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EXISTENCE AND REGULARITY STUDY FOR
TWO-DIMENSIONAL KAC EQUATION WITHOUT CUTOFF

BY A PROBABILISTIC APPROACH

By Nicolas Fournier

Université Paris VI

We consider a two-dimensional Kac equation without cutoff, which
we relate to a stochastic differential equation. We prove the existence of
a solution for this SDE, and we use the Malliavin calculus (or stochastic
calculus of variations) to prove that the law of this solution admits a smooth
density with respect to the Lebesgue measure on R2. This density satisfies
the Kac equation.

1. Introduction. The Boltzmann equation describes the density f�t� r� v�
of particles which have the position r and the velocity v at the instant t > 0,
in a sufficiently dilute gas. The two-dimensional Kac equation deals with a
simplified model. Indeed, the particles take place in the plane, and the density
f is supposed to be spatially homogeneous: the interaction is meanfield. In
this paper, we will take into account the difficulty generated by the possible
explosion of the mass of the collision kernel.

The Kac equation can be written as follows:

�B� ∂f

∂t
�t� v� =Kβ�f�f��t� v�


The collision kernel Kβ is given by

Kβ�f�f��t� v� =
∫
v∗∈R2

∫ π
−π
�f�t� c�v� v∗� θ��f�t� c∗�v� v∗� θ�� − f�t� v�f�t� v∗��

×β�θ� 
v− v∗
�dθdv∗�
where, if Rθ is the θ-rotation centered at 0,

c�v� v∗� θ� = v+ v∗

2
+Rθ

(
v− v∗

2

)
�

c∗�v� v∗� θ� = v+ v∗

2
−Rθ

(
v− v∗

2

)



We will need the following computation of c�v� v∗� θ�:

c�v� v∗� θ�=
(
cx�v� v∗� θ�
cy�v� v∗� θ�

)
= 1

2

( �vx + v∗x� + �vx − v∗x� cos θ− �vy − v∗y� sin θ
�vy + v∗y� + �vy − v∗y� cos θ+ �vx − v∗x� sin θ

)
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In fact, c�v� v∗� θ� and c∗�v� v∗� θ� represent the velocities of two particles after
their collision, if these particles had the velocities v and v∗ before the collision,
and if the angle due to the collision is θ.

We will assume that we are in a case of Maxwellian particles, that is, that
the cross section β depends only on θ, and is even: β�θ� 
v− v∗
� = β�
θ
�. We
will also suppose the physically reasonable condition∫ π

0
θ2β�θ�dθ <∞
(1.1)

The Kac equation “with cutoff,” namely when
∫ π
0 β�θ�dθ <∞, has been much

investigated by the analysts. It is really more difficult to assume only (1.1),
and the only analytical existence and regularity result under (1.1) is due to
Desvillettes in [3].

A probabilistic approach using the underlying evolution Markov process
allows to work under (1.1) thanks to the L2-calculus. We obtain a slightly
better existence result than Desvillettes, and our regularity result is much
better. Desvillettes builds a solution g�t� v� of (B), and he proves that, for
each t > 0, f�t� 
� is in H1−ε�R2� for all ε > 0. The solution f�t� v� we build is
continuous on �0�T� ×R2, and for each t > 0, f�t� 
� is in C∞�R2�.

Another advantage of a probabilistic approach is that we can assume that
the initial data is a probability, and not necessarily a density of probability.
Finally, we give a (probabilistic) notion of uniqueness.

In order to define the weak solutions, we consider the following kernel,
which depends on the test function φ ∈ C2

b�R2� (the set of C2 functions on R2

of which the derivatives of order 0 to 2 are bounded):

K
φ
β�v� v∗� =

∫ π
−π

[
φ�c�v� v∗� θ�� −φ�v� −φ′x�v� �cx�v� v∗� θ� − vx�

−φ′y�v�
(
cy�v� v∗� θ� − vy

)]
β�θ�dθ(1.2)

−b
2

[
φ′x�v��vx − v∗x� +φ′y�v��vy − v∗y�

]
�

where b = ∫ π−π�1− cos θ�β�θ�dθ. This expression is well defined for every test
function thanks to the assumption (1.1). Now we can define the weak solutions
of (B).

Definition 1.1. Let β be a cross section (even and positive on �−π�π�\�0�)
satisfying (1.1). Let P0 be a probability on R2 that admits a moment of order
2. A positive function f on R+ ×R2 is a weak solution of (B) with initial data
P0 if, for every test function φ ∈ C2

b�R2�,∫
v∈R2

f�t� v�φ�v�dv =
∫
v∈R2

φ�v�P0�dv�

+
∫ t
0

∫
v∈R2

∫
v∗∈R2

K
φ
β�v� v∗�f�s� v�f�s� v∗�dvdv∗ ds
(1.3)
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Let us explain this definition: a priori, we should look for weak solutions
satisfying, for every test function,

∫
v∈R2

f�t� v�φ�v�dv =
∫
v∈R2

φ�v�P0�dv� +
∫ t
0

∫
v∈R2

Kβ�f�f��s� v�φ�v�dvds


Let us substitute v′ = c�v� v∗� θ�, v′∗ = c∗�v� v∗� θ�, and θ′ = −θ in the first
part of Kβ�f�f�. The Jacobian of this substitution is equal to 1, and an easy
drawing shows that v = c�v′� v′∗� θ′�, v∗ = c∗�v′� v′∗� θ′�, and θ = −θ′. We obtain

∫
R2

∫
R2

∫ π
−π

f�t� c�v� v∗� θ��f�t� c∗�v� v∗� θ��φ�v�β�θ�dθdvdv∗

=
∫
R2

∫
R2

∫ π
−π

f�t� v�f�t� v∗�φ�c�v� v∗� θ��β�θ�dθdvdv∗

and hence∫
v∈R2

f�t� v�φ�v�dv =
∫
v∈R2

φ�v�P0�dv�

+
∫ t
0

∫
v∈R2

∫
v∗∈R2

k
φ
β�v� v∗�f�s� v�f�s� v∗�dvdv∗ ds�(1.4)

where

k
φ
β�v� v∗� =

∫ π
−π

[
φ�c�v� v∗� θ�� −φ�v�

]
β�θ�dθ


But this kernel does not make sense for every test function φ ∈ C2
b�R2�, except

if we suppose that
∫ π
0 θβ�θ�dθ < ∞. Consequently, we replace kφβ by K

φ
β , in

which there is a compensated term. Notice that if
∫ π
0 θβ�θ�dθ < ∞, then∫ π

−π sin θβ�θ�dθ = 0, and the two kernels are identical.
The method is partially adapted from the papers of Desvillettes, Graham,

and Méléard in [4] and [5], who solved a simpler problem in dimension one.
We first show that there exists a stochastic differential equation associated
with equation (B). This means that if Vt is a solution of this SDE, then its
law is a measure solution of (B). If furthermore, for each t > 0, the law of Vt

admits a density f�t� 
� with respect to the Lebesgue measure on R2, then f
will be a solution of equation (B) in the sense of Definition 1.1.

The first section is devoted to the statement of the SDE, to the existence
and the uniqueness in law of a solution of this SDE, and to the study of
some moment conservations for this solution, which can be related to physical
conservations. The aim of the second section is to use the Malliavin calculus in
order to show the existence of a weak solution of equation (B), and to study the
smoothness of this solution. We will use Bismut’s approach of the Malliavin
calculus, by following the methods of Bichteler, Gravereaux, and Jacod in [1]
and [2]. However, we cannot apply their results, because our model does not
satisfy their assumptions, for several reasons.
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The most difficult and original part of this paper is the proof of the regular-
ity (see Lemmas 3.22 and 3.23 and Theorem 3.24), for which we need to use
the particular form of our SDE.

In the sequel, β is a fixed cross section satisfying (1.1).
The uniqueness for the equation (B) is an open problem. But it is possible

to prove that if all the moments of P0 are finite, if f and g are two weak
solutions of (B) on �0�T�, and if for every p ≥ 0,

sup
�0�T�

∫
R2
� v �p f�t� v�dv+ sup

�0�T�

∫
R2
� v �p g�t� v�dv <∞�

then f and g have the same moments: for every p�q ≥ 0, for all t ∈ �0�T�,∫
R2
vpxv

q
yf�t� v�dv =

∫
R2
vpxv

q
yg�t� v�dv


This can be shown recursively (on p+q) by using Newton’s formula. (We will
compute explicitly the moments of order 1 in Proposition 2.10.)

2. The probabilistic approach. The whole section is an easy adaptation
of the paper of Desvillettes, Graham, and Méléard, [4], although there is a
quite important difference between the SDE in dimension 1 and 2.

Since we are looking for a solution f�t� v� which is a density of particles at
each instant t, it is quite natural to relate f�t� v� to the flow of marginals of
a stochastic process. We restrict our study to the time interval �0�T�, where
T > 0 is fixed.

Definition 2.1. We will say that a flow �Pt�t∈�0�T� of probability measures

on R2 such that P0 admits a moment of order 2 is a weak solution of the
equation (B) with initial data P0 if, for every test function φ ∈ C2

b�R2�,
〈
φ�Pt

〉 = 〈φ�P0
〉+ ∫ t

0

〈
K

φ
β�v� v∗��Ps�dv�Ps�dv∗�

〉
ds
(2.1)

Remark 2.2. If a flow �Pt�t∈�0�T� of probability measures on R2 is a weak
solution of (B), and if for every t ∈�0�T�, Pt admits a density f�t� 
� with
respect to the Lebesgue measure on R2, then f is a solution of (B) with initial
data P0 in the sense of Definition 1.1.

