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Abstract. We discuss a selection-migration model in population genetics, 
involving two alleles A~ and A2 such that A1 is at an advantage over A2 in 
certain subregions and at a disadvantage in others. It is shown that if A~ is 
at an overall disadvantage to A2 and the rate of  gene flow is sufficiently large 
than A1 must die out; on the other hand, if the two alleles are in some sense 
equally advantaged overall, then Aa and A2 can coexist no matter how great 
the rate of  gene flow. 
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1. Introduction 

In this paper  we discuss solutions of  a semilinear elliptic equation arising in 
population genetics introduced by Fleming in [6]. Consider a model with two 
alleles A1 and A2 corresponding to three possible genotypes AaA], A1A2, A2A2. 
The populat ion lives in a region D in R n. Let u(x, t) denote the frequency of 
the allele A] at time t at the point x in D. Changes in gene frequency are assumed 
to be caused only by the flow of genes within D and selective advantages for 
certain genotypes in certain sub-regions of  D. Then u satisfies the semilinear 
parabolic equation 

u,(x, t)=ddu+g(x)f(u) i n D  

where A denotes the Laplacian and f ( u )  = u(1 - u)[h(1 - u) + (1 - h)u] for some 
constants d > 0, 0 < h < 1. The term dAu represents the effect of  gene flow. The 
term g(x)f(u) represents the effect of  natural selection where the fitness 
coefficients of  the genotypes A1A2 and A2A2 relative to AIA] are respectively 
1-hg(x) and 1 - g ( x ) .  We assume that g takes on both positive and negative 
values on the region D;  this corresponds to the allele A] having an advantage 
over A2 in some parts of  D and being at a disadvantage in other parts. 
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Population geneticists have discussed the possibility of genetic differentiation, 
i.e. of  obtaining a steady state solution of the above equation with u ~ 0 and 
u ~ 1, see Slatkin [14]. In an allopatric speciation theory (see Mayr [9]) it is 
proposed that genetic differentiation is impossible if the rate of gene flow is 
sufficiently large whereas in a sympatric speciation theory genetic differentiation 
occurs even if the rate of  gene flow is very large. (see Pimentel et al. [11]). In 
this paper  we determine sufficient conditions for the allopatric and sympatric 
cases to occur both in the cases where D is a bounded region and D--- R ~. We 
study the semilinear elliptic equation 

-au(x) = hg(x)f(u) for x in D (1.1) 

corresponding to steady-state solutions of  the parabolic equation above where 
small h corresponds to a large rate of  gene flow. Roughly speaking we find that 
the allopatric case occurs when one allele has a definite overall advantage (e.g. 
when Io  g(x) dx > 0) and that the sympatric case occurs when the alleles are in 
some sense equally advantaged. 

In Sect. 2 we study (1.1) when D is a bounded region. Fleming [6] discussed 
this case when D = [ - 1 ,  1] and u satisfies Neumann  boundary conditions. Brown 
and Lin [2] studied the case where D c  R" and u may satisfy either Neumann 
boundary conditions or Dirichlet boundary conditions of  the form uloD = 0 or 
uloD = 1. In [2] the existence of eigenvalues of the linearisation of (1.1) corre- 
sponding to eigenfunctions which do not change sign on D is discussed. Such 
eigenvalues correspond to bifurcation points of (1.1) from which emanate physi- 
cally meaningful solutions u, i.e. solutions such that 0 <~ u ~< 1. The global proper- 
ties of  such bifurcation curves have been studied by Hess and Kato in [8]. In 
Sect. 2 we recall and extend some of the results of  [2] and [8] and show that 
genetic differentiation is impossible if the rate of  gene flow is sufficiently large 
(i.e. we are in the allopatric case) except in the special case of Neumann boundary 
conditions when fo  g(x) dx = 0, i.e. when neither allele has an overall advantage. 

In the remainder of  the paper  we consider the case where D -- R n, n = 1, 2. 
It is shown that the existence of solutions for small values of  h depends on 

Y= lim i n f l f  (•u)2dx/I g(x)u2dx:uEH~(BR),f g(x)u2dx>O} 
R oc~ k J B  R B R B R 

where BR = {x c R": Ix[<~ R}. 
In Sect. 3 we consider the case where allele A2 has the advantage over allele 

A1 in the sense that ~n" g(x) dx < 0 and g(x) < 0 whenever [x I is sufficiently large. 
Roughly speaking we show that in this case 3' > 0 and deduce that there are no 
non-trivial solutions in HI(R"). If, moreover, g is bounded away from zero at 
oo, we show that all physically meaningful solutions must be in H~(R"). Thus it 
can be seen that, if A2 has an advantage for sufficiently large Ix[, then genetic 
differentiation does not occur when the rate of  gene flow is sufficiently large. 

