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PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS
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C. C. TRAVIS AND G. F. WEBB

ABSTRACT.   The existence and stability properties of a class of partial
functional differential equations are investigated.   The problem is formulated
as an abstract ordinary functional differential equation of the form   du(t)/dt =
Au(t) + F(u{), where  A   is the infinitesimal generator of a strongly continu-
ous semigroup of linear operators   T(t),   t > 0, on a Banach space  X  and  F
is a Lipschitz operator from   C = C([ — r, 0] ; X)  to  X.   The solutions are
studied as a semigroup of linear or nonlinear operators on   C.   In the case that
F has Lipschitz constant  L   and   I T(t) I < eu(, then the asymptotic stability
of the solutions is demonstrated when   w + L < 0.  Exact regions of stability
are determined for some equations where  F is linear.

1. Introduction and preliminaries. The purpose of this paper is to investi-
gate existence and stability properties for a class of partial functional differential
equations. As a model for this class one may take the equation

wt(x, t) = wxx(x, t) + f(t, w(x, t-r)),      0 < x < it,   t>0,

(1.1)  w(0, f) = w(ir, t) = 0, t>0,

w(x,t) = v(x, i), 0<x<tt,   -r<i<0,

where / is a linear or nonlinear scalar-valued function, r is a positive number,
and i/? is a given initial function. In our development the second derivative term
in (1.1) will correspond to a strongly continuous semigroup of linear operators on
a Banach space of functions determined by the boundary conditions in (1.1).
Accordingly, our approach will rely primarily on semigroup methods and the treat-
ment of (1.1) as an abstract ordinary functional differential equation in a Banach
space.

Our first objective will be to develop an existence theory for the nonlinear
nonautonomous case and this will be done in §2.  In the case that / is auton-
omous the solutions give rise to a strongly continuous semigroup of nonlinear
operators on a Banach space of initial function values.  This semigroup has been
extensively studied for ordinary linear functional differential equations by J.
-——•—
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396 C. C. TRAVIS AND G. F. WEBB

Hale in [6] and recently for ordinary nonlinear functional differential equations
by G. Webb in [13]. We will investigate the properties of this semigroup and its
infinitesimal generator in §3.  In the case of ordinary linear functional differential
equations the spectral analysis of the infinitesimal generator of this semigroup gives
considerable information about the behavior of solutions. We will give an ana-
logue to such a development in the linear partial functional differential equations
case in §4, where our approach will follow closely that of J. Hale in [6].  Lastly,
we will apply our theory to some specific examples in §5, where we will give
particular attention to the stability of solutions.

Before proceeding we shall set forth some notation and terminology that
will be used throughout the paper. X will denote a Banach space over a real or
complex field. C = C([— r, 0] ; X) will denote the Banach space of continuous
X-valued functions on   [— r, 0], with supremum norm, where r > 0. If « is a
continuous function from   [a - r, b]   to X and t S [a, b], then ut denotes
the element of C given by ut(9) = u(t + 8), - r < 0 < 0. If A  is a linear
or nonlinear operator from X to X, then D(A), R(A), N(A) denote its domain,
range, and null space, respectively. If A is linear then p.(A), a(A), Po(A) denote
the resolvent, spectrum, and point spectrum of A, respectively. B(X, X) will
denote the space of bounded linear everywhere defined operators from X to X
and if A G B(X, X), then   \A I is the norm of A.   If A  is linear and X G p(A),
then R(K;A) is (A - XI)'1 eB(X, X), and if X 6 a(A), then MK(A) is the
generalized eigenspace of X (that is, the smallest subspace of X containing
N(A~M)k, k= 1,2, •••)•

By a strongly continuous semigroup on X we shall mean a family  T(t),
t > 0, of everywhere defined (possibly nonlinear) operators from X to X satis-
fying T(t + s) = T(t)T(s) for s, t > 0, and  T(t)x is continuous as a function
from   [0, °°) to X for each fixed x £ X. The infinitesimal generator AT of
T(0, t > 0,  is the function from   X   to   X   defined by   AjX =
lim^o-h r-1(7T(r)x-x) with D(AT)  all x for which this limit exists.  Finally,
in the case that the semigroup is linear we shall require the following facts.

A necessary and sufficient condition that a closed densely defined linear
operator AT be the infinitesimal generator of a strongly continuous

0-2) semigroup  T(t),   t > 0, of operators in B(X, X) Such that   \T(t)\<
eut for some real number co isthat   \R(K;AT)\ < (X- co)-1   for all
X > co (see [4, Corollary 14, p. 626]).

If X is complex and  T(t),   t > 0, is as in (1.2), then for all  X such
(1.3) that Re X > co, X G p(AT) and  \RÇk;AT)\ <(Re X— co)"1   (see [14,

Corollary l,p. 241]).License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 397

2. Existence of solutions in the nonlinear case. We prove our main exis-
tence theorem in an integrated form using a method derived from the fundamental
results of I. Segal in [11].

Proposition 2.1. Let F: [a, b] xC—*X such that F is continuous
and satisfies

(2.1)    \\F(t, \¡j) - F(t, $)lx <m- ¿lc   for a<t<b,\p,4/eC,

where L is a positive constant. Let T(t), t>0, AT,u be as in (1.2). If
<p £ C there is a unique continuous function u(t):   [a - r, b] —* X which
solves

u(t) = T(t - aMO) +f[ T{t - s)F(s, us)ds,      a<t<b,

Proof.   First observe that if w(s) is any continuous function from
[a - r, b]   to X, then  T(t - s)F(s, ws) is continuous in s G [a, t]   by virtue
of the continuity of F, the continuity of ws as a function in s  from   [a, t]
to C, and the strong continuity of T(t), t>0. Define u°(t) = <p(t - a) for
a - r<t**ia and u°(t) = T(t - a)y(0) for a < t < b. In general, for each
positive integer n, define

""(0 = V(r - a) for a - r < t < a,

u"(t) = T(t - aMO) +J*a T(t - s)F(s, u^-^ds   for a<t<b.
Since F is continuous there exists M suchthat   II F (s, u¿)\\x <M for

a<s<6. Then for a<t<b,

\\u\t) - u°(t)\\x <(t- a)e"(6-a>M,

and, in general,

ll«"(r) - m""HO"* <MLn-le"^b-"\t - af/nl.

Thus, lim^^,», u"(t) =   u(f) exists uniformly on   [a - r, b]   and u(t) is con-
tinuous on  [a - r, b].

