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ABSTRACT. The existence and stability properties of a class of partial
functional differential equations are investigated. The problem is formulated
as an abstract ordinary functional differential equation of the form du(t)/dt =
Au(t) + F(u,), where A is the infinitesimal generator of a strongly continu-
ous semigroup of linear operators T'(¢), ¢t » 0, on a Banach space X and F
is a Lipschitz operator from C = C([—r, 0]; X) to X. The solutions are
studied as a semigroup of linear or nonlinear operators on C. In the case that
F has Lipschitz constant L and |T()| < e“?, then the asymptotic stability
of the solutions is demonstrated when w + L < 0. Exact regions of stability
are determined for some equations where F is linear.

1. Introduction and preliminaries. The purpose of this paper is to investi-
gate existence and stability properties for a class of partial functional differential
equations. As a model for this class one may take the equation

w,x, )=w, & D+t wx, t-r), O0<x<m t=>0,
0,

x<m, —r<t<0,

(1.1) w(0,t)=w(m, t)=0, t
wix, 1) = o(x, 1), 0

AN

where [ is a linear or nonlinear scalar-valued function, » is a positive number,
and ¢ is a given initial function. In our development the second derivative term
in (1.1) will correspond to a strongly continuous semigroup of linear operators on
a Banach space of functions determined by the boundary conditions in (1.1).
Accordingly, our approach will rely primarily on semigroup methods and the treat-
ment of (1.1) as an abstract ordinary functional differential equation in a Banach
space.

Our first objective will be to develop an existence theory for the nonlinear
nonautonomous case and this will be done in §2. In the case that f is auton-
omous the solutions give rise to a strongly continuous semigroup of nonlinear
operators on a Banach space of initial function values. This semigroup has been
extensively studied for ordinary linear functional differential equations by J.
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396 C. C. TRAVIS AND G. F. WEBB

Hale in [6] and recently for ordinary nonlinear functional differential equations
by G. Webb in [13]. We will investigate the properties of this semigroup and its
infinitesimal generator in §3. In the case of ordinary linear functional differential
equations the spectral analysis of the infinitesimal generator of this semigroup gives
considerable information about the behavior of solutions. We will give an ana-
logue to such a development in the linear partial functional differential equations
case in §4, where our approach will follow closely that of J. Hale in [6]. Lastly,
we will apply our theory to some specific examples in §5, where we will give
particular attention to the stability of solutions.

Before proceeding we shall set forth some notation and terminology that
will be used throughout the paper. X will denote a Banach space over a real or
complex field. € = C([—r,0]; X) will denote the Banach space of continuous
X-valued functions on [—r, O], with supremum norm, where r> 0. If u isa
continuous function from [z -7, b] to X and ¢ € [a, b], then u, denotes
the element of C given by u,(0) =u(t +6), —r<0<0. If A is alinear
or nonlinear operator from X to X, then D(4), R(4), N(4) denote its domain,
range, and null space, respectively. If 4 is linear then p(4), 0(4), Po(4) denote
the resolvent, spectrum, and point spectrum of A, respectively. B(X, X) will
denote the space of bounded linear everywhere defined operators from X to X
and if 4 €EB(X, X), then 14| is the norm of 4. If A islinear and A € p(4),
then R(\;A4) is (4 — M)~ ! € B(X, X), and if X\ € 0(4), then M,(A4) is the
generalized eigenspace of A (that is, the smallest subspace of X containing
NA-N)F, k=1,2,+¢9).

By a strongly continuous semigroup on X we shall mean a family T(¢),
t 2 0, of everywhere defined (possibly nonlinear) operators from X to X satis-
fying T(t +s)=T(@)T(s) for s, t=0,and T(f)x is continuous as a function
from [0,%) to X for each fixed x € X. The infinitesimal generator 4, of
T(t), t=>0, is the function from X to X defined by Apx =
lim,, o+ £~ (T(x — x) with D(47) all x for which this limit exists. Finally,
in the case that the semigroup is linear we shall require the following facts.

A necessary and sufficient condition that a closed densely defined linear
operator Ap be the infinitesimal generator of a strongly continuous

(1.2) semigroup T(f), t 30, of operatorsin B(X, X) $uch that IT()I<
e“! for some real number c is that IR\ Ap)I <~ w)~! for all
A> w (see [4, Corollary 14, p. 626]).

If X is complex and T(r), t=>0,is asin (1.2), then for all A such
(1.3) that Re A> w, A€ p(d7) and IR A7) < (Re A— w)™ 1 (see [14,

License or copyrightestnct\ may apply to redigtrioutipry see https://www.ams.org/journal-terms-of-use
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PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 397

2. Existence of solutions in the nonlinear case. We prove our main exis-
tence theorem in an integrated form using a method derived from the fundamental
results of I. Segal in [11].

PrOPOSITION 2.1. Let F: [a, b] x C—> X such that F is continuous
and satisfies

@1) IFG ¥) - F@ §)ly <LW — yl, for a<t<b, ¥, Y €C,

where L is a positive constant. Let T(t), t 20, Ay, w beasin (1.2). If
¢ € C there is a unique continuous function u(t): [a ~r, b] — X which
solves

02 u(®) = T(t - (@) + [, Tt - )FGs u)ds, a<t<b,

u, = ¢.

Proor. First observe that if w(s) is any continuous function from
[a—r, b] to X, then T(¢r — s)F(s, wy) is continuous in s € [a, ] by virtue
of the continuity of F, the continuity of w, as a function in s from [g, 7]
to C, and the strong continuity of T(#), ¢ = 0. Define u®(t) = ¢(t — @) for
a—-r<t<a and u®() = T(t — a)¢(0) for a <t <b. In general, for each
positive integer n, define

u() = ¢(t - a) for a—r<t<a,
u"(t) = T(t - a)p(0) + [ . Tt - )F(s, ul~")ds for a<t<b.

Since F is continuous there exists M such that IF(s, ud)l, <M for
a<s<)b. Thenfor a<t<b,

lul(®) — u@)ly < (¢ ~ a)e® ®—9M,
and, in general,
lu™(zr) — um= ()l < MEP—1e"< @)t — gY'/n.

Thus, lim,,_, ., ¥"(¢) def u(t) exists uniformly on [a —r, b] and u(r) is con-
tinuous on [z -7, b].
To establish that u(¢f) satisfies (2.2) use

u(e) — T - )0(0) ~ [, T — )FGs, u)dsly

<lu(@) - w1 Oy + || T - (FGs, up) — Fl ) ds

X

_ w(b—a) k-1 kw(b-a) k /1.1
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398 C. C. TRAVIS AND G. F. WEBB

To establish the uniqueness assertion suppose u(t) satisfies (2.2) and let K
be a constant such that lv(t) — u()ly < (t — a)K. Then

lo(r) — u(e)l S KL FDO@=a) _ gy'*1 /@ + 1)1,

whereupon v(?) = lim,,_,, 4"(¢) and the proof is complete.

