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NONLINEAR VOLTERRA INTEGRAL EQUATIONS
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Abstract. In this paper we study the problem of existence and uniqueness to
solutions of the nonlinear Volterra integral equation x=f+a1g1(x)-\— • +Ongn(x),
where the o¡ are continuous linear operators mapping a Frechet space & into itself
and the g¡ are nonlinear operators in that space. Solutions are sought which lie in a
Banach subspace of & having a stronger topology. The equations are studied first
when the gt are of the form ^,(jc) = jc+A,(^) where i\(x) is "small", and then when
the gt are slope restricted. This generalizes certain results in recent papers by Miller,
Nohel, Wong, Sandberg, and Bene§.

I. Introduction. The purpose of this paper is to study the behavior of solutions
of the nonlinear Volterra integral equation

(1.1)        x(t) = f(t)+ f ax(t- s)gx(x(s)) ds+-+Ç an(t-s)gn(x(s)) ds.
Jo Jo

In §11 these are studied in the abstract form

(1-2) x = f+axgx(x)+ ■ ■ ■ +angn(x)

where x and/are elements of a Fréchet space ^ the operators a¡ are linear continu-
ous maps from &■ -*■ ÍF and the gt are nonlinear maps from !F -> ¡F. We assume
that gi(x) = x + h¡(x) where the A¡ have certain "smallness" properties. Solutions
are sought which lie in a Banach subspace B of !F with a stronger topology. By
this we mean that convergence in B implies convergence in J^.

In Theorem 2.1 we prove that the nonlinear problem (1.2) has a unique solution
lying in B if'/ is in B with small norm and there exists a bounded linear operator
cu mapping B-> B, such that at + o>a¡ is a bounded linear operator from B-+ B
and 112 «i+2 o>at—tu||B< 1.

Equations of this sort, with one kernel, have been studied by many authors;
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in particular, Miller [4], Miller, Nohel, and Wong [5], Nohel [6], and Corduneanu
[2]. It is shown in Corollary 2.4 and Theorem 2.10 that certain stability results
established in [4] and [5] are special cases of the present results. We show further
in Theorem 2.11 that if the linear equation

(1.3) y=f+axy+---+any

has a solution in B for every/in B, then the same is true of the nonlinear equation
(1.2) with / restricted to a suitably small ball in B. Finally, in Theorems 2.2 and
2.7 we give applications of our theorems which were not obtainable by earlier
results.

In §111, we impose slope restrictions on the nonlinearities to obtain similar
results which are valid in a large class of spaces. Work in this area has been done
by Benes and Sandberg [1], Sandberg [8], and Zames [10] among others. The
assumption here is that there exist a, ß such that

a < 8(x's)-g(y>s) < a   f0TX> y and x, y real.
x—y

This generalizes the work done in [1] and [7] in that the results are valid in a
wider class of spaces (Benes and Sandberg were interested in L2 and L°°) and
existence and uniqueness can be proven in a more general setting. That is, in
Theorem 3.1 we show existence and uniqueness of solutions to the equation if a
certain norm, defined in the hypotheses of the theorem, is < 1 for any / in B.
In Corollary 3.2 we prove the same result for the case where the norm is ^ 1 by
restricting the class of functions / The case of more than one kernel is also
considered.

The Fréchet and Banach spaces that we will be particularly interested in are the
following :

I. ^"=C[0, oo) with the topology of uniform convergence on compact subsets
of [0, oo). Then B = BC[0, oo) = {xe C[0, oo) : suptso |(*(/))| <oo} or

B = LC0[0, oo) = {x e BC[0, oo) : x(/) -> 0 as / -> oo}.

For either of these Banach subspaces we take as norm the sup norm.
II. Jr=LLp[0, oo) = {x measurable : J„ |x(/)|p<oo for all L>0} with the topology

of L" convergence on compact subsets of [0, oo). Then L=Lp[0, co) with the usual
W norm, l^L<oo.

Much of the research presented here appeared in the author's Ph.D. thesis
(Brown University, 1969) under the direction of Professor R. K. Miller. This
work was supported, in part, by the Air Force Office of Scientific Research under
grant number AFOSR 67-0693A.

II. Equations with small nonlinearities. Let ¡F be a Fréchet space, that is 3?
is a complete metric space with metric p such that
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1970] EXISTENCE AND STABILITY OF INTEGRAL EQUATIONS 543

(i) vector addition and scalar multiplication are p-continuous, and
(ii) P(x,y) = p(x-y,0).