In order to state a SDE associated with our problem, we introduce some no-
tations. Following Tanaka, [9], we will consider two probability spaces: the first
one is an abstract space �!�� �P� and the second one is ��0�1�����0�1��� dα�.
In order to avoid any confusion, the processes on ��0�1�����0�1��� dα� will
be some α-processes, the expectation under dα will be denoted Eα, and the
laws �α.

On �!�� �P�, we consider a Poisson measure N�dθdαdt� on �−π�π� ×
�0�1� × �0�T� with intensity measure ν�dθdαdt� = β�θ�dθdαdt and with
compensated measure Ñ�dθdαdt�.
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If Q is a probability on DT, and if p ≥ 1, we will say that Q ∈ �p�DT� if∫
x∈DT

sup�0�T� � x�t� �p Q�dx� <∞. A càdlàg adapted process Ys on �0�T� will
be an Lp

T-process if its law is in �p�DT�.

Definition 2.3. Let V0�ω� ∈ L2�!�, let Ys�ω� be an L2
T-process, and let

Zs�α� be an L2
T-α-process, each of these elements with values in R2. Then we

denote by V = *�Y�Z�V0�N� the process defined (and well defined) by

Vt�ω� = V0�ω� +
∫ t
0

∫ 1
0

∫ π
−π
�c�Ys−�ω��Zs−�α�� θ� −Ys−�ω�� Ñ�dθdαds�

−b
2

∫ t
0

∫ 1
0
�Ys�ω� −Zs�α�� dαds
(2.2)

This can also be written by using the matrixA�θ�= 1
2

(
cos θ−1 − sin θ
sin θ cos θ−1

)
�

Vt = V0 +
∫ t
0

∫ 1
0

∫ π
−π

A�θ� �Ys− −Zs−�α�� Ñ�dθdαds�

−b
2

∫ t
0

∫ 1
0
�Ys −Zs�α�� dαds(2.3)

Definition 2.4. Let �Vt�t∈�0�T� be an L2
T-process and let �Wt�t∈�0�T� be an

L2
T-α-process, with values in R2. We will say that �V�W� is a solution of (SB)

with initial data V0 if

� �V� = �α�W� and V = *�V�W�V0�N�


We notice here that this SDE is symmetric in V and W, which is not the
case in dimension 1. This yields that the solution of this SDE does not behave
in the same way when the dimension is 1 or 2. In particular, the conservation
of the momentum (i.e., E�Vt� = E�V0� for t > 0) will hold. The next remark
follows from the Itô formula.

Remark 2.5. If �V�W� is a solution of (SB) with initial data V0, then the
probability flow �� �Vt��t∈�0�T� = ��α�Wt��t∈�0�T� is a weak solution of (B) with
initial data � �V0�.

In order to prove the existence and the uniqueness in law for the nonclassical
SDE (SB), we first solve the associated classical SDE.

Proposition 2.6. Let V0 ∈ L2�!�, and let Z be an L2
T-α-process. Then the

classical SDE V = *�V�Z�V0�N� admits a unique solution, that belongs to
L2
T. Furthermore, the law of the solution depends only on � �V0� and on the

flow ��α�Zt��t∈�0�T�.
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Proof. The existence and the uniqueness for this kind of SDE are stan-
dard. In order to study the law of the solution, let us write the Poisson measure
as N = ∑s∈�0�T� �D�s�δ�θs�αs�s�, and let us set N∗ = ∑s∈�0�T� �D�s�δ�θs�Zs�αs��s�.
Then N∗ is a Poisson measure on �0�T� × �−π�π� × R2 with intensity
β�θ�dθ�α�Zs��dz�ds. (Recall that Zt is “ω-deterministic”). Then

Vt = V0 +
∫ t
0

∫ π
−π

∫
R2
�c�Vs−� z� θ� −Vs−� Ñ∗�dθdzds�

−b
2

∫ t
0
Vsds+

b

2

∫ t
0
Eα�Zs�ds�

and the law of Vt is entirely determined by � �V0�, by the intensity of N∗,
and by �Eα�Zs��s≤T. The result follows. ✷

We now define recursively the Picard iterations that will converge to a
solution of (SB).

Definition 2.7. Let V0 ∈ L2. Let V0 be the process identically equal to
V0. Assuming that we have defined the L2

T-processes V0,...,Vk, and the L2
T-α-

processes Z0,...,Zk−1, we choose an L2
T-α-process Zk satisfying

�α�Zk
Zk−1� 


�Z0� = � �Vk
Vk−1� 


�V0��
then we set

Vk+1 = *�Vk�Zk�V0�N�


Notice here that we build the pathwises of the Vk, and only the laws of the
Zk. The following theorem shows the existence of a solution for SDE (SB).

Theorem 2.8. The sequences Vk and Zk converge a.s. and in L2
T to some

processes V and W. The process V is in L2
T, and W is an L2

T-α-process. Fur-
thermore,

� �V� = �α�W� = Pβ and V = φ�V�W�V0�N�

Hence, �V�W� is a solution of (SB) with initial data V0. The law Pβ does
not depend on the possible choices for !, for N, for V0, and for the Picard
approximations, but only on � �V0�. If, furthermore, E�
V0
p� < ∞ for all
p <∞, then V is an Lp

T-process for all p <∞.

Proof. We show that these sequences are Cauchy by using a simple com-
putation and the fact that, for every k, �α�Zk − Zk−1� = � �Vk − Vk−1�.
Letting k go to infinity in the equality Vk+1 = *�Vk�Zk�V0�N�, we see that
V = *�V�W�V0�N�. Finally, � �V� = �α�W� because the sequences �Vk�
and �Zk� have the same law, and because the processes Vk and Zk converge
uniformly in L2.
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As in Proposition 2.6, we can check that the law of the sequence �Vk� does
not depend on the choices for !, N, V0, and �Zk�, but only on the laws of
these elements. ✷

We now prove the uniqueness in law for (SB): it suffices to consider a fixed
“space” �!�V0�N�, and to check that any solution of (SB) on this space has
the law Pβ.

Theorem 2.9. Let !, V0 ∈ L2�!�, and N be fixed. We consider the solution
�V�W� (with Pβ = � �V� = �α�W�) of (SB) that we have built in Theorem 2.8.
We also assume that there exists another solution �U�Y�, and we set Q =
� �U� = �α�Y�. Then Q = Pβ.

This theorem can be shown by following the methods of Desvillettes, Gra-
ham and Méléard in [4], Theorem 3.7, page 12.

We now assume that !,N, andV0 ∈ L2�!� are fixed. We consider a solution
�V�W� of (SB) with initial data V0.

Proposition 2.10. The conservations of the momentum and of the kinetic
energy hold: for every t ∈ �0�T�,

E�Vt� = E�V0� and E
(� Vt �2

) = E
(� V0 �2

)



Notice that the conservation of the momentum does not hold in dimension 1.

Proof. In order to prove these equalities, it suffices to use the fact that
the flow Pt = � �Vt� is a weak solution of (B) in the sense of Definition 2.1.
Let us first consider the test function φ�v� = vx: it is easy to check that

K
φ
β�v� v∗� = 0− b

2�vx−v∗x�. Hence, for every s > 0,
〈
K

φ
β�v� v∗��Ps�dv�Ps�dv∗�

〉
= 0, and we obtain

∫
R2 vxPt�dv� =

∫
R2 vxP0�dv�. In the same way,

∫
R2 vyPt�dv�

= ∫R2 vyP0�dv�, and the conservation of the momentum is proved.

Then we set φ�v� = v2x + v2y: since K
φ
β�v� v∗� = b

2

(
v∗x

2 − v2x + v∗y
2 − v2y

)
, it

is clear that, for every s > 0,
〈
K

φ
β�v� v∗��Ps�dv�Ps�dv∗�

〉
= 0, and we can

conclude as above that the conservation of the kinetic energy holds. ✷

We now deduce a useful corollary.

Corollary 2.11. If � �V0� is not a Dirac mass, then, for every t ∈ �0�T�,
� �Vt� is not a Dirac mass either.

Proof. Let us assume that there exists t > 0 and X ∈ R2 such that
� �Vt� = δX. Then from Proposition 2.10, E

(� V0 −X �2) = E
(� Vt −X �2)

= 0, which implies that V0 =X a.s. ✷
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3. Existence and smoothness of a weak solution by using the
stochastic calculus of variations. We now want to study the existence
and the smoothness of a density with respect to the Lebesgue measure on R2

for the law of a solution of (SB). Indeed, if this density exists, it will satisfy
(B) in the sense of Definition 1.1. We thus will use the stochastic calculus of
variations (namely, the Malliavin calculus). Bismut’s methods are here easier
than Malliavin’s original approach. The papers of Bichteler and Jacod [2] and
of Bichteler, Gravereaux, and Jacod [1] explain the Malliavin calculus for
diffusion processes with jumps when the intensity of the Poisson measure is
the Lebesgue measure; and although we cannot apply directly their results,
we will follow their methods. In [2], Bichteler and Jacod study the existence
of a density for these processes in dimension 1, and Bichteler, Gravereaux,
and Jacod extend in [1] the methods to the existence and the smoothness of
this density in any finite dimension. This second paper is very complete, but
the assumptions that yield the existence of a density are too stringent, so
that we have to use a mixed method to show the existence of a weak solution
of (B). First, let us state our assumptions.

