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Introduction
The set of real numbers Rn can also be identified as the 

n-dimensional Euclidean Space if we wish to emphasize its Euclidean 
nature. It is mentioned that the Euler and Navier-Stokes equations 
describe the motion of a fluid in the Euclidean Space Rn, where n could 
equal 2 or 3 and that these equations are to be solved for an unknown 
velocity vector 1( , ) = ( ( , )) n

i i nu x t u x t ≤ ≤ ∈
    and a pressure p(x,t)defined 

for position x∈Rn and time t ≥ 0. It is also mentioned that we restrict 
attention here to incompressible fluids filling all of Rn. The Navier-
Stokes equations are given by 
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and the divergence of the velocity field u  yields 
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with initial condition yielding, 
( ,0) = ( )( ).o nu x u x x∈                        (3)

Our given ( )ou x  is said to be a C∞  divergence-free vector field on 
Rn and ( , )if x t



 is the components of our given constant applied force. 
For example, gravity is a continuous force. A constant  v is a positive 
coefficient for viscosity, and 
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is the Laplacian in any given space. The Euler equations are the 

previous three with v set equal to zero. Equation 1 is Newton’s Second 
Law of Motion =f ma  for a fluid element subjected to the external 
force 1= ( ( , ))i i nf f x t ≤ ≤

 

 and to the forces being created from pressure and 
friction.

We can rearrange equation 1 to look like Newton’s Second Law of 
a fluid element such that, 
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The unit vector ju  can be brought onto the other side of the 
summation. Since ∆=∇*∇=∇2 our equation now yields, 
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Setting the divergence of the velocity field equal zero will specify 
that it is the incompressible continuity equation. Since we have initial 
conditions on the velocity field u , we could possibly yield initial 
conditions on the force and scalar fields.

Body
The Navier-Stokes equation for an ideal fluid with zero viscosity 

states that the acceleration is proportional to the derivative of internal 
pressure. As a result, the solutions of the Navier-Stokes equation for a 
given physical problem must be found with the help of calculus. One 
possible way to solving the N.S. equation is to use the conservation of 
mass with boundary conditions in a system of linear or non-linear 
equations to produce a solution. In wave mechanics, or wave theory, 
"waves in one-dimension is said to be called plane waves. In two-
dimensions, the waves are said to be called cylindrical waves. In three-
dimensions, the waves are said to be called spherical waves" [1]. There is 
an initial velocity vector ( )ou x  and a divergence-free vector field iu  on 
Rn. The force field ( , )if x t



 is the component of a given external applied 
force i.e. gravity. The scalar v is the viscosity and 
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is the Laplacian with respect to x in the space variables. The Euler 

equations are numbers 3, 4, and 5 with the viscosity v set equal to zero. 
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Abstract
A solution to this problem has been unknown for years and the fact that it hasn’t been solved yet leaves a 

lot of unanswered questions regarding Engineering and Pure Mathematics. Turbulence is a specific topic in fluid 
mechanics which is a vital part of the course when it comes to real life situations. In two and three dimensional 
systems of equations and some initial conditions, if the smooth solutions exist, they have bounded kinetic energy. 
In three space dimensions and time, given an initial velocity vector, there exists a velocity field and scalar pressure 
field which are both smooth and globally defined that solve the Navier-Stokes equations. There are difficulties in 
two-dimensions and three dimensions in a possible solution and which have been unsolved for a long time and our 
goal is to propose a solution in three-dimensions. Lets see if we can relate a couple of courses of pure mathematics 
to come up with an implication. 
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The goal here is to prove letter A in the paper that states solutions of the 
Navier-Stokes equation exist on R3.

