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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A MODEL
OF GRAVITATIONAL INTERACTION OF PARTICLES, I

BY

PIOTR B I L E R AND TADEUSZ N A D Z I E J A (WROC LAW)

We study the existence of stationary and evolution solutions to a para-
bolic-elliptic system with natural (no-flux) boundary conditions describing
the gravitational interaction of particles.

1. Introduction. We are interested in the parabolic-elliptic system of
partial differential equations defined in a bounded domain Ω of Rn,

(1) ut = ∆u+∇ · (u∇ϕ) ,

(2) ∆ϕ = u ,

with the nonlinear no-flux condition

(3)
∂u

∂ν
+ u

∂ϕ

∂ν
= 0 ,

where ν denotes the outward unit normal vector to the C1+ε (ε > 0) bound-
ary ∂Ω of the considered domain. For the potential ϕ we assume either

(4.1) ϕ = 0 on ∂Ω ,

or instead of the Dirichlet boundary condition above

(4.2) ϕ = En ∗ u
with En the fundamental solution of the n-dimensional Laplacian. The
initial-boundary value problem is supplemented with the initial condition

(5) u(x, 0) = u0(x) ≥ 0 .

The physical interpretations of the system (1)–(5) are connected with
the evolution version of the Chandrasekhar equation for the gravitational
equilibrium of polytropic stars, with the evolution of self-interacting clusters
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of particles, and with nonequilibrium statistical mechanics description of
some flows for the Euler equations (see the review article [2], as well as [8],
[12], [18], [19], and the references therein).

Namely, if a gas, consisting of gravitationally interacting particles and
filling up the reservoir Ω, is in thermodynamical equilibrium, then the po-
tential ϕ of the forces (after a suitable rescaling) satisfies the equation
(2). The density u of the gas is given by the Boltzmann formula u =
Mµ−1 exp(−ϕ/(kT )), where µ =

∫
Ω

exp(−ϕ/(kT )), M =
∫

Ω
u is the total

mass of the gas in Ω, k is the Boltzmann constant, and T the absolute
temperature, so (2) leads to the equation

(6) ∆ϕ+ σµ−1 expϕ = 0

with σ = M/(kT ). Solutions to these equations are exactly the time-in-
dependent solutions of the system (1), (2). Note that (3) is the simplest
physically relevant (no-flux) boundary condition, which guarantees the con-
servation of the integral

∫
Ω
u in time. However, (3) causes serious technical

difficulties, since some maximum principle arguments may fail for solutions
to (1)–(5).

The second model leading to (1)–(5) comes from hydrodynamics, from
the analysis of the canonical Gibbs measure associated to an N -vortex sys-
tem in a bounded two-dimensional domain. In the limit N → ∞, with
suitably scaled intensity of the vortices and temperature, the stream func-
tion ϕ corresponding to such vortex solutions of the Euler equation satisfies
the equation (6) and the boundary condition (4.1). Again, the evolution sys-
tem (1)–(4) includes solutions to this mean field equation from equilibrium
statistical mechanics as the stationary ones.

Finally, another interpretation of (1)–(5) is linked with the Debye system
from the theory of electrolytes studied in [4], [5], [13]. The original Debye
system includes the equation ut = ∆u−∇ · (u∇ϕ) instead of (1), and this
describes the electrostatic repulsion of ions. Replacing the sign − by + is
equivalent to modelling the gravitational interaction of particles.

Note that, analogously to [4], [5], [7], the drift coefficient in both equa-
tions (1), (3) can be reconstructed from (2) and (4), which leads to a
differential-integral parabolic equation of Fokker–Planck type. However,
this interpretation does not provide a substantial simplification of the prob-
lem.

For simplicity of exposition we only consider two possible conditions that
determine uniquely the potential ϕ satisfying (2), hence reproduced by a po-
tential type operator ϕ(x) =

∫
Ω
K(x, y)u(y) dy. Namely, (4.1) corresponds

to K = GΩ , the Green function of the domain Ω, and in (4.2), K(x, y) =
En(x−y) is the fundamental solution of ∆: En(x) = −((n−2)σn)−1|x|2−n,
n ≥ 3, E2(x) = (2π)−1 log |x|. Examples of more general kernels K are
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given in [7]. Note that the boundary behavior of the kernels K reflects the
smoothness properties of ∂Ω.

One may replace ϕ in the equation (1) by ϕ + V with an external po-
tential V satisfying e.g. |D2V |p < ∞ for some p ∈ [1,∞]. Such a gener-
alization has been considered in [18], [19] and [7]. All the reasonings, here
for V ≡ 0, concerning existence, global existence or nonexistence of solu-
tions etc., can be modified in an inessential way to cover that more general
case.