To establish that u(t) satisfies (2.2) use

HO - T(t - aMO) -Ça T(t - s)F(s, us)ds\\x

<\\u(t)-un+l(t)\\x + ftaT(t-s)(F(s,us)-F(s,u$)ds

< (1 + L(t - fl)eu,(*-a>)M   £    Lk-iek"«'-a\t - a)k/k\
k=n + l
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398 C. C. TRAVIS AND G. F. WEBB

To establish the uniqueness assertion suppose  v(t) satisfies (2.2) and let K
be a constant such that   llu(r) - u(t)\\x < (t - a)K.  Then

\\v(t) - un(t)\\x<KLne<-n + lW-aXt - a)n + 1/(n + 1)1,

whereupon  v(t) = lim^^^ u"(t)  and the proof is complete.

Corollary 2.2. Suppose the hypothesis of Proposition 2.1 and let u(t),
u(t) solve (2.2) for <p, $ G C, respectively.   Then for a<t <b

\\ut-ut\\c<\W-^\\ce^+LW-a) if u>0,and

(2.3)
K - Ut\\c < |f - J|c e-«rc(«+L«    W X*-)    if  w < 0.

Proof.   From (2.1) and (2.2) we have that for a- r<t<b

iu(t) - ¿(OH* < ew(f-a)|lv3(0) - $(0)WX + LJl ¿"«-'Hu, - üs\\cds.

If co > 0, then for a < r < b

\\ut- Dílc<ew<f-«>lv»-íÍc+¿rew(í-*)l«,- ^llc6?s,

and if co < 0, then for a<t <b

\\ut- Ùt\\c<e-wre^t-an^>- ^lc+l€-w«r-ew<í-»>l«,- 2,Hcds.

By Gronwall's lemma (2.3) follows.

Proposition 2.3. Suppose the hypothesis of Proposition 2.1 and in
addition suppose that F is continuously differentiable from   [a, b] x C to X
and Fv F2  satisfy for a < t < b, i//, \¡j G C, and positive constants ß, y,

(2.4) ||F,(/, M - Fx(í,   $)tx <ßU- 4> «c.

A

(2-5) \F2(t,M-F2(t,   i//)KTll¿- *Vy.

Then, for </? G C such that ^(0) G D(A T), ¿> G C, and ¿"(0) = ATy(0) +
F(a, if), u{t) is continuously differentiable and satisfies

(2 ,. d/dt u{t) = ATu{t) + F(t, ut),     a<t<b,
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof.  By virtue of Proposition 2.1 we can solve

v(t) = T(t - a)(AT<fi(0) + F(a, <¿>))

(2.7) +f[ T(t - sXF^s, us) + F2(s, us)vs)ds,      a<t<b,

va = V>.

Define w(t) = <p(t - a) for a - r<t<a, w(t) = y(0) + /af v(s)ds  for a <
t<b.  We will show that w(t) = u(t), which will establish that u(t) is con-
tinuously differentiable.  First, by taking the limit of the difference quotient, one
obtains that for a < t < b,

±V Tit - s)F(s, ws)ds = C Tit - s)(F¿s, ws) + F2(s, ws)vs)ds
(2.8) dt

+ T(t - a)F(a, </>).
Then (2.8) yields

fl T(t - a)F(a, <f)ds =J[ T{t - s)F(s, ws)ds

<2-9>
~fafa r(S - r^Fl(7' Wr) + F2^ WT)VT)dTdS.

Using the fact that for zED(AT), /af T(t - s)ATzds = T(t - a)z - z,
(2.7) and (2.9) imply

w(t) = Tit - aMO) +f[ Tit - s)Fis, ws)ds

(2-10) +/*/! T(s - TKF¿T> *r) - F& *r)

4- iF2ir, ur) - F2iT, wr))vT)dTds.

Then (2.10), (2.4), and (2.5) yield   IIwit) - uit)\\x < const f¡ IIwT - uT \\cdT,
which implies

-t
II wt - ut \\c < const J    II wT - uT \\c dr.

By Gronwall's lemma w(t) = w(i). Therefore, f\ Tif - s) F (s, us)ds is of the
form /q Tis)gis)ds where gis): [0,d] —>X is continuously differentiable.
By Theorem 1.9, p. 486 of [8], u(r) is a solution of (2.6) and the proof is
finished.

We remark that the equation (2.2) is more general than (2.6).  In fact, in
the case of Proposition 2.1  w(r), r > 0, may not belong to DiAT) and may notLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



400 C. C. TRAVIS AND G. F. WEBB

be differentiable (even if (¿>(0) GD(.4r)).  The following proposition will be of
fundamental importance in §4.

Proposition 2.4. Suppose the hypothesis of Proposition 2.1 and in addi-
deftion suppose that TQ) is compact for each  t>0.  Then, it, <p) —► ut = «f($

the mapping defined by solutions, is compact in <p for each fixed t>r.

Before proving Proposition 2.4 we require two lemmas.

Lemma 2.5. Let Tit), t>0,and co be as in (1.2) and in addition let
Tit) be compact for each  t > 0. Let B be a bounded subset of X and let
{/ : 7 G T }  be a set of continuous functions from the finite interval   [c, d] C
(0, °°) to B.   Then K <*{f* T(s)/7(s) ds: y G T} is a precompact subset of X.

Proof.   Let H = {Tit)x: t G [c, d],x G5}. We will use the fact that
T(t) is uniformly continuous from   [c, d]   to BiX, X) (see [7, Theorem 10.22,
p. 304] ) to show that H is totally bounded (see [14, p. 13]). Let  e>0 and
let M be a bound for B.  There exists c = rx < r2 < • • • < tn = d such that

(2.11) | T(tt) - Tit) I < ellM   for ti_l<t<ti.
Since for each t¡, Tit¡)B is totally bounded, there exists {JCpXj, * * * >*£(,)} c
B such that if x G B, then
(2.12) iTQ^xj - T(t¡)xix < e¡2   for some xj.

One uses (2.11) and (2.12) to demonstrate the total boundedness of H. Then H
is precompact and therefore so is the convex hull of H (see [12, Exercise 4,
p. 134]). The conclusion follows since K is contained in the closed convex hull
of id - c)H.

Lemma 2.6.  Let [f : y G T} C C be an equicontinuous family such that
for each 8 G [- r, 0], {/7(0): 7 G T} is precompact in X.  Then {fy:ye T}
is precompact in C.

Proof.   A proof may be found in [10, Theorem 33, p. 179].
Proof of Proposition 2.4.   Let {^ : y G T}  be a bounded subset of

C and let t>r.  For each 7GT define fyEC by fy = uti<py). Then, for
8 G [- r, 0], t + 6 > 0, and so

fyid) = utivy)id) - udpy)(t + 6) - Tit + 6>7(0)

/t+e0     Tit + d-s)F(s,usi<py))ds.