Let B be a Banach subspace of IF with a stronger topology. We seek a solution to
(1.2) lying in B. The following assumptions are needed.

(PI) For /= 1,..., «, a¡ is a continuous linear operator from ÍF -> ¡F.
(P2) gi(x) = x + ht(x) where A¡(x) maps B-^ B and has the property that for all

£ > 0, there exists S > 0 such that if || xx || B, || x21| B < 8 then || gt(xx) — gt(x2) || B ̂  exx — x21| B.
We further assume that A¡(0) = 0.

We note that if A4 maps B^- B, is Fréchet differentiable and satisfies ||Ai(x)||B
= 0(||x||fl) as ||x|B -*■ 0, then (P2) is satisfied.

(P3)/e/?.
(P4) There exists a function to which belongs to BL(B, B) (the set of bounded

linear operators from B-> B) and satisfies :
(a) ai + wai e BL(B, B) for all i.
(b) || 2 <¡i + 2 °>Oi — co || B < 1 (this is the operator norm).
(c) (I—co)~1co is a continuous operator mapping IF-> IF.
Remark. It is shown, in Theorem 2.10, that for the one kernel case, (P4) is

equivalent to the condition that the integral equation resolvent is a bounded linear
operator mapping B-+ B.

The principal result of this section is the following:

Theorem 2.1. If (P1)-(P4) are satisfied, there exist ex and e2>0 such that if
ll/IU < £i> there is a unique solution x to (1.2) wAicA lies in B and \x\B < e2.

Proof. Define a vector v by v= —(I+cü)~1w. Then — cu = v + cov or (I+v)(I+w)
=1. Thus (/+ v)~1 = (1+ cm). Here /is the identity operator in the Fréchet space.
We now add vx to both sides of (1.2) to obtain

n n

x + vx = f+vx+ 2 tiX+ 2 aM.x).
i = l i = l

Multiplying both sides by (/+ v) "1, we obtain
n n n n

x = f+cof+covx+ 2 t»aiX+ 2 Oihi(x)+ 2 ojaihi(x) + vx+ ]>  a¡x.
i=l 1 = 1 i = l i = l

We note that (/+ oj)rcc = (v + wv)x = — tox. If we let B¡ = ai + coat, the equation
becomes

(2.1) x = /+ [2 Ä, - o>]x+2 MW = 3T^-
Here/denotes f+cof which lies in B.

To complete the proof we show that F maps B^ B and that F is a contraction.
We note that/e B, x e B implies that h¡(x) e B by (P2). Also 5, and eu e BL(B, B)
by (P4) so Fmaps B^-B. Now, we let R = 2"= i Bt - co, k= \\R\\B< I, c,= ||5,||B
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544 S. I. GROSSMAN [August

= ||a, + üMi(||B and choose 8 = (1 —/c)/(2 2" c¡), e2 = ei8) and ei = ((l — k)/2)e2/\\I+ <o\B.
Finally we define 5(0, e2) = {xe B : ||jc||B^e2}. Now, if Xi and x2 e S,

\\Txx-Tx2\\ ^ \\Rixx-x2)\\+\\JtBiihiix1)-hiix2))\\

^ \\R\\ ||Xi-Jca||+211^11 ll*i(*i)-Ai(*a)ll
^ Ar||jCx — x2||+2 c¡ (l-k)

-x2\\2 2 Ci

= lfc + —2~JllXi-Xall <  II *i-x2\\

so that T is contracting. To show that L maps S -> S, let x e S so that

\\Tx\\ S|/| +*||*||+2cf||Al(*)||

= \\f\\+k\\x\\+2ci\\hi(x)-h¿

= 11/11 +*IMI + 1-^ M ¿ (^f^+V)'2 = E2-     QED-

Remark. For equation (1.1), condition (P4)(c) is automatically satisfied if B
is any of the spaces LC[0, oo) or Lp[0, oo), 1 SpS00- We then require that there
exist an LL1 solution to the equation !

v(t) = — oj(t)—\  o)(t—s)v(s)ds   where   co(/) is in L1[0,oo).

Such a solution is easily shown to exist by standard integral equation arguments.
Also, for the above-mentioned spaces conditions (P4)(a) and (P4)(b) can be
restated as follows:

(P4') There exist a> e L^O, oo) such that:
(a) a¡ + a¡ * <o eLx[0, oo), /= 1,..., « (* denotes convolution),
(b) \\Zai + Zai*o>-co\\x<l.

