3
p =1, L= X S q= 7€, (2.8)

representing a Korteweg-deVries equation except when the Bond number has the critical
value T = % (See below.) The models differ only in the higher order terms, which take
the following forms:

u = horizontal velocity at depth 6; second order model

K219-301-45¢2 5-31 53-360%2_391
o = 360 ,BzKET, d =xe 24 ,r:(),(2.9)

u = horizontal velocity at depth 6; Hamiltonian model

2 (5-662-37(2-367) _53-660°-2T1
a = - 18 ’ B_ K€ 24 ’
139 - 168 8281 1 15
§ = ke 57 , 1= -3 g2, (2.10)

u = surface elevation; second order model

19301451 5-61 23+151 1
o = K 360 , BZKET, SZKET, I'=—§82,(2.11)
u = surface elevation; Hamiltonian model
1-31 ~30d-37 5 2
o = 0, B = g KE, 8———8——1<8, r= 35 €. (2.12)



((2.12) corrects an error in [35; eq. (4.28)].) It is interesting to note that none of these
models is integrable, except the Hamiltonian model (2.10) for the horizontal velocity at the

\ ’ 11 3
0 = 7 — 4% > (2.13)

where the model turns out to be a fifth order Korteweg-de Vries equation. (This formula

particular “magic depth”

corrects a misprint in reference [35].)
The model

u +pu, + Hu +2quu, + au =0, 2.14)

XXX XXXXX

arises in the study of water waves with surface tension in which the Bond number takes on
the critical value t= %, where the Korteweg-deVries model no longer applies, cf. [18].
The particular case p =W =0 arises in both magneto-acoustics and nonlinear transmission
lines, cf. [31], [49]. The equation

U + pu, + Puy,, +ou

XXX uu

o —20 U = 0, (2.15)

XXXXX

was proposed by Benney, [6], as one possible model for the interaction of short and long
waves. Third order models of the form

2

u +u, +lu,, + 2quu, + Buu,, +du,u, +3ru‘uy = 0, (2.16)

X

in which B =208#0, r=0, were proposed by Kunin, [28, §5.3], in his study of elastic
media with microstructure. Note that the Hamiltonian model (2.12) for water waves is of
this type, but with B =3 0 # 0, as are both second order models (2.9), (2.11) at the
particular Bond number T = 2 V30 - % =.3970, and the Hamiltonian model (2.10) at

15
depths 62 =§- or 2 — Lt Additional models of the form (2.1) have been derived for

6 2
weakly nonlinear long waves in a stratified fluid, [14], and free surface waves over

rotational flows, [12].

Incidentally, the theory of Kodama, [25], shows that all such fifth order equations
with a#0, and P(u) a cubic polynomial, can be recast asymptotically into canonical
form as fifth order Korteweg-deVries equations under an appropriate change of variables.
Thus, in a certain sense, all the models (2.1), (2.2) are “approximately integrable”,

although this remark does not imply much in the way of rigorous results for them.



Very recently, Ponce, [39], has proved that the initial value problem for (2.1),
(2.2), is locally well-posed in any Sobolev space H*(R) for any s> 4. Specifically,
Ponce proves the following result.

Theorem 1. For any uje H5(R) with s >4, thereexistsa T >0 and a unique
strong solution u(x, t) in the space C([0, T], H¥) N L2[0, T}, Hlsgcz ) of the initial value
problem (2.1) with u(x, 0) = uy(x).

3. Solitary Wave Solutions.

We now review known results concerning solitary and other travelling wave
solutions to particular models of the form (2.1). We begin by discussing the known
explicit solutions to these equations.

First recall that the Korteweg-deVries equation, modified Korteweg-deVries
equation and the class of fifth order Korteweg-deVries equations (2.5) all possess explicit
sech? solitary wave solutions for all wave speeds ¢ > p = P’(0). The amplitude of these
waves is proportional to the wave speed. If q /i >0, then the solitary wave is a wave of
elevation, whereas if q /L <O itis a wave of depression. The Sawada-Kotera equation
(2.5) also admits sech? solitary wave solutions for all wave speeds ¢ >0, cf. [30]. On
the other hand, the Kaup equation (2.6) has solitary wave solutions of the anomalous form

2a%(2cosh2&+1)

L eSS AR £ =ax - l6at. (3.1)

Again, these exist for a range of wave speeds ¢ =16 a*>0.

For the model (2.14) for water waves at critical surface tension, provided o 1 <0,
Yamamoto and Takizawa, [48], produced an explicit solitary wave of depression in terms
ofa sech® function:

105 p? 36 2
u(x,t) = — 138 i sech? ‘\/ - 5—;— {x + (p + 169“ Jt } . (3.2)
aq o o

This solution was also derived by Hereman et. al., [15], using a more systematic

procedure, and, much later, also by Huang er. al., [16]. This “anomalous” solitary wave

solution is quite surprising; it only appears for one particular (positive) wave speed:
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c=-36 uz/ 169 .. It is unclear whether this solution has any physical meaning. (Other
similar “anomalous” sech? solitary wave solutions will be determined for many of the
models (2.1), (2.2) in section 6.) Of less direct relevance to our results, but still of
interest, Hunter and Scheurle, [17], proved the existence of travelling waves to the model
(2.7) that bifurcate from Korteweg-deVries solitons, but are no longer decreasing as
| x| —> oo, having small but finite amplitude oscillatory tails.

Kawahara, {22], claims to numerically establish the existence of “oscillatory
solitary wave” solutions to the model (2.14), and Nagashima, [31], in the case p=pu =0,
“establishes” their existence experimentally (!). Also, Zufiria, [51], in the context of the
water wave problem, while more concerned with periodic travelling wave solutions, does
investigate “approximate solitary waves” for this model, and concludes that they are not
unique. However, Amick and McLeod, [3], have, using powerful complex-analytic
methods, rigorously proved that the model (2.8) does not possess a solitary wave of
elevation for oL >0, with o sufficiently small. (Note that this result does not exclude
the exact solitary wave (3.1). See also Hunter and Scheurle, [18], for a less rigorous
version.) It appears to be quite difficult to extend this technique to the more general models
considered in this paper, especially in view of the fact that, for certain models, solitary
wave solutions do exist. Amick and McLeod’s result implies that Kawahara and Zufiria’s
numerical solutions cannot be correct, and we propose an explanation for such numerical
results in section 8. Indeed, many numerical procedures for finding such waves are, in our
opinion, rather suspect, as most of the nonexistence results are of the “exponentially small”
variety, i.e. to all orders in € a solitary wave can be shown to exist, but one suspects that
exponentially small terms (like e~ 1/ %) prevent its final establishment. See Byatt-Smith,
[10], Kruskal and Segur, [27], [43], and Troy, [44], for other problems of this type.