Assumption (H). 1. The initial data P0 admits a moment of order 2, and
is not a Dirac mass.
2. β = β0+β1, where β1 is even and positive on �−π�π�\�0�, and there exists

k0 > 0, θ0 ∈�0� π�, and r ∈�1�3� such that β0�θ� = �k0/
θ
r���−θ0�θ0��θ�. We
still assume

∫ π
0 θ2β�θ�dθ <∞.

Assumption (S). 1. All the moments of P0 are finite.
2. The cross section β satisfies


sin θ/�1+ cos θ�
�
θ
∈�π/2�π� ∈ ∩p≥1Lp�β�θ�dθ�


Then we state our main theorems.

Theorem 3.1. Under Assumption (H), the equation (B) admits a solution
with initial data P0 in the sense of Definition 1.1.

Theorem 3.2. We assume (H) and (S), and we consider the solution f�t� v�
of the equation (B) with initial data P0 built in Theorem 3.1. Then, for each
t ∈�0�T� fixed, f�t� 
� is of class C∞ on R2.

Theorem 3.3. Assume (H) and (S). Let f�t� v� be the solution of (B) on
�0�T� with initial data P0 built in Theorem 3.1. The map �t� v� −→ f�t� v� is
continuous on �0�T� ×R2.

Let us notice that Assumption (H)-1 is natural. Indeed, if P0 is a Dirac
mass at v0 ∈ R2, then all the particles have the initial velocity v0, and there
cannot be any collision. Hence, Pt = P0 for all t is a solution of (B) in the
sense of Definition 2.1, and it is clear that in this case, Pt does not admit any
density.



442 N. FOURNIER

It seems also natural to suppose (S)-2, which means that β is small near
θ = π. If the angle of a collision between two particles is π, then these particles
exchange their velocities, and this has no effect on the density f�t� 
�. Thus,
if P0 does not admit any density, and if β�θ� is large near π, there cannot be
any regularization property.

In [3], the analyst Desvillettes states a comparable theorem under the fol-
lowing assumption (here the initial data is a density of probability).

Assumption (h). There exist β0 > 0, β1 > 0, and γ ∈�1�3� such that

β0
θ
−γ ≤ β�θ� ≤ β1
θ
−γ

and the initial data f0 � R2 → R+ satisfies∫
R2
f0�v�

(
1+ 
v
2 + 
 ln f0�v�


)
dv <∞

Theorem. Under Assumption (h), the Kac equation (B) admits a weak so-
lution f satisfying, for every t0 > 0, ε > 0,

f ∈ L1
loc

(�t0�∞��H1−ε�R2
v�
) ∩L∞

loc

(
�t0�∞��H��3−γ�/2�−ε�R2

v�
)



Comparing this theorem and Theorems 3.2 and 3.3, we see how the proba-
bilistic approach is efficient. Let us come back to our method.

Notation. In the whole section, ! andN are fixed as in Section 2, and we
assume at least (H). We also consider on ! a random variable V0 such that
� �V0� = P0, and a solution �V�W� of the SDE (SB) with initial data V0 in
the sense of Definition 2.4.

3.1. The techniques. The Malliavin calculus is based on the integration by
parts settings (IBPS). Of course, the IBPS needed for the existence of a density
(which we will name weak IBPS) are less stringent than the ones used for the
smoothness of the density.

In the next definition, we follow [1, p. 27], and we introduce the weak IBPSs.
Recall that C2

p�Rd� is the set of C2 functions on Rd of which all derivatives of
order 0 to 2 have at most a polynomial growth.

Definition 3.4. Let φ be a random variable with values in R2. We will
say that �σ� γ�� � δ� is an IBPS (resp. a weak IBPS) for φ if:

1. σ is a random variable with values in �2�R� (the set of the 2× 2-matrices
on R).

2. γ is a random variable with values in R2 such that γ ∈ ∩p<∞Lp (resp.

γ ∈ L2).
3. � is a linear space of random variables contained in ∩p<∞Lp (resp. L2),

and is stable under C2
p (resp. C2

b�.
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4. δ = �δ1� δ2�, where δi is a linear map on � such that, if n ≥ 1, if F ∈ C2
p�Rn�

(resp. C2
b�Rn�), and if ψ = �ψ1� 


� ψn� ∈ �n, then

δi�F ◦ ψ� =
n∑

j=1

∂F

∂xj
�ψ�δi�ψj�


5. For every g ∈ C2
p�R2� (resp. C2

b�R2�), for every ψ ∈ � , for j = 1�2, the
following equality holds:

E

(
ψ

2∑
i=1

dig�φ�σij

)
= E
(
g�φ��ψγj + δj�ψ��

)

(3.1)

We will use the following criteria.

Theorem 3.5. Let φ be a random variable with values in R2. Assume that
�σ� γ�� � δ� is a weak IBPS for φ. If for each i� j ∈ �1�2�, σij is in � , and if
det σ �= 0 a.s., then the law of φ admits a density with respect to the Lebesgue
measure on R2.

Theorem 3.6. Let φ be a random variable with values in R2. We assume
that �σ� γ�� � δ� is an IBPS for φ, and we consider the following sets:

C0 =
{
σij� γi 
 i� j ∈ �1�2�} � Cn+1 = Cn ∪

{
δj�ψ� 
 j ∈ �1�2�� ψ ∈ Cn

}



Then φ admits a density of class C∞ with respect to the Lebesgue measure on
R2 provided, for all n ≥ 0, Cn ⊂ � , and �det σ�−1 ∈ ∩p<∞Lp.

Theorem 3.6 is proved in Bichteler, Gravereaux, and Jacod, [1, p. 33], and
Theorem 3.5 is also proved in [1, p. 28] in the case where �σ� γ�� � δ� is an
IBPS for φ. But it is easy to see that they use only the fact �σ� γ�� � δ� is a
weak IBPS.

3.2. An I.B.P.S. for Vt. The existence of the density for the law of a jump
process is based on an accumulation of small jumps. Recalling that β = β0+β1
and that β0 explodes near 0, we will in fact be interested only in β0. Hence,
we suppose that the Poisson measure N splits into N0 +N1, where N0 and
N1 are independent Poisson measures on �0�T�×�0�1�×�−π�π� with intensi-
ties ν0�dθdαds� = β0�θ�dθdαds and ν1�dθdαds� = β1�θ�dθdαds. We will
denote by Ñ0 and Ñ1 the associated compensated measures. We also assume
that our probability space is the canonical one associated with the independent
random elements V0, N0, and N1:

�!�� � ��t��P� = �!′�� ′� �� ′��P′� ⊗ �!0�� 0� �� 0
t ��P0�

⊗�!1�� 1� �� 1
t ��P1�


(3.2)

An element ω ∈ ! can be written ω = �ω′�ω0�ω1�, where ω′ is a real number,
and ω0 and ω1 are integer valued measures on �0�T� × �0�1� × �−π�π�.
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Notation. Although N0 has its support in �0�T� × �0�1� × �−θ0� θ0�, we
will still integrate against N0 and Ñ0 on �0�T� × �0�1� × �−π�π�, even if the
functions in the integrals are defined only on �0�T� × �0�1� × �−θ0� θ0�.

Let us briefly present the method we will use to build an IBPS for Vt. We
will first build a perturbation, in order to obtain a new family of integer valued
random measures Nλ

0 (for λ ∈ <, where < is a neighborhood of 0 in R2). Of
course,N0

0 must equalN0. Then we will build a family of probability measures
Pλ = Gλ

t 
P on !, such that � �V0�N
λ
0�N1
Pλ� = � �V0�N0�N1
P�. By this

way, we will obtain a perturbed process Vλ
t satisfying � �Vλ

t 
Pλ� = � �Vt
P�,
and thus E�φ�Vλ

t �Gλ
t � = E�φ�Vt�� for any Borel bounded function φ on R2.

Then we will differentiate this equality at λ = 0 (if φ is regular enough), by
using an L2-derivative of Vλ

t and Gλ
t . We will obtain something like

E �φ′�Vt�
DVt� = −E�φ�Vt�DGt��

which looks like (3.1).
We now build the perturbation. Let ρ be a positive Cb��−θ0� θ0�� function

satisfying

ρ�θ� ≤
(
ce−
θ


−r′
)
∧ 
θ


2
∧M� ρ�θ� ∼0 ce−
θ
−r′ �

�ρ = 0� = �−θ0�0� θ0��
(3.3)

where r′ = 1
8�r − 1� > 0, and where c and M are positive constants that we

will choose soon. In particular, this yields that ρ ∈ ∩p≥1Lp�β0�θ�dθ�.
We also need a predictable function v = (vxvy) from !×�0�T�×�−θ0� θ0�×�0�1�

to R2, such that, for every ω� t� α, the map θ −→ v�ω� t� θ� α� is of class C1,
and

� v�ω� t� θ� α� � ∨ � v′�ω� t� θ� α� �≤ ρ�θ��(3.4)

where v′ ∈ R2 is the derivative of v with respect to θ. This function will be
chosen at the end of the section.