Lets take v>0 and n=3. Let ( )ou x  be any smooth, divergence-free 
vector field satisfying equation 4 stated in the proposal of C. Fefferman. 
We will also take ( , )if x t



 to be equal to zero. Then there exists smooth 
functions ( , )p x t  and ( , )iu x t  on R3 x[0,∞) that satisfy equations 1, 2, 3, 
6, and 7. Going back to our equation of motion of a fluid element, 

2

=1
( , ) =

n
i i

i j i
j j i

u u pf x t u v u
t x x

¶ ¶ ¶
+ − ∇ +

¶ ¶ ¶∑
 



 

we let ( , ) = 0if x t


 such that, 
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Since we let n=3 we have our unit vector interval 1 ≤ j ≤ 3and our 1 
≤ i ≤ 3 for the force, velocity vectors, and number of positions in space 
variables. Thus we have a set of force and velocity vectors. Newton’s 
Second Law states that The acceleration a  of a body is parallel and 
directly proportional to a net force f



 and inversely proportional to a 
mass m such that =f ma



 . In this case, the acceleration could be defined 
as the partial derivative of the velocity with respect to time from i to 
infinity. Since the acceleration is the derivative of the velocity and in 
this case we use partial derivatives with respect to time to describe the 
nature of the fluid such that, 

= iua
t
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where 1 ≤ i ≤ 3. The net force is inversely proportional to a 
corresponding mass and velocity field with respect to time t ≥ 0   which 
yields, 
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Hence, the sequence yields, 
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Different types of partial differential equations often need to be 
matched with different types of boundary conditions in order for their 
solutions to exist and be unique.

Suppose that the force field f


 is not equal to zero. Let’s set f


 to be 
arbitrary. Then, we go back to the initial equation derived to be, 
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where n equals three. Recall back to Newton’s Second Law of 
Motion, F=ma. Now, let’s translate this equation into partial derivative 
terms. We have the acceleration as iu

t
¶
¶



 with out mass m to equal the 
force field as follows, 

( , ) = .i if x t m ¶
¶

 Using the equation of force above and solving for the acceleration, 
we get 
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After plugging in the given functions, we distribute mass inside to 

obtain 
3 3
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We substitute the force field back in using equation 4, we get 
3 3 3
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After another distribution of the mass into force, it becomes 
3 3 3
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Next, algebraic manipulation is necessary to cancel out all like 
terms to represent, 
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I will put this into a scenario for the application of waves. Recall 
throwing a rock in a pond and recognize the ripple effect. I see those 
as mini waves ripping across the pond. Look at the rock as force into 
the water with created waves as a result. There could be a pressure 
developed as a result of a hand toss.

Let’s take a look at the the equation would look like if we set ( , )i if x t


 
equal to zero as given. Refer back to equation five. If we set the force 
field equal to zero, we would get 
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The reason why I decided to go through these derivations is because 
of the application mentioned above. Let us continue with the scenario 
of waves. Now, recall the equation of a tangent line from algebra. Let a 
two-dimensional wave be shaped like a bell curve similar to the normal 
distribution curve. Since we have a curve there exists a tangent line on 
all sides of the curve. Imagine the tangents keeping the shape of the 
wave as the force from the rock penetrates the water.

Now, we can define equations of tangent planes over a three-
dimensional wave on a graph. You can use a mathematical program to 
visualize what I mean and verify. Recall from Calculus, the equation of 
tangent plane in two and three space variables such as 
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at some initial point  (x0,y0). Then, the three-dimensional tangent 
plane yields 
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at some initial point (x0,y0,z0). What if the partial derivative of any 
function if



 is applied to see if there are infinitely many derivatives 
implying an infinite force vector field? The force field may not be infinite 
when we think of the wave application used earlier. Figuratively, we 
have a derived equation of a tangent plane to look something like 
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What would happen if we referred back to equation four and 
implemented derivatives with respect to space variables and time. 
Mathematically, it may look like, 
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Deriving this equation once more and so forth may imply infinite 
derivatives towards the divergence free vector field.

Existence
 "Consider a quantity of fluid contained in a plane region S bounded 

by a simple closed curve ¶S. The Law of Conservation of Mass states 
that the rate at which fluid pours across ¶S into S must balance the 
rate at which the total amount of fluid in S  increases with time" [2]. 
"An existence theorem for our initial-boundary value problem for the 
wave equation can be proved under a more restrictive hypothesis on 
the smoothness of the initial data" [3]. "Consider the PDE, 
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where we have our given domain to be -∞<xi<∞, t>0, i=1,2…m 
and C∞, K are constants. Solving the characteristic equations and the 
compatibility conditions 
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( ) iM t u  denotes the mean value of iu  over the sphere with center at 
x and radius vt in three-dimensional space. 