In Sect. 4 we use sub and supersolutions to prove the existence of non-trivial 
solutions of  (1.1). First we prove the existence of nontrivial solutions when h is 
sufficiently large by constructing sub and supersolutions by using solutions of  
the equation on bounded regions satisfying the boundary conditions u = 0 or 
u = 1. Then we show that nontrivial solutions exist for all h > 0 (i.e. no matter 
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how large the rate o f  gene flow) in the case where allele A1 has an overall 
advantage,  viz. SR o g ( x ) d x >  0 but allele A2 has an advantage at infinity, viz. 
g ( x )  is sufficiently negative when Ix I is sufficiently large. 

Because o f  the lack o f  compactness  in the problem it seems difficult to prove 
bifurcat ion results for (1.1) in the case D = R n analogous to the results o f  Sect. 
2 for b o u n d e d  D. In  [4], however,  we obtain such results by using shooting 
arguments  in the case where g is radially symmetric  and f is concave.  In this 
special case it can be proved  that bifurcat ion occurs f rom the zero solution at 
some A1 > 0 when SR" g ( x )  dx < 0 and that a branch of  solutions approaches  the 
solution u -= 1 as A ~ 0 when SR" g ( x )  dx > O. 

2. The bounded region case 

We shall assume th roughout  this section that D is an open b o u n d e d  region in 
R n with sufficiently smooth  bounda ry  and that  g : D ~ R is a cont inuous  funct ion 
which attains both  positive and negative values on D. The funct ion f ( u ) =  
u(1 - u) [h(1  - u) + (1 - h)u]  clearly satisfies 

f (0 )  = f ( 1 )  = 0, f ( u )  > 0 f o r 0 <  u <  1, f ' ( 0 )  > 0, f ' ( 1 )  < 0. 

We consider  solutions u such that 0 ~< u <~ 1 (recall that  u represents the f requency 
of  the allele A1) o f  

- d u ( x )  = A g ( x ) f ( u )  for x in D (2.1)~ 

subject to one o f  the fol lowing boundary  condit ions 

u ( x )  = 0 for x on OD (2.2) 

u ( x ) = l  f o r x o n 0 D  (2.3) 

Ou 
On (x) = 0 for x on OD. (2.4) 

The no flux problem (2.1)A, (2.4) studied in [6] is the most  natural  f rom the 
viewpoint  o f  popula t ion  genetics but we require results on (2.1), ,  (2~ and (2.1)~, 
(2.3) in order  to discuss the existence of  solutions on all o f  R n in Sect. 4. 

We first show that solutions must be strictly between 0 and 1 on D by using 
the fol lowing strengthened version of  the max imum principle. 

Lemma 2.1. Let  v be a C2 funct ion on D such that v (x )  >I 0 and - A v ( x )  + q (x )  v (x)  >! 

0 f o r  all x in D fo r  some uniformly bounded funct ion q : D o  R. Then 
(i) I f  v vanishes at some point in D, v~-O on D; 

(ii) I f  v ~ 0 on D and V(Xo) = 0 fo r  some Xo ~ OD, then Ov/an(Xo) < O. 

The result is well known when q/> 0 and the general result can be found  in Serrin 
[13] or Gidas  et al. [7]. 

Lemma 2.2. Suppose that u is a solution o f  (2.1)A such that 0<~ u <<- 1 on 19. 

(i) I f  u(xo) = 0 f o r  some XoC D, then u =- 0 on D. 
(ii) I f  u(xo) = 1 f o r  some XoC 19, then u =-- 1 on D. 

(iii) I f  u ~ 0 and u (Xo) = 0 f o r  some Xo ~ 019, then au/On (Xo) < O. 

(iv) I f  u ~ 1 and U(Xo) = 1 f o r  some XoC OD, then Ou/On(xo)> O. 
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Proof Parts (i) and (iii) follow directly from Lemma 2.1 as u satisfies -z lu  + 
q(x)u = 0 where q(x)=-Ag(x)f(u(x))/u(x). Parts (ii) and (iv) follow similarly 
from Lemma 2.1 by considering v = 1 - u. 

We now discuss the problem with zero Dirichlet boundary conditions. Con- 
sider the linearization of  (2.1)~, (2.2), viz., 

-Au(x) = Ag(x)hu for x in D 
(2.5) 

u(x) = 0  for x on 0D. 

It is shown in [8] that there exists a sequence of eigenvalues {A,}, 0 < 11 < 12 <~. �9 �9 
such that 11 is a simple eigenvalue and is the only eigenvalue possessing an 
eigenfunction which does not change sign on /9. Clearly v = 0  is the least 
eigenvalue of the linear eigenvalue problem 

-Au(x)-Alg(X)hu=vu o n D ;  UI~D=O 
and so 

O=inf{Io'Vu'2 dx-Alh fog(x)u2 dx: ueH~(D), IDu2 dx=l ). 