COROLLARY 2.2. Suppose the hypothesis of Proposition 2.1 and let u(t),
u(t) solve (2.2) for ¢, ¢ € C, respectively. Then for a <t <b

lu, — 8,lp < lg =l e D=0 if w>0,and

2.3) . —or
Ny — syl < Mg = Gl e wrelwotLe )-8 if w<0.

Proor. From (2.1) and (2.2) we have that for a —r <t <b
A -~ t A
lu(t) — & (@)ly <e®E=Dlp©0) ~ o)y + L f . eX =Ny, — il ds.
If w=0,thenfor a<t<b
la, — fi,p <e“CDlp—l, + L[ ey, ~ 71
r— UloSe Y=o Lfae ug - ugl-ds,
and if w <0, then for a<t<bh
A~ A t "
N, — b o <e=@Tew=Djp- 5l + Le"“"fa ey, — u l,ds.
By Gronwall’s lemma (2.3) follows.

PRrRoPOSITION 2.3. Suppose the hypothesis of Proposition 2.1 and in
addition suppose that F is continuously differentiable from [a, b] xC to X
and F, F, satisfy for a <t <b, ¥, ¥ € C, and positive constants B, v,

@2.4) IF, @, ¥) - Fy (6, Dl <ply - U,

(25) IF,y(t, ¥) - F,(6, $)I<vly— i,

Then, for ¢ € C such that ¢(0) € D(Ar), ¢ EC and ¢~ (0) = Are(0) +
F(a, ), u(t) is continuously differentiable and satisfies

@.6) djdt u(t) = Agu(t) + F(t,u,), a<t<b,

License or copyright restrictions may apply to redistribut\w;asghipf://www.ams.org/JournaI—termsrot—use



PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 399

ProoF. By virtue of Proposition 2.1 we can solve
v(®) =T - a)(A7v(0) + Fla, ¢))

@7 + 1 7@ - )F, 6 u) + Fy6 uv)ds,  a<t<b,
v, = ¢.

Define w(t) = ¢(t — a) for a —r <t <a, w(t) = ¢(0) + ffv(s)ds for a <
t <b. We will show that w(f) = u(r), which will establish that w(¢t) is con-
tinuously differentiable. First, by taking the limit of the difference quotient, one
obtains that for a <t < b,

4 : T(t - s)F(s, wy)ds =f: T(t — s)(F, (s, wy) + Fy(s, wo)vg)ds
(28) dt
+ T(t — a)F(a, ).
Then (2.8) yields

t t
[ 1¢ - 9F@ s = [ T - )FGs, wy)ds

29) e
- f ‘ f 2 TG = DF @, w,) + Fy(r, w,)v,)dr ds.

Using the fact that for z €D(Ay), fi T(t — )Apzds =Tt - a)z - z,
(2.7) and (2.9) imply

w(t) = T(t — a)¢(0) + f : T(t ~ s)F(s, wg)ds

(2.10) +f! [} 16 - NE6 1) - Fi6 w))
+ (Fy(r, u,) — Fy(r, w.))v,)drds.

Then (2.10), (2.4), and (2.5) yield lw(t) — u(®)ly < const [} Iw, — u, l.drT,
which implies

t
Iw, — u,lg < const [ Iw, - u_llcdr.

By Gronwall’s lemma w(f) = u(r). Therefore, [} T'(¢t — s)F(s, u,)ds is of the
form [, g T(s)g(s)ds where g(s): [0,d] — X is continuously differentiable.
By Theorem 1.9, p. 486 of [8], u(?) is a solution of (2.6) and the proof is
finished.

We remark that the equation (2.2) is more general than (2.6). In fact, in
the*cas® of PrOPOSTsH 2.1 (7)), =0, Hiay 1ot Betotg to D(4,) and may not
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be differentiable (even if ¢(0) € D(Ay)). The following proposition will be of
fundamental importance in §4.

PROPOSITION 24. Suppose the hypothesis of Proposition 2.1 and in faddi-
tion suppose that T(t) is compact for each t > 0. Then, (t, 9) — u, de u,(p),

the mapping defined by solutions, is compact in ¢ for each fixed t>r.
Before proving Proposition 2.4 we require two lemmas.

LEMMA 25. Let T (), t 2 0,and w be as in (1.2) and in addition let
T(¢) be compact for each t> 0. Let B be a bounded subset of X and let
{f,: 7€ I'} be a set of continuous functions from the finite interval [c, d} C
(0,) to B. Then K={{ g T(s)f,(s)ds: y €T} is a precompact subset of X.

ProOF. Let H={T(t)x: t € [c, d],x € B}. We will use the fact that
T(?) is uniformly continuous from [c, d] to B(X, X) (see [7, Theorem 10.22,
p.304]) to show that H is totally bounded (see [14, p. 13]). Let €> 0 and
let M be abound for B. There exists ¢ =t, <t, <-+++<t, =d such that

(2.11) IT@) - T@) <ef2M for t,_, <t<t,.

Since for each t;, T'(z;)B is totally bounded, there exists {x’,x5, <, x,i(,)} Cc
B such that if x € B, then

2.12) 17@)x} - T(t)xly <e/2 for some x].

One uses (2.11) and (2.12) to demonstrate the total boundedness of H. Then H
is precompact and therefore so is the convex hull of H (see [12, Exercise 4,

p.134]). The conclusion follows since K is contained in the closed convex hull
of (d - c)H.

LEmMMA 2.6, Let { f,y: YyET} CC be an equicontinuous family such that

foreach 6 € [—r, 0], {f7(0): vy €T} is precompact in X. Then {f,y: yET}
is precompact in C.

PrOOF. A proof may be found in [10, Theorem 33, p. 179].

ProoF oF PrRoPOSITION 24. Let {w.,: ¥ €T} be a bounded subset of

C andlet t>r Foreach YyETI define fy€C by f,y=u,(np7). Then, for
6€[-r0],t+6>0,and so

£,0) = u9,)(6) = u(p,)(t + 6) = T(t + 6)¢,(0)

+ f;-l-o T+ 06 - s)F(s, “s(‘P»,)) ds.