Proof. "Assuming that given ( , )u x t  holds, we first verify whether 
the initial conditions are satisfied: 
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It follows that both conditions satisfy the wave equation as well as 
the partial derivative with respect to t of 0( )tM t u . Therefore, the given 

( , )u x t  is a solution of the three-dimensional wave equation satisfying 
the given conditions" [4].

"In the Goursat problem the data specified on two interesting 
non-characteristic curves strictly contained in an angle between two 
characteristics passing through the point of intersection of the curves. 
Without loss of generality, we can take the point of their intersection to 
be the origin. Now let, 
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The functions f and g  must be such that 1
=0

( )
i

p xδ∞∑  converges 
in order for the solution to be valid. It is also unique. The region of 
determinacy when f(x) and g(α) are specified for the bounds0 ≤ x ≤ 
a and 0 ≤ α ≤ b, is the region bounded by the characteristics through 

(a,0), ( , )bb
c
β , and the given segments on t=0 and βx=vt. In this case, the 

problem is well-posed. The solution u  is given in terms of f and g which 
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when equal to zero, imply that u  is also zero. If f and g are arbitrarily 
small, then u  is also the same way. Hence, the solutions are unique and 
stable therefore, the problem is well-posed" [4].

"There are equations of a viscous incompressible fluid that are 
called stationary that yield, 

1 1
1 2 1

1= ,u u pu u v u
x y xρ

¶ ¶ ¶
+ − + ∆

¶ ¶ ¶

 

  

2 2
1 2 2

1= ,u u pu u v u
x y yρ

¶ ¶ ¶
+ − + ∆

¶ ¶ ¶

 

  

1 2 = 0u u
x y

¶ ¶
+

¶ ¶

 

can be reduced to an equation in question by defining a stream 

function w such that 1 = wu
y

¶
¶

  and 2 = wu
x

¶
−
¶

  followed by the elimination 

of the pressure p from the first two equations" [5,6]. "Going back to the 
system of stationary hydrodynamic equations we add F(y) to the first 
equation such that, 
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The above equation along with the other two equations could 
describe the plane flow of a viscous incompressible fluid under the 
action of a transverse force. Then, 
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Letting F(y)=asin(λy) corresponds to A.N. Kolmogorov’s model, 
which is used for describing sub-critical and transitional (laminar-
to-turbulent) flow" [7]. Again, we yield the equations of a viscous 
incompressible fluid. Only this time we make the equations "non-
stationary such that, 
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Describing the motion of a viscous incompressible fluid by two 
parallel disks moving towards each other is reduced to the given 
equation. In this case, a is the relative velocity of the disks which can 
also be denoted as vre lwhile 1u  and 2u  are the horizontal velocity 
components and 3 = 2u az−

  is the vertical velocity component. Then a 
new stream function is defined such that 1 = wu ax

y
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followed by the elimination of the pressure p leading to the equation we 
are looking for" [5]. "We shall derive a formula expressing the Law of 
Conservation of Momentum in the x-direction (one-dimension),(x,y)-
directions (two-dimensions), and the (x,y,z)directions (three-
dimensions) "when not only viscosity but also external fields of force, 
such as gravity are neglected" [2]. The horizontal component of force 
exerted on a small section  S of our fluid by the scalar pressure p along 
it boundary ¶S is given by the integral, 
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In one-dimensional flow, Euler’s equations of motion reduce to, 
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 Then in two and three-dimensions, the Euler’s equation will yield, 
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Where u,v and w are the unit vectors in the specified directions. 

Theorem 2 "The solution of 
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Where(a,b) is(-∞,∞) and G is Green’s function for the wave 

equation" [8]. 

The proof is located in the referenced book above. As we know 
already "mathematically, the partial differential equation to be solved 
is non-linear and is of fourth order, with two, three, or even four 
independent variables. With these numerical techniques they tend to 
require very large computer time, tend to lack accuracy due to the non-
linearity, and tend to be unstable" [9]. It is said that "when a body moves 
through a viscous fluid, the Navier-Stokes equations are satisfactorily 
approximated by the boundary layer equations in a narrow region 
adjacent to the body" [9]. 