Numerical schemes are hard pressed indeed to discover such exponentially small errors!

In the third order model (2.16), which includes Kunin’s third order models for
elastic media and some of the water wave models, the equation for solitary waves can, in
certain cases, be integrated directly, and one has the intriguing phenomenon of a wave of
maximal height, reminiscent of the Stokes phenomenon (although the maximal height
waves for these models exhibit cusps rather than corners). Indeed, for the full water wave
problem, Amick and Toland, [4], have proved the existence of monotone solitary wave
solutions of small amplitudes up to a maximal height wave with a 120° corner for the
problem in the absence of surface tension. (For large values of surface tension, meaning

Bond number t >% , Amick and Kirchgéssner, (2], and Sachs, [40], have proved the



existence of monotone solitary wave solutions, while very recent results of Iooss and
Kirchgissner, [19], and Beale, [5], demonstrate the existence of solitary wave solutions
with damped oscillatory tails for 0 <1 < % .) See also the papers of Wadati, Ichigawa and
Shimizu, [45], and Kawamoto, [23], for other types of model equations exhibiting limiting
cusp waves. Itis an interesting question whether any of the fifth order models exhibit such
phenomena. Also, the behavior of large amplitude waves (including the possibility of
breaking) in these models is not known.

Finally, we mention papers by Yamamoto and Takizawa, [47], [48], and Kano and
Nakayama, [20], which exhibit other types of travelling wave solutions, including periodic
waves and solitary sech?  waves approaching a nonzero asymptotic value as
X —> * eo. (These can, of course, always be transformed into “genuine” solitary wave
solutions, with zero asymptotic limits, to a different model of the same basic form (2.1) by
subtracting a suitable constant from u.)

Our own results include the following existence and non-existence criteria. First,
we exhibit explicit conditions that a model of the form (2.1) possess a sech® solitary wave
solution. First, for such solutions to exist, P(u) must necessarily be a cubic polynomial,
(2.2). Interestingly, the parameter space (o, B, d, 1, p, q, 1) splits into five regions: three
of these are relatively open subregions in which there are, respectively, two, one or no
exact sech? solitary wave solutions. In the first and second regions, most models have
such a solution for a unique, or precisely two, possible wave speeds, similar to the
anomalous sech® solution to the model (2.8). Secondly, we prove that there are two
algebraic relations that must be satisfied by the coefficients in order that the model admit a
one-parameter family of sech? solitary wave solutions for a range of wave speeds. This
family includes the higher order Korteweg-deVries equations, (2.4), the Sawada-Kotera
equation (2.6), and the Hamiltonian water wave model (2.10) at the particular depth (2.13),
but also many other (presumably non-integrable) equations as well. This leads to the two
further regions, each of codimension 2, in which there is either a one-parameter family of
sech? solitary wave solutions, or such a family plus a single anomalous sech? solitary
wave solution. These results reconfirm the idea that solitary waves may arise
independently of the model being integrable. (Also, since the Kaup equation (2.7) admits a
one-parameter family of solitary wave solutions for a range of wave speeds which are not
sech? solutions, one must exercise a bit of caution in drawing unwarranted conclusions
from this result!)

10



Finally, assuming [ o q # 0, and introducing a small parameter € representing
the departure of the models from the Korteweg-deVries equation, we prove that the only
models which admit solitary wave solutions which are perturbations of the corresponding
Korteweg-deVries solitons, and satisfy certain analyticity conditions, are the models which
satisfy these same algebraic relations. Thus the only physically relevant solitary wave
solutions which can exist are always given by sech? functions! In outline, our non-
existence result is proved in two basic steps, similar to earlier work of the first author on
the nonexistence of breather solutions to a general class of nonlinear Klein-Gordon
equations, including the (p4 equation and the double sine-Gordon equation, [24]. We first
establish the existence of “solitary wave tails”, i.e. travelling wave solutions which decay
exponentially fast at either + oo or — oo, by proving the convergence of the appropriate
formal power series solution. The second step in the proof is to match this solution with a
formal asymptotic expansion of the solution starting with the one soliton solution of the
Korteweg-de Vries equation obtained by omitting the fifth order terms in the model. We
then show that, by analyzing the poles of this solution in the complex plane, the second
series cannot converge to a true solution, and so we conclude that such a solitary wave

solution does not exist. The details will become clearer in the subsequent discussion.

4. The Equation for Travelling Waves.

We begin by recalling the elementary method for reducing the problem of travelling
wave solutions to an evolution equation such as (2.1) to a connection problem for an
ordinary differential equation. A travelling wave solution is just a solution of the particular
form

u=ul) =ux-ct, 4.1

where c is the wave speed, and £ =x-ct is the characteristic variable. Substituting the

ansatz (4.1) into (2.1), we are led to look for solutions to the fifth order ordinary
differential equation

auuu/ + (Bu+“) un/ + 611,11” + [P(u)_cu]’ = 0, (42)

where the primes indicate derivatives with respect to . Any solution u(§) of (4.2) thus

provides a travelling wave solution to the original evolution equation (2.1). The ordinary

11



differential equation (4.2) can be integrated once, so we effectively have a fourth order
equation

777

au”” + Bu+pwu” + yu? + Qu) = 0, (4.3)
where
Qu) = Pw) —cu-4d, (4.4)
with d being a constant of integration.

Consider the case of a localized travelling wave solution, meaning one which is
asymptotically small at large distances, so u—> 0 as §—— + o. Note that this requires
Q(0) =0, which fixes the constant of integration d. As it stands, (4.3) is still invariant
under the group of translations in & (and so could be integrated once more, [36; §2.5])
and the discrete reflection & — — . One way to get rid of this ambiguity is to assume
that the wave has its crest (or trough) at &, =0, and is symmetric with respect to the crest,
which means that u is an even function of §. Thus we have a fourth order boundary
value problem on the half line {& > 0}, with boundary conditions

w0 = v’0) =0, and u@E) — 0, & —> +oo. (4.5)

As it stands, it is by no means obvious how to solve the nonlinear connection problem
(4.3), (4.5); in particular, the two boundary conditions at & =0 define too small target to
try to aim for with a standard shooting approach. This already strongly indicates that,

barring exceptional circumstances, the existence of solitary wave solutions will be rare.