We shall apply Lemma 2.6 to the family {fy: y G T}.
First, we show this family is equicontinuous.  Recall (2.1) and (2.3) to

argue that {Fis, usQpy)): s G [0, t], 7 G T}  is bounded by a constant, say M.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let 7 G T, let  0 < c < t - r, let  - r < 0 < 0 < 0, and observe that

H/7(0) - fyiWx < ■ Tit + 0)V7(O) - Tit + 0)^(0)11^

+

+

/"' Tit+ 6- s)Fis, us&y))ds -/"" Tit + 0 - s)Fis, us&y))ds

ftll-c (r(' + 0-s)-T(f + 6- s))Fis, usi<py))dst+e-c

•t+e-cJt + O-C A
0 (T(t + e-s)-T(t + 8- s))Fis, usQpy))ds

< lr(f + fl) - Tit + 0)1111^(0)11^ +10-0\ewtM + c2e"'M

+ t      supÄ       lr(í4-0-s)-r(í + 0-s)lM
se[o,f+0-c]

One now uses the uniform continuity of Tis), s G [c, t], in BiX, X) to demon-
strate the claimed equicontinuity.

Next, we show that for fixed 0 G [- r, 0], {fy{8): y G T}  is precompact
in X  Obviously, {r(r + 0)^(0): 7 G T}  is precompact, since  t + 0 > 0
and   11^(0)11^- is bounded independent of 7. We will show that

K = {/"" Tit + e- s)Fis, usi<py))ds:  y G r}

is totally bounded.  Observe that if 0 < c < r + 0, then

•t+eV-(2-13) III t+e-c T(t + e~ OHs, usQpy))ds<ce"*M

for all 7 G T.  By Lemma 2.5, if 0 < c < t + 0, then

-Í+0-C

<. - {/;
Tit + 6-s)Fis,usi<py))ds:yerSVTyJ

is precompact in X.  This fact together with (2.13) yield the precompactness of
K. Thus the hypothesis of Lemma 2.6 is verified and the proof is complete.

3. The semigroup and infinitesimal generator in the autonomous case.
Throughout this section we will suppose the hypothesis of Proposition 2.1 except
that we require F to be autonomous, that is, F: C —► X. By virtue of Propo-
sition 2.1 there exists for each <p G C a unique continuous function w(<p)(r):
[—r,°°)—*X satisfying

(3.1)
uQp)it) = TitMO) + j*0 Tit - s)F(Hi(v))ds,     t > 0,

"oO) = *■
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



402 C. C. TRAVIS AND G. F. WEBB

For each t>0 define Uit):C-+C by i/(f)<p = utiy).

Proposition 3.1. Uit), t > 0, is a strongly continuous semigroup of
ipossibly nonlinear) operators on C satisfying for ¡p, £ G C, t > 0,

W(f)<p - U(t)tpic < ll</> - $llce(tJ+I')i if co > 0,
Ilt7(i)v - tV(0?llc < <rw1^ - ^llce(w+£e"a,r)i   // co < 0.

Proof.  The strong continuity follows from the fact that solutions of (3.1)
are continuous. The semigroup property follows from the fact that for t, t > 0,

uim + t) = TQ + ?M0) +fQ Tit + t- s)FiusQp))ds
A

+ft    T(t + *- s)^("i(v))ds

= 7/(0 (n0*(0) +/o Tit - s)Fiusi<p))ds\ +f[ Tit- s)Fiut+si<p))ds

= Tit)uim) +/Ó Tit - s)Fiut+si<p))ds.

By the uniqueness of solutions to (3.1) this implies that ut+fQp) = ufa^y)).
Lastly, (3.2) follows from Corollary 2.2.

We next investigate the infinitesimal generator of Uit), t > 0. Define Av:
C—>C  as follows:

04^X0) = ¿(0),      -r<0<O,
<3-3)        DiA v) = & G C: ¿ G C, <¿(0) G DiAT), ¿"(0) = ATtf0) + FQp)}.

Proposition 3.2. Au is the infinitesimal generator of Uit), t > 0.

Proof.   First, let <p belong to the domain of the infinitesimal generator
of Uit), t>0. We will show that y G DiAv) and A^y = 0, where

tf/(0) =  lim   r liUit)viB) - rtfl)),     0 G [- r, 0].
Í-+0 +

Obviously, i//(0) = í+(0) for - r < 6 < 0. Since \¡j G C, Ihn      - ¿+(0) exists
and must be  \pi0). But this means that ¿ exists on (- r, 0), ip~ exists at  0,
and ¿~(0) = 0(0) (see [14, p. 239]). It remains to show that v>(0) GDiAT)
and  i//(0) = ATvi0) + F(i¿>).  Observe that

(3.4) lim   If* T(t-s)F(u£p))ds~F(<p),
t-*a+ '  *

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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since

r/1T{f - s)F(«»)ds - F^> x < río "T(-' - s)F("/^)) - nrtx*

<   max    (e" f II F(Mj(^)) - F(0 11^ + II T(t - s)F&) - F(¡p) \\x).
se[o,r]

By virtue of (3.4) the limit as t—► 0 +   on the left side of

(3.5) jOKm) - "(v)(o)) - j-font - 5)F(»«^))ds - r (rw^(°) - ^(°))
exists and is  0(0) - F(<¿>).  But this implies that the limit as t —► 0+   on the
right side of (3.5) exists, and is AT<piO) by definition of AT.

Now let <p G DÍA y). We must show that

(3.6)

Recall that   lrl{U(f)<p(ß) - <p(ß)) - j>(ß)lx =

lim   (llt)iU(f)<p - <p) exists in C and  = Av^.
r-*o+

(3.7) ||(r » ivit + 0) - f (0)) - ¿(0) 11^   if - r < t + 0 < 0,
and

i (r(r + 0)^(0) +/^+e r(r + 0 - s)F(utdp))ds - tfßij -m
(3.8)

Suppose  t + 6 > 0.  Then (3.8) <

if 0<t +

(3.9)

(3.10)

1 ÍTit + 6)0(0) - <p(P) +f0+e Tit+ 6 - s)Fiusif))dsSj

-(i + 0)f-^-(O)

+ Or'GrtO)-^))- ¿(0) + (í + 0)r1¿-(O)llx.

Then (3.9) <

(3.11)

fío™ 0\Tis)AT<fiO) -ATfiO)\\x + lT(t + 6- s)Fiusi<p)) - Fi<p)\\x)ds

and (3.10) <

(3.12) jfl Ifo) - *-(0)lxds + iftß) - e~iO)\\x.
If e > 0 choose 5  sufficiently small such that if O<r<5,-r<0<O, and
t + 0 > 0, then (3.11) and (3.12) < e/3, and if t + 0 < 0, then (3.7) < e/3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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This establishes (3.6) and thus the proof of the proposition.

Proposition 3.3. If - L < co and Re X > L + co, then iAv - X/)_1
exists and has domain all of C.