Smoothness
The solution to the three-dimensional wave equation given 

by ( , )u x t  is of class C2 for t ≥ 0 when 3 3
0 ( )u C∈
   and 2 3

1 ( )u C∈
 

. Therefore the solution can be less smooth than the data. There is a 
possible loss of one derivative. This loss could be due to what happens 
for m>1, where 1 2( , ,..., , )mu x x x t  in m -space variables. For m=1the 
solution is smooth for all t as the initial data at t=0. The solution of 

( , )u x t  of the three-dimensional wave equation given in Theorem 1 
depends on the values of 0u , 1"u , and the first derivatives of 0u  on 
the surface of the sphere of center x and radius vt.If 0u  and 1u  have 



Citation: Tarver T (2016) Existence and Smoothness of the Navier-Stokes Equation in Two and Three-Dimensional Euclidean Space. J Phys Math 
7: 167. doi:10.4172/2090-0902.1000167

Page 5 of 7

Volume 7 • Issue 2 • 1000167
J Phys Math
ISSN: 2090-0902 JPM, an open access journal

support in a closed bounded region Ω of R3, for example, if they are oth 
zero outside of Ω, then at t>0 ( , ) 0u x t ≠

  at those points x which lie on 
a sphere of radius vt and centered at a point y∈Ω and x∈Sy,yt for some 
y∈Ω. Sy,yt is the sphere with respect to point y and radius vt. We begin 
to learn about the development of shock waves from the initial-value 
problem for ( , )u x t  

( ) = 0, < < , > 0,u up u x t
t x

¶ ¶
+ −∞ ∞

¶ ¶

 



0( ,0) = ( ), < < ,u x u x x−∞ ∞
 

 where ( )p u  and ( )u x  are C1() functions of their are arguments, 
that is, they are smooth functions. There are characteristic equations 
that correspond with the equation above which yield, 

= = .
1 ( ) 0
dt dx du

p u





 These equations imply that, 

= 0 = ( ).du dxand p u
dt dt





The solution of / = ( )dx dt p u  represents characteristics of the first 
above equation along the condition that, 

= = ( ) = 0."[5]du u dx u u up u
dt x dt t x t

¶ ¶ ¶ ¶
+ +

¶ ¶ ¶ ¶

    



"The condition means that u  is constant on the characteristics 
which propagate with speed ( )p u . The dependence of p and u  produces 
a gradual non-linear distortion of the wave profile as it propagates. It 
follows that ( )p u  is also constant on the characteristics, and therefore 
must be straight lines in the (x,t)-plane with a constant slope of 
1/ ( )p u ." [5] "If there are two points(ξ,0) and(η,0) withξ<η then the 
characteristics starting at (ξ,0) and (η,0) will intersect at a pressure point 
p(x,t) for t>0. "At the point of intersection p(x,t), the solution of ( , )u x t  
has two different values ( )u ξ  and ( )u η . This means that u  is double 
valued, and hence, the solution is not unique at the point of intersection 
of the characteristics. Thus, the solution must be discontinuous at the 
point of intersection. The result is that if no two characteristic lines 
intersect in the half plane t>0, there exists a solution of the initial-
value problem as a differentiable function for all t>0. This can happen 
only if the reciprocal of the slope ( )p u  is an increasing function of the 
intercept. In other words, the family of characteristics spreads only for 
t>0 and generates a solution of the problem that is at least as smooth as 

( )u x . Such as solution is called an expansive or a refractive wave" [5]. 
"Let the periodic boundary conditions yield, 

(0, ) = (1, ) = 0 > 0 u t u t for t

and

(0, ) = (1, ) = 0 > 0¶ ¶
¶ ¶

 u ut t for t
x x

and the initial condition be 

( ,0) = ( ) .nu x u x x∀ ∈
  

"We assume that this initial-boundary problem for an equation 
possesses a smooth function which is uniquely determined by the initial 
data u . Two invariants of the problem which are constants of the 
motion are given [10].