5. An Equation for Monotone Solitary Waves.

We introduce a effective direct method for determining explicit “monotone” (see
Definition 2 below) travelling wave solutions to general one-dimensional evolution
equations, reducing the fourth order boundary value problem (4.3), (4.5) on the half line to
a (singular) third order “initial value problem”. The method could also be used to
effectively compute solitary and periodic waves (when they exist) numerically, although we
have not tried to implement it. (In fact, the method was originally developed by the second
author in a failed attempt to prove general existence results concerning solitary wave
solutions to these models!) It draws its inspiration from a paper by Kano and Nakayama,

12



[20], in which they showed the existence of explicit periodic solutions involving
combinations of elliptic functions to certain particular fifth order models by proving that
one could determine a suitable polynomial solution w to the reduced equation; see also
Krishnan, [26], where a similar method is applied to systems of Boussinesq type. Our

method is much more direct and easier to implement than that of Hereman ez. al., [15].

Definition 2. A monotone solitary wave solution is a localized travelling wave
solution, i.e. u—> 0 as §—> * oo, which is monotone on the open intervals (- o, §y),
(€, =), and symmetric about the point ;. The solitary wave is a wave of elevation
(depression) if u is monotone increasing (decreasing) on (o, &), in which case
uy = u(§) is called the crest (trough). A monotone periodic wave solution is a travelling
wave solution which is periodic in &, is monotone on the intervals between crests and
troughs and is symmetric about any crest or trough. A monotone kink wave solution is a
travelling wave solution which is monotone one the entire real line and approaches limiting

values at large distances, so u—u; as §— —o0, and u— u, as E— oo

Rather than try to look directly for the required solution u(§), we assume that it
can be reconstructed as the solution of the simple first order ordinary differential equation

n? = w(u), v o= du , (5.1)

dg

where w(u) is a function to be determined. Clearly, once the function w(u) is known,
equation (5.1) can be solved explicitly for u(§) by a simple quadrature:

u _dv.
2 Yol E+k. (5.2)

Examples of solutions which have this form are the soliton and cnoidal wave solutions of
the Korteweg-deVries equation, [46; §13.12], where the function w(u) is a cubic
polynomial. In particular, if u(€) is a monotone function on a given interval, the function
w(u) is defined implicitly by the relation (5.1).

The key is the behavior of the function w(u) near its zeros. A simple zero will
correspond to a crest or a trough, while a double zero will provide an asymptotic
exponential tail for u(§) near e or — oo, Thus, a solitary wave solution will correspond
to a positive solution w(u) between a double zero at u =0 and a simple zero at the crest
or trough u,. (See Figure 1). Similarly, a periodic wave solution will correspond to a
positive solution w(u) between two consecutive simple zeros, (Figure 2), while a kink
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solution has two consecutive double zeros, (Figure 3). We thus have the following useful

criterion for the existence of monotone travelling wave solutions to such models.

Proposition 3. Let w(u) be an analytic function of u, which is positive on the
interval uy <u<uy, with w(ug) = w(u;) =0. Let u(§) be the corresponding solution to
the first order ordinary differential equation (5.1). If uy and uy are simple zeros of w,
then u is a monotone periodic travelling wave, oscillating between a peak u; and a trough
up. If Uy is a double zero and u; a simple zero of w, then u is a monotone solitary
wave of elevation with peak u; and asymptotic value ug at * . Conversely, if u; isa
double zero and ug a simple zero of w, then u is a monotone solitary wave of
depression with trough u, and asymptotic value u; at *oo. Finally, if uy and u; are
both double zeros of w, then u is a monotone kink wave with asymptotic values uy), u;

at oo (either going from u; to u; or the reverse, by the reflectional symmetry).

Using the ansatz (5.1), we substitute into the ordinary differential equation for the
travelling wave solution u(y), and thereby obtain an ordinary differential equation for the
function w(u) of order one less than that for u. The goal is then to determine suitable
solutions w(u) (f any exist) of this reduced ordinary differential equation. Differentiating
our basic equation (5.1), we find that, as long as u’# 0,

u? = w,
"o _ l ’
u” = o w,
e 1 17
u'u” = o oww?,
7y l WW/I/ + l W/ WI’
2 4 ’

where the primes on w indicate derivatives with respect to u. Substituting into (4.3), we

deduce that w must satisfy the third order ordinary differential equation

AR

{2ww"’+w’w"}+%(Bu+u)w’+yw+Q(u):0. (5.3)

Any solution to the equation (5.3) will implicitly determine a special travelling wave
solution to the original wave equation (2.1) via the integral (5.2). In particular, for a
monotone solitary wave solution to the original equation, we need to find a solution w(u)
to (5.3) satisfying the initial conditions
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w() = w'(0) =0, w’0) >0, 5.4
is positive, w(u) >0, for u between 0 and a#0, and
w(a) = 0, w'(@) # 0, w’(a) < . (5.5)

In this case a will be the amplitude (crest or trough depending on the sign) of the solitary

wave.,

6. Exact Solitary Wave Solutions

In certain special cases, we can use the representation (5.1) to easily find exact
sech? solitary wave solutions to our original evolution equation (2.1).  For a solitary
wave solution of the specific form

u(x,t) = asech®A(x —ct), A>0, (6.1)

the corresponding function w(u) must be a cubic polynomial:

w(u) =47»2(u2—§u3) = put+ou’, (6.2)
where
422
p=4k2>0, (5=—T¢0, (6.3)

are constants to be determined from the equation. Note that since a=—p / o, we see that
0 <0 gives a wave of elevation, and ¢ >0 a wave of depression. Substituting (6.2) into
(5.3), we first deduce that Q(u) (and hence P(u)) must be a cubic polynomial,

Qu) = (p-c)u + qu® + ru’, (6.4)

with Q(0) =0, cf. (2.2), (4.4). Moreover, the coefficients p and ¢ must satisfy three
polynomial equations:
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ap?+pp+(p-c =0, 6.5)
I5apc +2B+y)p+3pc+2q =0, (6.6)
1500+ BB+296 +2r = 0, 6.7)

arising as the coefficients of the powers of u in (5.3). The fact that the solution p of the
indicial equation (6.5) must be positive places certain inequality constraints on the wave
speed ¢ depending on the relative signs of the coefficients a, 1. As long as we also have
a nonzero solution ¢ to (6.7), then (6.6) imposes a single compatibility condition among
all the coefficients of the evolution equation (2.1) and the wave speed c. As we will see,
this implies that there are three open regions in parameter space (coordinatized by a, B, ¥,
L, p, q, 1) where the model (2.1), (2.2) has precisely 0, 1, or 2 sech? solitary wave
solutions, for a particular value of the wave speed c.