Proof. Given  0 G C we must solve

(3.13) iAu - X/)* = ¿ - X<¿ = 0,      ¿(0) = X^(0) + 0(0) = AT<piO) + Fi*)-

This means that

V>(0) = exV(0) + fl e^e~^ 0 (s) &,

<p(O) = (^r-X/)-1(0(O)-F(^)).
The mapping

x -*■ (AT - X/W0(O) - FÍexex + fl ex^-s^is)dsjj

is a strict contraction from X to X, since by (1.3)

WiAT - \I)-\FieK9x) - F(exe x))\\x< (¿/(ReX-co))Ilx - x\\x.

Then (3.14) and hence (3.13) has a unique solution. But this means that
iAu - XT) is onto and injective and the proof is complete.

Proposition 3.4.  If - L < co and Re X > L + co, then  iAv - XT)-1
¿s Lipschitz continuous with Lipschitz constant < l/(Re X — (Z, + co)).

Proof. Let <p = (vly - X/)_10, £ = (.4^ - X/)-10 for ty,iiGC.
Let e > 0 and let 0 G [- r, 0] have the property that 11^(0) - £(0)11* >
II(¿> - tp \\c - e. Using (3.14) and (1.3) we have that

11^(0) - vid)\\x < llexeiAT - \I)-\^i0) - Fi^p) - 0(0) + FÛ))\\X

■+ f0  e^e-f)(0(S)-0(S))cfs

0ReX9
<-

Re X - co

LeReXe

(110-01^+111^-^1^) +
(1 -eReXe)

ReX

„Re\0i

0 - 0 llc

,-£llc + 1-^/ReX)(1-eRe^    II0-0IIC.
Re X - co Re X - co

But this implies

ReX-co-¿eReM

Re X- co
lp-?!<?<« +

1 -(co/ReX)(l -eReM)

Re X- co
110 - 0lr.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Since

1 -(co/ReX)(l -eReXe)                I- <-»
ReX-co-eReX9Z Re X - co - Z

the assertion follows.

Proposition 3.5. For each  0 G C, Urn     .(/-X.4a)_10 = 0 and,\-*oconsequently, DiA v) is dense in  C.

Proof.   By virtue of Propositions 3.3 and 3.4 and the fact that

(7 - XAu)'1 = iAu - (1/X)/)-1 (- 1/X), we have (choosing co > - L if
necessary) that

(7- X^y)-1 exists with domain C and is Lipschitz continuous
(3.15)      with Lipschitz constant < 1/(1 - X(Z + co)) for all real  X such

that 0<X<1/(Z + co).
For X>0, define B^.C-^-C by

A. »

(Z^0)(0)=-y-Je e-s'x4>is)ds,      *eC, 0G[-r,O].

We will use the fact that lim      +Bx\p = \p provided that  0(0) = 0 (see

[13, §2]) and alsc that lim      + 1(7- \AT)~lx - x\\x = 0 for all x G X

(see [14, p. 241]).  Let  0 G C and let X be real such that 0<X< 1/(7 + co).
Then

U-H-XAur^Wc

= 110 - ieel\l-\AT)-\x¡jiO) + XF((7- XAu)-1*))) + ^"c

<(X/(1- Xco))(Zll(7- \Au)-l*\\c + IIFÍO)!^)

+ 110 - 0(0) - Bxi4> - 0(O))IIC + lle9/x(7 - X^rr !0(O) - e9/x0(O)llc.
Also, 11(7- \Au)-l*Wc < Kl-XAu)-1* - 0HC + II0IIC. Thus,

(1 - XZ/(1 -Xco))||0 - (7- \Au)-HWc

< (XZ/(1 - Xco))H0llc + (X/(l - Xco))llF(0)ll;r

+ 110 - 0(0) - 7^(0 - 0(O))IIC + 11(7 - \ATyl 0(0) - 0(0)11^
and the assertion follows.

Proposition 3.6. For each  0 G C, t > 0, lim,,.,,,, (7 - it/n)Au)~"4> =
um.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof.   To establish this exponential formula for  ¡7(0, t > 0, we will use
results of M. Crandall and T. Liggett in [3] and H. Brezis and A. Pazy in [1].
From Theorem 1 of [3] we have by virtue of Proposition 3.5 and (3.15) that

def
\im Q-it/n)Au)~"* = K(O0

n-*"oo\

exists for all  0 G C, t > 0, and  Vit), t > 0, is a strongly continuous semigroup
of nonlinear operators on C.   From Corollary 4.3 of [1] we have by virtue of
Propositions 3.2 and 3.5 and also (3.2) that

lim Uit/nfii = ¿7(00 = 7(00
/I-too

for all  0 G C, t > 0, and the proof is complete.

Corollary 3.7. If - L = co, then for ip, $ G C, t > 0,

(3.16) \\Uit)ip - Uit)^c < h - Pe-
inât is, if - L = co, then   17(0 is nonexpansive for all t>0.

Proof.   (3.16) follows directly from (3.15) and Proposition 3.6.

Corollary 3.8.   If - Z > co, then for <p,yGC, t>0, and each posi-
tive integer n,
(3.17)
\\Uit)o - Uit)oWc

<   (-Z/co)" +  ("¿ Lkil-i-L/u)"-k)e^t-^k+l^tk/k\\
fc=0

lli¿> - íp\\c.

Furthermore, there exists a unique ^0eC such that Uit)>p0 — <p0 for t>r
and lim^^ Uit)<p = ipQ for all <pGC.

Proof.   Since  - Z > co, (3.16) holds by virtue of Corollary 3.7 (co  can
always be chosen larger than any given co). Then, for  r > 0

Wuio)it)-uio)it)\\x

(3.18) <e"f 11^(0) - ¿(0)11* + Lf* e»«-°nusio) - usû)\\cds

< [(- Z/co) + (1 - (- Z/co))ewf]||^ - «le.
Then, for t>r,

(3.19) Wit)* - t7(0Íllc < [(- Z/co) + (1 - (- Z/co))e"(f"'-)] \\<p - ¿Ilc.
But since e"(i-r) > 1   for  0 < t < r, (3.19) holds for all  t > 0.  In a similar
manner one substitutes inequality (3.19) into (3.18) and integrates to obtain

W(t)<p - U(t)$lc < [(- Z/co)2 + (1 - (- Z/co)2)ew(f"r)

+ Z(l - (- L/u))euV-2r)t] lv> - ÍIU
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for t > 0. An induction argument yields (3.17).  By virtue of (3.19), ¿7(0,
t > r, is a commutative family of strict contractions on C and therefore has a
unique common fixed point. That is, for s, r > r, Uit)<pt = <pt implies  t7(s)<¿V
= Uis)Uit)ipt = Uit)Uis)ipt implies vt = Uis)*pt implies <Ps = <fit.  The last
statement now follows from (3.17).