Condition (PI) can be replaced by (PF) a¡ eLL^O, oo), i= 1,..., n.
It should also be pointed out that it is not necessary to consider these equations

in convolution form. If, for example, ;c(/) =/(/) +JÓ a(/, s)g(jc(s)) «&, then it is
shown in [5] that the condition that B=a + a * a> e LL(L, B) could be replaced
by the condition that Bx = lo bit, s)xis) ds represents a bounded linear operator
from L->- B. If L = LC[0, oo), for example, then bit) eL^O, oo) is replaced by the
following condition:

There exists a constant k > 0 such that

f \bit, s)\ds -¿ A   for all / ^ 0.
Jo

We should also point out that the condition fe B can be relaxed. The only
thing needed in the proof of Theorem 2.1 is that (7+ci>)/=/e B. We then require
that/is "small" (that is, ||/|| <ex) to get the same result.
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Finally, we note that if the A¡'s have global Lipschitz constants sufficiently
small so as to make Tx a contraction, it is then not necessary to restrict/to a small
ball in B. Any/will give a unique solution to (1.2).

Example 2.1. Let

x(t) = f(t) + J*o a(t-s)g(x(s)) ds

where a(t)= — l+e~f ^Fx[0, oo). We assume that/and g satisfy the other con-
ditions of Theorem 2.1. Let F=C[0, oo) and B = BC[0, oo). Clearly a(t) satisfies
(PI), but does not map B^ B since a(t) $L}\Q, oo). Let co(t)= —e~% eF^O, oo).
Then

a*w(t) = - i e-(i-s)(-l+e-s)os = -f_t f es(-l+e~s)
Jo Jo

ds

= l-e-'-te-*

a(t) + a*co(t) = -/e-'eF^O, oo)

a + a * co —co = e~i — te~t = e~l(l — t)

and finally

f1 f °° 2
\\a + a*w-co\\ =      e-t-te-'+l    te-t-e~t = - < 1.

Jo Ji e

A general class of examples can be found which satisfy the conditions of Theorem
2.1. Let z(t) be any L1 function having the property that |z(íi + /2)| = lz(fi)| lz(f2)|-
The prototype of course is e~*. We assume, for simplicity, that ||z||i^ 1. If not, a
norming factor is easily introduced in what follows. We define the space Lz =
{x measurable: J^ |x(r)| \z(t)\ dt<oo}. For xeLz, we define

/•CO

|ï(/)| |z(l)| at.

Clearly || • ||2 is a norm. Also Lz is a Banach space since Lz is the set of functions
which are Lx with respect to the measure dp.= \z(t)\ dt. As before, we define

LLZ = \x measurable:       \x(t)\ \z(t)\ dt < oo for all T > OÍ-

Theorem 2.2. Suppose (P1)-(P3) are satisfied for F=LLZ and B=LZ. Suppose
at(t) eLLx[0, oo) and there exits co(t) such that 2 fli + 2 ai * to~°" eFœ[0, oo) and
112 a¡ + 2 u¡ * co — co\x < 1. FAe« the conclusions of Theorem 2.1 hold.

Proof. We show that T= 2 a¡ + 2 ö, * to — co is a bounded linear operator from
L,^LS and ||F|L< 1. For xeL„
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546 S. I. GROSSMAN [August

||Fx||2=   ¡"I  ÇT(t-s)x(s)ds  \z(t)\dt
Jo   I Jo

¿ r f \T(ts)\ \x(s)\ \z(t)\ dsdt = r r \nts)\ i*^ koi dtds
Jo    Jo Jo    Js

=  I"" \x(s)\ r \T(u)\ \z(u + s)\ duds
Jo Jo

^  r \T(u)\ \z(u)\ du r \x(s)\ \z(s)\ ds
Jo Jo

í \\T\\„\\z\\x\\x\\zi \\T\\x\\x\\z

and so

sup  \\Tx\\J\\xl Ú ||r|U < 1- Q-E-D.

Example 2.2 Let a1(/) = (i + 2)-1'2, a2(t)= ■ ■ ■ =an(t) = 0, z(t) = e~l. Choose

o»(t) = -X[o.ii(0= -1       Oálál,
= 0 otherwise.