In Section 2, we discuss the existence, uniqueness and nonexistence of
stationary solutions to the system (1)–(4). Section 3 deals with the local-
and global-in-time existence of solutions to the evolution system in arbitrary
domains in Rn and R2, resp. Moreover, it is shown that for n-dimensional
star-shaped domains (n > 1) and large initial conditions there are no solu-
tions global in time: solutions blow up in finite time. Radially symmetric
solutions in balls and in annuli/spherical shells are considered in a compan-
ion paper [6]. For these particular domains we consider in [6] a more general
formulation of the problem (1)–(5) using a new dependent variable: the in-
tegrated density Q(r, t) =

∫
Br
u(x, t) dx. Of course, for the radial problem

in balls of Rn various conditions for existence/nonexistence of solutions can
be made sharp or more precise than for general domains considered in this
paper.

We use largely the notation and results of papers [4], [5], [7] relevant to
the study of the system (1)–(4). In particular, we use the standard notation
|u|p for the Lp(Ω) norms of functions, and ‖u‖s for the Hs(Ω) norms. The
constants independent of functions defined on Ω will be denoted by the same
letter C, even if they may vary from line to line. For various interpolation
inequalities we refer to [1], [10], [11].

2. Stationary solutions. In this section we collect some results con-
cerning stationary solutions of the problem (1)–(4). More detailed informa-
tion can be found in e.g. [2], [7], [8], [12], [14], [17], [18]. New results are
contained in Theorem 1 below.

The stationary solution 〈U,Φ〉 of (1)–(2) satisfies the system

(7) ∆U +∇ · (U∇Φ) = 0 , ∆Φ = U ,

which is equivalent to

(8) ∇ · (exp(−Φ)∇(exp(Φ)U)) = 0

(since in the class of (nonstationary) solutions considered here, in Theorem
2 below, Φ ∈ H1(Ω)∩L∞(Ω) is bounded). The boundary condition (3) can
be rewritten as

(9)
∂(exp(Φ)U)

∂ν
= 0 .
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Multiplying (8) by exp(Φ)U we obtain∫
Ω

exp(−Φ)|∇(exp(Φ)U)|2 = 0,

so U has the Boltzmann form U = α exp(−Φ). The normalization constant
α can be determined from the relation

∫
Ω
U = M so that α = Mµ−1 with

µ =
∫

Ω
exp(−Φ) and (9) is incorporated in

(10) U = Mµ−1 exp(−Φ) .

The potential Φ satisfies the integral equation

(11) Φ =
M∫

Ω
exp(−Φ)

J(exp(−Φ)) ,

with J(v) =
∫

Ω
K(x, y)v(y) dy. The conditions (4.1) or (4.2) are already

encoded in (11). The stationary problem in the form (11) has been stud-
ied in [7], [12], [14]. It is worth noting that the existence and uniqueness
of solutions of (11) depend strongly on the geometric properties of the do-
main Ω.

From [12], [7] it follows that (11) has a solution for sufficiently small
M > 0. Few general uniqueness results are known (cf. [7, Th. 2(iii)]).

Assuming that Ω is a star-shaped domain in Rn, K = GΩ , it can be
proved, using the Pokhozhaev identity (see [8], [14] and [7, Th. 2(iv)]) that
(11) has no solution for M large enough. Indeed, from the relation∫

∂Ω

(
∂Φ

∂ν

)2

(x · ν) = Mµ−1
∫
Ω

(2n(e−Φ − 1) + (n− 2)Φe−Φ)

we infer

M2 =
( ∫

∂Ω

∂Φ

∂ν

)2

≤
∫

∂Ω

(
∂Φ

∂ν

)2

(x · ν)
∫

∂Ω

(x · ν)−1.

Since
∫

∂Ω
(x · ν)−1 ≤ C(Ω)dn−2, where d = diamΩ and C(Ω) depends on

the shape of Ω only (not on the size of Ω), and by the maximum principle
Φ ≤ 0, we obtain M < 2nC(Ω)dn−2. In particular, for the balls BR,
M < 2nσnR

n−2 is a necessary condition for the existence of solutions to
(11).

An analogous nonexistence result holds true if Ω is any simply connected
bounded domain in the plane (see [14]).

On the other hand, in multiply connected domains, e.g. in annuli, solu-
tions can exist for a larger range of M ’s, even for all M > 0 (cf. [8], [16],
[17], [6], [14]).
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Theorem 1. Let Ω be a bounded domain in Rn.