Hence 

11=h-l inf{folVu12 dx/fog(x)u2 dx: ueH~(D), fDg(x)u2 dx>O }. 
It is shown in [8] that a branch of positive solutions for (2.1)x, (2.2) bifurcates 
from the branch of zero solutions at A = 11 and this branch C c C(D)x R is 
such that C joins (0, 11) to ~ in C(D) x R. 

The following two lemmas give further information about C. 

Lemma 2.3. If (u, 1) e C and u ~ O, then 0 < u (x) < 1 for all x e D. 
Proof It follows from the implicit function theorem (see Crandall and Rabinowitz 
[5]) that 0 < u(x) < 1 for all x e D whenever (u, 1) e C lies in a sufficiently small 
neighbourhood of (0, Aa). Suppose that the result is false. Then, because of the 
connectedness of  C, there exists a sequence {(u,, 1,)} in C lying outside a 
neighbourhood of (0, 11) converging to (u, A)e D and U(Xo)= 0 or 1 for some 
Xo~ D. Therefore by Lemma 2.2 we must have u---0 or u--- 1. Since uloo = 0, we 
cannot have u -= 1. I f  u - 0, then (0, 1) is a bifurcation point for (2.1)~, (2.2) to 
which converges a sequence of positive solutions and so )t must be an eigenvalue 
of (2.5) corresponding to a positive eigenfunction. Thus 1 = A~ and we have 
obtained a contradiction. 

Theorem 2.4. There exists 1o> 0 such that 1/> 1o whenever u is a solution of (2.1)x, 
(2.2) such that 0 < u(x) < 1 for all x e D. 
Proof Choose M and K such that g(x)  ~< M for all x ~ D and f(u) <~ Ku for 
0 ~  < u ~< 1. Suppose u is a solution of (2.1)~, (2.2). Then 

fDlVU'2 dx=- fDuAudx=A fog(x)f(u)udx<~AKM Io u2 dx. 

But by the spectral theorem 

f lVu,2dx~V, fDU2dx (2.6) 
D 
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where Ul is the least eigenvalue on D of  - A u  with Dirichlet boundary  conditions.  
Hence A ~ ul/KM. 

Since C joins (0, A 1) to oo in C(D) x R and II u II < 1 and A > Ao for all (u, A ) c C, 
it follows that  C can become unbounded  only by A approach ing  +oo. Thus we have 

Theorem 2.5. There exists a solution u of (2.1)~, (2.2) such that 0 < u ( x ) < l  for 
all x c D whenever h > h 1. 

Similar results hold for the problem (2.1)~, (2.3) if and only if v = 1 - u satisfies 

- A v ( x ) = A ~ ( x ) v ( 1 - v ) [ h v + ( 1 - h ) ( 1 - v ) ]  for x in D 
(2.7) 

v(x) = 0 for x on OD, 

where ~ = - g  which has exactly the same form as (2.1) apart  f rom the sign change 
in g and replacement  o f  h by 1 -  h. Arguing as above, we can prove that there 
exists a con t inuum C of  solutions o f  (2.7) joining (0, 71) to oo in C(D) • R where 

y l = ( 1 - h ) - l  inf{fD,Vu,2 d x / I D g ( x ) u 2  dx: uEHl (D) ,  fo~(x )u2  dx>O}. 

Moreover  Lemma 2.3 and Theorem 2.4 apply to Eq. (2.7) and so C becomes 
u n b o u n d e d  by A approach ing  oo. Thus we have 

Theorem 2.6. There exists a solution u of (2.1)A, (2.3) such that 0 <  u(x)< 1 for 
all x ~ D whenever h > 71. 

Theorem 2.4 shows that  genetic differentiation cannot  occur under  Dirichlet 
bounda ry  condit ions (2.2) or  (2.3) whenever  the rate o f  gene flow is sufficiently 
large; in this case the concentra t ion o f  genes th roughout  D must  coincide with 
the concentra t ion specified by the boundary  condi t ion on OD (see Fig. 1). 

The existence o f  solutions o f  (2.1)A, (2.4) depends on the sign o f  So g(x) dx. 
Suppose SD g(x) dx < 0. It is shown in [2] that  the linearisation 

au 
-Au(x)=Ahg(x)u  o n D ;  - - = 0  onOD 

On 

u=l 

C 1 

C a ~ f 

X 1 

Fig. I. Bifurcation curves in the 
case of Dirichlet boundary u = 0 :' 
conditions ~' 
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has a unique positive eigenvalue ~ corresponding to an eigenfunction which 
does not change sign on D if and only if SD g(x) dx < 0. There is a continuum 
of solutions C emanating from (0,/11) such that 0 <  u(x) < 1 for all (u, A) e C in 
a neighbourhood of (0,/z~). 