We consider a neighborhood < ⊂ B�0�1� of 0 in R2. For λ ∈ <, we define
the following perturbation:

γλ�ω� t� θ� α� = θ+ 〈λ� v�ω� t� θ� α�〉
= θ+ λxvx�ω� t� θ� α� + λyvy�ω� t� θ� α�


(3.5)

If < is small enough (which we assume), we can check that, for every λ ∈ <,
for every ω, t, α, the map θ → γλ�ω� t� θ� α� is an increasing bijection from
�−θ0� θ0� into itself (by using (3.3) and (3.4)). For λ ∈ <, we set Nλ

0 = γλ�N0�:
if A ⊂ �0�T� × �0�1� × �−π�π� is a Borel set,

Nλ
0�ω�A� =

∫ T
0

∫ 1
0

∫ π
−π

�A�s� γλ�ω� s� θ� α�� α�N0�ω� dθdαds�
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We consider the shift Sλ defined (and entirely defined) by

V0 ◦Sλ�ω� = V0�ω�� N0 ◦Sλ�ω� =Nλ
0�ω��

N1 ◦Sλ�ω� =N1�ω�

(3.6)

We now look for a family of probability measures Pλ on ! satisfying Pλ ◦
�Sλ�−1 = P. To this end, we consider the following predictable real valued
function on !× �0�T� × �−θ0� θ0� × �0�1�:

Yλ�ω� t� θ� α� = (1+ λxv
′
x�ω� t� θ� α� + λyv

′
y�ω� t� θ� α�

)
×β0�γλ�ω� t� θ� α��

β0�θ�



(3.7)

If ρ̃�θ� = ρ�θ� + r2r+1 ρ�θ�
θ
 + r2r+1ρ�θ�ρ�θ�
θ
 , then


Yλ�t� θ� α� − 1
 ≤� λ � ρ̃�θ�
(3.8)

Let us notice that ρ̃ ∈ ∩p≥1Lp�β0�θ�dθ�. We choose c and M such that ρ̃ ≤ 1
2 .

Then we consider the following square integrable Doléans–Dade martin-
gale:

Gλ
t = 1+

∫ t
0

∫ 1
0

∫ π
−π

Gλ
s−�Yλ�s� θ� α� − 1�Ñ0�dθdαds�
(3.9)

Proposition 3.7. Gλ
t is strictly positive for every t ∈ �0�T�. If Pλ is the

probability measure defined by Pλ = Gλ
T
P, then Pλ ◦ �Sλ�−1 = P.

The proof of this proposition follows from the Girsanov theorem for random
measures (see Jacod and Shiryaev [7]), as Lemme 3.8 in [2] (except that the
initial data V0 is not deterministic). This proof is based on the choice of Yλ:
one can check that γλ�Yλ
ν0� = ν0.

We now introduce the following derivatives.

Definition 3.8. Recall that < is a neighborhood of 0 in R2. Let p ≥ 2.

1. Let �Xλ�λ∈< be a family of real valued Lp random variables. We will say
that Xλ is Lp-differentiable at λ = 0 if there exists a derivative DX =(
DxX
DyX

) ∈ Lp such that, when λ goes to 0,

E
(∣∣Xλ −X0 − 〈λ�DX〉∣∣p) = o �� λ �p� 


2. Let �Xλ�λ∈< be a family of R2 valued Lp random variables. We will say
that Xλ is Lp-differentiable at λ = 0 if there exists a derivative DX =(
DxXx DyXx

DxXy DyXy

) ∈ Lp such that, when λ goes to 0,

E
(�Xλ −X0 −DX
λ �p) = o �� λ �p� 
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3. We denote by � (resp. �∞) the set of the real valued random variables
X such that Xλ = X ◦ Sλ is L2-differentiable (resp. Lq-differentiable for
every q < ∞) at 0, and by �t (resp. �

∞
t ) its restriction to the set of the

�t-measurable random variables.
4. Let now �Yλ

t �λ∈< be a family of real valued Lp
T-processes. We will say that

Yλ is Lp-differentiable at λ = 0 if there exists an Lp
T-process DYt =

(
DxYt

DyYt

)
such that

E

(
sup
�0�T�


Yλ
t −Y0

t −
〈
λ�DYt

〉 
p
)
= o �� λ �p� 


Let us describe the process Vλ
t = Vt ◦Sλ. The α-process W behaves here as

a parameter.

Proposition 3.9. The perturbed processVλ satisfies the following equation
under P:

�E�λ��

Vλ
t = V0 −

b

2

∫ t
0

∫ 1
0
�Vλ

s −Ws�α��dαds

+
∫ t
0

∫ 1
0

∫ π
−π

A�θ��Vλ
s− −Ws−�α��Ñ1�dθdαds�

+
∫ t
0

∫ 1
0

∫ π
−π

A�γλ�s� θ� α���Vλ
s− −Ws−�α��Ñ0�dθdαds�

+
∫ t
0

∫ 1
0

∫ π
−π
�Yλ�s� θ� α� − 1�A�γλ�s� θ� α��

×�Vλ
s− −Ws−�α��β0�θ�dθdαds


Proof. We work here under P. The direct expression of Vλ is given by

Vλ
t = V0 −

b

2

∫ t
0

∫ 1
0
�Vλ

s −Ws�α��dαds

+
∫ t
0

∫ 1
0

∫ π
−π

A�θ��Vλ
s− −Ws−�α��Ñ1�dθdαds�

+
∫ t
0

∫ 1
0

∫ π
−π

A�θ��Vλ
s− −Ws−�α���Nλ

0 − ν0��dθdαds�


But the last term is equal to∫ t
0

∫ 1
0

∫ π
−π

A�γλ�s� θ� α���Vλ
s− −Ws−�α��Ñ0�dθdαds�

−
∫ t
0

∫ 1
0

∫ π
−π

A�θ��Vλ
s− −Ws−�α���ν0 − γλ�ν0���dθdαds�


Since ν0 − γλ�ν0� = γλ�Y
ν0� − γλ�ν0� = γλ��Y − 1�
ν0� (see Proposition 3.7),
the proof is complete. ✷
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As we will study Vλ as a solution of �E�λ�� (we have no other information),
we may need the following proposition, of which the proof is standard.

Proposition 3.10. For every λ ∈ <, the equation �E�λ�� admits one and
only one solution Vλ ∈ L2

T. If, furthermore, P0 = � �V0� admits moments of
all orders, then Vλ ∈ ILp

T for every p <∞.

Let us differentiate Gλ (see Definition 3.8).

Proposition 3.11. The family �Gλ� is Lp-differentiable for every p < ∞,
and has the following derivative:

DGt =
(
DxGt

DyGt

)
=



∫ t
0

∫ 1
0

∫ π
−π

∂

∂λx
Yλ�s� θ� α�

∣∣∣
λ=0

Ñ0�dθdαds�∫ t
0

∫ 1
0

∫ π
−π

∂

∂λy
Yλ�s� θ� α�

∣∣∣
λ=0

Ñ0�dθdαds�


 
(3.10)

We omit this proof and the following one, because they are very simple in
their principle, but the computations are fastidious. The method can be found
in [2], Lemma 3.7, page 138 and Lemma 3.11, page 140, or [1], Subsection 5b.

Notation. We will denote in the sequel
(x1
x2

) �y1 y2� =
(x1y1 x1y2
x2y1 x2y2

)
.

Theorem 3.12. The family �Vλ� is L2-differentiable at λ = 0, and its
derivative DV ∈�2�R� satisfies the equation

�ED�
DVt = −b

2

∫ t
0
DVsds+

∫ t
0

∫ 1
0

∫ π
−π

A�θ�DVs−Ñ�dθdαds�

+
∫ t
0

∫ 1
0

∫ π
−π

A′�θ��Vs− −Ws−�α��vT�s� θ� α�Ñ0�dθdαds�

−
∫ t
0

∫ 1
0

∫ π
−π

A�θ��Vs− −Ws−�α��
(�v�s� 
� θ�β0�
��′ �θ�

)T
dθdαds


If, furthermore, P0 has moments of all orders, then V is Lp-differentiable for
every p <∞.

We can now state an IBPS for Vt.

Proposition 3.13. Let t ≥ 0. If X ∈ �t (or if X ∈ �∞
t , cf. Definition 3.8),

we set δt�X� = −DX. Under Assumption (H), �DVt�−DGt��t� δt� is a weak
IBPS for Vt. Under Assumptions (H) and (S), �DVt�−DGt��

∞
t � δt� is an IBPS

for Vt.