(i) If n = 2 and M ∈ (0, 8π) in the case of the boundary condition (4.1),
or M ∈ (0, 4π) if (4.2) is assumed , then there exists a solution Φ ∈ L∞(Ω)
of (11). For all sufficiently small M > 0 these solutions are unique in the
class of potentials Φ corresponding via (10) to densities U ∈ L1(Ω) with
|U |1 = M .

(ii) If n ≥ 3 and M ∈ (0,M(Ω)) with some M(Ω) > 0, then there is a
solution Φ ∈ L∞(Ω) of (11). For all sufficiently small M > 0 these solutions
are unique in the class of potentials Φ corresponding via (10) to densities
U ∈ Mn/2(Ω) of small concentration: ‖U‖∗ < βn, where (Mn/2(Ω), ‖ · ‖∗)
is the Morrey space of exponent n/2. Its definition will be given in the proof
below and the quantities M(Ω), βn will be calculated explicitly.

R e m a r k s. The existence of solutions for small M > 0 for a large class
of generalizations of (11), where the kernels K are supposed to be dominated
by |En|+ const only, follows from a simple argument involving the Schauder
fixed point theorem (see [7, Th. 2(i), (ii)]).

The use of variational methods (applied to the functional W , see (23)
below) gives the result of Theorem 1(i) above when K = GΩ , i.e. when
(4.1) is satisfied, in [8] and (for small M > 0 only) in [17] (cf. also [16]).
The arguments in those papers are rather delicate compared to the Leray–
Schauder theorem used in our proof below.

Concerning Theorem 1(ii), it seems that the direct variational methods
(requiring a priori regularity of Φ: Φ ∈ H1

0 (Ω) ∩ L∞(Ω)) are no longer
applicable since for n ≥ 3 the functional W is not bounded from below for
any M > 0 (compare [18, Lemma 4.4]).

As we will check further, the regularity of solutions and their uniqueness
for n ≥ 3 and small M > 0 is expected (and guaranteed) only when the
densities U have small concentrations, even in the case of radially symmetric
solutions in balls.

The regularity of solutions Φ sought for in L∞(Ω) can be easily deduced
from the smoothness properties of the kernels K off the diagonal {(x, x) :
x ∈ Ω} (cf. [7, Th. 2(ii)]). In our approach (aimed at a unified functional
framework for stationary and evolution solutions) we exclude unbounded
stationary solutions Φ studied in [3].

P r o o f o f T h e o r e m 1. (i) First we consider the case K = E2 (in
fact we only use |K| ≤ |E2|), and we show a uniform L∞(Ω) a priori bound
for solutions of (11) with the densities (10). For M ∈ (0, 4π) fix β ∈ (M, 4π)
and consider 0 ≤ U ∈ L1(Ω), 0 < |U |1 < β. Using the Jensen inequality for
the exponential function we can write, for Φ = J(U) and s ∈ (1, 4π/β),
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Ω

exp(s|Φ|) ≤
∫
Ω

exp
(
sβ|U |−1

1

∫
Ω

|K(x, y)|U(y) dy
)

(12)

≤
∫
Ω

|U |−1
1

( ∫
Ω

U(y)C|x− y|−sβ/(2π) dy
)
dx

= C
∫
Ω

|U |−1
1 U(y)

( ∫
B(0,2d)

|x|−sβ/(2π) dx
)
dy

= C2π(2− sβ/(2π))−1(2d)2−sβ/(2π) <∞ ,

where d = diamΩ. Moreover, we have

|Ω| ≤ µs/(s+1)
( ∫

Ω

exp(sΦ)
)1/(s+1)

≤ µs/(s+1)| exp(|Φ|)|s/(s+1)
s ,

which implies

(13) µ−1 ≤ |Ω|−1−1/s|exp(|Φ|)|s .

Since |Mµ−1 exp(−Φ)|s ≤ M |Ω|−1−1/s|exp(|Φ|)|2s ≤ MC(β) <∞ we arrive
at the bound

(14) |Mµ−1J(exp(−Φ))|∞ ≤M sup
x∈Ω

( ∫
Ω

|K(x, y)|s
′
dy

)1/s′

C(β) <∞ ,

where 1/s + 1/s′ = 1. Having the above a priori estimate we define the
operator T : L∞(Ω) → L∞(Ω) by T (Φ) = Mµ−1J(exp(−Φ)) whose fixed
points solve (11). T is continuous and compact (cf. [7]). For M ∈ (0, 4π)
and arbitrary λ ∈ [0, 1] each solution of the equation Φ = λT (Φ) is a priori
bounded in L∞(Ω) from (14). The Leray–Schauder theorem applies in this
situation and furnishes a fixed point Φ of T solving (11).