4. The spectral properties of Au in the linear case. Throughout this
section F will be as in §3 except that we require F to be linear with norm
IFI = Z.   7(0, t>0, and AT will be as before except that we require  7(0
to be compact for each t > 0.  U(t), t>0, and Av, which are now linear, will
be as in §3.  For each scalar X define the linear operator A(X): DiAT) —► X
by

(4.1) A(X)x - ATx = \x + Fiexex),     x GD(AT).

We will say that X satisfies the "characteristic equation" of (3.1) provided
A(X)x = 0 for some x ¥= 0.

Proposition 4.1. Suppose ß is real such that if X satisfies the character-
istic equation of (3.1), then Re X < )3.  For each 7 > 0 there exists a con-
stant KO) > 1  such that for all t>0,

(4.2) Ilf7(0^llc <K(j)eW* Me-

We shall require three lemmas for the proof.

Lemma 4.2. For t>r, a(17(0) is a countable set and is compact with
only possible accumulation point 0, and if p. # 0 G a (17(0), then p. G
PoiUit)).

Proof.  The lemma follows immediately from Proposition 2.4 and Theo-
rem 6.26, p. 185, of [8].

Lemma 4.3. For t > r, Pa(¿7(0) = e u   plus possibly {0}. More
specifically, if p. = pit) G Pd(t7(0) for some t> r and p¥=0, then there
exists \GPaiAu) suchthat eKt = p. Furthermore, if {X„}  consists of all
distinct points in PoiAu) suchthat e n  = p, then for arbitrary   k,
NiUit) — pi)    is the linear extension of the linear independent manifolds
NiAu -\I)k, where n ranges over en  = p.

Proof. See Lemma 22.1 and the exercise which follows it in [6, p. 112].

Lemma 4.4. If S it), t > 0, is a strongly continuous semigroup of linear
operators on X and for some s>0 the spectral radius p of Sis) is # 0
and t = (l/s)log p, then for all 7 > 0 there exists a constant Kiy) > 1  such
that
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15(0*1 < Kiy)e^+ni)t 11*11   for all t>0, * G X.
Proof.   See Lemma 22.2, p. 112 of [6].
Proof of Proposition 4.1. Suppose pj=0G a(¿7(0) where t is some

fixed number > r. By Lemma 4.2, p G Fa(¿7(0).  By Lemma 4.3, p = etX
where  X GPaiAu)- Then there exists

(4.3) <p¥=0GDiAu),      f - V = 0.
But this is equivalent to

(4.4) *(0) = e*VO),        V>(0)*0,     jT(0) = v4r<¿(0) + F(¡p).

Then A(X)<¿>(0) = 0, and by hypothesis Re X < ß. Thus the spectral radius of
(7(0 < etß and (4.2) follows immediately by application of Lemma 4.4.

Proposition 4.5. If XGPaiAv) then MX(AV) is finite dimensional.

Proof. The proof follows immediately from Lemma 4.3 and the following
lemma.

Lemma4.6. For t>r,if pGPaiUii)),p^0,then NiUit)-pI)k is of
finite dimension for all k, and there exists a positive integer n such that
MliiUit)) = NiUit)-pIf. Moreover,   Í7(0MM(¿7(0) C MßiU(t)).

Proof.   A proof is given in [7, Theorem 5.7.3, p. 182]. The last state-
ment is a consequence of the fact that  ¿7(0 and (¿7(0 — pl)k  commute.

Proposition 4.7. There exists a real number ß such that Re X < ß for
all X G aiAv) and if y is any real number there exists only a finite number
of XGPaiAu) such that y < Re X.

Proof.  The existence of the constant ß follows.immediately from Prop-
ositions 3.3 and 3.4 (in fact, one can choose ß = max{0, Z + o¡)}).  Assume that
{Xk}  is an infinite sequence of distinct points in PaiAu) such that  Re Xfc >
7 for all k, where y is a given real number.  By Lemma 4.3 e k  G Fa (¿7(0)
for a fixed t>r. If {e k }  is infinite, then Pa(¿7(0) has an accumulation
point different from 0, which contradicts Lemma 4.2. If {e k }  is finite, then

x„ t
e   k = p = constant for some infinite subsequence {X„ }.

Then NiUit) — pi) is infinite dimensional, since it contains the linearly inde-
pendent manifolds NiA   _ ^    n by Lemma 4.3. But this contradicts Lemma

4.6. Thus the assumption is false and the proof is finished.

Corollary 4.8.   Let ß be the smallest real number such that if XLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS 409

satisfies the characteristic equation of (3.1), then Re X < ß. If ß < 0, then for
all <pGC, II¿7(0<pHc —► 0 as t —*°°. If ß = 0, then there exists ip^OGC
such that II ¿7(0<pHc = M'c /°r aW r > 0. If ß>0, then there exists <pGC
such that   II ¿7(0<pHc —► °° as t~^°°.

Proof. The claim for ß < 0 is immediate from (4.2). If ]3 = 0 let * ¥= 0 G
DiAT) suchthat A(X)* = 0 where ReX = 0 (sucha X exists by Proposition 4.7).
As in (4.3) and (4.4), fid) = exVo), <P®) = * solves iAv~ XI)y = 0, <p ¥> 0.
Thus¿7(0^ = exV and ||¿7(0v3||c = |e',ImXIIMIc = IMIC- If 0>O,let* =É0G
DiAT) suchthat A(X)x = 0 and ReX>0. Again <p(0)^exei/)(O),(/<O) =* solves
(Au - X/)v = 0, y * 0. Thus, t7(0<¿> = exV and W(f)iplc = eRe Xt\\<p\\c.

Our next objective is to decompose the space C using the eigenvalues of
Av- This will be done by means of Propositions 4.10, 4.11, and 4.12, which
are proved just as in [6, Chapters 20 and 22]. We first require the following
proposition.

Proposition 4.9. Suppose X is complex and X0 G Po i A v) such that
Xq is a pole of order n0 of iAu - XI)~l.  Then

(4.5) C = NiAu - V)"° • R(Au - V)"° =f ¥kJM • Rx0(Au).

Moreover, MK iAv) = NiAu — X0I)" for all n> n0 and n0 is the smallest
such positive integer. Also

(4.6) AviMHiAu)) Ç MX()iAu),     A^^ÇA^Ç R^rf,

(4.7) Uit)iMKQiAu)) Ç MXqÍAu),   ¿7(0(^04^)) S *x0C¿ry) for all t > 0.

Proof.   (4.5) and (4.6) follow directly from Theorem 5.8-A, p. 306 of [12].
(4.7) follows from the fact that  ¿7(0 and Av  commute on DiAv) (see
[14, Theorem 2, p. 239].