2( ) = | ( , ) | .nI t u x t dx∫




We consider any function ( , )u x t , not necessarily a solution of 
a certain equation, which is defined for t>0 and sufficiently smooth. 

We will define a strict solution for the initial-boundary value problem 
to be a function ( , )u x t . This velocity is continuous together with its 
first and second-order derivatives and satisfies a specific PDE for 
-∞<x<∞, t>0. The initial and boundary conditions are satisfied in the 
sense of equality. We assume that ( , )u x t  satisfies the given boundary 
conditions and evolves in time, so that function I(t) is a constant in 
time. A solution ( , )u x t  is said to be Lagrangian stable if there exists a 
constant C independent of t, but at the same time could be dependent 
on initial data such that, 

2 2| ( , ) | = | ( , ) | , 0."[5]max
nx

u x t u x t C forallt∞
∈

≤ ≥
 



"A strict solution is one of showing the continuity of ( , )u x t  which 
implies that, 

0
( , ) = ( ,0) = ( )lim

t
u x t u x u x

→

  

uniformly for -∞<x<∞ and this becomes 

0
( , ) = ( ,0) = ( )lim

t
u x t dx u x dx u x dx

∞ ∞ ∞

−∞ −∞ −∞→ ∫ ∫ ∫
  

where the initial conditions yield 

( ,0) = ( )u x u x 

( ,0) = 0."[8]u x
t

¶
¶



We have our given velocity field u  and let our scalar pressure 
field be p(x,t) be equal to a function gi(x,t). "Let ( , )u x t  be generalized 
solution of the initial conditions if there is a sequence of strict solutions 
{ ( , )}iu x t  with ( )iu x , 

pi(x,t)= gi(x,t) such that

( , ) = ( , ), ( , ) = ( , )lim limi i
i i

f x t f x t g x t p x t
→∞ →∞

 

uniformly for -∞<x<∞, and 

( , ) = ( , ),lim i
i

u x t u x t
→∞

 

uniformly for -∞<x<∞ and t ≥ 0" [8]. Take the solution of the 
plucked string problem to be generalized as well. The i-th partial sum 
yields, 

3

=1
( , ) = ( ) ( )[8]i i

i
u x t b cos i vt sin i xπ π∑

where 1 2 3{ ( , )} = { ( , ), ( , ), ( , )}iu x t u x t u x t u x t     for 1 ≤ i ≤ 3 is clearly a 
strict solution with initial data, 

3

=1
( ) = ( ), ( ) = ( ),[8]i i i i

i
f x b sin i x g x p xπ∑


where 1 2 3{ ( , )} = { ( , ), ( , ), ( , )}if x t f x t f x t f x t
   

. The limit of u  by the 
definition of ( , )u x t  and the limit of f



 hold by the pointwise convergence 
theorem for Fourier Sine Series and the limit of gi(x) trivially" [3]. The 
process of limiting is one way that can explain the continuity of each 
function. As we can see, f



,p, and u  converges uniformly with respect 
to the domain -∞<x<∞ and t ≥ 0 . In this perception, there are partial 
derivatives of the functions u  and p  that are continuous with initial 
functions of u  and p that are also continuous. The set of these functions 
are denoted as the infinite differentiability class on the set Rn with time 
t ≥ 0 . Higher order differentiability classes should correspond to the 
existence of higher order derivatives. Functions that have derivatives 
of all orders could be named as smooth functions. We must now show 
that p and u  is infinitely differentiable on the set Rn x[0,∞)where as in 
this case we are letting n equal 3 such that R3 x[0,∞).The notation of 
C∞  means that the scalar field pi and velocity field iu  are in a specific 
type of differentiability class of smooth functions if and only if they have 
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derivatives of all orders. We must show that these functions are in this 
class with respect to the given space Rn x [0,∞) where we let n equal to 

3. When we look at equation 3 we see that we have i

i

p
x
¶
¶

 where{xi} is 
the sequence of positions in the x-direction such that 

1

1

p
x
¶
¶

2

2

p
x
¶
¶

3

3

p
x
¶
¶
.