Proof. Let us for example assume (H) and (S) and prove the second claim.
DVt is, of course, an �2�R� valued random variable. By Proposition 3.11,
−DGt is an R2 valued random variable which is in ∩pLp. �∞

t is a linear space,
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and it is classical to show that if X1� 


�Xn are in �∞
t , and if F ∈ C2

p�Rn�,
then F�X1� 


�Xn� ∈ �∞

t , and has the following derivative:

DF �X1� 


�Xn� =
n∑
i=1

∂F

∂xi
�X1� 


�Xn�DXi


It remains to prove that if f ∈ C2
p�R2�, and ifX ∈ �∞

t , then E�Dt� = 0, where

Dt = DXf�Vt� +X � �f′x�Vt� f′y�Vt� �DVt +Xf�Vt�DGt


By using the facts that Vt ∈ ∩Lp and f ∈ C2
p�R2�, it is standard and natural

to show that

E
(∣∣Xλf�Vλ

t �Gλ
t −Xf�Vt� −

〈
λ�Dt

〉∣∣) = o�� λ ��

Hence, ∣∣E (Xλf�Vλ

t �Gλ
t

)−E �Xf�Vt�� −
〈
λ�E�Dt�

〉∣∣ = o�� λ ��


But, since Xλf�Vλ
t � =Xf�Vt� ◦Sλ and since Pλ ◦ �Sλ�−1 = P, we deduce that

E
(
Xλf�Vλ

t �Gλ
t

) = E �Xf�Vt�� 

Hence,

∣∣〈λ�E�Dt�
〉∣∣ = o�� λ ��, and E�Dt� = 0, which was our aim. ✷

3.3. The choice of v. In order to apply Theorems 3.5 and 3.6, we have to
study the inversibility of DVt. We will use the Doléans–Dade martingales, in
order to obtain a suitable expression of DVt. Then we will choose v, which is
really more difficult in dimension 2 than in dimension 1. Only a good choice
of v will allow DVt to admit moments of all orders (see Theorem 3.24): v must
be “large” (this way, DVt will be invertible) but also “small” (in particular, we
need � v �≤ ρ). We denote by I the unit matrix on R2.

Lemma 3.14. One can rewrite the SDE (ED) in the following way: DVt =∫ t
0 dKs
DVs− + Lt� where Kt =

∫ t
0

∫ 1
0

∫ π
−π A�θ�Ñ�dθdαds� − b

2tI and Lt =∫ t
0

∫ 1
0

∫ π
−π A

′�θ��Vs− −Ws−�α��vT�s� θ� α�N0�dθdαds�.

Proof. It suffices to prove that

−
∫ t
0

∫ 1
0

∫ π
−π

A�θ��Vs− −Ws−�α��
(�v�s� 
� α�β0�′ �θ�

)T
dθdαds

=
∫ t
0

∫ 1
0

∫ π
−π

A′�θ��Vs− −Ws−�α��vT�s� θ� α�β0�θ�dθdαds

This can be shown by using a (standard) integration by parts formula in the
variable θ, and by noticing that

∀ω� s� α v�ω� s�−θ0� α� = v�ω� s�0� α� = v�ω� s� θ0� α� = 0
 ✷
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Proposition 3.15. LetM (with values in �2�R�) be the following Doléans–
Dade martingale:

Mt =
∫ t
0
dKs
Ms− + I 
(3.11)

For all t, �I+ EKt� is a.s. invertible. We thus know (see Jacod [6]) that for all
s, Ms and Ms− are also a.s. invertible, and DVt =MtHt� where

Ht =
∫ t
0
M−1

s−�I+ EKs−�−1 dLs

=
∫ t
0

∫ 1
0

∫ π
−π

M−1
s−�I+A�θ��−1(3.12)

×A′�θ��Vs− −Ws−�α��vT�s� θ� α�N0�dθdαds�


The only claim we need to show here is that, for every t, �I + EKt� is a.s.
invertible. To this end, let us write N =∑s∈�0�T� �D�s�δ�s�θs�αs�. Then, when N
jumps at s, I + EKs = I + A�θs� is invertible except if θs ∈ �−π�π�, which
never happens a.s.

We now choose v. First we need a positive C∞
b function δ on �−θ0� θ0� such

that (C > 0 is a constant):


δ�θ�
 + 
δ′�θ�
 ≤ ρ�θ��
�δ = 0� = �−θ0�0� θ0�� δ�θ� ∼0 Ce−
θ
−2r′ 


(3.13)

We will also use a function on R2 × ��2�R�� × �−θ0� θ0� with values in R2:

ḡ�x�y� θ� = �A′�θ�x�T��I+A�θ��−1�T�y−1�T

We consider the C∞ function h�x� = 1/�1+ � x �2� from R2 to �0�1�. Finally,
we will use a function k from �2�R� to �0�1�, such that k�y� = 0 if and only
if det y = 0, and such that the map

y −→
{ �y−1�Tk�y�� if dety �= 0�
0� if dety = 0�

is C∞
b from �2�R� to itself.

Then, the function on R2 ×�2�R� × �−θ0� θ0� with values in R2 defined by

g�x�y� θ� = ḡ�x�y� θ�h �A′�θ�x�k �I+A�θ��k�y�
is of class C∞

b .
We now set E�x�y� θ� = g�x�y� θ�δ�θ�. This function is of class C∞

b .

Definition 3.16. We set v�s� θ� α� = E �Vs− −Ws−�α��Ms−� θ�. (This func-
tion satisfies the assumptions of Subsection 3.2.)

The last preliminary consists of talking about the higher derivatives of Vt

and Gt � in order to apply Theorems 3.5 and 3.6, we have either to differentiate
DV [under Assumption (H)] or to differentiate infinitely DV and DG [under



450 N. FOURNIER

(H) and (S)]. To this end, we first notice that Mt satisfies a quite similar
(but easier) equation than Vt. Hence, since the initial condition M0 = I is
deterministic, Mλ =M ◦ Sλ is Lp-differentiable at 0 for every p <∞. Let us
compute vλ�ω� s� θ� α� = v�Sλ�ω�� s� θ� α�� with the notation of Definition 3.16,

vλ�s� θ� α� = E�Vλ
s− −Ws−�α��Mλ

s−� θ�

By using the expression of DV in Lemma 3.14, we can write DVλ = DV ◦ Sλ

as

DVλ
t = −b

2

∫ t
0
DVλ

s ds+
∫ t
0

∫ 1
0

∫ π
−π

A�θ�DVλ
s−Ñ1�dθdαds�

+
∫ t
0

∫ 1
0

∫ π
−π

A�γλ�s� θ� α��DVλ
s−Ñ0�dθdαds�

−
∫ t
0

∫ 1
0

∫ π
−π
�Yλ�s� θ� α� − 1�A�γλ�s� θ� α��DVλ

s−β0�θ�dθdαds

+
∫ t
0

∫ 1
0

∫ π
−π

A′�γλ�s� θ� α���Vλ
s− −Ws−�α��

× (vλ�s� γλ�s� θ� α�� α�)TN0�dθdαds�


One can show that, under Assumption (H), the familyDVλ is L2-differentiable
at 0, by using the properties of v.

Assume now (H) and (S), and set Xt = �DVt�Mt�DGt�Vt�. Then Xt sat-
isfies a SDE with initial condition X0 = �0� I�0�V0�. Using the properties of
v, one can show that Xλ = X ◦ Sλ is Lp-differentiable at 0 for every p < ∞,
with DXt = �DxXt�D

yXt�. Hence, DVt ◦ Sλ, Mt ◦ Sλ, and DGt ◦ Sλ are
Lp-differentiable at 0 for every p <∞.

Finally, we can iterate this method for Yt = �DXt�Xt�, and so on. We may
state the following theorem.

Theorem 3.17. Under Assumption (H), the derivative DVt is in �t for
every t ∈ �0�T�. Under (H) and (S), V and G are infinitely Lp-differentiable
for every p <∞.

The first conditions of Theorems 3.5 and 3.6 are thus satisfied, and we still
have to study the inversibility of DVt.

3.4. Existence of a weak solution. The following remark shows the way to
prove that DVt =MtHt is invertible.

Remark 3.18. We set G�x� θ� = �I + A�θ��−1�A′�θ�x��A′�θ�x�T ��I+
A�θ��−1)T, which is a symmetric nonnegative matrix. Then we set Rt =∫ t
0

∫ 1
0

∫ π
−π G�Vs−−Ws−�α�� θ�×h �A′�θ��Vs− −Ws−�α���×k�I+A�θ�� ×k�Ms−�×

δ�θ�N0�dθdαds�.
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This matrix is also symmetric, nonnegative, and is increasing for the strong
order (on the set of symmetric nonnegative matrices: for every s ≤ t, Rt−Rs is

a.s. symmetric and nonnegative). We can write Ht =
∫ t
0

∫ 1
0

∫ π
−π M

−1
s−dRs

(
M−1

s−
)T

.
Hence, in order to show that Ht (and hence DVt) is a.s. invertible, it suffices
to prove that a.s., Rt −Rs is invertible for every 0 ≤ s < t ≤ T. Finally, since
the real valued expression in Rt is always in �0�1�, it suffices in fact to show
that a.s., R̄t − R̄s is invertible for all 0 ≤ s < t ≤ T, where

R̄t =
∫ t
0

∫ 1
0

∫ π
−π

G�Vs− −Ws−�α�� θ�δ�θ�N0�dθdαds�


Theorem 3.19. Let t ∈�0�T�. Under Assumption (H), DVt is a.s. invertible.

Proof. We break the proof into several steps.