Proposition 4.10. Suppose X is complex, X G Pa i A v) is a pole of
iAv — pi)'1, <¿>i, * * * , <P¿ is a basis for the finite dimensional subspace
MxiAv), and *x - (<£, • • -., «<£). Since A^M^A^) £MxiAu), there
exists a d x d constant matrix Bx such that Av^\ = ®\B\-  The only eigen-
value of Bx is X, $x(0) = <i\(0)e*xe, - r < 0 < 0, ¿7(0*x = «V**' for
t > 0, (¿7(0i\)(0) = $x(0)e  *(f+e) for - r < 0 < 0, t > 0.  Then  ¿7(0 can
be defined for all í6(-», °°) on MxiAu)-

Proposition 4.11. Suppose  X is complex, A = {Xlf • • • , Xp} is a finite
set in PaiAu) such that each Xk is a pole of (.4 - XZ)_1, 3>A =License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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($\, > * ' * ' *\  )' BA = di^(B\, » ' ' ' > B\  )   where   *\t   and  B\»   are as in
Proposition 4.10.  Then for any vector a of the same dimension as <i>A, the
solution  ¿7(0 $xa with initial value $xa at t = 0 may be defined on
i-°°,°°) by

¿7<0<V = i»A/Ara,

*a(0) =^A(0)eBA6,     -r<8<0.

Furthermore, there exists a subspace QA of C such that ¿7(0 ÖA C QA for
all t>0 and C = PA © ÔA, where PA= {ip GC: y = $Aa for some vector
a of the same dimension as 3>A }.

Proposition 4.12.   Suppose X is complex, A = A(ß) ={ X G PaiAu)'-
Re X > ß}, where ß is a given real number, and let C = PA®QAbe decomposed
as in Proposition 4.11.  There exist positive constants K, y such that for all
<¿>GC

II¿7(0/A Hc < KeP-rt*ll/A llc,      t < 0,

ll¿7(0^OAHc <Ke«3-^t\\<pQA\\c,      t > 0,

P O
where <p = <p A + <p  A  is the decomposition of <p in PA ® QA.

In the case of Proposition 4.12 we will say that C = PA@ QA  is de-
composed by A. Propositions 4.11 and 4.12 permit us to distinguish the be-
havior of the solutions on the two subspaces PA  and  QA, since these subspaces
are invariant under Av and  ¿7(0-  In the remaining propositions of this sec-
tion we shall investigate the "dual operator" of Av relative to a certain bilinear
form.  In particular, we shall obtain an "alternative" theorem for the nonhomo-
geneous equation iAv — XI)<p = 0.

In the propositions which follow we will suppose that F has the form

(4-8) FQp)=f0_rdnidM8),      <pGC,

where 77: [- r, 0] —► BiX, X) is of bounded variation.  In addition we let
C' = C([0, r] ; X') where X' is the dual space of X.  Also let A'T: X' —*■ X'
be the dual operator of AT, which exists since AT is densely defined (see
[14, p. 193].  Let t?'(0) G BiX', X'), - r < 0 < 0, be the dual of t?(0) and
note that tj': [- r, 0] —► BÇx', X') is of bounded variation since  17 is (see
[14, Theorem 2, p. 195]). Define A'u-C-* C by
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iA'uOÖis) = - ¿eis),      0<s<r,

(4.9)    DiA'u) = iaGC'.àGC', a(0) G D(A'T), and

- ¿(0) = A'Ta(0) +f°_r dri'(6)a(- 6)\.

Lastly, define the bilinear form < , )  from C x C' to the scalar field by

(4.10)        <*, a> = (,p(0), a(0)) -/!,/* (dv(BM& «Ö - *))#.
where (*, *') means *'(*) for * G X, *' G X'.

Proposition 4.13.  (Au<P> <*> = (ft A'ucù for ¡pGDiAu) and a G
DiA'u). Also, if X GP&Cdj,), p GPaiA'u), X¥=p,<pGN(AV - XI), and a G
NiA'u - pi), then (<p, a) = 0.

Proof.   The first statement follows from

<Au<P,<*>= \ATv(o)+p_rdn(ey*0),«(o) - J.r Jo (rf,*ö)*(&<*(*-*))<**)

= (AT*(0), «(0)) + (/!r dniBMB), a(oj)

-f°_r dniBMB), a(|-0)  I " J +/!, J0 (drKßMO), ¿(S -»))<«

= ̂ 0)^^(0) +J"°rcV(0)a(- 0)) -J° Jo(AK%(ö-o(i-9M

The second statement follows from the first.

Proposition 4.14.   Suppose A^(A(X))#{0} iff NiAiA)')¥={0}, where
A(X) = ¿j, - X7 + f°r dniB)exe  as in (4.1) and A(X)' = ^ - X7 +
flrdr,Ï8)e™.   Then  XGPaiAv) iff X G PaiA'u).

Proof.  As in the proof of Proposition 4.1, <p # 0 G NÍA v -XT) iff
!¿>(0) = exev5(O) where <¿>(0) # 0  satisfies X<p(0) = ,4^(0) + F(<¿) iff ^(0) #
0 GNiAÇX)). Similarly, a # 0 GN(A'u - XI) iff   ais) = e~Xsa(0) where
a(0) ¥= 0 satisfies Xct(0) = A'Tai0) + ft, drt'(6)a(- 0) iff a(0) ¥= 0 G
JV(A(X)').

Proposition 4.15. Suppose A(X) /ias c/osecf range and let  0 £C.   77ze«
(^a - X7)<¿> =0 has a solution  <pGC iff < 0, cv> = 0 for all a GNiA'v- XI).

Proof.   We first observe that A(X) is closed and densely defined sinceLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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AT is, a fact which we will need in order to apply the closed range theorem
(see [14, p. 205]). Suppose  <0, a) = 0 for every a G NiA'a — XI). To show
there exists <p G C satisfying ÍAV~ X7)tp = 0 it suffices to show that there
exists <piO)GX satisfying

(4.11)     A(xmo) = 0(0) -/!,/* eW-Vdníe)M)di¡ d= 7.

That is, there exists ip GDiAv) such that lp- Xtp = 0  iff

(4.12) Vie) = ex%iO)+SeQeW-tHi%)d%,     ¿(0) = AT<piO) + F(*>)

iff (4.11).  Since  A(X) has closed range, by the closed range theorem, 7 G
F(A(X)) iff 7 6^(AfX)')1 = {* G X: ix, *') - 0 'for all *' G/V(A(X)')}.  So
let x' GN(AiX)') and define a(s) = e_Aia(0) where  a(0) = *'. As in the
proof of Proposition 4.14, a G NÇA'u ~ XI). By hypothesis

0 = <0, a> = (0(0), a(0)) -j°_rfl (c/7?(0)0©, ex<9-»a(0))dE

=  (iKO) -/!r/o cX(9"eW0)*(o¿«, «(0))  - (7, *')•

Hence, 7 G7?(A(X)) and so there exists <¿> G C satisfying ÍAV - XI)<p = 0.
The converse follows immediately from Proposition 4.13.