.

.

n

n

p
x
¶
¶

If this is the case, there could be a corresponding sequence of 
pressure intersection points pi{(xi, t)} in a given body from i to ∞ such 
that 

1 1( , )p x t

2 2( , )p x t

3 3( , )p x t
.
.
.

( , ).n np x t

Analysis of the Navier-Stokes equation

=1
= ( , )

n
i i

j i i i
j j i

u u pu v u f x t
t x x

¶ ¶ ¶
+ ∆ − +

¶ ¶ ¶∑
 



 

The motion of a non-turbulent Newtonian fluid could be governed 
by the equation above where the first term is the time-derivative of any 
fluid’s velocity or the acceleration in Newton’s Second Law of motion 
for a fluid element. This element is subjected to an external force that 
is stated above and also to forces coming from the pressure field and 
friction in this equation which is known as the material derivative such 
that, 

( * )iu u u
t

¶
+ ∇

¶



 

then 

= ( , )i
j i i i i

i

u pu u v u f x t
t x

¶ ¶
+ ∇ ∆ − +

¶ ¶





  

where ( *u u∇  ) is a term of convection in fluid mechanics. The 
equation could also be used to model turbulent flows where the fluid 
parameter could be interpreted as time averages. The second term 
could be the velocity in the change of coordinates by the Law of 
Coordinate Transformation also known as a contravariant. The fourth 
term could be the gradient vector of the scalar pressure field p in all 
space dimensions where x is in the real numbers from i to infinity.

The fifth term represents a sequence of external force vectors if


 
from i to infinity that correspond to a mass m and a velocity field iu  
as stated above from Newton’s Second Law. As shown earlier, we seen 
a perception on the scalar field p

i 
and velocity field u

i
being elements 

of the differentiability class C∞ with respect to all space dimensions 
(x,y,z) and the time interval t ≥ 0 on R3 x[0,∞). This confirms equation 
six which states the scalar and velocity field ip and u  are elements of 
the infinite differentiability class C∞ (R3 x[0,∞)). Equation seven is of 
bounded energy or global regularity that could be expressed as the 
magnitude or modulus of the velocity field squared with respect to all 
space dimensions and time t ≥ 0. In non-relativistic wave mechanics, 
there could exist a wave function ( , )u x t  of a particle that satisfies a 
certain wave equation where, 

2

= ( )
2

i
i

u h u
t m x y z

¶ − ¶ ¶ ¶
+ +

¶ ¶ ¶ ¶





so that 
2

= ( )
2

¶ − ¶ ¶ ¶
+ +

¶ ¶ ¶ ¶



i
i

u h u
t m x y z

2

=
2

i
i

u h u
t m

¶ −
∇

¶





since 
2

h
m
−  is constant let it be equal to v such that 

= .[1]i
i

u v u
t

¶
∇

¶





The velocity vector field u  can be looked at as the average velocity 
that was differentiated to obtain the average acceleration. Now we take 
the a second derivative of iu  such that 

2
2

2 =i
i

u v u
t

¶
∇

¶





which is also known as "The Simple Wave equation" [6]. As we 
stated earlier ∇2=∆ so we can use this to change notation to 

2

2 = .i
i

u v u
t

¶
∆

¶





"This Simple Wave equation can be solved in three dimensions 
with the initial conditions 

( , , ,0) = ( , , ) 0u x y z x y z fortφ ≥


and 

( , , ,0) = ( , , )u x y z x y z
t

ψ¶
¶



Where (x,y,z)∈R3 and how this method to a solution satisfies 
Huygen’s Principle. This method can also be used to solve this wave 
equation in two-dimensions. To solve this problem in three-dimensions 
we start with an easier one first. "Let = 0u  so that, 

( , , ,0) = 0u x y z

( , , ,0) = ( , , )u x y z x y z
t

ψ¶
¶



where ∆ is the Laplacian Operator stated earlier in the paper. This 
problem can be solved by a Fourier Transform and has a solution 