For a special five-parameter family of models, there is actually a continuum of
sech? solitary wave solutions for all sufficiently large wave speeds. Note that according to
(6.5), p will depend on the wave speed c, whereas (6.7) implies that ¢ does not.
Therefore, if the compatibility condition (6.6) is to hold for a range of wave speeds, the
coefficient of p and the constant term must lead to the same equation for 6. We conclude
that the models for which this occurs are those for which

B+YH = 5qa and IS5ar = BB+y). (6.8)

In particular, the four-parameter family of integrable fifth order Korteweg-deVries
equations (2.5), and the Sawada-Kotera equation, (2.6), both satisfy these constraints.
However, these do not exhaust all the models satisfying the constraints (6.8); presumably
most of the others are not integrable. (Although the Kaup equation, (2.7), has a continuum

of solitary wave solutions, they are not of sech? type, and so it is in a different class.)

For these particular models, the nature of the sech? solitary waves, which comes
from an elementary analysis of the conditions for (6.5), (6.7) to admit real solutions p, G,
and the resulting signs, is of interest. Since the wave amplitude is given by the formula
a=3up/(2q), and p>0, if qu > 0, then the solitary wave is a wave of elevation,
whereas if q p <0 itis a wave of depression, as in the Korteweg-deVries case (2.3).
Substituting into (6.5), we deduce the following quadratic equation relating wave speed
and amplitude:
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4aq?
c = —3a2+%qa+p, signa = signqu. (6.9)
Iu

If oo >0, then there is a unique solitary wave for each supercritical wave speed ¢ > p.
However, if o and L have opposite signs, then besides these supercritical sech?
solutions, there is a non-zero sech? solitary wave at the critical wave speed ¢ =p, and
two distinct sech? solitary waves for the range of subcritical wave speeds between
p and p—p?/(4 o), reducing to a single wave of amplitude a"=—3u*/(4daq) atthe
limiting wave speed ¢ = p— u2 / (4 o). Figures 4 and 5 graph the different possible
relationships (6.9) between wave speed and amplitude for the one-parameter family of
sech? solutions to the models satisfying (6.8).

The elementary observation that a model of the form (2.1) can admit more than one
distinct solitary wave solution for a given wave speed does not appear to be well known,
even for the integrable fifth order Korteweg-deVries models. In this particular case, this
result can be also detected using the associated scattering problem as follows. The Lax pair
for such an equation takes the form L, =[B, L], where L is the usual second order
Schrodinger operator, and B=u By +aBg=1 Li/z +a Li/ 2 is a linear combination of
the third and fifth order operators giving the homogeneous third and fifth order Korteweg-
deVries equations. The eigenvalue for the soliton is constant, and the associated norming
constant has the time dependence m(t)2 = m(O)2 exp 8t T]3 - ns]. The corresponding
wave speed is then ¢ =(8 n3 - nS) / 2 1. Thus, we can clearly have ranges of wave
speds for which there are two distinct sech? solitons travelling at the same speed. Note
that the corresponding two-soliton solution for two such waves represents a bound state
with two humps travelling at the same speed. This phenomenon is reminiscent of the
construction of bound states to the sine-Gordon equation, consisting of several solitons
with phases having speeds with the same real part, the sine-Gordon breather being an
example. However, the present property is much stronger, and its appearance for the fifth
order Korteweg-deVries equation is, we believe, a new observation. Note that similarly,
one can arrange bound states for linear combinations of higher order Korteweg-deVries

equations to have any number of desired humps travelling in tandem.

Let us summarize our general results completely characterizing models admitting
exact sech’ solitary wave solutions. The different possibilities are: 0, 1 or 2 exact
sech? solitary wave solutions, a one-parameter family of sech? solutions, or a one-

parameter family along with a single additional exact sech? solution. The first three occur
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on relatively open subsets of parameter space, whereas the latter two occur on parts of the
boundaries between these subsets.

Theorem 4. Consider the model evolution equation (2.1), assuming o # 0. If
P(u) is not a cubic polynomial, then the model has no exact sech? solitary wave
solutions. If P(u) is given by (2.2), then we define

{=@3Bp+279> - 120ar, (6.10)

so that (6.7) has 0,1 or 2 real roots

_—6B+29 L
30 o ’

G, O, (6.11)

according to whether { is negative, zero, or positive. If r# 0, the real roots are nonzero;
if r=0, one root, namely 6; =-— (3B +27Y) /815 o), is nonzero unless B=- %y also.
Then the model (2.1), (2.2) will have 0, 1, or 2 exact sech? solitary wave solutions for
each nonzero real root ©; which also satisfies

3uc; +2q

v, = 1500; +2(B+y) # 0, pp=—— >0. (6.12)

Vi

Finally,if B+yY)u=5qa, and 150ar=f (B +7), then the model has a one-parameter
family of exact sech? solitary wave solutions valid for a range of wave speeds
corresponding to the first root 6, =—2 (B +7) / (15 o). Moreover, if yY# 0, the second
root G, =—PB/(150) givesrise to a single additional exact sech? solitary wave solution
provided Py, as defined by (6.12), is positive.

Example 5. The only possible water wave model which has a one-parameter
family of exact sech? solitary wave solutions, i.e. satisfies the conditions (6.8), is the
Hamiltonian model (2.10) at the particular depth (2.13). Otherwise, these models all fail to
* have families of sech? solitary wave solutions of the requisite type. However, Theorem 4
implies that many of the water wave models admit one or two anomalous sech? solitary
wave solutions. The precise numerical values for which the different possibilities occur are
rather strange; we will just summarize the results, which were deduced with the help of
MATHEMATICA. First, in the case of the second order depth model (2.9) provided o # 0,
i.e. except for the particular Bond number 1= (230 - 5)/ 15 = .3970, the model
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admits a single exact sech? solitary wave solution unless 3 3 +2 v =0, which occurs
when 1 = (73 - 36 82) / 51. For

230-5 73 - 36 62
<T< 15 or T>T

the anomalous solitary wave is a wave of elevation, while for

2430-5 73 — 36 62
15 <T <731

it is a wave of depression.