Moreover 

I,~l=h-linf{fD]Vul2 d x / f D g ( x ) u 2  dx: ue Hl(D), fDg(x)u2 dx>O }. 

Using arguments similar to those used previously, it can be shown that 0 < u(x) < 1 
whenever (u, h ) e  C and u ~ 0, 1. The possibility that C joins up with the trivial 
branch of solutions corresponding to u --- 1 is precluded by the fact that there 
can be no bifurcation of solutions satisfying 0 < u < 1 from this branch as for the 
corresponding linearisation (2.6) with Neumann boundary conditions we have 
So ~,(x) dx > 0 and so there are no positive eigenvalues corresponding to eigen- 
functions which do not change sign on D. The fact that C is bounded away from 
A = 0 is a consequence of  the following results. 

Lemma 2.7. Suppose ~mg(x) dx<O. Then there exists k > 0  such that 
~D IVul 2 dx > k J ,  u 2 dx for all u e Hi(D) such that So g(x)  u2 dx > O. 

Proof Suppose that the .result does not hold. Then there exists a sequence {u,} 
in H~(D) such that Sog(X)U~ dx>O and ~olVu~ ,,2, dx for all n. 
We may assume without loss of generality that ~D u2 dx = 1. Clearly {u,} is a 
bounded sequence in H i ( D )  and so has a convergent subsequence which we 
again denote by {u,} converging to u in L2(D). Since 

I l u . - u ~ l l ~  , =  Ilu.-u~ll~+llVu.-Vumll~ 
and 

[ 1  1 \  2 
IlVu. -Vumll~ 2~ (llVu~ IlVumllL@~ ~nn +~mm), 

it follows that {u,} is a Cauchy sequence in H i ( D ) .  Hence {u,} converges to u 
in Hi(D). Moreover 

f lVulZdx=lim f lVunl2dx=O 
D n - ~ o o  D 

and so u must be a constant function, i.e., u ~ c for some c. But c 2 SD g(x) dx = 
lim,_,~SDg(x)uEdx~O and so we must have c = 0 .  Since SDU2dx= 

2 dx -- 1, we have obtained a contradiction and the proof  is complete. limn_~ SD u~ 
It is easy to see that a similar result holds when the signs of  ~D g(x) dx and 

~o g(x) u2 dx are reversed. 
By using the same proof  as in Theorem 2.4 but using Lemma 2.7 in place of 

Eq. (2.6), it is straightforward to establish the following result. 

Theorem 2.8. Suppose ~og(X) dx <O. Then there exists h o > 0  such that h>~ho 
whenever u is a solution of (2.1)A, (2.4) such that O< u ( x ) < 1 for all x e D. 

Thus the continuum C must join (0 , /~)  to oo in C(D) x R by h approaching 
+oo and therefore we obtain the following existence result. 
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Theorem 2.9. Suppose that ~ D g( x ) dx < O. Then there exists a solution u of (2.1)A, 
(2.4) such that 0 <  u(x) < 1 for all x ~ D whenever A > tz~. 

Similar results can be obtained when ~D g(x) dx > 0. In this case a continuum 
of solutions bifurcates from the trivial branch of  solutions corresponding to u -= 1 
and theorems analogous to 2.8 and 2.9 can be established. Thus, when 
~o g(x) dx # O, (2.1)~, (2.4) does not have physically interesting solutions when 
A is sufficiently small. If, however, So g ( x ) d x  = 0, then bifurcation occurs at 
(c, 0) on the branch of constant solutiosn corresponding to A = 0 where f ' ( c )  = 0 
(see [3]). Hence, non-constant solutions exist for arbitrarily small A, i.e., genetic 
differentiation is possible no matter how great the rate of  gene flow in the case 
where neither allele has an overall advantage in the sense that So g(x) dx = O. 

3. Non-existence of solutions 

For the rest of  the paper  we shall consider the case where D = R 2. All of  the 
results we prove hold for the case D = R with similar but simpler proofs. The 
case D =  R n, n ~ 3 ,  seems more complicated; it is harder to describe the 
asymptotics of  solutions in this case (see [4]) and the method used to prove 
existence in the next section failS if n i> 3. 

We shall suppose that allele A2 has an advantage at infinity in the sense that 

(G1) there exists Ro>  0 such that g ( x ) <  0 whenever Ix I > Ro. 

We consider the problem 

- A u ( x )  =Ag(x) f (u)  f o r x  in R 2 
(3.1)~ 

0 ~ u ( x ) ~ l  f o r x i n R  2. 

Clearly (3.1)~ has solutions u -= 0 and u -= 1; we shall refer to all other solutions 
as being nontrivial. 