Then

a*co(t) = - f (r-5 + 2)-1'2 = -2((í + 2)1,2-(í+1)1'2) = -(í+S)"1'2

where 1 < S < 2 by the mean value theorem. Then

a + a*w = (iT2j^-(lTWr2 = ~2(t+8')3'2'       1<S<S'<2,

and a + a* co-cü = Xl0A)(t)-(2-8)/(2(t + 8')3I2) = T. Thus

||r||„ = max^   sup   1-..   , s,,3;2» sup
oïTii       2(í+8')3'2  ï<« 2(/+8')3'2

2-S
2(1 +S')3'2 <

since 1 < S < S' < 2 and Theorem 2.2 applies in the space LLZ. In particular, with
z(t) = e~t, we have shown that unique solution to (1.1) cannot grow faster than
an exponential. The next example illustrates Theorem 2.1 with more than one
kernel.

Example 2.3. Let « = 2 and let ax(t)= -l+e'*, a2(t)= -l+e~2t. Again, let
co(t)= —e'K Then, as in Example 2.1, ax+ax * co(t)= -te"! and a2 + a2 * œ(t)
= 2e-2t-2e-K Then ax(t) + ax * co(t) + a2(t) + a2 * co(t)-co(t) = 2e-2t-e-t-te~t
eF[0, oo). Call this function S(t). We must check that \\S\\X < 1. This is a difficult
calculation since S(t) changes sign. In order to determine the norm one must
solve the transcendental equation 2e~2t = e~t + te~t. For this reason, we leave the
example for the time being and return to it later with a simpler method of solution.
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An easy stability result can be derived from Theorem 2.1. We can show that,
under suitable conditions, the system (1.1) is asymptotically stable in the sense
that if the forcing function /(/) is bounded, continuous, and tends to zero with
increasing time, then the same is true of the solution x(/). This is shown in [5]
for the one kernel case.

If we let B0 = {x e BC[0, oo): xit) -> 0 as / -> oo} it is clear that B0 is a Banach
space with the sup norm.

Corollary 2.3. Under assumptions (P1)-(P4) with B=B0 then there is a unique
solution to (1.1) lying in B0forfe B0 and ||/[|0 small enough.

Proof. Obvious.
In recent papers Miller [4], and Miller, Nohel, and Wong [5] have explored a

linearization technique for nonlinear Volterra integral equations in several different
spaces with one kernel. We now show that certain of these results are a corollary
to Theorem 2.1 and that they can be generalized to more than one kernel. Consider
the equation

(2.2) xit) =/(/)+ | ait - s)kixis)) ds.

For this equation we define the resolvent of a(/) (denoted res a) by the resolvent
equation

ft
rit) = -a(/)+     a(t-s)r(s)ds.

Jo

Then (I-r) * iI-a) = I-a-r + ar = I or (7-r) = (/-a)"1.

Corollary 2.4. Suppose (P1)-(P3) are satisfied for equation (2.2) and suppose
that res a e BLiB, B). Then the conclusions of Theorem 2.1 hold.

Proof. Let   «(/)= —rit).    Then   a + a * w = a-a * r= —rit) e BÜß, B)   and
||a + a*ü>-tu||B = 0<l.    Q.E.D.

The following result is due to Paley and Wiener [7] and is useful when a + a * u>
e BLiB, B) is satisfied when a + a * w eL[0, oo).

Lemma 2.5. IffeL1^, oo) and the Laplace transform fis) # 1 for Re s^O, then
res/eL^O, oo). Here fis) = j0°° e'stfit) dt.

We can use this result to sharpen Theorem 2.1. It may be possible, for example,
to find an œ which satisfies a + a * tu e BLiB, B) but the norm of a + a* w — w is
difficult to calculate. This was the case for Example 2.3. We thus have the following
result.

Corollary 2.6. Suppose (P1)-(P3), and (P4') (a) are satisfied. Suppose further
that í?(j)/1 for Re j 2:0 where L=2#i * <" + 2 fl|—«»• Then the conclusions of
Theorem 2.1 hold.
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Proof. Equation (1.1) can be written as (2.1) where U=JiBi — to. That is,
x = (f+cof)+U* jc + "small terms". The hypotheses imply that res UeLx[0, oo)
so we can apply Corollary 2.4.    Q.E.D.

Example 2.4 (continued). U=ax+ax* co+a2* io — co=2e~2t—e~t — te~t. Thus

fii \ - JL. _L   _L
■W     s+2   s+l   is+l)2'

We must have tf(s) = 1 only if Re J<0. Thus, if t/(s)= 1,

2        1 1
5+2 s+i is+iy

= 1

and simplifying we have s3 + 3s2 + 5s + 4=Pis). If su s2, and s3 are the roots of
Pis), then by Vieta's formula, 2? st = - aja0 = - 3. Now, L( -1) = 1 and L( - 2) = - 2
so there is a root between — 1 and — 2. The sum of the other two roots therefore
must be negative and since there obviously are no real positive roots, we must
have all roots with negative real parts.    Q.E.D.