Similarly, for the second order surface model (2.11) there are one or two exact
sech? solitary wave solutions provided ot#0, and >0, which requires

419866 — 249 230-5
0< 1< = 9453, T# ——— = .3970.
333 15
On the range
V85 +5 V23377 -91
—35 = 4740 < 1 < —im = 6068,

there are two anomalous solitary wave solutions; otherwise there is just one. In all cases,
these are waves of elevation. The Hamiltonian depth model (2.10) also admits exact
solitary wave solutions for various ranges of values of the Bond number and depth, but the
results are too complicated to warrant including here. We are not sure of the physical
significance (if any) of such exact solutions.

7. Existence of Solitary Wave Tails.

We now turn to consideration of more general types of solitary wave solutions. We
begin by proving the existence of “solitary wave tails”, meaning solutions to the ordinary

differential equation (4.3) for travelling waves with the correct asymptotic behavior at + oo,
First, let

Q) = z 4 U™ . (7.1)
m=1
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be the power series expansion of Q at u=0. (Note that Q(0) =0 is necessary for the
existence of an asymptotically decreasing solution to (4.3).) If P(u) is a cubic of the form
(2.2), then

q; = p-¢, 4 = q, qz3 =T, q =0, m>3, (7.2)
where c is the wave speed.

Definition 6. A solitary wave tail is an exponentially decreasing solution u(g) to
the equation for travelling waves with asymptotic expansion

u@) ~ u e 9% 4 uze_zeg + u3e_3e§ + ., (7.3)

with 6 >0, which converges for & sufficiently large.

Of course, we can also discuss solitary wave tails at § = — oo, but these are found
by using the reflectional symmetry replacing & by —&. We can also consider “oscillatory
solitary wave tails”, i.e. convergent expansions of the form (7.3) with 6 complex and
Re 8 > 0. Our convergence proof will work more or less the same in this case, but we will
just concentrate on the real exponentials for simplicity.

The existence of such an expansion leads to immediate restrictions on the exponent
0 and the coefficients in the model. These result from analysis of the balance equations
obtained by substituting (7.3) into (4.3), and equating terms in the various exponentials
e ko g, k=1,2,3,.... The first few of these are easily found.

€%  (af*+p62+q)u =0, (7.4)
e 295 (1606* +4p02+q)uy + [B+7)02+qy]ul =0, (7.5)

e 308, (810(64+9u(92+q1)u3 +
+ [(SB+4Y) 0% +2gylujuy + qau3 = 0. (7.6)

Since u; #0, (but is otherwise arbitrary), the first balance equation leads immediately to
the indicial equation

06 +n62+q, = 0. (7.7)

The existence of positive real solutions 6 to the indicial equation (7.7) places constraints
on the coefficients a, |, q; of the linearized model in order that exponentially decaying
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solutions can exist; see Theorem 7 below. Assuming these hold, we eliminate g, using

(7.7), and the balance equation resulting from the coefficient of ™" 9% takes the form

(> +1)ob* +pe?)u, = ¥ (7.8)

n°:?

where ¥, is a (complicated) polynomial involving the coefficients of the equation and the

previous coefficients uy, ..., u, . Therefore, as long as the non-resonance condition
M+ Dab?+p # 0, n=23,.., (7.9)

holds for the root 6 of the indicial equation, we can solve recursively for all the
coefficients u,, n =1, 2, ..., in the expansion (7.3) and thereby determine a formal
solitary wave tail for the equation. Note that if a and p have the same sign, then the
non-resonance condition (7.9) automatically holds. The resonant case is quite intriguing,

but we have not investigated it in any detail, and leave it aside in what follows.
Note in particular, if u(§) =a sech? ), €, then

0 =-2A, u; = 4a, u, = —-8a, u; = 12a. (7.10)

Substituting (7.10) into the three balance equations (7.4), (7.5), (7.7), and using (7.2),
(6.3), we recover our earlier three equations (6.5), (6.6), (6.7) relating the equation
parameters and the solitary wave parameters a, A. Thus, we can deduce our earlier
parameter restrictions for the existence of sech? solitary waves by an alternative procedure
based on the asymptotic expansion at ee. However, in contrast to the earlier direct method,
this does not prove that the sech? wave is actually a solution to (4.3), since we must also
verify the higher order balance equations. Remarkably, these are all satisfied; see section
8. This observation strongly indicates that only the first three balance equations are
important for solitary waves, a fact borne out in the following section.

Theorem 7. Consider the model (2.1), and let Q(u) = P(u) — ¢ u — P(0). If any
one of the conditions a) o Q’(0) <0, b) apn <0 and Q(0)=0, ¢) o u <0 and
40 Q(0) = uz, or d) o =0 and p Q’(0) <0, then there exists a unique solitary wave
tail (7.3) provided the nonresonance condition (7.9) holds. If 0 <4 o Q’(0) < uz and
o U <0, then, again provided the nonresonance condition (7.9) holds, there are two
solitary wave tails. In all other cases there are no convergent analytic exponentially
decreasing solitary wave tails.
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The conditions of Theorem 7 place restrictions on the possible wave speeds ¢ for
which there is any possibility of a solitary wave solution decaying exponentially fast to O
at + . In the case o >0, for a unique asymptotic tail, we need the usual condition that
the wave speed be supercritical: ¢ > p =P’(0). (For the water wave models, this gives the
standard result that the wave speed of a solitary wave (if it exists) must be larger than 1.)
However, if o and i have opposite signs, there is the possibility of non-unique solitary
wave tails for some subcritical wave speeds ¢ < p. Indeed, this corresponds precisely to

what we observed in Section 5 for the cases where explicit sech? solutions exist.

Proof of Theorem 7.

Rather than work with the formal asymptotic expansion for u(§) directly, , it turns

out to be simpler to employ the method introduced in section 5. We let w(u) = u’? and
prove that there is a convergent power series expansion
w(u) = Z wkuk = w2u2 + w3u3 + ..., (7.1
k=2
for w at u =0, which solves the third order equation (5.3) with the initial conditions
w(0) = w'(0) = 0, w’(0) = 2w, > 0. (7.12)

It is easy to express the coefficients w, of w in terms of the coefficients u; of u; in
particular w, = 62, Clearly, proving the existence of such an analytic solution w will
imply that the corresponding solution u(§) will have a convergent series expansion (7.3)
which is exponentially decreasing as & —> . Substituting (7.11) into (5.3), we find that
the only constant term is Q(0), which must necessarily vanish. The terms involving the
first power of u give our by now familiar indicial equation

aw%+uw2+q1=0, (7.13)

cf. (6.5), (7.7). Assuming that we have a positive solution Wy to (7.13), (cf. the
hypotheses of the theorem), we construct the corresponding power series for w
recursively. The coefficient of u™, m=>2, in (5.3) is
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a(G-D3G-2) .. .
2 0 2(] [le—l Wj+ lwle—l] +
i+j=m+4

>3, j23

+ +1
P m Wy, Hém ) Wine] +yw, +q, = 0.