Note that our computation (12) is closely related to that in the proof of
the Moser–Trudinger inequality

(15.2)
∫
Ω

exp(|ψ|) ≤ C exp
(
|Ω|−1

∣∣∣ ∫
Ω

ψ
∣∣∣ + |∇ψ|22/(8π)

)
valid for all ψ ∈ H1(Ω) (cf. [9, Th. 3, II]).

For the case K = GΩ and M ∈ (0, 8π) (so |K| ≤ |E2|+C(Ω) as follows
from [10, Ch. II, Sec. 4, Prop. 5, (4.27)]) an analogous argument applies,
and the counterpart of (15.2) for the boundary condition (4.1) is

(15.1)
∫
Ω

exp(|ψ|) ≤ C exp
(
|Ω|−1

∣∣∣ ∫
Ω

ψ
∣∣∣ + |∇ψ|22/(16π)

)
valid for all ψ ∈ H1

0 (Ω) (cf. [8]). The constants 8π, 16π in the denominators
are optimal (cf. [9, Sec. III]).
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The uniqueness of solutions in L∞(Ω) for M > 0 small enough follows
by a standard contraction argument in [7, Th. 2(iii)] whenever an a pri-
ori bound on Φ ∈ L∞(Ω) is available. The uniqueness in a class of more
regular potentials Φ for the problem with K = GΩ , Ω simply connected,
∂Ω sufficiently smooth, and M ∈ (0, 8π) can be deduced from [16]. In the
variational approach minimizers of the functional W in (23) are unique in
the same range of M ’s (see [8]).

(ii) The assumption U ∈ L1(Ω), even for small M = |U |1, does not
guarantee a priori bounds on Φ ∈ L∞(Ω). For instance, U(r) = 2(n−2)r−2

in the ball B(0, R), solving (10) with M = 2σnR
n−2, leads to an unbounded

potential Φ. Such a solution U belongs to Lp(Ω)\Ln/2(Ω) for every p < n/2
and, as we will see in Theorem 2, does not enter into the framework for weak
solutions of the evolution problem. For a discussion of singular nonradial
solutions, we refer the reader to [3]. A natural restriction on the densities
is that of a low concentration. We mean by that the assumption

(16) U ∈Mn/2(Ω) , ‖U‖∗ < βn := 4σn/(ne) .

The definition of the Morrey space of exponent n/2 (see [11, Sec. 7.9]), reads
Mn/2(Ω) = {U : ‖U‖∗ < ∞}, where ‖U‖∗ = sup(R2−n

∫
BR∩Ω

|U |) < ∞
with supremum taken over all balls of radii R > 0, BR ⊂ Rn. It is well known
that Ln/2(Ω) ⊂ L

n/2
weak(Ω) ⊂Mn/2(Ω), and ‖U‖∗ ≤ |U |n/2(σn/n)1−2/n since∫

BR∩Ω
|U | ≤ (

∫
Ω
|U |n/2)2/n(ωnR

n)1−2/n. Remark that the Morrey norm of
U(r) = 2(n − 2)r−2 is large compared to βn: ‖U‖∗ = 2σn > βn. For
solutions U to (10) of low concentration, i.e. those satisfying (16), we will
show an a priori bound for Φ ∈ L∞(Ω).

Fix β ∈ (0, βn) and estimate the right hand side of (10) with ‖U‖∗ < β
in Ln/2+ε(Ω) for any sufficiently small ε > 0. This is possible since [11,
Lemma 7.20] implies

(17)
∫
Ω

exp
(

(n− 2)σn

α‖U‖∗
|Φ|

)
≤ C(α, β)dn , d = diamΩ ,

for any α > e(n/2 − 1). Indeed, we use [11, Lemma 7.20] with g =
(n − 2)σn|En| ∗ U , |K| ≤ |En| + C(Ω) (for K = GΩ this is a consequence
of [10, Ch. II, Sec. 4, Prop. 5, (4.27)]). Choosing a suitable α = α(β) from
(17) we obtain exp(|Φ|) ∈ Ln/2+ε(Ω) with an upper bound C(β)dn for the
power of its norm.

In particular, µ is well defined and, as in (13), µ−1 ≤ |Ω|−1−1/(n/2+ε) ×
|exp(|Φ|)|n/2+ε. Finally, we obtain

|Mµ−1 exp(−Φ)|n/2+ε ≤M |Ω|−1−1/(n/2+ε)|exp(|Φ|)|2n/2+ε

≤MC(β,Ω) ,
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and since J : Ln/2+ε(Ω) → L∞(Ω) (|En| ∈ Ln/(n−2)
weak is a convolution kernel),

|Mµ−1J(exp(−Φ))|∞ ≤MC(β,Ω) <∞ .