We shall apply Lemma 2.6 to the family { f,,: YET}
First, we show this family is equicontinuous. Recall (2.1) and (2.3) to
veenee ATEHE At LFS U (B, N € 0, 1] ETY I B6tnded by a constant, say M.
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Let YET,let 0<c<t—rlet —r<8<0<O0,and observe that
1£,6) - £,®lx <IT(t + )¢, (0) — T(r + D), O)y

t+6
” f T(t+ 0~ )Fs, uy(p,)ds - f o T+ 6 —-9FG, us(ap.,))ds”X

t
fr+o Tt+6-5)—T¢ + g - S)F(s, u («p,,))ds"
s

<T@ +8) = T( + 6)1 o, Oy + 19 — §1e“™M + c2e'™M

+

t+3—c P
[, @ +6-5) =T+ - DFG, ule,)ds

+t  sup IT(t+0—s)—T(t+3—s)lM.
$€[0,t4+6—c]
One now uses the uniform continuity of T'(s),s € [¢, ¢],in B(X, X) to demon-
strate the claimed equicontinuity.
Next, we show that for fixed 6 € [-r, 0],{f, (0): Y €T} is precompact
in X. Obviously, {T'(t + 6)¢,(0): ¥y €T} is precompact, since £+ 8> 0
and llp, (0)lly is bounded independent of 7. We will show that

+0
= {f; T+ 0 - s)F(s, us(qo,,))ds: 7Y€ 1"}
is totally bounded. Observe that if 0 <c <t + 8, then

(2.13) <ce®'™M

t+0
[rrg_o T +0 = DFGs, uge,))ds

forall y€TI'. By Lemma 2.5,if 0<c¢<t+ 4, then

K, = {f:w_c T(t+0 - 8)F(s, uylp,))ds: v € l"}

is precompact in X. This fact together with (2.13) yield the precompactness of
K. Thus the hypothesis of Lemma 2.6 is verified and the proof is complete.

3. The semigroup and infinitesimal generator in the autonomous case.
Throughout this section we will suppose the hypothesis of Proposition 2.1 except
that we require F to be autonomous, that is, F: C — X, By virtue of Propo-
sition 2.1 there exists for each ¢ € C a unique continuous function u(y)(¢):
[~7,0)— X satisfying

apy  MOO=TOMO [ T¢ - 9F@lends, >0,

License or copyright restr\ct\ozs r5ay apply to redistribution; see https://www.ams.org/journal-terms-of-use



402 C. C. TRAVIS AND G. F. WEBB

For each ¢ 20 define U(¥): C— C by U(t)y = u,(p).

PROPOSITION 3.1. U(?), t = 0, is a strongly continuous semigroup of
(possibly nonlinear) operators on C satisfying for ¢, 9E€C, t 20,

W(E)e - UE)pl < lp — Sl e Lt if @w=0,
W(©e - U@)Rle <e“Tlp — Ploe@*Le™ Nt ir ¢ <o,

Proor. The strong continuity follows from the fact that solutions of (3.1)
are continuous. The semigroup property follows from the fact that for 2, >0,
¢€EC,

u()(t + D = Tt + Do) + [ : T(t + 1 — )F(i,(p))ds
t+7 "
+[ 7 TG+ 7 - F@)ds
=70 (T(t)¢(0) +[ 16 - s)F(us(tp))ds) + [ TE - F @y (o) ds

= T@u@)®) + [ TE = )@, )ds.

By the uniqueness of solutions to (3.1) this implies that u,,2(¢) = up(u,(¥)).
Lastly, (3.2) follows from Corollary 2.2.

We next investigate the infinitesimal generator of U(f), ¢ 2 0. Define Ay:
C—C as follows:

Ay9)©) = $0), -r<0<0,
G3) DUy ={peC: p€C,o(0) EDAy), 9(0) = Azw(0) + F@)}.

PROPOSITION 3.2. Ay, is the infinitesimal generator of U(t), t 2 0.

Proor. First, let ¢ belong to the domain of the infinitesimal generator
of U(f),t = 0. We will show that ¢ ED(Ay) and Ay = ¥, where

Y@) = lim (U@ @) - 0)), 06€[-r0].
ot

Obviously, ¥(8) = ¢+(0) for —r<6< 0. Since VEC,lim, o_¢+(e) exists
and must be ¥(0). But this means that ¢ existson (-7, 0), "~ exists at 0,
and ¢~ (0) = Y(0) (see [14, p. 239]). It remains to show that ¢(0) €D(A4)
and ¥(0) = A7¢(0) + F(y). Observe that

License (3m§)ght restrictions may apply to r;l%ut\onl,'sJB)STw(t/ ams. S)@E‘(Mj(@)’d& F((ﬁ),
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PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 403

since

1 rt
ST ST - 9F@ o) - Flo)lyds

1 pt
,’_ J o T - Fu(o)ds - F@o)
< max (e®*IF(uy(p) — Fo)ly + 1 T(t — s)F(p) ~ F(p)lly).
s€f0,¢]
By virtue of (3.4) the limit as z—> 0% on the left side of

(35) FE@O - uDO) - 1 [, T - DF)ds = L T@9(0) - 9(0)

exists and is ¥(0) — F (). But this implies that the limit as ¢ — 0% on the
right side of (3.5) exists, and is A,9(0) by definition of Af.
Now let ¢ € D(Ay). We must show that

(3.6) lim+ QA/DUR)e — ¢) existsin C and = Aye.
0

Recall that It~ (U(H)¢(8) — v(0)) — 0@y =

3.7 =G + 6) — 9(8) —v@)ly, if —r<t+6<0,

and

X
if 0<z+0.

(38) ” F (re+ w0 + f o T(t+8 = )F(u,(o))ds — W(o)) 0

Suppose t + 6 > 0. Then (3.8) <

tl—(T(t £ 0y (@) — 9@ + [0 TE+0 - s)F(us(cp))ds)

¢ RS Ip-(mlL
(3.10) + 1171 (p(0) — w(8)) - @)+ (¢ +6)~ 1o~ (O)ly.

Then (3.9) <

3.11)

1 (146

s [ UT©A70(0) - A70@)ly + 1T + 6 ~ )F () - F@)ly)ds
and (3.10) <
(.12) L[, 156) - 6= @lcds + 15(0) - 5~ @

ticlfee €3y ehooses Soy sufficiently smallsuchothatdf 0. t <8, - r <0 <0, and
t+0>0,then (3.11) and (3.12) < ¢/3, and if ¢+ 6 <0, then (3.7) < ¢€/3.
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This establishes (3.6) and thus the proof of the proposition.

PROPOSITION 33. If — L <w and ReA>L + w, then (Ay — \I)™!
exists and has domain all of C.