The following corollary gives a general class of kernels which satisfy (P4),
and will include Example 2.1.

Theorem 2.7. Let a(/)= -¿>(/) + c(/) where c(r) eL^O, oo), IcH^l and b{t)
satisfies:

(i) ¿(OeL^O, 1], ¿7(/)^0
(ii) b{t) is completely monk on the interval 0^/<oo, i.e. bit) e Cx[0, oo) and

(-l)'Z7<»(/)>t0/or/=0, 1,2,3,....
Then there exists to e Lx[0, oo) which satisfies (P4).

Proof. We wish to find coeL^O, oo) such that a + a * <o eL^O, oo) and
||a + a * a> — io\\i < 1. It suffices to find a solution of

(2.3) x = a+a * x

which lies in Lx[0, oo). Rewriting (2.3), we have

(2.4) x+b * x = a + c * x.

It follows from Theorem 2 and Corollary 2 of [3] that if r(/) = res (—b(t)), then
0^r(/)^e(/), J7 rit) dt¿ 1 and r(/)^0 on any interval of the form (0, T), T>0.
Thus (2.4) becomes

(2.5) x = il-r) * a + [\I-r) * c] * x.

Now, (/—r)* a= —b + b * r+c — c* r = r + c — c* r eLx[0, oo). Let

s = res [(/— r) * c]   and   / = (7— r) * aeLx[0, oo).

We then have

(2.6) x = il-s) */.
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To show that x eF[0, oo), it suffices to show that s(t) £¿'[0, oo) or, equivalently,
that [(I-r) * c(s)Yjí 1 for Re s^O. Now

||[(/-r)*Cr|| ú \l-P(s)\ \¿(s)\ S \l-m\ Belli ̂ \l-r(s)\

since \\c\\x ̂  1. We now show that for Re s 2:0, 11 — f(s)\ < 1. For this, we need the
following lemmas whose proofs can be found in Widder [9].

Lemma 2.8. A function fis completely monic on the interval 0 ^ t < co if and only
if fis the Laplace-Stieltjes transform of a nondect-easing function a; that is

(2.7) f(t) = j\-^da(u).

Note that the integrand in (2.7) is nonnegative so that the integral (2.8) exists for
any real or complex t with Re t > 0.

Lemma 2.9. Letf(t) = ¡0° e~tu da(u). Then the Laplace transform

f(s) = J" da(t)/(s + t).

(f(s) = s{a} is the Stielt jes transform of a.)

Now, let 5 = 0; then f(0) = ^ r(t)dt^l so the transform is defined and con-
tinuous at 5 = 0. Since r(t) —> 0 as t —> oo, f(s) can be extended analytically to the
half plane Re.s>0. Returning to the definition of r, we have r(t) = b(t) —
f0 b(t-s)r(s)ds or f=b/(l +h). Thus, 11 -r(s)\ = 11 -B(s)/(l +b(s))\ = |l/(l+h(s))\.
We must therefore show that 1 < 11 + b(s)\. It suffices to show that Re h(s) > 0 for
Rej^O. But, by Lemmas 2.8 and 2.9, H¡>) = jo da(t)/(t+s) where da(t) is non-
negative. Hence, for Re 5^0, Re b*(s) = Re J^ da(t)/(t + s). Let s=8 + yi. Then

da(t) rx(t+8-yi)da(t)
o       (t + 8)2 + y2

(t+8)da(t) > 0   for S = Re í > 0.        Q.E.D.
Jo   (t + 8)2 + y2

Functions which satisfy the condition on A(r) as in Theorem 2.7 are numerous.
For example, b(t)= —c where c is a positive constant, or b(t)= — l/(t + k)à where
k, S>0.

We now show that, in the one kernel case, Theorem 2.1 and Corollary 2.4 are
essentially equivalent.

Theorem 2.10. Let x=f+a * k(x). Then res a e BL(B, B) if and only if there
exists co e BL(B, B) such that a + a * cue BL(B, B) and \\a + a * co — œ\\B< 1.