Lemma 3.1. Let g satisfy (G1) and let u be a nontrivial solution of (3.1)A. Then 
there exists a constant k < 1 such that 0 <  u(x) < k for all x ~ R 2. 

Proof It follows from Lemma 2.2 that 0 <  u ( x ) <  1 for all x~  R 2. Since - A u  = 
Ag(x)f(u)<-O for Ixl> Ro, u is subharmonic for [xl> Ro and so it follows from 
the Hadamard  three circles theorem (see Protter and Weinberger [12], p. 129) 
that M(r)<~M(Ro) whenever r>Ro where M ( r ) = s u p { u ( x ) : J x l = r  }. Hence 
u(x) <- sup{u(y): [y[ <~ Ro} < 1 for all x c R 2. 

In the remainder of  this section we show first that (3.1)~ has no nontrivial 
solutions u ~ HI (R  2) for small A When allele A 2 also has an overall advantage 
in the sense that ~R 2 g(x) dx < 0 and then that all non-trivial solutions must lie 
in H I ( R  2) when g is bounded away from zero at infinity. 

Theorem 3.2. Suppose g satisfies (G1) and ~ R ~ g( x ) dx < O. Then there exists Ao> 0 
such that for all A <Ao Eq. (3.1)A has no nontrivial solution u ~ Hi(R2) .  

Proof Suppose that u c Ha(R 2) is a nontrivial solution of (3.1)~. Multiplying 
(3.1)A by u and integrating, we obtain 

fR2,Vu,2 dx=A fR2g(x ) f (u )udx .  (3.2) 
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We shall obtain a lower b o u n d  on A by using Lemma 2.7. Choose  R > Ro such 
that ~B g(x) dx < 0  where B = {x ~ R2: Ix I ~ R}. Then by Lemma 2.7 there exists 
k > 0 such that 

fB[Vv,2dx>~kfaV2dx (3.3) 

for all v ~ Hi(B) such that ~B g(x) v2 dx > O. 
We now prove that  JB g(x)  u2 d x > 0 .  Let w=u2/f(u). By Lemma 3.1 u is 

bounded  away from 1 and so f ( u )  ~> Ku, i.e. w <~ K-lu, for some positive constant  
K. Thus w ~ La(R2). Moreover  Vw = (u/f2(u))(2f(u)- uf'(u))Vu and so Vw 
L2(R2). Multiplying (3.1)~ by w and integrating gives 

X IR g(x)u2 2 wAudX= fa 2 Vw. Vudx 

= f (u/f2(u))[Zf( u)-uf'(u)]lVu] 2 dx>O 
.1 R 2 

as 2f(u)-uf ' (u)>O for  0 < u < l .  Hence 

f g(x)u2dx>fR2g(x)u2dx>O 
as g ( x ) < 0  on R2/B and so u satisfies (3.3). 

There exist positive constants M and K such that g(x)<~ M for all x in R z 
andf (u )~Ku for all u,O<~u<~l. Hence 

fB u2 dx ~ K - 1 M  -1 fB g(x)f(u)u dx, 

Therefore 

fR2]Vu]2 dx~ fBlVu]2 dx>~k fBu2 dx 

f. g(x)f(u)udx>~kK-'M-l fn: g(x)f(u)udx. 

Hence by (3.2) we have A I> kK-1M -~ and the p roo f  is complete.  
We now give a sufficient condit ion to ensure that  all nontrivial solutions o f  

(3.1)x lie in H'(R2). 

Theorem 3.3. Suppose g is uniformly bounded and there exist k, R o >  0 such that 
g(x) <~ - k  whenever Ix] >i Ro. Then every nontrivial solution of (3.1)x lies in Hi(R2). 

Proof. Suppose  that u is a nontrivial solution o f  (3.1)x. By Lemma 3.1 u is 
bounded  away from 1 and so there exists a positive constant  k~ such that  
f(u(x)) >t klu(x) for all x in R 2. Hence, if ]xl >~ Ro, 

-zlu = Ag(x)f(u) ~ -Akklu = -Ku  (3.4) 
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for some constant  K > 0. In  order  to study the asymptot ic  properties o f  u we 
study the symmetr isat ion v o f  u given by 

v(r) = l u(rx) dS. 
JI xl=l 

Since u is bounded ,  so is v and it follows f rom (3.4) that  

- v " - l v ' + K v < - O  for  r~> Ro. (3.5) 
r 

We first show that v is decreasing for r i> Ro. We can write (3.5) as 

-(rv')'+Krv<~O for  r J> Ro . 