Now consider M ∈ (0,M(Ω)), ε > 0, both sufficiently small so that

(18) ‖M(Ω)µ−1 exp(−Φ)‖∗
≤M(Ω)(σn/n)1−2/nC(β)4/n|Ω|−1−2/nd4 ≤ β ,

and define the nonlinear integral operator T : L∞(Ω) → L∞(Ω) by

T (Φ) = J(χ(Mµ−1 exp(−Φ))),

where χ(v) = min(1, β/‖v‖∗)v normalizes v with large ‖v‖∗ to ‖χ(v)‖∗ ≤ β.
The operator T satisfies all the assumptions of the Leray–Schauder theorem,
which can be checked as in (i). The condition (18) guarantees that all the
fixed points Φ = T (Φ) satisfy (11) because such a Φ equals J(U) for some
U with ‖U‖∗ ≤ β, and χ does not cut down these U ’s.

By inspection of the proof of [11, Lemma 7.20] we get for β = τβn,
τ ∈ (0, 1),

maxβC(β)−4/n ≥ 4σ1−4/n
n (n− 2)4/n(ne)−1 max

τ∈(0,1)
τ
( ∞∑

m=0

τm
)−4/n

= 41+4/n(n− 2)4/nσ1−4/n
n (e(n+ 4)1+4/n)−1 =: γn .

This leads to an explicit estimate of M ’s; specifically, we may take

M(Ω) = γnn
1−2/nσ2/n−1

n |Ω|1+2/nd−4

and for balls even M(BR) = 22+8/n(n− 2)4/n(e(n+ 4)1+4/n)−1σnR
n−2.

Let us remark that for negative kernels K, e.g. K = En, or K = GΩ , we
have Φ ≤ 0, so µ ≥ |Ω|. This improves our estimate of M(Ω). For instance,
M(Ω) = 41+1/nn((n+2)e)−1((n− 2)/n(n+2))2/n|Ω|d−2 works well in this
situation.

The uniqueness of L∞(Ω) solutions to (11) with low concentration is
obtained for sufficiently small M > 0 by a standard reasoning (see [7,
Th. 2(iii)]). Note that these stationary solutions fall under the evolution
theory of Section 3.

3. Solutions to the evolution problem. For arbitrary bounded
smooth domains in R2 or in R3 the local-in-time existence of solutions
in L2(Ω) follows from the proof of Theorem 1 in [4], which concerns the
electrolytic case, but the existence argument does work for both equations
ut = ∆u∓∇ · (u∇ϕ). This is a standard argument involving the Schauder
fixed point theorem in a suitable space of vector-valued (L2(Ω)) functions
(cf. [7] for a class of more general systems).
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A similar construction gives the existence in the n-dimensional case when
the initial data are in Lp(Ω), p > n. For less regular initial conditions in
Lp(Ω), p > n/2, solutions can be approximated by those emanating from
regularized u0’s.

We collect all the results on the local existence which can be proved
using the same arguments as in [4, Theorems 1, Proposition 1, Remark 8],
[5, Theorems 1 and 2], and [7, Theorem 1] in parts (i), (ii) of the theorem
below.

Here weak H1(Ω) solutions of the problem (1)–(5) on Ω × (0, T ) are
understood as functions u ∈ L∞((0, T );L2(Ω)) ∩ L2((0, T );H1(Ω)) which
satisfy, for every test function η ∈ H1(Ω × (0, T )) and for a.e. t ∈ (0, T ),
the integral identity

(19)
∫
Ω

u(x, t)η(x, t) dx−
t∫

0

∫
Ω

uηt +
t∫

0

∫
Ω

(∇u+ u∇ϕ) · ∇η

=
∫
Ω

u0(x)η(x, 0) dx .

Moreover, we require that for a.e. t ∈ (0, T ), ϕ = ϕ(·, t) is a weak solution
of (2) with (4.1), i.e.

ϕ ∈ H1
0 (Ω) ,

∫
Ω

∇ϕ · ∇ξ +
∫
Ω

uξ = 0 for each ξ ∈ H1
0 (Ω) ,

or
ϕ ∈ H1(Ω) with ϕ = En ∗ u

when (4.2) is assumed.
These definitions are a natural extension of standard ones in [15, Ch. III,

Secs. 1, 4, 5] taking into account the no-flux condition (3), and the self-
consistent character of the field ∇ϕ in (1) determined by u itself from (2)
and (4).