Step 1. If Y is a (random) vector of R2 not equal to 0, an easy computation
shows that, for θ ∈� − π�π�

YTG�Vs− −Ws−�α�� θ�Y

=
( sin θ

1+ cos θ

[
Yx�Vx

s− −Wx
s−�α�� +Yy�Vy

s− −Wy
s−�α��

]
+ [−Yy�Vx

s− −Wx
s−�α�� +Yx�Vy

s− −W
y
s−�α��

] )2



(3.14)

Let us fix ω, s, and α. It is easy to see that if Vs−�ω� �=Ws−�α�, then
dθ
{
θ ∈� − π�π� / YT�ω�G�Vs−�ω� −Ws−�α�� θ�Y�ω� = 0

} = 0


Step 2. Let s > 0 be fixed, and let Y be a (random) unit vector in R2 that is
�s-measurable. The aim of this step is to show that a.s. ∀t > s,YT�R̄t−R̄s�Y >
0. To this end, we consider the following stopping time:

τ�Y� = inf
{
t > s

/
YT�R̄t − R̄s�Y > 0

}
= inf

{
t > s

/∫ t
0

∫ 1
0

∫ π
−π

�B�Y��r� θ� α�N0�dθdαds� > 0
}
�

where B�Y� = {�r� θ� α�/r > s and YTG�Vr− −Wr−�α�� θ�Y > 0
}
(recall that

R̄u is “increasing”). It thus suffices to check that τ�Y� = s a.s. By assumption,
� �V0� is not a Dirac mass. By Lemma 2.11, for every t > 0, � �Vt� = �α�Wt�
is not a Dirac mass either. This implies that, for every r ≥ 0, for every ω,∫ 1

0
��Wr−�α��=Vr−�ω�� dα = Pα�Wr− �= Vr−�ω�� > 0


Since
∫ π
−π β0�θ�dθ = ∞, and thanks to the first step, for all ω, for all r > s,∫ 1

0

∫ π
−π

�B�Y�ω���r� θ� α�β0�θ�dθdα

≥
∫ 1
0

∫ π
−π

��Wr−�α��=Vr−�ω���B�Y�ω���r� θ� α�β0�θ�dθdα = ∞
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Consequently, except if τ�Y�ω�� = s,∫ τ�Y�ω��
0

∫ 1
0

∫ π
−π

�B�Y�ω���r� θ� α�β0�θ�dθdαdr = ∞


But a.s.,
∫ τ�Y�
0

∫ 1
0

∫ π
−π �B�Y��r� θ� α�N0�dθdαdr� ≤ 1, which yields

E

(∫ τ�Y�
0

∫ 1
0

∫ π
−π

�B�Y��r� θ� α�β0�θ�dθdαdr
)

= E

(∫ τ�Y�
0

∫ 1
0

∫ π
−π

�B�Y��r� θ� α�N0�dθdαdr�
)
≤ 1�

and thus
∫ τ�Y�
0

∫ 1
0

∫ π
−π �B�Y��r� θ� α�β0�θ�dθdαds < ∞ a.s. Hence, τ�Y� = s

a.s., which was our aim.

Step 3. We now show that if s > 0 is fixed, then a.s., ∀ t > s, R̄t − R̄s is
invertible. We setKert =Ker�R̄t− R̄s�. For each random unit vector Y in R2,
that is �s-measurable, we know that a.s., ∀t > s, Y /∈ Kert. Hence, as Kert
is increasing when t decreases, a.s., Y /∈ Kers+ = ∪t>sKert. Since Kers+ is
�s-measurable, and since this is true for every unit vector �s-measurable, we
deduce that Kers+ = �0�, and step 3 is finished.

Step 4. We just have to change the “a.s.” First,

a
s
� ∀ s < t with s� t ∈ �0�T� ∩� � R̄t − R̄s is invertible


Since R̄t is increasing, it is easy to drop the “∩ �,” and the theorem follows.
✷

Proof of Theorem 3.1. It is immediate, thanks to Theorems 3.19 and
3.17, Proposition 3.13, Theorem 3.5, and Remarks 2.5 and 2.2. ✷

3.5. Smoothness of the weak solution. We now have to study the inverse
moments of det DVt. We use the notations of the previous subsection. Re-
call that DVt = MtHt, where Mt is the Doléans–Dade martingale given in
Proposition 3.15, and where

Ht =
∫ t
0

∫ 1
0

∫ π
−π

M−1
s−G�Vs− −Ws−�α�� θ��M−1

s−�T

×ζ�Vs− −Ws−�α��Ms−� θ�δ�θ�N0�dθdαds��
where, for x ∈ R2 and y ∈�2�R�,

G�x� θ� = �I+A�θ��−1 × �A′�θ�x� × �A′�θ�x�T × ��I+A�θ��−1�T
and

ζ�x�y� θ� = h�A′�θ�x� × k�I+A�θ�� × k�y��
where h and k are defined in Subsection 3.3.

We first study the inverse moments of Mt.
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Theorem 3.20. Assume (H) and (S). For every t ≥ 0, �det Mt�−1 admits
moments of all orders.

Proof. We notice that under Assumption (S)-2,

M−1
t = I+ b

2

∫ t
0
M−1

s ds−
∫ t
0

∫ 1
0

∫ π
−π

M−1
s−�I+A�θ��−1A�θ�Ñ�dθdαds�

+
∫ t
0

∫ 1
0

∫ π
−π

M−1
s−A�θ��I+A�θ��−1A�θ�β�θ�dθdαds

(3.15)

In order to check this equality, it suffices to apply the Itô formula to the
product Mt
M

−1
t [where M−1

t is defined by (3.15)]: one obtains that Mt
M
−1
t

is a solution of a classical SDE of which I is also a solution.
Then a simple computation shows that

�I+A�θ��−1A�θ� = sin θ

cos θ+ 1

(
0 −1
1 0

)
and

A�θ��I+A�θ��−1A�θ� = 1
2

sin θ

cos θ+ 1

( − sin θ 1− cos θ
cos θ− 1 − sin θ

)



Thanks to Assumption (S)-2, and since
∫ π
0 θ2β�θ�dθ <∞, one can check that


 sin θ

1+ cos θ

∈ ∩p≥2Lp�β�θ�dθ� �

sin2 θ+ 
 sin θ�1− cos θ�

1+ cos θ

∈ ∩p≥1Lp�β�θ�dθ�


Hence it is clear that M−1
t (and thus its determinant) is well defined and

admits moments of all orders (this SDE is classical, and the initial data I is
deterministic). ✷

It is more difficult to prove that Ht admits moments of all orders. In fact,
we will only study the case where E�V0� = 0 by using the Malliavin calculus.
The generalization (see the final proof of this section) will then follow from
the uniqueness in law for (SB). We begin with three lemmas.

Lemma 3.21. The map �t�Y� −→ � �〈Vt�Y
〉� is weakly continuous on

�0�T� × �Y ∈ R2 
 � Y �= 1�.

Proof. It suffices to show that for every φ ∈ C2
b�R�, the map �t�Y� →

E�φ�〈Vt�Y
〉�� is continuous, which can be checked by using the fact that the

flow � �Vt� is a solution of the equation (B) in the sense of Definition 2.1. ✷

Lemma 3.22. Assume (H), (S), and E�V0� = 0. Let t0 > 0 be fixed. There
exist η > 0, q > 0, and ξ > 0 (depending on t0) such that, for every t ∈ �t0�T�,
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for every X ∈ R2, for every unit vector Y ∈ R2,

Pα

(〈
Wt −X�Y

〉2
> η� �Wt �2< ξ

)
> q
(3.16)

Proof. Since sup�0�T� � Wt � is in ∩pLp, it suffices to show that there
exist η > 0, q > 0 such that, for every t ∈ �t0�T�, for every X ∈ R2, for every
Y ∈ R2 such that � Y �= 1,

Pα

(〈
Wt −X�Y

〉2
> η
)
> 2q


In order to check this claim, notice (by using Chebyshev’s inequality) that
there exists ξ > 0 such that, for every t, Pα�� Wt �2≤ ξ� > 1 − q. We now
break the proof into several steps.

Step 1. Let t ≥ t0 and � Y �= 1 be fixed. Thanks to the previous section,
the law of Wt admits a density on R2, and hence the law of

〈
Wt�Y

〉
admits

a density with respect to the Lebesgue measure on R. By Proposition 2.10
and since E�V0� = 0, we also know that Eα�Wt� = Eα�W0� = 0, and hence
Eα�
〈
Wt�Y

〉� = 0. It is then easy to show that there exists η�t�Y� > 0 and
q�t�Y� > 0 such that

Pα

(〈
Wt�Y

〉
>
√
η�t�Y�

)
> 2q�t�Y��

Pα

(〈
Wt�Y

〉
< −
√
η�t�Y�

)
> 2q�t�Y�


Step 2. Using Lemma 3.21, Portemanteau’s Theorem, and the step 1, it is
classical to show that, for every t in �t0�T�, for every � Y �= 1, there exists a
neighborhood � �t�Y� of �t�Y� such that, for every �t′�Y′� ∈ � �t�Y�,

Pα

(〈
Wt′�Y

′〉 > √η�t�Y�) > 2q�t�Y�


Let us consider a finite covering ∪Ni=1� �ti�Yi� of the compact set �t0�T�×�Y ∈
R2
/ � Y �= 1�. Then, if η = inf i≤N η�ti�Yi� and if q = inf i≤N q�ti�Yi�, then

for all t ≥ t0 and � Y �= 1,

Pα�
〈
Wt�Y

〉
>
√
η� > 2q


In the same way, we get Pα�
〈
Wt�Y

〉
< −√η� > 2q for all t ≥ t0 and � Y �= 1.