PRrOOF. Given Y € C we must solve
(3.13) Uy —N)p=9-QA¢ =1V, 9(0) = A¢(0) + ¥(0) = A7p(0) + F(v).

This means that

0©) = 9 (0) + [0 MOy ) s,
(3.19)

¢(0) = g — A)"' (W (0) — F@))-
The mapping

o
X — (Ap - M)-l(w(O) - F(e“’x +f? e’“"-’)w(s)ds))
is a strict contraction from X to X, since by (1.3)
i(Ap — AI)"H(F(eMx) — Fe™ D)y < @L/(Re A-w)lx - Xly.

Then (3.14) and hence (3.13) has a unique solution. But this means that
(Ay — M) is onto and injective and the proof is complete.

PROPOSITION 34. If —L<w and ReA>L + w, then (Ay — M)~}
is Lipschitz continuous with Lipschitz constant < 1/(Re A — (L + w)).

PROOF. Let 9= (Ay — )", %= (4y — \)~1J for ¢, €C.
Let €>0 andlet 6 € [—r,0] have the property that lp(@) — $(0)ly >
lg -l — e. Using (3.14) and (1.3) we have that

lo(®) - $(O)ly < 1eM (47 = MY~ 1 (¥(0) — F(p) — ¥(0) + F(@)ly
* () -9 - &(s»ds”X

Re A0 ( _ eReAO)

e o ~ *
———— (Y =yl +Llp-ol,)+ ly -yl
\Re)\_w(‘l/ \l/c (4 ‘Pc) Re N ¥ ‘pc

ReAf ReAd a

L -, + @R NA =T 5y
Re A - w Re A —w
But this implies

Re X — w — LeReMd - 1 — (w/Re N)(1 — eReM o

License or commmmulbﬁseéh(ﬂs“@NMW JoWFEFrgs_om Re )\ —w )!!lp b lp"c.



PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 405

Since
1 — (w/Re N)(1 — eRe2o) < 1
Re}\_w_eReheL Re7\—w—L

the assertion follows.

PROPOSITION 3.5. Foreach Y €C, lim U - NAy)~ 'y =y and,
A0
consequently, D(A,;) is dense in C.

PROOF. By virtue of Propositions 3.3 and 3.4 and the fact that
(I - My)™! = (4y — /NI~ (- 1/X), we have (choosing w > — L if
necessary) that

(I- >\AU)‘l exists with domain C and is Lipschitz continuous
(3.15)  with Lipschitz constant < 1/(1 — ML + w)) for all real A such
that 0< A< 1/(L + w).

For A> 0, define B,: C— C by

&9

/A
: fooe“’/"w(s)ds, YEC, 6€[-r,0].

We will use the fact that limk_’0 +B\¥ =¥ provided that Y(0) =0 (see
[13, §2]) and alsc that lim, |+ 0T ~AAp)"'x — xly =0 forall xex

(see [14,p. 241]). Let ¥ €C and let A be real such that 0<A< 1/(L + w).
Then “

- - 2dy)~tyl,

B\)O) =

=19 = €M - N7 (W) + AF (T - M)~ 19)) + B,y
SV(I=A)E I - Xdy)~ Wl + IFO)I,)
+ 1= 0(0) — By(¥ =~ WO)lc + 1e®/ NI — X A7)~ 19(0) — e/ 2y(0)ll,.
Also, I(7 - Ay)~ 'Yl < II - AAp) 1y — Yl + IYl,. Thus,
(1= XLI1 -2}y — (T - Ay 1yl
S AL/ - 2a)lle + (1 - A)IFO)I,
+ -y - B,y - YOI + 1T - A4 )~1y(0) - Y(0)l,

and the assertion follows.

PROPOSITION 36. Foreach Y €C, t> 0, lim (I - (t/m)Ay)y "y =

U‘(ijniﬁ or copyright restrictions may apply to redistribution; see https://www.ams.org/}ournal—ter“sf&ﬂ?s
.



406 C. C. TRAVIS AND G. F. WEBB

ProoF. To establish this exponential formula for U(¢), ¢ 2 0, we will use
results of M. Crandall and T. Liggett in [3] and H. Brezis and A. Pazy in [1].
From Theorem 1 of [3] we have by virtue of Proposition 3.5 and (3.15) that

ef

lim @ - @A) < VoY

exists forall Yy €C, ¢t = 0,and V (), ¢t = 0, is a strongly continuous semigroup
of nonlinear operators on C. From Corollary 4.3 of [1] we have by virtue of
Propositions 3.2 and 3.5 and also (3.2) that

Jm U@/nf'y = U@BY =V Y
for all Y €C, t 2 0, and the proof is complete.
COROLLARY 37. If —~ L =w, then for ¢,0E€C, t>0,
(3.16) U@y - UDl, < lp = 2l
That is, if — L = w, then U(t) is nonexpansive for all t = 0.
ProoOF. (3.16) follows directly from (3.15) and Proposition 3.6.

COROLLARY 38. If — L > w, then for ¢, 9 € C, t >0, and each posi-
tive integer n,
(.17)
U@y — U)ol

< [(- Ljw)' + (n_l Lk - (- L/w)”"‘)e“’“‘"‘“)’)t"/k!>] lp - @l
k=0

Furthermore, there exists a unique ¢y € C such that U()p, =y, for t>r
and lim,,,, U)p =y, forall 9 €C.

Proor. Since — L > w, (3.16) holds by virtue of Corollary 3.7 (w can
always be chosen larger than any given w). Then, for #>0

lu@)@) - u@ @l
(3.18) <e“tlp(0) — o0y + L fo' e@ =9y () — u (@) ds
< [(-L/w) + (1 = (= L/w))e“ v - Yic.
Then, for t27r,

(319) U@ - U@OPle < [(= L/w) + (1 - (= LjwDe D] lp = §l,.
But since e“®=")>1 for 0<¢<r, (3.19) holds for all ¢#>0. In a similar
manner one substitutes inequality (3.19) into (3.18) and integrates to obtain

License or cou/gf((;%ho_ns My(!;))@tu@diﬁol(ﬁeﬂw)vzwwtnsggqo_urng—T&rrMQs’gz) ew (t— r)
+ L(1 — (— Ljw)e“ =21 g - ¢l
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for ¢ =2 0. An induction argument yields (3.17). By virtue of (3.19), U(t),

t > r, is a commutative family of strict contractions on C and therefore has a
unique common fixed point. That is, for s, t >r, U(t)y, = ¢, implies U(5)y,
=UE) U@, = U@OUE)y, implies ¢, = U(s)p, implies ¢, = ¢,. The last
statement now follows from (3.17).