It is a routine calculation (cf. [15, Ch. III, Sec. 2], [4], [7]) that such a
weak solution satisfies ut ∈ L2((0, T );H−1(Ω)), u ∈ C([0, T ];L2(Ω)), and
the energy (in)equality

1
2

∫
Ω

u2(x, t) dx+
t∫

0

∫
Ω

(∇u+ u∇ϕ) · ∇u =
1
2

∫
Ω

u2
0(x) dx

for all t ∈ [0, T ]. We will write this briefly as a differential (in)equality

(20)
1
2
d

dt
|u|22 + |∇u|22 = −

∫
Ω

u∇ϕ · ∇u

whose formal derivation consists in multiplying (1) by u and integrating by
parts. In the sequel other integral inequalities following from the definition
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of weak solutions will be written in this shorthand differential notation, but
understood in their original, proper, integral form.

Theorem 2. Assume that Ω is a bounded domain in Rn with C1+ε

boundary , ε > 0.

(i) If n = 2 or n = 3, and 0 ≤ u0 ∈ L2(Ω), then there exists T =
T (|u0|2) such that the problem (1)–(5) has a unique weak solution u ∈
L∞((0, T );L2(Ω))∩L2((0, T );H1(Ω)). Moreover , ut ∈ L2((0, T );H−1(Ω)),
u(x, t) ≥ 0 for a.e. x ∈ Ω and t ≥ 0, and

∫
Ω
u(x, t) dx =

∫
Ω
u0(x) dx.

(ii) If n ≥ 2 and 0 ≤ u0 ∈ Lp(Ω), p > n/2, then there is T =
T (p, |u0|p) > 0 and a weak solution u such that u ∈ L∞((0, T );Lp(Ω))
and up/2 ∈ L2((0, T );H1(Ω)).

These solutions are unique when p > n, and regular when p > n/2 in the
sense that u ∈ L∞loc((0, T );L∞(Ω)).

(iii) If n > 2, p > n/2, and |u0|p is sufficiently small , then the local
solution constructed in (ii) can be extended to a global one defined for all
t ≥ 0.

(iv) If n = 2, |u0|1 = M and either M ∈ [0, 8π) for (4.1), or M ∈ [0, 4π)
for (4.2), then the solution constructed in (i) can be extended to the whole
half-line (0,∞). Moreover , supt≥0 |u(t)|2 <∞ and for a stationary solution
U with |U |1 = |u0|1 = M we have limt→∞ |u(t)− U |∞ = 0.

(v) If Ω ⊂ Rn, n ≥ 2, is a star-shaped domain (with respect to 0 ∈ Ω),
then for |u0|1 = M > 2nσnd

n−2 (d = diamΩ) there are no global solutions
to (1)–(3), (4.2), (5).

P r o o f. We refer the reader to [4], [5], [7] for the proofs of (i) and (ii).
(iii) We give a formal argument which shows that |u(t)|p, n/2 < p < n,

is a priori bounded for all t ≥ 0. The computations below can be justified
along the lines of [5, Ths. 2(ii) and 5]. Let us multiply (1) by up−1 and
integrate by parts to get

d

dt
|u|pp +

4(p− 1)
p

|∇(up/2)|22 = −p
∫
Ω

∇(up−1) · (u∇ϕ)(21)

= −2(p− 1)
∫
Ω

up/2∇(up/2) · ∇ϕ

≤ 2(p− 1)|∇(up/2)|2|up/2|q|∇ϕ|r

with 1/r = 1/p − 1/n and 1/q = 1/2 + 1/n − 1/p. Using the interpolation
inequality for Sobolev norms

|up/2|q ≤ C‖up/2‖α
1 |up/2|1−α

2
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with α = n/p− 1, and |∇ϕ|r ≤ C|u|p, from (21) we obtain

(22)
d

dt
|u|pp +

4(p− 1)
p

|∇(up/2)|22 ≤
1
2
‖up/2‖2

1 + C(|u|pp)β

with β = (2p+ 2−n)/(2p−n) > 1. Again from the Sobolev inequalities we
have

3|u|pp ≤ C(‖up/2‖γ
1 |up/2|1−γ

1 )2

≤ 1
2
‖up/2‖2

1 + C|up/2|21 ≤
1
2
‖up/2‖2

1 + C(|u|δp|u|1−δ
1 )p

(with γ = n/(n+ 2) and δ = (p− 2)/(p− 1))

≤ 1
2
‖up/2‖2

1 + |u|pp + C|u|p1.

Finally, (21) and (22) lead to

d

dt
|u|pp + 3|u|pp +

4(p− 1)
p

|∇(up/2)|22 ≤ ‖up/2‖2
1 + |u|pp + C|u|p1 + C(|u|pp)β ,

hence
d

dt
|u|pp + |u|pp ≤ C(|u|pp)β + CMp

since |u|1 = M . For w(t) = |u(t)|pp, the above inequality reads

dw

dt
+ w ≤ C(wβ +Mp) .