Proof. Suppose res a e BL(B, B). Then w=—r works. No\v suppose there
exists co such that a + a* coe BL(B, B) and ||a + a*a> —a>||B<l. Since BL(B, B)
is a Banach algebra (with multiplication defined by composition) and  since

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



550 S. I. GROSSMAN [August

\\a + a* co —u)\\B<l,  it follows that [/- (a + a * w — a/)] "1 e BL(B, B). Now, r=
— a + a * r or —a * (7—r) = r or a= — (7—r)_1 * r. Let j = a + a * a>. Then

a + a* w = -(7-r)-1 *r-(/-r)-1 * r * co = s e BLiB, B).

Thus, multiplying by (/— r), we have

— r — r * cu = il—r) * s = s — r * s

or

/• * s — r — r * u> = s

which implies that
s = — r * (—í + 7+cü).

But — s + I— cu = 1— ia + a * w — co) which is invertible. Thus

-r = [I-ia + a*co-co)Y1*seBLiB,B). Q.E.D.

In the one kernel case, the resolvent of the kernel does not in any way depend
on the nonlinear terms. When the resolvent belongs to BLiB, B), we always will
have a unique solution to the nonlinear equation if the forcing function has a
sufficiently small norm. We now show that if there is a unique solution to the
linear equation in B, then there will exist a unique solution in B to the nonlinear
equation if we restrict the forcing function/(/) to a suitably small ball about the
origin in B. The linear equation is given by

(2.8) yit)=fit)+Cait-s)yis)ds.
Jo

Theorem 2.11. Assume (P1)-(P3) and suppose there exists a unique solution to
(2.8) lying in Bfor every fin B. Then the conclusions of Theorem 2.1 hold.

Proof. We show that the hypotheses imply that res a e BLiB, B). For every
fe B, there exists y e B such that y =f+a * y. Thus y — a * v=/or y = il— a)'1 */.
This defines (7—a)-1. Since a is continuous, one to one, and onto in L, (7—a)-1
is defined and continuous as a mapping from F^- F. Thus (7— a) ~* is closed as a
mapping from 7?-> B. Since the domain of (7—a)-1 is all of B, (7—a)-1 is con-
tinuous as a mapping from B-+B by the closed graph theorem. Thus (7—a)-1
e BLiB, B). Now, a = 7-(7-a) which implies that (7-a)-1 * a = (7-a)"1-7 and
so (7—a)"1 * a e BÜß, B). But (7—a)"1 * a= — res a from which the conclusion
follows.    Q.E.D.

We now can easily generalize the results of Corollary 2.4 to more than one
kernel. We define the multiple resolvent of alt ■ ■., an follows:

(2.9) rit) = -2 ait) + f £ a¿t-*>•<*) ds.
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Corollary 2.12. Assume (P1)-(P3) hold and that r(t) as defined above is in
BL(B, B). Suppose further that at-r-aj * r e BL(B, B) for all i. Then the conclusions
of Theorem 2.1 hold.

Proof. Let to(t)=-r(t).    Q.E.D.

III. Equations with slope restriction. In this section we make other assumptions
about the nonlinearities. This work was motivated by that done by Benes and
Sandberg [1] and Sandberg [8] who impose slope restrictions on the nonlinear
terms.

We begin with consideration of the one kernel case. Later, this is extended to
the more general situation.

Consider the equation

(3.1) x(t) =fi(t) + £ a(r-s)g(x(s), s) ds.

We need the following assumptions :
(P7) There exist constants a and ß (ß > 0) with a < ß such that

a(ux-u2) ^ g(ux, t)-g(u2, t) Ú ß(ux-u2)

for ux =ï u2 and ux, u2 real.
(P8) There exists a function co(t) in F:[0, oo) such that a + a * co is in Z^fO, oo).
We assume nothing about the norm of a + a * co in Lx[0, oo). We now define t¡(s)

as
r¡(s) = S-a, S ä i(a + ß),

= ß-s,       s ^ i(a+ß).

r¡(s) is a measure of the deviation from the " average " slope of g.
Equation (3.1) can be rewritten as

(3.2) x = f+ya* x + a* (g(x)—yx)

where y is a constant to be specified later. Picking a function co(t) which satisfies
hypothesis (P8), we define

wy(t) = y(a(t) + co * a(t))-co(t).

Clearly wy(t) eF[0, oo) for all constants y. Let Wy(s) be the Laplace transform
of wy(t) and we assume

(P9) There is at least one y such that Wy(s) # 1 for Re s ä 0.
Let T = {y e R : Wy(s)¿ 1 for Re s^O}. By (P9), T is nonvoid.