Step 3. Finally, let X be in R2, t ≥ t0, and � Y �= 1 be fixed. If
〈
X�Y

〉 ≤ 0,

Pα�
〈
Wt −X�Y

〉2
> η� ≥ Pα�

〈
Wt −X�Y

〉
>
√
η�

≥ Pα�
〈
Wt�Y

〉
>
√
η+ 〈X�Y

〉�
≥ Pα�

〈
Wt�Y

〉
>
√
η� > 2q
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If
〈
X�Y

〉 ≥ 0, the same kind of argument does work, and the proof is complete.
✷

Lemma 3.23. Assume (H), (S) and E�V0� = 0. Let t0 > 0 be fixed, and let
η, q, and ξ be the strictly positive numbers associated with t0 introduced in
the previous lemma. If X ∈ R2, � Y �= 1, and s ≥ t0, we consider the set

	s�X�Y� = {�θ� α� ∈ �−θ0� θ0� × �0�1�/�Ws�α� �2≤ ξ and

YTG�X−Ws�α�� θ�Y ≥ η
}



(3.17)

Then, for every even positive function z on �−θ0� θ0�,∫∫
	s�X�Y�

z�θ�β0�θ�dθdα ≥ q
∫ θ0
0

z�θ�β0�θ�dθ
(3.18)

Proof. Let X ∈ R2, let � Y �= 1, and let s ≥ t0 be fixed. Recall (see (3.14)
in the proof of Theorem 3.19) that

YTG�X−Ws�α�� θ�Y = 〈f�θ�Y+PY�X−Ws�α�
〉2
�

where P =
(
0 −1
1 0

)
and f�θ� = sin θ/�cos θ+ 1� is an increasing bijection

from � − π�π� to R satisfying f�0� = 0.
We denote

hs�X�PY� =
{
α ∈ �0�1�

/〈
Ws�α� −X�PY

〉2
> η� �Ws�α� �2< ξ

}



Thanks to Lemma 3.22, we know that Pα�hs�X�PY�� > q. We will show that
if α ∈ hs�X�PY�, then YTG�X −Ws�α�� θ�Y ≥ η either for all θ ∈�0� π� or
for all θ ∈� − π�0� (and the lemma will be proved). Let α ∈ hs�X�PY�. If〈
Y�X−Ws�α�

〉 = 0, then

YTG�X−Ws�α�� θ�Y = 〈PY�X−Ws�α�
〉2
> η

for every θ. Else, YTG�X − Ws�α�� θ�Y ≥ η for every θ such that f�θ� ∈
R\�x1� x2�, where x1 ≤ x2 are the solutions of

x2 × 〈Y�X−Ws�α�
〉2 + 2x× 〈Y�X−Ws�α�

〉 〈
PY�X−Ws�α�

〉
+ 〈PY�X−Ws�α�

〉2 − η = 0


Hence, it suffices to show that the signs of x1 and x2 are equal. But

x1� x2 =
− 〈PY�X−Ws�α�

〉±√η〈
Y�X−Ws�α�

〉 


Since
〈
PY�X−Ws�α�

〉2 ≥ η, the lemma follows. ✷

Theorem 3.24. Assume (H), (S) and E�V0� = 0. For every t > 0,
�det Ht�−1 admits moments of all orders [and thus so does �det DVt�−1].
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Proof. We fix t0 > 0, and we prove the theorem for every t > t0, which of
course suffices. Since θ0 < π, there exists d0 > 0 such that, for every 
θ
 ≤ θ0,

det �I +A�θ��
 = 1

2�1 + cos θ� ≥ d0. We choose k such that k�y� = 1 as soon
as 
det y
 ≥ d0.

For every X in R2, one has � A′�θ�X �2= 1
4 �X �2. Hence, if α is in any set

	s�X�Y�, then
h�A′�θ��Vs −Ws�α��� ≥ �1+ 1

4�� Vs �2 +ξ��−1

Hence, for every � Y �> 0, a simple computation (using Lemma 3.23) shows
that, for every t ≥ t0, YTHtY is greater than or equal to

∫ t
t0

∫∫
	s

(
Vs−�

M−1
s−

T
Y

�M−1
s−

T
Y�

) �M−1
s−

T
Y �2 ×η× �1+ 1

4�� Vs− �2 +ξ��−1

×k�Ms−� × δ�θ�N0�dθdαds�

Let us notice that the function on !× �0�T� × �−π�π� × �0�1� defined by

ω� s� θ� α −→ �
	s

(
Vs−�

M−1
s−

T
Y

�M−1
s−

T
Y�

)�θ� α�

= �{

θ
≤θ0� �Ws−�α��2≤ξ� YT M−1

s−
�M−1

s−
T
Y�
G�Vs−�ω�−Ws−�α��θ� M−1

s−
T

�M−1
s−

T
Y�
Y≥η

}

is predictable, because Vs− and M−1
s− are predictable, and because W is a

measurable α-process.
Let us define the following random variable:

F = sup
�0�T�

{
�1+ 1

4�� Vs �2 +ξ�� ×
(
k�Ms−� �M−1

s−
T �2op
)−1}

�

where � M−1
s−

T �op is the operator norm of M−1
s−

T. Thus, for every � Y �= 1,
t ≥ t0,

F×YTHtY ≥ η
∫ t
t0

∫∫
	s

(
Vs−�

M−1
s−

T
Y

�M−1
s−

T
Y�

) δ�θ�N0�dθdαds�


In order to use Lemma A.1 in the Appendix,we have to computeE
(
e−ζF×Y

THtY
)

for ζ > 0, t ≥ t0. To this end, we set

nζ�s� =
q
∫ θ0
0

(
1− e−ζδ�θ�

)
β0�θ�dθ∫∫

	s

(
Vs−�

M−1
s−

T
Y

�M−1
s−

T
Y�

) (1− e−ζδ�θ�
)
β0�θ�dθdα




Choosing δ even, and using Lemma 3.23, we see that nζ�s� ∈�0�1� a.s. for
every s ≥ t0, ζ > 0. Furthermore, for every ζ > 0, the following function on
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!× �t0�T� × �−π�π� × �0�1� is predictable and takes its values in �0�1� :

gζ�s� θ� α� = − 1
ζδ�θ� ln

[
1− nζ�s�

(
1− e−ζδ�θ�

)]
�

	s

(
Vs−�

M−1
s−

T
Y

�M−1
s−

T
Y�

)�θ� α�


Hence, for every � Y �= 1, t ≥ t0, ζ > 0,

F×YTHtY ≥ η
∫ t
t0

∫ 1
0

∫ π
−π

gζ�s� θ� α�δ�θ�N0�dθdαds� = ηZt�ζ�


Using Itô’s formula,

e−ζZt�ζ� = 1− ζ
∫ t
0
e−ζZs−�ζ� dZs�ζ�

+∑
s≤t

[
e−ζZs�ζ� − e−ζZs−�ζ� + ζe−ζZs−�ζ�EZs�ζ�

]

= 1−
∫ t
t0

∫ 1
0

∫ π
−π

e−ζZs−�ζ�
(
1− e−ζgζ�s�θ�α�δ�θ�

)
N0�dθdαds�


Taking the expectations, and using the expression of gζ , we obtain for every
t ≥ t0, ζ > 0,

E�e−ζZt�ζ�� = 1−E

(∫ t
t0

∫ 1
0

∫ π
−π

e−ζZs−�ζ�
(
1− e−ζgζ�s�θ�α�δ�θ�

)
β0�θ�dθdαds

)

= 1− q
∫ θ0
0

(
1− e−ζδ�θ�

)
β0�θ�dθ×

∫ t
t0

E�e−ζZs�ζ��ds


Thanks to Lemma A.2. in the Appendix,

E�e−ζZt�ζ�� = exp
(
−q�t− t0�

∫ θ0
0

(
1− e−ζδ�θ�

)
β0�θ�dθ

)
�

and for every ζ > 0, t ≥ t0, � Y �= 1,

E
(
exp
(−ζF×YTHtY

)) ≤ E
(
e−ηζZt�ηζ�

)

≤ exp
(
−q�t− t0�

∫ θ0
0

(
1− e−ηζδ�θ�

)
β0�θ�dθ

)



Recall that β0�θ� = �k0/
θ
r��
θ
≤θ0 . We choose δ�θ� ≥ 1
η
e−
θ


−2r′
for small θ

(with δ even and satisfying (3.13)). Thanks to Lemma A.3, there exists C > 0
and ζ0 ≥ 0 such that, for every ζ ≥ ζ0,∫ θ0

0
�1− e−ηζδ�θ��β0�θ�dθ ≥ C�ln ζ�3 


Thus, for every ζ ≥ ζ0, t ≥ t0, and � Y �= 1,

E
(
exp
(−ζFYTHtY

)) ≤ exp
(−Cq�t− t0��ln ζ�3) 
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Hence, for every p ≥ 0, for all t > t0,

E

(∫
X∈R2

�X �p exp
(−XTFHtX

)
dX

)

=
∫ ∞
ρ=0

∫
�Y�=1

ρpE
(
e−ρ

2FYTHtY
)
dYdρ

≤K
∫ √ζ0

ρ=0
ρp dρ+K

∫ ∞
ρ=
√
ζ0

ρp exp
(−Cq�t− t0��ln ρ2�3) dρ <∞


Thanks to Lemma A.1, this yields that, for every t > t0, �det FHt�−1 =
�F2 det Ht�−1 is in every Lp. But it is possible to choose k such that F has
moments of all orders: F ≤ F1 ×F2, where