In the case that X is reflexive one can consider the "dual equation"

u(a)(0 = T'i- f)o(0) + /' T'is - t)F'Qf(a))ds,  t < 0,
(4.13) * °

v°ia) = a.

Here  t>(a)(0: (- », r] —► X', a G C', 7'(0 is the dual of 7(0, 7'(0» t > 0,
is a strongly continuous semigroup on X' with infinitesimal generator A' (see
[2, Corollary 1.4.8, p. 52]), F'(a) = ft, dn'(B)a(r 8) where 17 is as in (4.8),
and for t < 0, r/(a) G C' is given by v\a)(s) = u(a)(r + s), 0 < s < r.   One
solves (4.12) just as in Proposition 2.1.  Define  ¿7'(0a = irf(a)  for t > 0,
U'it): C' —*■ C'. One can verify that  ¿7'(0, t > 0, is a strongly continuous
semigroup on C' (as in Proposition 3.1) and A'v defined by (4.9) is its
infinitesimal generator.

5. Stability of solutions and examples. Throughout this section we shall
consider the equation (3.1), that is, ¿7(0, t > 0, will be as in §3. We shall call
the zero solution «(0) it) of (3.1) stable iff for each e > 0 there exists
5 > 0 such that if  \y\c < 5, then  II U(f)iplc <e for all  t > 0. We shall
call the zero solution u(0)(t) of (3.1) asymptotically stable iff it is stable and
lim^ II U(f)<fiic = 0 for all <pGC. If F(0) = 0 (which implies  ¿7(00 = 0
for all t > 0 by the uniqueness of solutions), then Corollaries 3.7 and 3.8 say
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that the zero solution of (3.1) is stable if - Z = co and asymptotically stable
if - Z > co, For the linear version of (3.1) Corollary 4.8 says that the zero
solution of (3.1) is stable if - Z = co  and asymptotically stable if — Z > co.
For the linear version of (3.1) Corollary 4.8 says that the zero solution is asymp-
totically stable iff j3 < 0 and not stable if ß > 0.

Example 5.1.   Let X = C0 [0, n], the space of continuous scalar-valued
functions on   [0, ir], which are 0 at 0 and ir, and having supremum norm. Let
AT: X —* X be defined by

ATy = y+uy,      DiAT)={y GX: y GX},

where  co is a given real number. Then AT is the infinitesimal generator of a
semigroup  7(0, t > 0, as in (1.2).  Let / be a Lipschitz continuous scalar-
valued function on the scalar field with Lipschitz constant Z  and such that
/(0) = 0. Define F: C -> X by

F(*>)(*) = fQpi- r)(*)),      * G C, x G [0,7f].
Then the hypothesis of Proposition 2.1 is satisfied and if / is continuously
differentiable, then the hypothesis of Proposition 2.3 is satisfied.  In the latter

defcase one can show that u(i¿>)(0(*)  =  vv(*, t),t>0,xG [0, ît] , satisfies the
equation

wt(x, t) = wxx (*, 0 + ww(*, 0 + /(w(*. r - /•)),      0 < * < it, t > 0,

(5.1) w(0,0=w(7r, 0 = 0,      t>0,

w(*. 0 = f(t)(x),     0<*<7r, - r < f < 0,

in the "classical sense". If - Z = co  then the remarks above apply and the zero
solution of (5.1) is stable if - Z = co and asymptotically stable if - Z > co.

Example 5.2. We wish to determine the exact region of stability of the
linear equation

wt(*, 0 = wxx (*, 0 - awix, t) - bwix, t - r),     0 < * < 7r, t > 0,

(5.2) w(0,0 = w(jt, 0 = 0,       t>0,

w(*, 0 = <¿>(0(*).      0<*<7T, -r<r<0,

as a function of a, b, and r, where the solutions are in the sense of (3.1) for
JT = Z2[0, tt]. Let AT: X —*X be defined by

ATy=y,

(5.3) D(AT)={y GX: y and y are absolutely continuous,

'yGX,yi0)=yin) = 0}.

Then AT is the infinitesimal generator of a semigroup  7(0, t > 0, as in (1.2)
with co = -l.  Let F.C-+X by F(<¿>) = -a<¿>(0) - b<pí- r). The character-
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istic equation from (4.1) is

(5.4) A(X)/ = ÍAT - (X + a + be~Xr)I)f= 0,     /# 0 eD(AT).

By Corollary 4.8 the zero solution of (5.2) is asymptotically stable iff ß < 0. In
order to apply Corollary 4.8 we need to establish the fact that  7(0 is compact
for t > 0. To this purpose we will use the following lemma due to A. Pazy
(Theorem 3.4 of [9]).

Lemma 5.3.  Let 7(0, t > 0, be a strongly continuous semigroup of linear
operators on X with infinitesimal generator A.  Suppose that Rip +ir;A)
exists for p > p0, and for some p > p0

(5.5) fim   lnlrlLROx + ít;A)\ = c<<*>.
ItI-*°°

Also suppose that for some  X and t0 > 0, R(X;A)Tit0) is compact.  Then
7(0 is compact for t > max(r0, c).

When AT is defined by (5.3), it is well known that Rip + it; At), which
exists for p > 0, is compact. Therefore F( X; A T) TÍO) is compact where
Re X > 0.  In the next example we will show that

R(X;AT)f-

(5.6)
«=i - n¿ - X

where <p„(*) = (>/2/7r)sin nx

V2V ¿   fit
and /„ =-I    /(*)sin nxdx.

Thus, lR(XMr)l = (S"=1 I/I«2 + XI2)*   and it follows that (5.5) holds with
C = 0. Hence, by Lemma 5.3, 7(0 is compact for each t > 0.
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Since the eigenvalues of AT are  - n2, n = 1, 2, • • • , we have from
(5.4) that the system is asymptotically stable iff all the roots of the equations

X + a + be~Xr = -n2,      n = l,2, •••,

have negative real parts. The exact region of stability of (5.1) as a function of
a, b, and r is indicated in Figure 1.

Example 5.4.  Consider the linear equation

wtix, t) = wxxix, t) + w(*, 0 - (itl2)w(x, t - 1),      0 < * < it, t > 0,

(5.7) w(0,0 = w(tt, 0 = 0,      t>0,

wix, t) = <p(f)(x),      0 < * < tt, -KK0.

Let X be as in Example 5.2, let AT = B+I where B is the  "AT"  defined
in (5.3), and observe that AT is self-dual.  Let F: C—► X be defined by
F(v) = - (f/2)v(- l)(here we take r = 1). Note that (4.8) holds where  77(0)
= 0 if - 1< 0 < 0 and i?(0) = - (ir/2)I if 0 = - 1. The dual equation
(4.13) of (5.7) is

vt (*, 0 = vxxix, t) + u(*, 0 + (vr/2)u(x, t + 1),       0 < * < tt,   t < 0,

(5-8) t>(0, 0 = Wfo 0 = 0,        r < 0,
u(* ,0 = a(J)W,        0 < * < it,   0 < t < 1.