4. The spectral properties of A, in the linear case. Throughout this
section F will be as in §3 except that we require F to be linear with norm
IFl=L. T(t),t>0,and A, will be as before except that we require T'(?)
to be compact for each ¢> 0. U(¢), ¢t 2 0,and Ay, which are now linear, will
be as in §3. For each scalar A define the linear operator AQ\): D(Ap) — X
by

4.1) AQ)x = Apx =Ax + F(eMx), x€DAp).

We will say that A satisfies the “characteristic equation” of (3.1) provided
AQ)x =0 for some x # 0.

PROPOSITION 4.1. Suppose B is real such that if N\ satisfies the character-
istic equation of (3.1), then Re A < B. For each > 0 there exists a con-
stant K(y)= 1 such that forall t =0,

42) 1U@)ol < K(r)eCF PVt lgl,.

We shall require three lemmas for the proof.

LeMMA 4.2. For t >r, o(U(t)) is a countable set and is compact with
only possible accumulation point 0, and if p# 0 € o(U(t)), then €
Po(UQ)).

ProoF. The lemma follows immediately from Proposition 2.4 and Theo-
rem 6.26, p. 185, of [8].

LeEMMA 43. For t>r, Po(U()) = etPo(A v) plus possibly {0}. More
specifically, if = u(@) € PdU(t)) for some t>r and pu+ 0, then there
exists A€ Pa(Ay) such that eM = u. Furthermore, if {\,} consists of all
distinct points in Po(Ay) such that e ™ = u, then for arbitrary K,
NU@) — uIY* is the linear extension of the linear independent manifolds
N(Ay — N I)¢, where n ranges over et =y

ProOF. See Lemma 22.1 and the exercise which follows it in [6, p. 112].

LeMMA 44. If S(t), t 2 0, is a strongly continuous semigroup of linear
operators on X and for some s> 0 the spectral radius p of S(s) is 0
il e QYR8 B Eher for Il - O there et d tonstant K(y) 2 1 such
that
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ISEOxI K KMe™ M Uxl forall t>0, x€X.

PROOF. See Lemma 22.2, p. 112 of [6].

PROOF OF PROPOSITION 4.1. Suppose i # 0 € o(U(t)) where ¢ is some
fixed number > r. By Lemma 4.2, u € Po(U(¢)). By Lemma 4.3, u = e**
where A € Po(Ay). Then there exists

“4.3) ¢#0EDMAY), ¢ —Ap=0.
But this is equivalent to
‘4 9@ =eM0), ¢0)#0, ¢(0)=Apv(0)+ F(p).

Then AQ)¢(0) = 0, and by hypothesis Re A < 8. Thus the spectral radius of
U(t) <e® and (4.2) follows immediately by application of Lemma 4.4.

ProOPOSITION 4.5. If NEPo(Ay) then My(Ay) is finite dimensional.

ProoOF. The proof follows immediately from Lemma 4.3 and the following
lemma.

LEMMA 4.6. For t >, if p€Po(U(t)), p # 0, then N(U(t) — puI)¥ is of
finite dimension for all k, and there exists a positive integer n such that
M, (U(t)) = N(U(t) — pI)*. Moreover, U()M “(U(t)) C M, (UQ).

PROOF. A proof is given in [7, Theorem 5.7.3, p. 182]. The last state-
ment is a consequence of the fact that U(¢) and (U(f) — pJ)¥ commute.

PROPOSITION 4.7. There exists a real number § such that Re A< for
all X€0o(Ay) and if v is any real number there exists only a finite number
of N€Po(Ay) such that y<Re A.

PRrooOF. The existence of the constant § follows immediately from Prop-
ositions 3.3 and 3.4 (in fact, one can choose f§ = max{0, L + w}). Assume that
{A;} is an infinite sequence of distinct points in Po(Ay) such that Re A, >
v for all k, where v is 2 glven real number. By Lemma 4.3 e Kt € Po(U(1))
for a fixed t>r. If {e Mt } is infinite, then Po(U(¢)) has an accumulation

point different from O, which contradicts Lemma 4.2. If {e "t} is finite, then

A, t
e ¥ =y = constant for some infinite subsequence {)\nk}.

Then N(U(t) — uI) is infinite dimensional, since it contains the linearly inde-
pendent manifolds N (AU -7, by Lemma 4.3. But this contradicts Lemma
Ry

4.6. Thus the assumption is false and the proof is finished.
License or copyriohNERIELIZAREY Y8z Beree Bes bevtheosraatiestsreal number such that if \
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satisfies the characteristic equation of (3.1), then Re A<g. If <0, then for
al p€C, U@l — 0 as t —> . If =0, then there exists ¢ #+0EC
such that 1U@elo = lole forall t20. If 8> 0, then there exists ¢ €C
such that |U(@t)pllo —> > as t =5,

ProoF. The claim for §<0 isimmediate from (4.2). If $=0 let x #0€
D(A7) such that AQ)x =0 where ReA=0 (sucha X exists by Ptoposition 4.7).
As in (4.3) and (4.4),9(0) = e (0), ¢(0) = x solves (Ay—N)e=0,0+#0.

Thus U(t)p = My and UE)¢lo = €™ Mligll = lgllg. If >0, letx #0 €
D(Ay) suchthat A(Axx =0 and Re A>0. Again ¢(6) = e*(0), «(0) = x solves
(Ay—M)e=0,0#0. Thus, U(t)p=eyp and 1U@)¢l, =eR* Myl

Our next objective is to decompose the space C using the eigenvalues of
Ay . This will be done by means of Propositions 4.10, 4.11, and 4.12, which
are proved just as in [6, Chapters 20 and 22]. We first require the following
proposition.

PROPOSITION 4.9. Suppose X is complex and N\, € Po(Ay) -such that
Ao isa pole of order ny of (Ay — NI)~'. Then

(45) C=Ndy -0V ® Ridy — A D™ = My (45) @ Ry (Ay).

Moreover, My (A) =Ny — \J)* forall n>ny and ngy is the smallest
such positive znteger Also

4.6) AU(MAO(AU)) c M}\O(Au): AU(RAO(AU)) c Rxo(Au)a
@7 UOC @) € My (Ay), UOR, Ap) S Ry (Ay) forall t>0.

PrOOF. (4.5) and (4.6) follow directly from Theorem 5.8-A, p. 306 of [12].
(4.7) follows from the fact that U(f) and Ay commute on D(4y) (see
[14, Theorem 2, p. 239].