Obviously, for w(0) = |u0|pp (and therefore M) sufficiently small, supt≥0 w(t)
<∞ because C(wβ +Mp)− w has a (small) root w0 > 0 and

w0∫
0

(C(wβ +Mp)− w)−1 dw = ∞ .

This uniform Lp(Ω) bound is sufficient to prove the global existence of a
solution with u0 as the initial condition.

(iv) This is a generalization of a result for radial solutions on balls in R2

in [19, Th. 3.2] to the case of weak solutions in arbitrary planar domains.
It is relatively simple to show that if n = 2, the boundary condition (4.1)

is assumed, and the initial condition u0 ∈ L2(Ω) has a sufficiently small
mass |u0|1, then the solution constructed in Theorem 1 can be continued to
a global-in-time solution. The crucial estimate for (20) with the right hand
side integrated once by parts is

1
2
d

dt
|u|22 + |∇u|22 = −1

2

∫
Ω

∇(u2) · ∇ϕ

= −1
2

∫
∂Ω

u2 ∂ϕ

∂ν
+

1
2

∫
Ω

u3 ≤ 1
2
|u|33 ,
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since ∂ϕ/∂ν ≥ 0 on ∂Ω (recall (2) and (4.1)). Thus we obtain

1
2
d

dt
|u|22 + |∇u|22 ≤

1
2
|u|33 ≤ C‖u‖2

1|u|1

with C = C(Ω), so if |u0|1 ≤ 1/C, then d
dt |u|

2
2 ≤ 2|u|22. The Gronwall

inequality permits us to control |u(t)|2 locally uniformly in time for t ≥ 0,
hence the solution u admits a continuation to a global-in-time weak solution.

For the general case a more subtle argument is needed. Let us begin with
the observation that (1)–(4) has a Lyapunov function, a natural counterpart
of those used in [4, Lemma 3], [5, Proposition 3] (cf. [7, (6)]):

(23) W (t) =
∫
Ω

(
u(x, t) log u(x, t) +

1
2
u(x, t)ϕ(x, t)

)
dx .

For the boundary condition (4.1) we have

(24.1)
∫
Ω

uϕ = −
∫
Ω

|∇ϕ|2 ,

and for (4.2),

(24.2)
∣∣∣ ∫

Ω

uϕ+
∫
Ω

|∇ϕ|2
∣∣∣ ≤ C(Ω, |u0|1) .

Indeed, ∆ϕ = u in Ω and we may extend ϕ to the whole plane putting
K(x, y) = E2(x − y) for all x, y ∈ R2, and ϕ(x) =

∫
K(x, y)u(y) dy. If

Ω ⊂ BR0 for someR0, then forR = 2R0 consider a smooth function χ(r) = 1
if r ≤ R, and χ(r) = 0 if r ≥ 2R. Integrating by parts we obtain

−
∫
Ω

uϕ = −
∫
Ω

χ(|x|)uϕ = −
∫

R2

∆ϕχ(|x|)ϕ

≥
∫
Ω

χ(|x|)|∇ϕ|2 − sup |χ′|
∫

B2R\BR

|ϕ||∇ϕ|

≥
∫
Ω

|∇ϕ|2 − C(Ω, |u|1) ,

because for compactly supported densities u with |u|1 = M , we have
supB2R\BR

(|ϕ|+ |∇ϕ|) ≤ C(R)M .
Although W decreases in time along the trajectories of (1)–(4) (which

can be checked as in [4, Lemma 3]), in general W is not suitable to control
the L logL norm of u and |∇ϕ|22 (cf. [7, (6)]), as was done for the electrolytic
case in [4], [5].

Nevertheless, for M = |u|1 small, W can be estimated from below as
in [18, Lemma 4.3]. At fixed time t, define an auxiliary function ũ =
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Mµ−1 exp(−ϕ). From the Jensen inequality with the convex function τ 7→
− log τ and u ≥ 0 we have

0 = − log
(
|u|−1

1

∫
Ω

u(ũ/u)
)
≤ |u|−1

1

∫
Ω

u log(u/ũ) .

Therefore

0 ≤
∫
Ω

u log(u/ũ) =
∫
Ω

u log(µM−1u expϕ)(25)

=
∫
Ω

u logµ−
∫
Ω

u logM +
∫
Ω

u log u+
∫
Ω

uϕ

= M logµ−M logM +
1
2

∫
Ω

uϕ+W .