The bilinear form (4.10) is

<*, a> = fo(0), a(0)) - § J°, (o(H), a« + l))cf?

where (*, 7) = f$x(s)y(s)ds, x GX, y GX'. The operators Av, A'v are
given by

(Au)(6) = ¿(0) if- 1<0<O,

(Au<p)i8) = AT<pi0) - (v/2)<p(- 1)     if  0 = 0,

and
(Ava)(s) = - ais)     if 0<5< 1,

ÍA'uá)ís) = ATa(0) - (ir/2)a(l)     if s = 0.

Observe that ipGNÍAu - XI) iff </>(0) = <¿>(0)exe, - 1 < 0 < 0, where  X
satisfies A(XM0) = (¿r - X7 - (rr/2)e_x7)ip(0) = 0. Thus, <¿>(0) =
sin nx, X + iirl2)e-K = 1 - «2  for « = 1, 2, • • • . Also, a G A^'y - X7)
iff a(s) = ai0)e-Xs, 0 < s < 1, where  X satisfies

A(X)'a(0) = (A'T - XI - inl2)e-xI)aiO) = 0.
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Since AT is self-dual, we conclude that a(0) = sin nx, X + (7r/2)e"x = 1 - n2
for n — 1, 2, • • • .

It can be shown that X + (7r/2)e-x = 0     has two simple  roots
±i'7t/2  and the remaining roots have negative real parts. It can also be shown
that all the solutions of X + (7r/2)e_x = 1 — n2, n = 2, 3, • • • , have negative
real parts.  Let A = {i7r/2, — i7r/2}. Then $ = {</>1; i¿>2}, where

<p1(0,*) = sin(7T0/2)sin*,    -1<0<O, 0<*<7r,

</>2(0, x) - cos(7r0/2)sin*,    - 1< 0 < 0, 0 <* < TT,

is a basis for the "generalized eigenspace" P = PA  of (5.7) where  C = PA®
QA  is decomposed by A. Also, ̂  ={0i, 02}, where

0j(s, *) = sin (to/2) sin*,      0<s<l, 0<x<tt,

02(s, *) = cos (to/2) sin *,      0 < s < 1, 0 < * < tt,

is a basis for the "generalized eigenspace" PA   of (5.8) where  C' = P'A © Q'A
is decomposed by  A.

Before we can decompose  C by A we must verify the compactness of
7(0 for r>0 and the hypothesis of Proposition 4.11.  Since  7(0 is just
et multiplied times the "7(0" of Example 5.2, it is compact for t > 0. It
remains to show that each X0GPa(Au) is a pole of (4fy-X7)-1   and this
will be done in a series of lemmas.

Lemma 5.5. (.4t/-X7)-1 has a pole of order n at X0  iff A(X)_1
has a pole of order n at X0.

Proof.   ¿ - X>p = 0 G C iff (4.11) and (4.12). Thus, for y = y(X, 0)
d= 0(0) + (tt/2)/°i e-^l+s^(s)ds as in (4.11),

(Au - Xiy V = e™AÇXTlyÇX, 0) +/Q e^-^fs)ds.
Since 7, /„ eX(-e~s^\pis)ds, and exd   are entire functions of X, the lemma
follows.

Lemma 5.6. Suppose hiz) is an entire complex-valued function of the
complex variable z suchthat hiz) — w0 has a zero of order n at z0.  Sup-
pose w0 is a pole of order m of the Banach space-valued function giw) of
the complex variable w.   Then the function /(z) = gQiiz)) has a pole of order
mn at z0.

Proof.   Since Ä(z) — w0 has a zero of order n at z0, A(z) — vv0 =
(z0- z0)"h(z) where A(z0) =£ 0 and ä(z) is analytic. Since giw) has a pole of
order m at vv0, giw) = £iw)Hw - wQ)m where i^w^^O and giw) is analytic.
Thus
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(h(z) - w0r (z - z0rnh(zr
which implies that /(z) has a pole of order mn at z0.

Lemma 5.7. (4r - X7)-1  has simple poles at X = 1 - n2, n = 1, 2, • • •

Proof.  Consider

(5.9) ii + u-Xu=fi      «(0) = u(tt) = 0,     / G X

The related eigenvalue problem is

(5.10) '¿ + <p = X<p,      <PÍ0) = <í>(tt) = 0.

Nontrivial solutions of (5.10) can be obtained iff X is one of the eigenvalues
X„ = 1 — n2, n = 1, 2, • • • . The corresponding normalized eigenfunctions are
<p„ix) = \J2\tt sin nx.  These eigenfunctions form a complete orthonormal set.
Thus we can write

/«.- £ /„*»<*)•     /„ = (/. *„) = V2/tf f  /(*)sin ii* dx,
n=l *

OO

"(*) = Z "n^M.     "n = ("> ¥>n) = V2^ f0 «(*)sin nx dx
n = l J

where convergence is in the mean.  From (5.9) we obtain

(«, v?„) + (u, <pn) - X(u, ifi„) m (f, ¥>„),

which, after integrating by parts, becomes (1 — n2 - X)(u, <pn) = (/, </>„). If
X # 1 - n2, then

u„ =-  and   «(*) = y. -.
"     l-n2-X „=il-«2-X

It is easily shown that the convergence is uniform on   [0, tt] . Thus,

(AT - XI)~1f= £-.
w=i 1 — n   — X

and the lemma now follows.

Lemma 5.8. (Au~XI)~l  is analytic except at roots to X + (jr/2)e_x =
1 — n2, n = 1, 2, • • • , where it has simple poles.

Proof.  Set giw) = (4r - wl)'1  and Ä(z) = z + (7r/2)e-z. The
function A(z) - (1 - n2) = z + (7r/2)e_x - (1 - n2) has simple zeroes for
« = 1, 2, • • • . That is, suppose z0  is a zero which is not simple. Then
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h(z0) - (1 - n2) = z0+ ÍTT/2)e z° - (1 - n2) = 0 and h\z0) = 1 -
Ítt/2) e    ° = 0 must hold, which is easily seen to be a contradiction. The proof
of Lemma 5.8 now follows from Lemmas 5.5—5.7.

It now follows from Proposition 4.11 that we can decompose  C by  A.
Furthermore, by Proposition 4.15 any  ipGC can be written as <p = ipp + <p°-,
where P is the "generalized eigenspace" associated with   $ and  Q is the
orthogonal complement of the "generalized eigenspace" associated with *.  By
Proposition 4.12 there exist positive constants K, y such that   ll¿7(0^llc <
Ke~ytlli^llc" t> 0, and, consequently, the subspace  Q of C is asymptotically
stable.
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