Hence ( r v ' ) ' >  0 and so rv' is an increasing funct ion for  r ~  > Ro. Suppose there 
exists ro>  Ro such that v'(ro)> 0. Then v'(r)> (1/r)rov(ro) for all r >  ro and so 
limr_,~v(r)=oe which is impossible. Hence v'(r)<~O for all r>~Ro and so it 
follows f rom (3.5) that 

-v"+Kv<~O for r~> R0 . (3.6) 

Let w(r) = e'/-~rv(r). Substituting in (3.6) we obtain 

w"-2V'-~w'>~O for  r~> Ro. 

2x/-Kr , 2-fK- r , Hence d / dr ( e -  w ) >! 0 and so e -  w is increasing for  r ~ Ro. Supose there 
exists rl > Ro such that  w'(r l )  > 0. Then w'(r) >1 eZ'7-~(r-rPw'(rl) and so w(r)/> 
w(q)  + M e ='/-~ for r/> Ro for  some constant  M > 0. Therefore 

v(r)=e-' /-~rw(r)>~Me "/gr for r~> Ro 

which is impossible as v is bounded .  Thus w'(r)<-0 for all r ~  > Ro and so w is 
bounded .  Therefore there exists a constant  N > 0 such that 

v(r) <- N e  -4gr for  all r. (3.7) 

We now deduce that u also decays exponentially.  Suppose Ix I > Ro+  1 and let 
Bx denote  the ball {y ~ R2: Ix - y [  < 1} and Ax denote  the annulus {y ~ R2: Ix] - 1 ~< 
lyl ~< Ixl + 1}. Since g < 0 on Bx, - A u  = ag(x) f (u)  < 0, i.e. u is subharmonic  on 
Bx. Hence  

fB fA f [x,+l u(x) <~ 7 -1 u(y) dy <~ 7r -1 u(y) dy = 7r -1 rv(r) dr. 
x x ./[xl-1 

Thus it follows f rom (3.7) that there exist positive constants P and c~ such that 

u(x) <~ Pe  -<~1 for all x such that  Ix I > Ro. 

Moreover  since u satisfies (3.1)a, there exists a positive constant  Q such that 

lau(x)l <~ O e-<Xl for all x such that  Ixl > No. 

Therefore we can obtain Lp bounds  for u and Au in Bx where p > 2 o f  the form 

IlullL~, IlaullL~ R e -<xl, 
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and so by standard interior estimates we can obtain a bound for u in the W 2"p 

norm on B" = {y c R2: Ix -Yl < ~} in terms of e -~lxl. Since W2'P(B ") can be embed- 
ded continuously in C~(B'~), we obtain the bound 

Igrad u(x)l <~ S e  -=txl. 

Hence u 6 HI ( R  2) and the proof  is complete. 

Corollary 3.4. Suppose g satisfies the hypotheses o f  Theorem 3.3. Then there exists 
Ao> 0 such that for  all A < Ao Eq. (3.1)~ has no nontrivial solutions. 

4. Existence of solutions 

We shall prove the existence of solutions by constructing appropriate weak sub 
and supersolutions. If  ul and u2 are smooth subsolutions of (3.1)~ on BR = 
{X C R2: IX[ ~ R} and B *  = {x ~ R2: Ix 1/> R} respectively, i.e., --Aui <~ Ag(x ) f (u i ) ,  
such that 

Ul(X) = u2(x) and Oul/Or(x) <~ Ou2/Or(x) whenever Ix[ = R, 

we say that u is a weak subsolution of (3.1)A if 

Ul(X) for [xl <~ R 
U(X) ,h 

[u2(x) for Ixl > R" 

Roughly speaking u can be regarded as the supremum of the two subsolutions 
ul and u2. Weak supersolutions can be defined similarly. Similar weak sub and 
supersolutions are discussed by Berysticki and Lions in [1] in the case of bounded 
regions and the existence of solutions lying between weak subsolutions and weak 
supersolutions is obtained�9 Ni in [10] proves the existence of a solution lying 
between smooth sub and supersolutions for semilinear elliptic equations on all 
of Rn; the solution is obtained as the limit of solutions on bounded regions and 
so the proof  in [10] can be adapted to apply to the case of weak sub and 
supersolutions. Thus we have the following result. 

Lemma 4.1. Let u_ and fi be a weak subsolution and a weak supersolution respectively 
for  (3.1)x such that u(x)<~ ft(x) for  all x in R E. Then there exists a solution u o f  
(3.1)x such that u_ <~ u <~ ft. 

We assume throughout this section that g satisfies the condition (G1) given 
at the start of Sect. 3. Let R > Ro and let B--  {x ~ RE: Ixl <~ R}. We construct 

�9 ~ 
appropriate weak sub and super solutions using solutions of the Dirichlet prob- 
lems (2.1)~, (2.2) and (2.1)~, (2.3) on B. In Sect. 2 we discussed continua of 
solutions for these problems. We showed that there is a continuum Co in C ( B )  x R 
joining (0, A1) to ~ such that u is a solution of  (2.1)x, (2.2) satisfying 0<~ u < 1 
whenever (u, A)e Co and a continuum C1 joining (1, yl) to ~ such that u is a 
solution of (2.1)~, (2.3) satisfying 0 <  u <~ 1 whenever (u, A) ~ C1. 