We now define, for y e T

D(t) = y(a(t) + a * co(t))-co(t),       E(t) = a(t) + a * co(t).
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By the choice of a>(/), both functions are in L^O, oo). By the definition of T and
the Paley-Wiener theorem, the resolvent of L»(/) exists and is in L^O, oo). Let
Fit) = res Dit). That is, there is a function Lin L^O, oo) such that (7- DY1 = I-F.
Finally, we pick y* so as to minimize r¡iy)\\E—E * L||B over all y e T. While this
minimum may not exist (since T is not necessarily closed) we can approximate it
as closely as desired.

Theorem 3.1. Let B be any of the spaces LC[0, oo), Lp[0, oo), 1 ¿/7^oo. Suppose
g maps B -> B,fe B and (P7)-(P9) are satisfied. Assume further that

Viy*)\\E-E*F\\x < 1.

Then there exists a unique solution to (3.1) lying in B for any fin B.

Proof. Let y = y* in equation (3.2). As before, we define vit) by i>(/)=— a>(/)
— j40 co(/—s)vis) ds. Clearly, (7+ v) ~* = (7+ w). Adding v * x to both sides of equa-
tion (3.2), we obtain

(3.3) x + v * x = /+ iy*a + v) * x + a * igix) — y*ix))

which implies that

x = il+v)'1 *f+il+v)~i * iy*a + v) * x + il+v)'1 * a * igix) — y*x).

Now, if we let /t(/) = (7+t;)"1 */(t), it is apparent that hit) e B since/(/) + w */(/)
e B.     Also,     il+v)'1 *iy*a + v) = iI+co) * iy*a + v) = y*co* a + y*a + v* cj + v =
y*ia + a * m) — oi = D. Similarly, ((7+u)-1 * a = (7+a>) * a = a + a * co = E.

Thus equation (3.3) has become

(3.4) x = h+D* x + E*igix)-y*x)

where D and L are in L^O, oo). Rewriting again, we have

x — D * x = h + E* igix) — y*x)
or

x = (7- DY1 * h + il-DY1 * E * igix)-y*x).

But (7- D) -1 = 7- L 6 L1 [0, oo). Let m't) = (7- L) * hit) e B. Hence

x = m + iE—E* F) * igix) — y*x) = Tx.

We now show that T is a contraction on B. Since g maps B —> B, and E—E* F
eLx[0, oo), the assumption that me B (which is implied by having fie B) implies
that L maps B -> B. Then

\\Txx-Tx2\\B ^ \\E-E * F\\x\\gixx, s)-gix2, s)-y*iXx-x2)\\B

= \\E-E*F¡x\\(g^SJ-f-S)-y*)ixx-x2)\\\\\ Xx—X2 I ||B

^ \E-E*F\x-niy*)\xx-x2\B < \\xx-x2\\B. Q.E.D.
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Finding examples of the implementation of Theorem 3.1 is fairly easy. We have
already encountered examples of finding an co which satisfies a + a * co eF[0, oo)
when a(t) only lies in LLx[0, oo).

We are thus left with the problem of determining whether the nonlinear term
has the right slope restrictions and if r¡(y*) is small enough. One would suppose
that in many practical examples, y¡(y*)\\E— E* F\\x will not necessarily be <1.
It is still possible, however, to derive an existence-uniqueness theorem when the
forcing function filies in a suitably small ball about the origin. We need the follow-
ing assumption:

(P10) For all S>0, there exists an e>0 such that if ||x||B, ||j>||B<e, a(x—y)
^g(x, t)-g(y, t)^ß(x-y) where ß-a<8.

Under this assumption, r¡(y*) can be made as small as desired by restriction to a
suitably small ball in B.

Corollary 3.2. Suppose g maps B^B, g(0, s) = 0,fie B, and(P7), (P8), (P9) and
(P10) are satisfied. Then there exist sx, e2>0 such that if ||/||B<e1, there exists a
unique solution x(t) to equation (3.1) lying in B and ||jc||B<e2.

Proof. As before, we write (3.1) as

x = m + (E-E* F) * (g(x)-y*x) = Tx.