Extracting the terms involving w_,; from the sum, we find the recurrence relation

m
ocZk(k—1)(m+k—l)wkwm_k+3+2(Bm+27)wm+4qm
k=3
W= . (1.14)
m+1 2 (m+ 1) [ 0wy (m? + 1) + ]

Since w, = 62, the denominator does not vanish owing to the non-resonance
condition (7.9), so we can continue to implement the recurrence relation (7.14), and thus
construct a formal series solution to (5.3) with the prescribed initial conditions (7.12). We
now need to prove convergence, which will follow from the next lemma.

Lemma 8. Let w, = 62 be a positive root to the indicial equation (7.13).
Assume that the non-resonance condition (7.9) holds, and let w, m >3, satisfy the
recurrence relation (7.14). Then there exist positive constants A and M such that

AMm—3
ml < 7 m
m

v
W

|w (7.15)

Proof.

Given the convergent power series expansion (7.1) for Q, we know that there

exists a number R > 1 such that the coefficients of the expansion satisfy the inequality

lq,| < R™, forall m > 1. (7.16)

The non-resonance condition implies that there exists a constant K > 0 such that
the inequality

m?+m < 2K |owy(m?+ 1)+ | (7.17)

is valid for all m > 3. Thus, we have the following estimate on the denominator of (7.14):
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) (m+1)2m
2(m+1)|0tw2(m +1)+um| > —K‘— (718)
Define the following constants:

) 2 4R3
A=9|W3l, M =K max{ &« (XA,E(|B|+|’Y|),T,R . (719)

A straightforward induction, starting at m = 3, will prove the validity of (7.15). We
estimate all of the terms in the numerator of (7.14) in turn. For the summation, we have

m m 2 nam=3
AM™  k(k-1)(m+k—1)
k(k-1)(m+k—1) |w| |W 3] €
Zg m-k+3 kz:; K2 (m -k + 3)
2 m=3 m+k
<
< A*M P
k=3
m=3 2m-—j
2\ m=3 -
< A°M™ Z 5
j=0
S -
3
A m M™2
< —
3Ka

For the next two terms, we find, since m 2 3,

2A (B m+2|y))M™3

m2

2(IBl m+2[y]) [wy| <

L 2Am(Bl+]yhM™  AmM™?
- 9 - 3K

and, by (7.16),

A m M™2

4 < 4R™ < 4R3M™3 < ,
|dpm | 1%

24



both following from the definition (7.19) of M. Substituting these three estimates and
(7.18) into (7.14) easily proves the inductive step for the inequality (7.15).

8. Non-existence of solitary waves.

Having dealt with existence of explicit solitary wave solutions to particular types of
the general model (2.1), we now turn our attention to a non-existence result. We begin by
explicitly introducing the small parameter € into our model, and restrict our attention from
the beginning to models in which P(u) is a cubic polynomial. However, this restriction is
inessential, and, coupled with the results from Theorem 4, we can deduce that only in this
case is there any possibility of suitable solitary wave solutions existing. In the physical
models of the form (2.1), (2.2), there is a small parameter €, relative to which the
translation coefficient p has order 1, the Korteweg-deVries terms have coefficients U, q
of order €, and the fifth order terms have coefficients o, B,y (or 8), and r of order
g2, We also assume that i, q, and o are all non-zero, so that the model is truly fifth
order, and, moreover, reduces to a Korteweg-deVries equation when the 0(82) terms are
neglected. We are interested in the behavior of solutions in the limit € — 0, but this is
rather trivial since all the terms except the translation will scale out, and everything will
reduce to 0. Rather than this, we need to introduce a rescaling of the equation in which the
fifth order terms still have order 82, but the translation and Korteweg-deVries terms are of
order 1, and compare these solutions in the €— 0 limit. In terms of the physical limit,
then, we expect the solutions to be order g2 perturbations of the corresponding Korteweg-
deVries solutions, which are themselves of order €. Note that, in this limit, the velocity of
a Korteweg-deVries soliton has order ¢ =p + 0(82).

We begin with the once-integrated equation for travelling waves (4.3), which,
using (2.2), we write in the form

1777 4

+ yu’2 +r1u = 0. (8.1)

(P-c)u + pu” + qu + au”” + Buu
Introduce the scaling
E=em, u=xv, c-p = Ks, (8.2)

where €, x are small parameters, and s # 0. Rewriting (8.1) for v =v(1), we have
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2 uv” + Kz(qu —sV) +

+ etav” + K2e? PBvv” + yv’z) +k*rvd = 0. (8.3)

The condition that the rescaled equation (8.3) possess solutions having the proper
expansions in powers of €~ "l at T =+ oo, is that the rescaled indicial equation

sk2 = e2(u+aed, (8.4)

relating the two scaling parameters, hold. This allows us to eliminate k and rewrite the

travelling wave equation in terms of the single small parameter €:

vi—v+ 324
N
o 1 T

+ g2 oi(v””—v)+—qv2+—([3vv”+yv’2)+u—2v3 + (8.5
L SHU S S
4| o 2 re 3 6 €1 3

+e | —@Bvvi+yv)+25—v +e& 5= v = 0.
| sp S“ W s“

Proposition 9. There exists a formal asymptotic solution to (8.5) of the form
vE ) ~ vgm) + e2vym) + ety + ., (8.6)
in which

3s
Yo = o sech? 3 . (8.7)

and each Vi = Pj("o) is a polynomial in sech2(n /2), with Pj(O) =0.

Remark: The expansion (8.6) will formally represent the proposed solitary wave
solution to the original model reducing to the Korteweg-deVries soliton, (8.7), in the limit
€ —> 0. Thus each vj(n) satisfies the condition that it describe a solitary wave; in
particular, it is an exponentially decreasing function of 1 € R. The numerically observed
solitary wave solutions, [22], [31], [50], can, we believe, be explained by the existence of
this non-convergent formal series. Indeed, a numerical code would be an approximation to
a finite truncation of the series (8.6), which would appear to be a numerical approximation

to a genuine solitary wave. But, owing to the ultimate non-convergence of the series, the

26



numerically observed solitary wave solution cannot in fact be considered to approximate
any actual solution to the ordinary differential equation (8.5).