Lemma 4.2. Suppose ( u, A) c Co and ( v, A) ~ C 1 . Then u (x )  <~ v ( x )  for  all x ~ B. 

Proof  It is clear that the result must be true when either (u, A) or (v, A) lie in a 
sufficiently small neighbourhood of the bifurcation points (0, A1) or (1, Y0. 



Existence and nonexistence of steady-state solutions 101 

Suppose that the theorem does not hold. Then a continuity argument shows that 
there must exist (u, A) �9 Co and (v, A) �9 C1 such that u(x) <~ v(x) for all x �9 B but 
U(Xo) = V(Xo) for some Xo�9 B. Let w =  v - u .  Then 

-Aw = Ag(x)[f(v(x)) - f(u(x))] = Ag(x)c(x)w(x) 

where c is the continuous function such that c(x)=Ilof'(u(x)+ tw(x)) dt. Since 
w>~0 on B and W(Xo)=0, it follows from Lemma 2.1 that w-=0 on B but this 
is impossible as wl0B = 1 and so the proof  is complete. 

Theorem 4.3. There exists a nontrivial solution of (3.1)~ whenever A > max{A1, "/l}. 

Proof. Suppose A > max{Al, "/1}. Since the continua of solutions Co and C1 join 
(0, A1) and (1, Yl) to oo by A becoming unbounded,  there exist (u, A ) � 9  Co and 
(v, A) �9  C1. By Lemma 4.2, u(x)~ v(x) for all x �9 B. Let 

u(x)={o(X) f~ 'x'  ~<R 
- f o r l x l > R  

and 

a(x)  = {~(x)  for Ixl~ e 

for Ixl > R" 

Then _u (a)  is a weak subsolution (supersolution) of  (3.1)~ and _u(x)<~ ~i(x) for 
all x �9 R 2. The theorem now follows from Lemma 4.1. 

Let us denote the numbers ,~1 and `/1, the bifurcation points for problems 
(2.1)~ (2.2) and (2.1)~, (2.3) on BR={X�9 Ixl~<e} by AI(R) and 71(R). It is 
easy to see from the variational characterizations in Sect. 2 that AI(R) and `/I(R) 
are decreasing functions of  R. The existence of solutions for (3.1)A depends on 
limR_,~ AI(R) which in turn depends on the sign of SR2 g(x) dx. 

Lemma 4.4. Suppose g satisfies (GI)  and SR2 g(x) dx > O. Then l i m R ~  AI(R) = 0. 

Proof  Let e > 0. Choose R > Ro such that 

I.I,x,~ng(x) dxl ~�89 fn2 g(x) dx" 

Define a continuous, radially symmetric function u as follows 

u ( r ) =  1 i f r ~ R  

u ' ( r )=-e /r  ifR<~r<~Z 

u(r) = 0  if r~ Z. 

Then u is a decreasing function for R <~ r ~ Z with u(R) = 1 and u(Z) = 0; clearly 
Z is a function of R and e. Since u(r) = - e  In r+b on [R, Z ]  for some positive 
constant b we must have that 

- e l n R + b = l ;  - e l n Z + b = 0  

and so 

e(ln Z - I n  R) = 1. 
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I f  r > Z ,  

Moreover 

IVul 2 dx = ru, dr = e2/rdr  = e2(ln Z - I n  R) = e. 
Br 

f l ~ g ( x ) u 2 d x = f l ~ R g ( x ) d x + f R ~ l x l ~ r g ( x ) u 2 d x  

fR2g(x)dx-]f,x,  g(x)dxl �89 fR2g(x)dx. 
Hence, using u ~ H~o(B,) as a test function, we have Al(r) <~ 2e/IR2 g(x)  dx. Thus 
lira . . . .  A~(r) =0.  

The preceding lemmas show that, if g satisfies (G1) and jR2 g(x)  dx >  O, then 
there exists a weak subsolution of (3.1)x for all A > 0. It remains to investigate 
the  existence of corresponding supersolutions. Unfortunately, it appears that 
limR~oo 3q(R) r 0 but we can, however, obtain weak supersolutions for arbitrarily 
small ,~ by using the solutions of appropriate ODE's  provided that g does not 
approach 0 too rapidly as Ix[-~ oo. 