Twill be a contraction if \\E-E* F\\xr¡(y*)< 1. Pick e2 so that r¡(y*)\\E-E* F\\x
<i, which is possible by (P10). Let 5(0, e2) = {xeB : ||x||B^e2}. We must show
that F maps 5(0, e2) ->■ 5(0, e2). Pick ex so that ||/|B^ei implies that ||w||B^e2/2.
Then for x e 5(0, e2),

\\Tx\\ 5¡ H| + ||F-F*F|||g(*)-y*x||

g(x,s)-g(0,s) ....
x-0 y    l|X|1

ik |+||F-F*F|h(y*)£2 Ú | + f = E2. Q.E.D.

Examples of the application of this corollary are easily found. A general class of
such examples are generated by the next result.

Corollary 3.3. Let B=BC[0, oo) and assume that g(x, s) is differentiate in x
and satisfies 8g(x, s)/8x=0(\\x\\) as \\x\\ -*■ 0. FAe« (P10) is satisfied.

Proof. Obvious by the mean value theorem.
The preceding analysis is now extended to equations with several kernels. For

example, consider the following nonlinear network:

-+\\E-E*F\\
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We can write the equations governing this system as

(3.5) X=f+Hx* Gxix) + 772 * G2ix) + • • • + 77n * G¿x).

We assume that 77¡ eL[0, oo) for each /. If this were not the case, we could do
an analysis similar to that done above for the one kernel case. We again stipulate
that Gi maps B -> B (where B is LC[0, oo)) and

(Pll) There exists a„ ft such that a,^(G,(x, s)-Gtiy, s))/ix-y)^ßi and a¡<j8¡.
As before, we define the functions r¡tis) by

7/iCs) = S-ait Ja ii<*i + ßi),

= ßt-S, S Í ««, + &).

To simplify matters we do our analysis for n=2. For «>2 the procedure will
be the same. Thus our equation is

(3.6) x=f+Hx* Gxix) + H2 * G2ix).

We define the set A by A ={a e R : a771(i)# 1 for Re s 2:0} and assume that A is
nonvoid. We similarly define, for a in A, ra = res a77, which exists and is L^O, co)
by the Paley-Wiener theorem. Since feB, we define /x=(7— ra) *feB. We
similarly define, for a in A,

Hxo = il-ra) * Hx,       7720 = il-ra) * H2.

Clearly 77i0 and 7720 are inItfO, oo). We now define the set C={c e R : cH20is)^l
for Re s 2:0} and assume that C is nonvoid. Finally, for ce C and rc = res c7720
eL[0, oo) we define

f2 = il-rc) *fx,       Hxx = (7-rc) * 7710,       7721 = (7-rc) * 7720.

Obviously f2 e B and Tin, H21 eL[0, °o)-
We are now ready to state the companion result to Theorem 3.1 for systems.
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Theorem 3.4. Let Ht(t) e L^O, oo) for /= 1, 2 and suppose G¡ maps L —> B and
satisfies (Pll). Assume further that there exist a* e A and c* e C such that
[\\Hxx\\yx(a*)+\\H2x\\-n2(c*)]<l. Then for any fie B, there exists a unique solution
to equation (3.6) in B.

Proof. Proceeding as before, we write (3.6) as

x =f+a*Hx *x + Hx* [Gx(x)-a*x] + H2 * [G2(x)]
or

x-a*Hx *x =f+Hx* [Gx(x)-a*x] + H2 * G2(x)

or

x - fx + Hxo * [Gx(x)-a*x] + H20 * G2(x)

= /,+7710 * [G1(x)-a*x] + c*7720 * x + 7720 * [G2(x)-c*x]

or

x-c*H20 * x = fx + Hxo * [Gx(x)-a*x] + H20 * [G2(x)-c*x]

or

x =f2 + Hxx* [Gx(x)-a*x] + H21 * [G2(x)-c*x] = Tx.

Clearly L maps B -> B. To show that L is a contraction, note that

IITxx-Tx21| Ú \\Hxx\\ \\Gx(xx)-Gx(x2)-a*(xx-x2)\\
+ II #21II II G2(xx) - G2(x2) - c*(xx - x2) ||.

But

\\Gx(x)-Gx(x2)-a*(xx-x2)\\ = \\(Gl(XlJ~G/X2)-a*)(xx-x2)
|| \ Xx — x2 I

^ Vx(a*)\\xx-x2\\
and similarly for G2. Thus,

||L^-Lx2|| ¿ [|J7iihi(o*)+|J!'uMe*)]|xi-xa| < fo-x.,.    Q.E.D.
Note. If ||7711||ij1(a*)+||7721||tj2(c*)> 1, we can still find a solution to (3.6) if

we restrict/as in Corollary 3.2.
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