ProposITION 4.10. Suppose X is complex, A € Po(Ay) is a pole of
(Ay —ul )1, cp}, see tp;‘ is a basis for the finite dimensional subspace
M,(Ay),and &, = (cpi‘ RCEK N ") Since Ay (M\(Ay)) S M,(Ay), there
existsa d x d constant matrix Bx such that Ay ®, = ®,B,. The only eigen-
value of B, is \, ®,(0) = <I>)b(0)e Br _r<o <o, U@t)®, = de BA' for
20, (U ,)(0) = &,(0)e A+ f r —r<0<0,t>0. Then U(f) can
be defined for all t € (— =, ) on M,(Ay).

PROPOSITION 4.11. Suppose X is complex, A ={\;, ***,\,} isa finite
SELI PECAY) Stehethareaer X; s ot poiecof (AL R yL e A=
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(@Al, cee, <I>,\p), B, = dlag(BM, see, B,\p) where <I>Ak and B, areasin
Proposition 4.10. Then for any vector a of the same dimension as ®, , the
solution U(t)®\a with initial value ®,a at t =0 may be defined on

(_ o, °°) by

UB)®pa = b e Mg,

8,0 =2, 4°, —r<o<o.

Furthermore, there exists a subspace Q, of C such that U(t)Q, C Q5 for
all t20 and C=P, ® Q,, where Py, ={pEC: 9= a for some vector
a of the same dimension as ®,}.

PROPOSITION 4.12. Suppose X is complex, A = AB) ={ N € Pa(Ay):
Re \ = 8}, where B is a given real number, and let C=P, © Q, be decomposed
as in Proposition 4.11. There exist positive constants K, vy such that for all
el

W@ A < KeB-Dt1,5AL,,  t<o,

1U(@)e°Al, < Ke®-111p%A1,,  t>0,

P
where ¢ =y A+¢QA

is the decomposition of ¢ in Py © Q,.

In the case of Proposition 4.12 we will say that C=P, ® Q, is de-
composed by A. Propositions 4.11 and 4.12 permit us to distinguish the be-
havior of the solutions on the two subspaces P, and @,, since these subspaces
are invariant under Ay and U(f). In the remaining propositions of this sec-
tion we shall investigate the “dual operator” of Ay, relative to a certain bilinear
form. In particular, we shall obtain an “alternative” theorem for the nonhomo-
geneous equation (Agy — Ay = .

In the propositions which follow we will suppose that F has the form

“8) Fy=[", an00®. vec,

where n: [—r, 0] — B(X, X) is of bounded variation. In addition we let
C'=C([0,7]; X") where X' is the dual space of X. Also let Ap: X' — X'
be the dual operator of A, which exists since A4 is densely defined (see
[14, p. 193] . Let n'(®) €B(X', X'), — r <6 <0, be the dual of n(d) and
note that n': [—r, 01 — B(X', X') is of bounded variation since 7 is (see

LwcenseTfiyrlgf‘ﬁétg:i\'gls’rTa apply to rleggleSQn ﬁe?)s /IWww.gnps. o-rg/ nilf;msr yusi’y
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(Ayo)s) =-afs), O0<s<r,

“9) D(Ay) = {a €Ca€eC’,a(0)€D(Ay), and

~ &) = A7e@ + [ : dn'@)a(- e)}.
Lastly, define the bilinear form (,) from C x C' to the scalar field by
@10) (6,0 =0, a0) - [°, [ @n@p), ok - ),
where (x, x") means x'(x) for x€X, x' €X',

PROPOSITION 4.13. (4,9, @) =y, A'Ua) for p€DAy) and a €
D(Ay). Also, if AEPo(Ay), L EPo(Ay). N # 1, ¢ ENAy - N]),and a €
N(Ay — ul), then {p, a)=0.

Proor. The first statement follows from

Y .
Uye,0= (4700 + [, an0)0@. o ~ [, fo @n@d(®), e - o)
= (4790, «0) + (7, @000, 0(0)

0 £E=0 0 0 .
— [ _, dn©)¢(®), a(t - 0) |£= o H S o @@, i - 0na

= (¢ 47a@ +°, i )at ) =2, f o @noroe),~ ace-onae

=(p, Ay ).
The second statement follows from the first.

PROPOSITION 4.14. Suppose N(A\) #{0} iff N(A(A)) # {0}, where
AQ) =Ap N+ 2, dn@0)e?® asin (4.1)and AQ)Y =Ap — A+
S, dn'(8)eM. Then A €Po(Ay) iff \EPo(Ay).

PrOOF. As in the proof of Proposition 4.1, ¢ # 0 € N(4y — N) iff
¢(8) = e p(0) where ¢(0)# 0 satisfies Ap(0) = A;¢(0) + F(p) iff ¢(0)#
0EN(AQ)). Similarly, a # 0 EN(Ay — NI) iff a(s) = e~ a(0) where
a(0) # 0 satisfies Aa(0) = A7 a(0) + f2, dn'(@)a(-0) iff a(0)#0€
NAM).

PROPOSITION 4.15. Suppose A(\) has closed range and let Y € C. Then
(Ay —NI)o =1y has a solution ¢ €C iff (Y, a)=0 forall a€ENAy—N).

e PROGE. W TISTUb v that "&(X)"I§ 1688 a1id ‘Tensely defined since
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Aqp is, a fact which we will need in order to apply the closed range theorem

(see [14, p. 205]). Suppose (Y, @) =0 for every a € N(Ay — AI). To show
there exists ¢ € C satisfying (Ay — AI)p = ¢ it suffices to show that there
exists ¢(0) €EX satisfying

@4.11)  AQ0) = ¥(0) _fgrfz AO-Dgn @)t S .
That is, there exists ¢ € D(Ay) such that 9—Ag = ¢ iff

@12) 9)=eMp0) + [ eXO-Dy®)dE,  5(0) = A70(0) + F(9)

iff (4.11). Since A(A\) has closed range, by the closed range theorem, y €
R(AQ)) iff YENQAQ)) ={xEX: (x, x)=0"forall x' ENAQ))}. So
let x' €N(AQ)) and define a(s) = e~ a(0) where a(0) =x'. Asin the
proof of Proposition 4.14, & € N(4y — AI). By hypothesis

0=y, a) = (WO, e - [, [+ @n®) ¥ ®), X0~ Da(0)) at

= (O - [2, [ *-Vaneveat, o) = o1 x).