Proof.

Note first that (8.7) is the unique even, decaying solution to the zero'! order
equation

v6—v0+gv% = 0. (8.8)
To avoid complications in the subsequent formulae, it helps to introduce a further rescaling

2
C=3. VO = ey, (8.9)
S

in terms of which (8.5) takes the form

1., 3.2
4V —V+§V +

) [ & {%V””—V+%V2}+ BVV 47V2 41 V3 ] + (8.10)

r %8 [vawv'm;vﬂ s 8 62EV3 = o,

where
A (04 A 3 A 3 A 9
R "
H 8| 8 4q
The solution V() will have a formal asymptotic expansion
V@ ~ Vo© + V(0 + eV + ..., (8.12)

with leading term Vi({) = sech? (.

Using the abbreviation S({) for sech? €, we group here a few formulae that are
elementary, but which will be required in the sequel:
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S? =48%2(1-59), S” =4S - 652, (8.13)

L M - mSM[4m - @m+2)S]. (8.14)
dc?

Iterating (8.14) yields

d* 4 2 m+1
d_§4$m=16m S _ 16m@2m+1)2m* +2m+1)S +

+4mm+ D2 m+ D2 m+3)S™+2 (8.15)

Consider the particular Schrodinger operator

d2
- = + 4 - 125(@). (8.16)

L
dc?

We note that — 12 S({) is a three-soliton potential, cf. [33], so the spectrum of (8.16)
consists of the eigenvalues {- 35,0, 3} and a continuous spectrum {A >4}; moreover, 0
is a simple eigenvalue, with eigenfunction S’({), whichis odd. Thus, L is invertible on
even functions in L2. Also, equation (8.14) implies

LS™ = mS™[4(1-m?) + 4m*+2m—-12)S]. (8.17)
Together, these facts imply the following:
Lemma 10. The differential equation
Lf = S?P(S), P apolynomial (8.18)
has a unique even solution which has the form f=S Q(S), where Q is a polynomial.

Now, inserting the expansion (8.12) in (8.10), each coefficient of 2K results in an
equation of the form

1 on

or, in view of (8.16),

L(V,) = —4F ). (8.19)
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One can see by induction that V, must have the form S P (S), where P isa
polynomial. Indeed, according to Lemma 10, we need only prove that F,({) has the form
s? R, (S) where Ry is a polynomial in S. This follows because

i) The remaining terms in V2 have the form V;V, ;, 1<i<k-1, and, by the
induction hypothesis, each V; has the form S P;(S).

.. . . 2k . .
ii) The coefficientof €  in the terms g V2, g V3, et V3, and e® V3 is similarly
determined from V, ..., V}_;.

iii) V2 is a sum of terms of the form P(S)Y Q(S), and S’2 has S2 as a factor by
(8.13);

iv) V” has S? as a factor by (8.13) again;

v) (8.15) shows that ]13 V.~V also has the form $2 R(S) if V=S P(S).

YANHA

Therefore, we have proved that there exists a formal series solution to (8.10) of the

form

V(O ~ sech?l + ) e P(sech?y) (8.20)
k=1

where the P, are polynomials, Py (0) =0. This completes the proof of Proposition 9.

Proposition 11. If the expansion (8.6) converges to a holomorphic function in
£ and scchzn /2 for n—> o0, and € near 0, then its associated solitary wave tail is a
translate of the exponentially decaying tail previously constructed in Lemma 7.

Proof.
By hypothesis, we have a convergent expansion for the tail of the form
vie,m) = a;© e+ aye) e N + L. (8.21)

We must show that a(e) = a;(€) never vanishes so that we may replace 1 by m - log a(e)
to obtain the series

Fem = €M+ bye)e 2N + ..., (8.22)
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which can be compared to the previous form of the tail. To achieve this, we assume
a(gep) = 0 for some g, (possibly complex). Since (8.21) must solve (8.5), the series
argument from section 7 immediately shows that in this case, all the coefficients vanish at
the point €;, ay(gy) =0, and hence v(gy, M) =0 vanishes for all . We show that this
implies that every € derivative (3"v /0e™)(gg, M) =0 of v also vanishes at the point g,
for all m which, by the holomorphy assumption, ensures v(g, ) = 0, which is
impossible since vy(n) # 0.

Note first that if v(gy, M) vanishes for all m, so do all its m-derivatives.
Therefore, the first e-derivative z(1) = vg(gy, M) solves the linear ordinary differential
equation

44 2

Z/ —z+¢g— {27 -2z} =0, (8.23)

o
")
since all the nonlinear terms vanish at €, Moreover, since v(g, M) is holomorphic, we
also have that z — 0 exponentially fast at infinity. But it is easy to see (e.g. by using
the Fourier transform) that (8.23) has no nonzero 1.2 solutions. Similarly, an easy
induction proves that each derivative z = (9"v/0e")(gy, ) also solves (8.23), and must

therefore also be identically 0. This completes the proof, and demonstrates the connection
between our two series solutions.

Now, by analysis of the analyticity properties of the solutions to our earlier balance

equations for the coefficients in the expansion (8.6) we deduce our final non-existence
result.

Theorem 12. Suppose equation (8.5) possesses a series solution (8.6) which is
holomorphic, convergent on a region of the form

le|? < + K. e < xy, (8.24)

for ¥, Ky > 0. Then the equation necessarily satisfies the constraints (6.8) and thus has a

one-parameter family of exact sech? solutions.

Remark. The exact sech? solutions are clearly holomorphic in a region of the
indicated form (8.24) provided K, is chosen sufficiently small.
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Proof.