F1 = sup
�0�T�

(
1+ 1

4
� Vs �2 +

ξ

4

)
�

F2 = sup
�0�T�

(
k�Ms� �M−1

s

T �2op
)−1




We have already seen that F1 has moments of all orders. In order to study
F2, let us first recall some norm inequalities for a symmetric positive
matrix O:


det O
2 ≤ � O �4≤ 1+ � O �8�

det O
× � O−1 �op = � O �op≥� O−1 �−1 


We can choose k such that, for every y,

k�y� ≥ 
dety
2
1+ � y �8 


[We still assume that k�y� = 1 if det y ≥ d0.] Hence,

F2 ≤ sup
�0�T�

(
1+ �Ms �8

)× sup
�0�T�

�M−1
s �2 


Since Ms and M−1
s are solutions of stochastic differential equations (with ini-

tial datum I), it is classical to show that they have moments of all orders, and
we can say that F has moments of all orders. Thus,

E �
det Ht
−p� = E
(
F
2p × 
det FHt
−p

)
≤ E
(
F
4p)1/2E (
det FHt
−2p

)1/2
<∞


We have proved that, for t > t0, det Ht admits some inverse moments of all
orders, and the theorem follows. ✷

Proof of Theorem 3.2. Using Theorem 3.24, Proposition 3.20, Theorem
3.17, Proposition 3.13 and Theorem 3.6, the theorem is immediate when
E�V0� = 0. We suppose now that V0 is not centered. We denote by �V�W�
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[resp. �V′�W′�] a solution of the SDE (SB) with initial data V0 [resp.
V′

0 = V0 − E�V0�]. Since V0 satisfies Assumptions (H) and (S), so does V′
0.

We thus know that, for every t > 0, the law of V′
t admits a C∞ density f′�t� 
�

on R2, and that Vt admits a density f�t� 
� on R2. On the other hand, one
can check that �V − E�V0��W − E�V0�� is a solution of (SB) with initial
data V′

0. Hence, by Theorem 2.9, � �Vt −E�V0�� = � �V′
t�. This yields that

f�t� v� = f′�t� v−E�V0�� and the theorem follows. ✷

3.6. Joint regularity. We are now interested in the joint regularity of the
weak solution f of the equation (B) built in Theorem 3.1. By Theorems 3.1 and
3.2, and since Assumptions (H) and (S) hold, we know that, for every t > 0, the
law of Vt admits a C∞ density f�t� 
� with respect to the Lebesgue measure
on R2.

In the case of a classical diffusion process Xt, Bichteler, Gravereaux, and
Jacod give in [1] a method to study the joint smoothness of f�t� x�, where
f�t� x� is the density of the law of Xt. Their method is based on the Malliavin
calculus, and on the smoothness of the maps t → E�ψ�Xt�� for any ψ suffi-
ciently regular. In our case, these maps are only differentiable, because our
SDE is not time-homogeneous, and we thus cannot apply their method.

The method we use here is based on the weak continuity of t→ � �Vt� and
on Theorem 3.2. As in the proof of Theorem 3.2, we assume that E�V0� = 0,
the generalization being immediate by the uniqueness in law for the SDE (SB)
(see Theorem 2.9). We also fix t0 > 0, and we prove Theorem 3.3 on �t0�T�×R2,
which of course suffices. We begin with a lemma.

Lemma 3.25. Assume (H), (S) and E�V0� = 0. For every multi-index α,
there exists a constant Cα�t0

such that, for every g ∈ C∞
b �R2�, for every t ∈

�t0�T�,
E �∂αg�Vt�� ≤ Cα�t0

� g �∞ 
(3.19)

Proof. We just have to study the proof of Theorem 3.6 (which can be
found in [1]). Let φ be a random variable with values in R2 satisfying the
assumptions of Theorem 3.6, with the same notations. Then Bichteler et al.
prove that, for every multi-index α, there exists a constant Kα such that, for
every g ∈ C∞

b �R2�, E �∂αg�φ�� ≤Kα � g �∞. Following closely their proof, one
can check that the constants Kα depend only on the moments of the elements
of Cn (n ∈ N), and on the inverse moments of det σ .

Let us come back to our problem: here we have a family φt = Vt of random
variables satisfying the conditions of Theorem 3.6, with σt = DVt. The sets
Ct
n are composed with the derivatives of all orders of V and G. Then one can

check that, for any n, for every Xt ∈ Ct
n, for all p ≥ 1, sup�0�T� E �
Xt
p� <∞.

Furthermore, following closely the proof of Theorems 3.24 and 3.20, one can
see that, for every p, sup�t0�T� E �
det DVt
−p� < ∞ and the lemma follows.

✷

We now prove that our weak solution f is equicontinuous.
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Proposition 3.26. For every v in R2,

sup
s∈�t0�T�


f�s� v+ k� − f�s� v�
 → 0 as �k�→ 0 
(3.20)

Proof. Following Nualart ([8], Lemma 2.1.5, pages 88–89), and using
Lemma 3.25, one can show that if � �Vt� = Pt, and if P̂t is the Fourier trans-
form of Pt, then for every t ∈ �t0�T�, 
P̂t�v�
 ≤ C�2�2��t0/v

2
xv

2
y ∧ 1 (it suffices to

apply Lemma 3.25 with α = �2�2� and with g�y� = ei〈v�y〉). Furthermore, f is
the following inverse Fourier transform:

f�t� v� =
(

1
2π

)2 ∫
R2
e−i〈y�v〉P̂t�y�dy
(3.21)

Using Lebesgue’s theorem and the uniform upperbound of P̂t, the proposition
is immediate. ✷

The proof of Theorem 3.3 is a simple application of Proposition 3.26 and of
the weak continuity of the map t −→ f�t� v�dv.

APPENDIX

We begin this Appendix with a lemma that can be found in [1], page 92.

Lemma A.1. For every p > 0, there exists a constant Cp such that, for every
2× 2 symmetric positive matrix A,

�detA�−p ≤ Cp

∫
X∈R2

�X �4p−2 e−XTAX dX


The following lemma is well known, and can be shown as Gronwall’s
Lemma.

Lemma A.2. Let 0 ≤ ε < T < ∞. Let g be a bounded function on �ε�T�,
and let a be a real number. Assume that, for every t ∈ �ε�T�,

g�t� = 1− a
∫ t
ε
g�s�ds


Then g�t� = e−a�t−ε� on �ε�T�.

The next lemma is a simple computation.

Lemma A.3. Let r ∈�1�3�, let r′′ = 1
4�r − 1�, and let ε > 0. We set δ�θ� =

e−θ
−r′′

. There exist a constant C > 0 and a real number ζ0 ≥ 0 such that, for
every ζ ≥ ζ0, ∫ ε

0

(
1− e−ζδ�θ�

) dθ
θr

≥ C�ln ζ�3
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Proof. We first notice that, for every x ∈ �0�1�, one has 1 − e−x ≥ x
2 .

Furthermore, for every θ < 1, δ−1�θ� = (ln θ−1
)−1/r′′ . Hence, if ζ0 is large

enough (we need ζ−10 < 1 and δ−1�ζ−10 � < ε), then for all ζ ≥ ζ0,

I�ζ� =
∫ ε
0

(
1− e−ζδ�θ�

) dθ
θr

≥ ζ

2

∫ δ−1�ζ−1�
0

δ�θ�
θr

dθ

≥ ζ

2r′′

∫ δ−1�ζ−1�
0

r′′

θr′′+1
δ�θ� × θr

′′+1−r dθ


Since r− r′′ − 1 = 3
4�r− 1� > 0, and since δ′�θ� = �r′′/θr′′+1�δ�θ�, we obtain

I�ζ� ≥ ζ

2r′′
× (δ−1�ζ−1�)−�3/4��r−1� × �δ�θ��δ−1�ζ−1�0 = 1

2r′′
�ln ζ�3�

which was our aim. ✷

The following lemma is adapted from a lemma in the Appendix of [2].
We state it for N and β, but it can be obviously adapted to N0 and β0 or
N1 and β1.

Lemma A.4. Let Y�s� α� θ� be a predictable process such that 
Y�s� α� θ�
 ≤

X�s� α�
z�θ�. Then:

• if z is in ∩p≥2Lp�β�θ�dθ�, for every p = 2q,

E

(
sup
�0�t�

∣∣∣∣
∫ s
0

∫ 1
0

∫ π
−π

Y�u�α� θ�Ñ�dθdαdu�
∣∣∣∣
p
)

≤ Cp�z�
∫ t
0

∫ 1
0
E �
X�s� α�
p�dαds�

• if z is in L1�β�θ�dθ�, then for every p <∞,

E

(
sup
�0�t�

∣∣∣∣
∫ s
0

∫ 1
0

∫ π
−π

Y�u�α� θ�dθdαdu
∣∣∣∣
p
)

≤ Cp�z�
∫ t
0

∫ 1
0
E �
X�s� α�
p�dαds�

• if z is in ∩p≥1Lp�β�θ�dθ�, for every p = 2q,

E

(
sup
�0�t�

∣∣∣∣
∫ s
0

∫ 1
0

∫ π
−π

Y�u�α� θ�N�dθdαdu�
∣∣∣∣
p
)

≤ Cp�z�
∫ t
0

∫ 1
0
E �
X�s� α�
p�dαds
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France
E-mail: fournier@proba.jussieu.fr