( , , , ) =u x y x t tψ

where 1u  is the average of the initial disturbance 1u  over the sphere 
of radius vt centered at (x,y,z). The symbol ψ  yields the Fourier 
Transform" [7]. "The verbal interpretation of this solution is that initial 
disturbance tu  radiates outward spherically (viscosity v) at each point, 
so that after so many seconds, the point (x,y,z) will be influenced 
by those initial disturbances on a sphere (of radius vt) around that 
point. Now let =u φ  and = 0tu " [7]. "A famous theorem developed 
by Stokes says all we have to do to solve this problem is change the 
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initial conditions to =u o , =tu φ  and then differentiate this solution
with respect to time. So we solve our given simple wave problem to
get =u tφ  and then differentiate with respect to time. This gives us the
solution to the simple wave problem which is, 

= [ ].u t
t
φ¶

¶


For the one-dimensional wave equation the solution of the 
switch(shift) is 

1( , ) = ( ) .
2

x vt

x vt
u x t s ds

v
φ

+

−∫


Differentiating this equation will yield, 
1( , ) = [ ( ) ( )]
2tu x t x vt x vtφ φ+ + −



which is the solution to our given wave equation. Knowing this we 
have the solution to the three-dimensional simple wave equation where 

=u φ  and =tu ψ  initially which is just

( , , , ) = [ ]u x y x t t t
t

ψ φ¶
+
¶



where φ  and ψ  are averages of the functions φ and ψ. This 
generalization is known as the Poisson’s formula for the free-wave 
equations in three dimensions" [1].

If a general solution can be formed, then a specific one can be made 
with a large amount of computer time. With the given stationary and 
non-stationary equations, we derive them all with our stream function 
for both stationary and non-stationary equations. We will start at the 
derivation of 

1
1

1

= .du pv u
dt x

¶
∆ −

¶





Since we have our defined stream function for the stationary 
equations, we get 

2

2
1

( ) = [ ( )] .d w w pv
dt y x y x

¶ ¶ ¶ ¶
−

¶ ¶ ¶ ¶

If we integrate both side with respect to x, we will see that 
2
1( ) = ( ) ( ).w x dydt vw x dy p x−

Now integrating both sides with respect to y and t, we will get 
2
1( , , ) = ( , , ) ( , , ).w x y t w x y t p x y t−

Going back to our given non-stationary equations from the 
beginning and we solve for the acceleration with the force field equaling 
zero such that, 

=1
= .

n
i i

j i
j j i

u u pu v u
t x x

¶ ¶ ¶
− + ∆ −

¶ ¶ ¶∑
 

 

Integrating both sides with respect to x and t, we arrive at 

1 1 1 1 1 1 1ˆ( , ) = ( , ) ( , ) ( , ).u x t u u x t vu x t p x t− + −
  

We could describe this as a viscous velocity with a unit vector 
1̂u , where j=1. Going back to our equation where we solved for our 

acceleration. Now, we will substitute yet again our stream function 
w where we have our stationary functions with the relative velocity a 

1 = wu
y

¶
¶

  such that, 

2

1 2
1

= ,
i

w w w pu v
t y x y x y x
¶ ¶ ¶ ¶ ¶ ¶ ¶

− + −
¶ ¶ ¶ ¶ ¶ ¶ ¶



then 
2 2 3

1 2
1 1

ˆ= .w w w pu v
y t x y x y x
¶ ¶ ¶ ¶

− + −
¶ ¶ ¶ ¶ ¶ ¶ ¶

Now integrating both sides with respect to two space dimensions 
and time, we get 

1̂( , , ) = ( , , ) ( , , ) ( , , ).w x y t u w x y t vw x y t dx p x y t+ −

Since the pressure p is being eliminated and the stream function 
exists, the velocity u  exists [11,12].

Conclusion
Turbulence is a specifc topic in fluid mechanics which is a vital 

part of the course when it comes to reallife situations. In two and three 
dimensional systems of equations and some initial conditions, if the 
smooth solutions exist, they have bounded kinetic energy. In three 
space dimensions and time, given an initial velocity vector, there exists 
a velocity field and scalar pressure field which are both smooth and 
globally defined that solve the Navier-Stokes equations.
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