We begin by writing (8.5) in the more convenient form

v+ e2av- (1+e2 ) v =
=g+t {V+E[Bvv +yvie 1+ qTv3]) (8.24)
where
- _ e = -4 N_E VI ~.__E 8.25
o = ua q= S’ B q? Y q’ I q2 (' )

We substitute the expansion (8.6) into (8.24) to compute the balance equations, cf. (7.4),
(7.5), (7.6), for the coefficients a;,. The indicial equation, i.e. the terms in e~ M are
already balanced by design. The termsin e 2M Jead to the equation

3(1+5e2a)a, =-qU+eo) {(1+5e2) +e2(B+y-50) }a. (826

Thus, a, will have poles at e2=1/ (5 o), contradicting the hypothesis of the theorem,
unless [~3 + ? =50q, which, in view of (8.25) is the same as the first condition in (6.8).
Assuming that this holds, and using (8.26) to solve for a,, the remaining terms in e~ 3n
lead to the further balance equation

8(1+10e? ) a; =
= %q2(1+£2&)2{(1+1082&) +%e2(5B+4?_3?—20&)}a%. (8.27)

Thus, a; will have poles at €2 =1/ (10 ), unless 5P+47=3T +20 0, which, in
view of the previous condition reduces to B =3 T, and, by (8.25) is the same as the
second condition in (6.8). Therefore, the expansion will be holomorphic in the indicated
domain if and only if the conditions (6.8) hold and the equation admits exact sech?
solutions. This completes the proof of Theorem 12,

The assumption of analyticity in Theorem 12 parallels that of [24]. It is likely that
the constant o /(5) in the domain (8.24) can be replaced by any positive constant
€y >0, as the following argument plausibly indicates. Set, for simplicity,

-6

4 = = -
q(+e2 Q)
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Then the n balance equation can, by a simple induction, be shown to take the form

- 6n+®
m-DA+@+1)edaya, = ks W (8.28)
E{(1+620L)

where each @_ is a rational function in €, with poles at e2=_1 / ((k2 +1)a), for
k=2,3,...,n—1, and which vanishes identically if the s<:ch2 conditions (6.8) hold. In
order that the expansion (8.6), and hence the a; depend analytically on € in some
neighborhood of € = 0, these coefficients cannot have complex poles accumulating at
€ =0. thus, for n sufficiently large, each @  must vanish at g2 =_1 / ((n2 +1) ).
This infinite collection of polynomial conditions seems highly unlikely in the absence of
(6.8). Indeed, one can straightforwardly reduce the size of the domain (8.23) to by an
involved analysis of the first few of the rational functions @ for n small, perhaps using
MATHEMATICA, but we have not tried to implement this.

Note finally that the proof of Theorem 12 can be readily extended to include the
case when P(u) is an analytic function, in which case the hypotheses imply that P(u)
must be a cubic polynomial also. Indeed, by the above arguments, analyticity of (8.6) in a
region (8.24) implies that not only the first three coefficients p =p;, q =p,, T =ps, inthe

n

Taylor expansion of P(u) = 2, p,u satisfy (8.6), but, moreover a simple induction will
then show that all remaining coefficients must vanish if the poles in the general recursion
relation (8.28) are to cancel, so that p, =0 for n>4. We leave the remaining details to
the reader, and conclude this section by summarizing our basic nonexistence result in a

convenient unscaled form.

Theorem 13. Consider an evolution equation of the form
2 2 —
u + [epu, + e (ug,, + Buuy + yuy) + Pu,e)], = 0, (8.29)
where € is a small parameter, o, 3,7y, |1 are constants, and P is an analytic function of
the form

Pu,e) = pu + equ® + e2ru’ + e2u* R(y, €), (8.30)
where p, q, 1 are constants, and R is analytic. Assume q W # 0, so that the O(g) terms
are of Korteweg-deVries type. Then the model has a solitary wave solution of the form

u=u(x—ct &) withspeed c=p+ €2 s+ ..., which has a formal expansion of the form
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u=cqfVew-cn] + So[Vex-cn] + g [Vex-cn] + ... @31

which reduces to the Korteweg-deVries soliton ¢yM) = {(35)/ (2 q)} sech?m /2 in the
limit. Assume that the expansion (8.31) converges to an analytic function in a complex
domain of the form |€| 2« loo /(5| +%x, k>0, x—ct >> 0. Then, necessarily,
R =0, so P(u, €) is a cubic polynomial in u, and the coefficients of (8.29), (8.30) are
related by the conditions

B+ = Sqa and 1I5ar = BB+7v), (8.32)

which guarantee the existence of a one-parameter family of exact sech? solitary wave

solutions to the model.

In summary, then, the models (2.1) which admit a one-parameter family of exact
_ sech? solitary wave solutions are distinguished by the analyticity properties of their
solutions. This result is in direct analogy with those of [24], in which the linear, sine- and
sinh-Gordon equations were distinguished among all one-dimensional Klein-Gordon
equations by similar types of analyticity properties. However, our result is more revealing
of the general method in that we no longer distinguish, by the smoothness properties of
their solutions, just integrable equations, but rather those having particular explicit
solutions. The method used here and in [24] is rather general, and is applicable to a wide
variety of similar problems.

9. Conclusions and Further Work.

We have been able to prove, under certain reasonable hypotheses, the non-existence
of solitary wave solutions to most fifth order evolution equation which arise as models for
nonlinear water waves. This is very strange, since most of the water wave models, except
for the model (2.10) at the particular depth (2.13), where the Hamiltonian model is a fifth
order Korteweg-deVries equation, do not satisfy the requisite conditions (6.8) on the
coefficients in the equation. Thus, by trying to do better in modelling real solitary water
waves, which are known to exist, [4], we in a sense do worse. The Korteweg-deVries
model does have solitary wave (soliton) solutions which do a reasonably good job
approximating solitary water waves, [7], [8], [13]. But trying to get a more accurate model
by retaining terms in g% leaves us with no solitary wave solutions at all! Of course, this is

not really an unequivocal problem as presumably the model does do a reasonable job
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approximating the solitary water waves for times on the order of 1/ €2, (the Korteweg-
deVries model being accurate for times on the order of 1/¢€). Nevertheless, the results of
this paper should give one pause in the noncritical application of naive perturbation

expansions as a means for deriving model equations.

This leads one to wonder about the following questions: what happens to initial
conditions corresponding to solitary water waves as the time t—> * «? We expect that
small amplitude waves decay by dispersion or radiation, whereas it is plausible that larger
waves may even break. Is there a wave of maximal height? How do they behave under
collision - specifically do they emerge unscathed as true solitons, [33], or is there a small,
but nonzero nonelastic effect, as in the BBM equation, [9]? It appears that there is a need
for good numerical integration procedures to study these models in more detail. However,
these must be long time accurate, and take into account exponentially small effects. For
Hamiltonian models, some form of symplectic integrator, [11], might be a good bet for

investigating these questions. There is a lot of work remaining to be done in this direction.
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Figure 1. Solitary Wave Solution (See page 13)
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Figure 2. Periodic Wave Solution (See page 13)
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Figure 3. Kink Wave Solution (See page 14)
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