Begin with the case (4.2). From the Moser–Trudinger inequality (15.2),
for every β ∈ (0, 8π),

µ ≤
∫
Ω

exp(|ϕ|) ≤ C exp
(
|Ω|−1

∣∣∣ ∫
Ω

ϕ
∣∣∣ + |∇ϕ|22/β

)
≤ C(Ω,M) exp(|∇ϕ|22/β)

because |ϕ|1 = |J(u)|1 ≤ C|u|1 = CM . Taking logarithms we arrive at
M logµ ≤ C +Mβ−1|∇ϕ|22. Now, from (24.2) and (25) we infer

(1/2−Mβ−1)|∇ϕ|22 ≤W + C(β)

and choosing for M ∈ (0, 4π) a β ∈ (2M, 8π) we see that W controls |∇ϕ|22
from above, so

(26) sup
t≥0

(|u log u|1 + |∇ϕ|22) ≤ C(β)(W (0) + 1)

is a priori bounded.
In the case (4.1) we use a better inequality (15.1) getting an analogous

conclusion with M ∈ (0, 8π), β ∈ (2M, 16π).
This estimate is sufficient to apply a modification of the reasoning in [5,

Theorem 3] leading to the global existence of solutions. For completeness
of exposition we sketch the strategy of this demonstration. We proceed
as follows: from the energy inequality (20) and the nonlinear imbedding
inequality (cf. [5, (22)])

(27) |v|33 ≤ ε‖v‖2
1|v log |v||1 + Cε|v|1

valid for all v ∈ H1(Ω), Ω ⊂ R2 (given ε > 0 there exists a Cε > 0), we
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have
1
2
d

dt
|u|22 + |∇u|22 ≤ |∇u|2|u|3|∇ϕ|6

≤ C|∇u|2|u|3/2
3 |∇ϕ|1/2

2

≤ C‖u‖1(ε‖u‖2
1|u log u|1 + Cε|u|1)1/2|∇ϕ|1/2

2

≤ 1
2
‖u‖2

1 + C|u|1 ,

by (26). The remaining part is fairly standard: from

d

dt
|u|22 + 2|u|22 + |∇u|22 ≤ 3|u|22 + CM

≤ C‖u‖1|u|1 + CM ≤ 1
2
‖u‖2

1 + C|u|21 + CM

the differential inequality d
dt |u|

2
2+ |u|22 ≤ CM follows, and this gives uniform

boundedness of u(t) in L2(Ω). This is sufficient to continue local solutions
to global ones.

To conclude the proof of (iv) (convergence to steady states) we apply,
with minor modifications, the proofs in [4, Theorem 2] and [5, Theorem 6]
given for the case of boundary conditions (4.1).

We stress the fact that the global existence of solutions is obtained in
both cases for the same range of M ’s as the existence of stationary solutions.

(v) Define the auxiliary function

(28) w(t) =
∫
Ω

u(x, t)|x|2 dx .

For any weak solution u we have, with (28),

dw

dt
= −
∫
Ω

(∇u+ u∇ϕ) · ∇(|x|2)

= − 2
∫
Ω

∇u · x− 2
∫
Ω

u∇ϕ · x

= − 2
∫

∂Ω

ux · ν + 2n
∫
Ω

u

− 2
∫ ∫

Ω×Ω

u(x, t)(∇xE(x− y)) · xu(y, t) dy dx .

Since Ω is star-shaped, x · ν ≥ 0, so

(29)
dw

dt
≤ 2nM − 2

σn

∫ ∫
Ω×Ω

u(x, t)u(y, t)|x− y|−n(|x|2 − y · x) dy dx .
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From (29) it follows by symmetry that

dw

dt
≤ 2nM

− 1
σn

∫ ∫
Ω×Ω

u(x, t)u(y, t)|x− y|−n(|x|2 − y · x− x · y + |y|2) dy dx

= 2nM − 1
σn

∫ ∫
Ω×Ω

u(x, t)u(y, t)|x− y|−n+2 dy dx

≤ 2nM − d2−n

σn

∫ ∫
Ω×Ω

u(x, t)u(y, t) dy dx = 2nM −M2(σnd
n−2)−1 .

Now it is clear that for M > 2nσnd
n−2 the function w(t) becomes negative

in a finite time, which is absurd. Hence any weak solution u(t) with |u0|1 =
M cannot exist globally in time. We note that for Ω = BR even M >
2nσnR

n−2 leads to the nonexistence of global solutions (cf. [6, Th. 3]).
Observe that near the blow-up time T the density u cannot be bounded.

This is a consequence of the regularity of weak solutions in Theorem 2(ii).
Informally speaking, Theorem 2(ii) means that the norms |u(t)|p blow up
for all p ∈ (n/2,∞] at the same moment. Moreover, there is a conjecture
(strongly supported by the preceding analysis of regularity of stationary
solutions) that weak solutions to (1)–(5) cannot exist when u0 6∈ Lp(Ω)
with p > n/2.
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