Hence, y €R(AQA) and so there exists ¢ € C satisfying (Ay — M)y = y.
The converse follows immediately from Proposition 4.13.
In the case that X is reflexive one can consider the “dual equation”

4.13) V@@ = T'(- 2@ + [ T'6 - NF'e*)ds, 1 <0,

o) = a.
Here v(@)(f): (-0, r] = X', a €C’, T'(¢) is the dual of T(¢), T'(t), t >0,
is a strongly continuous semigroup on X' with infinitesimal generator A4’ (see
[2, Corollary 1.4.8, p. 52]), F'(e) = f°, dn'(8)(— 8) where 7 is as in (4.8),
and for ¢ <0, 0" (@) EC’ is given by v¥(@) () = v(@)(* +5), 0 <s<r. One
solves (4.12) just as in Proposition 2.1. Define U'(H)a = v~ (@) for ¢ >0,
U'(t): C' — C'. One can verify that U'(f), t = 0, is a strongly continuous
semigroup on C' (as in Proposition 3.1) and Ay, defined by (4.9) is its
infinitesimal generator.

5. Stability of solutions and examples. Throughout this section we shall
consider the equation (3.1), that is, U(¢), ¢t 2 0, will be as in §3. We shall call
the zero solution #(0)(¢) of (3.1) stable iff for each € > 0 there exists
8 > 0 such that if lloll, <8, then U@yl <e forall r>0. We shall
call the zero solution u(0)(#) of (3.1) asymptotically stable iff it is stable and

License mwwstucm(&%u@ tc?-r'eugribLfmsaeumﬁﬂwﬁl.gs.or;ﬁurrﬂt@oﬁseo (WhiCh imphes U(t)o = 0
for all +> 0 by the uniqueness of solutions), then Corollaries 3.7 and 3.8 say
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that the zero solution of (3.1) is stable if — L = w and asymptotically stable
if — L > w, For the linear version of (3.1) Corollary 4.8 says that the zero
solution of (3.1) is stable if — L = w and asymptotically stable if — L > w.
For the linear version of (3.1) Corollary 4.8 says that the zero solution is asymp-
totically stable iff § <O and not stable if §> 0.

ExampLE §.1. Let X = C,[0, 7], the space of continuous scalar-valued
functions on [0, 7], which are 0 at 0 and =, and having supremum norm. Let
Agp: X — X be defined by

Ary=y+wy, DUAp)={yEX:JEX)
where w is a given real number. Then A is the infinitesimal generator of a
semigroup T(¢),t = 0, as in (1.2). Let f be a Lipschitz continuous scalar-

valued function on the scalar field with Lipschitz constant L and such that
f(0) = 0. Define F: C— X by

F(‘p)(x) =f(‘p(" r)(x)), 4 € C: x € [0, 77] .
Then the hypothesis of Proposition 2.1 is satisfied and if f is continuously
differentiable, then the hypothesis of Proposition 2.3 is satisfied. In the latter
case one can show that u(L)(®)(x) def w(x, £),t 2 0,x € [0, n], satisfies the
equation

w,x, ) = wy, (x, 1) tww(x, £) + fwlx, t —-1)), O0<x<m ¢ =0,

(5.1 w0, )=wm )=0, =20,
wix, =9(@OE), 0<x<7m —-r<t<0,
in the “classical sense”. If — L = «w then the remarks above apply and the zero
solution of (5.1) is stable if — L = w and asymptotically stable if — L > w.
EXAMPLE 5.2. We wish to determine the exact region of stability of the
linear equation
welx, ) = w G, ) —awlx, ) —bw(x, t —7), O0<x<m, t=0,
(5.2) w0, )=w(m)=0, =20,
w(x, D) = o(t)(x), o<x<nm —r<tr<o,
as a function of a, b, and r, where the solutions are in the sense of (3.1) for
X=1L%[0,n]. Let Ap: X — X be defined by
ATy =.i;9
(5.3) D4 r)={y€X:y and J are absolutely continuous,
V€ X, y(0) = y(m) = 0}.

License or copyright restrictions may apply to redistribution; see https:/www.amns.org/journal-terms-of-use,

Then A, is the infinitesimal generator of a semigroup T'(¢), ¢ = 0, as in (1.2)
with w=—1. Let F: C— X by F(¢) =—ap(0) — bp(— r). The character-
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istic equation from (4.1) is
G4) ANS=(Ar-A+a+be ™Df=0, f+#0EDAr)

By Corollary 4.8 the zero solution of (5.2) is asymptotically stable iff §<0. In
order to apply Corollary 4.8 we need to establish the fact that T(f) is compact
for ¢t > 0. To this purpose we will use the following lemma due to A. Pazy
(Theorem 3.4 of [9]).

LEMMA 53. Let T(¢t), t 2 0, be a strongly continuous semigroup of linear
operators on X with infinitesimal generator A. Suppose that R(u +it; A)
exists for u > pg, and for some p >,

(5.5) hm InlrlIRu +ir; A)l=c < oo,

17 l>oo
Also suppose that for some A and t, = 0, RQ\; A)T(¢y) is compact. Then
T(?) is compact for ¢ > max(t,, ¢).
When Ag is defined by (5.3), it is well known that R(u + i7; A;), which
exists for p > 0, is compact. Therefore R(X; A;)T(0) is compact where
Re A > 0. In the next example we will show that
ROGA)f = ): Jan %)

n= 1—n2—

,  where ¢,(x) = (/2/m)sin nx
(5.6)

and f, "——f f(x)sin nx dx.

Thus, IR(\; Ap)| = (2=, 1/In? + AP)* and it follows that (5.5) holds with
C = 0. Hence, by Lemma 5.3, T(¢) is compact for each ¢ > 0.

/b = atl

\\\

stablhty reglon

|
|
\
‘ /

8
. /7
{(-1-1/r,0) 100
7/
/’
/7
7,
Ve
/7
/
bta= -1
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Since the eigenvalues of A, are —n%, n=1,2,+++, we have from
(5.4) that the system is asymptotically stable 1ff all the roots of the equations

Ata+beM==n? n=1,2-"-,

have negative real parts. The exact region of stability of (5.1) as a function of
a, b, and r isindicated in Figure 1.
ExXAMPLE 54. Consider the linear equation

w,(x, )=w,, (x, ) +wlx, ) - (@/Dwx, t —1), 0<x<m t=>0,
X)) w0, H)=w(mt)=0, =20,
wx, )=o), O0<x<m, —1<r<0.
Let X be as in Example 5.2,let Az =B + I where B isthe “A;” defined
in (5.3), and observe that A is self-dual. Let F: C— X be defined by
F(p) = — (n/2)¢(~ 1) (here we take » = 1). Note that (4.8) holds where 7(0)