Lemma 4.5. Suppose 4 k f ' ( 1 ) < - 1  and let R > O. Then there exists a decreasing 
solution of  

w " ( x ) - ( k / x 2 ) f ( w ( x ) )  = 0  f o r x >  R (4.1) 

w(R)  = 1; l im w(x)  = O. 

Proof. By making the transformation s = in x, v ( s )=  w(x)  we see that (4.1) is 
equivalent to 

v " ( s ) - v ' ( s ) - k f ( v ( s ) ) = O  for s > l n  R 
(4.2) 

v(ln R) = 1, lim v(s) = O. 
s - > c o  

Since (4.2) is an autonomous equation it can be discussed by using phase 
plane methods. We can write (4.2) as a system 

v'(s) = y ( s )  (4.3) 

y'(s) = y(s)  + kf (v(s)) .  

It  is easy to check that (4.3) has a saddle point at (0, 0) with a stable manifold 
which corresponds to a solution v of (4.2) such that v'(s) < 0 for s large enough 
and l i m ~  v(s) = lims+~ v'(s) = 0. We follow this trajectory backwards and show 
that it hits the line v = 1 without leaving the fourth quadrant in the phase plane. 

Suppose that the trajectory corresponds to a solution v of (4.2) on (So, oo) 
such that 0 < v ( s ) <  1. Suppose v'(sl) = 0  for some s~> So. Then v"(Sl)= 
kf(V(Sl)) > 0 and so v has a local minimum at s~. Since v is eventually decreasing, 
it follows that if v has critical points in (So, co) they cannot all be local minima. 
Hence v ' ( s )< 0 for all s ~> So. Multiplying (4.2) by v', gives 

d 1 , 2 
~SS[~[V (S)] - k F ( v ( s ) ) ] = [ v ' ( s ) ] 2 > O  fors~>So 
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where F(v)  = Sof(t) dt. Since lim,.o~ v(s) = l ims_~ v'(s) = 0, we have 

l [v ' (s ) ]2  < kF(v(s))  < kF(1)  

for s/> So. Thus we have shown that the trajectory corresponding to the stable 
manifold  cannot  cut the v axis (where v' = 0) and cannot  become u n b o u n d e d  in 
the v' direction as long as 0 < v < 1. 

There remain two possibilities for the stable manifold;  either it hits the line 
v = 1  or stays to the left o f  the line v = 1 and approaches  the equilibrium point  
(1,0)  as s ~ o e .  However  the condi t ion 4 k f ' ( 1 ) < - 1  ensures that (1,0) is an 
unstable spiral point  and so the latter possibility cannot  occur. Thus the stable 
manifold  yields a solution o f  (4.2) and so o f  (4.1). 

Lemma 4.6. Suppose that l imlxl~  Ixl2(lnlxl)2 g(x) = - ~ .  Then there exists a weak 
supersolution for (3.1)x'for all A > O. 

Proof Eet A > 0 .  Choose  k, R > 0 such that ]xl2(lnlxl)2g(x) < - k  for Ix] > R and 
4Akf '(1) < -1 .  Consider  the O D E  

w"(r) + lr w'(r) Ak r2(lnr)2f(w)=O for r >  R (4.4) 

w(R)  = 1; lim w(r) = 0. 
r ~ o O  

Substituting s = In r, Eq. (4.4) can be t ransformed into 

Ak 
w"(s) - T f ( w ( s ) )  = 0 

w(ln R) = 1; lim w(s) = 0  
s ~ c O  

which has a decreasing solution by Lemma 4.5. Hence Eq. (4.4) has a decreasing 
solution which we denote  by w(r). Let 

ti(r) = { 1 ifr<~R 
w(r) if r >  R. 

Then, if Ix t >~ R, 

- z l a ( x )  = - w " ( r )  - 1- w ' ( r )  - , ~k  
r r2(ln r) 2 f (w)  

> ,~g(x)f(a). 

Hence ~i is a weak supersolut ion o f  (3.1)A. 
A similar but simpler and shorter a rgument  shows that we can construct  a 

weak supersolut ion of  (3.1)A for the case D =  R when g satisfies the slightly 
stronger hypothesis  l iml~l~  ]x[2 g(x) = -oa. 

Thus we have established the following existence theorem. 

Theorem 4.7. Suppose that ~R2 g(x) dx > 0 and 
(i) n = 1 and limlxl~o~ x2g(x) = -oa or 

(ii) n = 2 and limlxl~oo Ixl2(ln x)2g(x) = -oa. 
Then (3.1)A has a nontrivial solution for all A > O. 
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In the case n = 2  the conditions that limlxi~oo[x[2(lnx)2g(x)=-oo and 
SR2g(x) dx>O (i.e., the integral converges) are very restrictive. However,  if 
0 < / 3 < 1 ,  the function g(x)=-l/lxl2(lnx) 1+~ for large Ixl satisfies both 
conditions. 
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