=0if —1<0<0 and (@) =-(@n/2)] if 6 =— 1. The dual equation
4.13)of (5.7) is

v (x, ©) = v, (x, )+ ux, 1) + (n/2)v(x, t + 1), o0<x<m t<0,
(5.8) W0, ) =um =0 t<0,
u(x ) = a(@)(x), 0<x<w O0<r<L
The bilinear form (4.10) is
(9, @) = (), a@) - 3 [ (0@, a (e + 1)d

where (x, y) = [ x(s)y(s)ds, x EX, y €X'. The operators Ay, Ay are
given by

Ay @ =9(0) if—1<6<0,
(Ay9)©0) = Agpe(0) — (@2)e(-1) if § =
and
Ay @) =-a@) if 0<s<1
(Ay®) () = A7 a(0) — (r/Da(l) if s=0
Observe that ¢ € N(dy — AI) iff ¢(9) = ¢(0)e™?, — 1 <0 <0, where A
satisfies A(N)@(0) = (4 — NI - (®@/2)e=*)¢(0) = 0. Thus, ¢(0) =
sinnx, A+ (n/2)e > =1—n? for n=1,2,+++. Also,c EN(Ay — \])
iff a(s) = a(0)e~*%, 0 <s< 1, where A satisfies

License or copyright restrictions rmg(gktrﬁu%tﬁfs/Ma?ns(rg;)éZ}ﬁte_rn}%)g(o) = 0.



416 C. €. WEBB AND G. F. TRAVIS

Since A is self-dual, we conclude that a(0) = sin nx, A + (@/2)e"* =1 — n?
for n=1,2,---

It can be shown that A + (7/2)e"* =0 has iwo simple roots
*im/2 and the remaining roots have negative real parts. It can also be shown
that all the solutions of A + (1r/2)e“7‘ =1-n%,n=2,3,+,have negative
real parts. Let A ={in/2, —in/2}. Then ® ={y,, v,}, where

9,0, x) =sin(n8/2)sinx, —-1<<0, 0<x<m,
9,0, x)=cos(nf/2)sinx, —1<6<0, 0<x<m,

is a basis for the “generalized eigenspace” P =P, of (5.7) where C=P, ®
Q, is decomposed by A. Also, ¥ ={y, ¥,}, where

¥,(s, x) =sin(ns/2)sinx, O0<s<1, 0 <x<m,
V,(s, x) = cos(ms/2)sinx, O0<s<1, O<x<m

is a basis for the “generalized eigenspace” P, of (5.8) where C' =P, & Q)
is decomposed by A.

Before we can decompose C by A we must verify the compactness of
T() for t> 0 and the hypothesis of Proposition 4.11. Since T'(f) is just
e’ multiplied times the “T'(¢t)” of Example 5.2, it is compact for ¢ > 0. It
remains to show that each Ay € Po(4,,) is a pole of (Ay —AI)~! and this
will be done in a series of lemmas.

LEMMA 55. (A, — N)~™! hasa pole of order n at N\, iff A(N)™!
has a pole of order n at A\,.

PROOF. ¢ — Ap = Y €C iff (4.11) and (4.12). Thus, for vy =Y\, ¥)
S 0(0) + (@20, e MA+Iy()ds as in (4.11),

(y — M) = MaQ 19, 9) + [ MOy s

Since 7, f& eMO~)y(s)ds, and e™® are entire functions of A, the lemma
follows.

LEMMA 5.6. Suppose h(z) is an entire complex-valued function of the
complex variable z such that h(z) — w, has a zero of order n at z,. Sup-
pose wq is a pole of order m of the Banach space-valued function g(w) of
the complex variable w. Then the function f(z) = g(h(z)) has a pole of order
mnat z,.

PROQF. Since i’t\(z) —wy has a zero of order n at zy,h(z) —wy =
(29— 2o)"h(z) where h(zo)aEO and h(z) is analytic. Since g(w) has a pole of
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Wwo, gW where g(wo)aﬁo and g(w) is analytic.
Thus
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20E@)  _ Eee)
(@) - wol® (@ - 2o YRy

which implies that f(z) has a pole of order mn at z,.

@) =g(@) =

LEMMA 5.7. (A7 — M)™' has simple polesat A\=1—n%, n=1,2,¢+.
ProoFr. Consider
(9 Uu+u—-nu=f u@=um=0, fEX
The related.eigenvalue problem is
(5.10) g+p=2Np, 9(0)=y(m=0.

Nontrivial solutions of (5.10) can be obtained iff A is one of the eigenvalues
A, =1- n%, n=1,2,+++. The corresponding normalized eigenfunctions are
9,(x) = \/2/m sin nx. These eigenfunctions form a complete orthonormal set.
Thus we can write

F0= T 1y0a® Sy = () =V [ f@Ysn e d,

u(x) = Z: U0y () Uy =W, 0,) =21 :u(x)sin nx dx,

where convergence is in the mean. From (5.9) we obtain
@ ¢,) + @, ¢,) = Nt 9,) = (£, ¥

which, after integrating by parts, becomes (1 —n2 — N, ¢,) = (£, ¢,)- If
A# 1 —n?, then

fn had fn‘pn(x)
u, =—— and u(x) = —_—
" i—n?-2a nz=:11—n2—)\

It is easily shown that the convergence is uniform on [0, 7]. Thus,

w  [,0,(x)
(Ap -~ = 3 —
T n=11-n% -2
and the lemma now follows.

LeMMA 58. (4 —AI)~! is analytic except at roots to A + (n/2)e~ =
1-n%,n=1,2, ¢+ ,where it has simple poles.

PROOF. Set g(w) = (A, - wl)~! and h(z) =z + (n/2)e"*. The
functioneh(@Yrecllartif Y duh: (D) emitmeo(dume-n)rhas simple zeroes for
n=1,2,+++ . Thatis, suppose z, is a zero which is not simple. Then
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h(zg) ~ (1 =n?) =z + (n/2)e” "0 — (1 —n?) =0 and H'(zg)=1—
(m/2)e" %0 =0 must hold, which is easily seen to be a contradiction. The proof
of Lemma 5.8 now follows from Lemmas 5.5-5.7.

It now follows from Proposition 4.11 that we can decompose C by A.
Furthermore, by Proposition 4.15 any ¢ € C can be written as ¢ = ¢f + 9@,
where P is the “generalized eigenspace” associated with & and Q is the
orthogonal complement of the “generalized eigenspace™ associated with ¥. By
Proposition 4.12 there exist positive constants K, y such that U (r)¢2 le <
Ke="11p%lls ¢ > 0, and, consequently, the subspace Q of C is asymptotically
stable.
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