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Abstract. In this paper, we study nonlinear fractional differential equa-

tions with Hadamard derivative and Ulam stability in the weighted space

of continuous functions. Firstly, some new nonlinear integral inequalities
with Hadamard type singular kernel are established, which can be used in

the theory of certain classes of fractional differential equations. Second-

ly, some sufficient conditions for existence of solutions are given by using
fixed point theorems via a prior estimation in the weighted space of the

continuous functions. Meanwhile, a sufficient condition for nonexistence

of blowing-up solutions is derived. Thirdly, four types of Ulam–Hyers sta-
bility definitions for fractional differential equations with Hadamard de-

rivative are introduced and Ulam–Hyers stability and generalized Ulam–
Hyers–Rassias stability results are presented. Finally, some examples and

counterexamples on Ulam–Hyers stability are given.
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1. Introduction

Fractional differential equations have recently proved to be strong tools in
the modelling of many physical phenomena. It draws a great application in
nonlinear oscillations of earthquakes, many physical phenomena such as seep-
age flow in porous media and in fluid dynamic traffic model. For more details
on fractional calculus theory, one can see the monographs of Diethelm [12], Kil-
bas et al. [16], Lakshmikantham et al. [17], Miller and Ross [24], Podlubny [27]
and Tarasov [30].

Fractional differential equations involving the Riemann-Liouville fractional
derivative or the Caputo fractional derivative have been paid more and more
attentions (see for example [1], [2], [4], [5], [8], [25], [33]–[39]), however, there are
few works on fractional differential equations involving the Hadamard fractional
derivative, even if it has been presented many years ago. Especially, the classical
Cauchy problems and blowing-up solutions for fractional differential equations
with Hadamard fractional derivative have not been studied extensively.

On the other hand, the stability problem of functional equations originated
from a question of Ulam, posed in 1940, concerning the stability of group ho-
momorphisms. In the next year, Hyers gave a partial affirmative answer to the
question of Ulam in the context of Banach spaces, that was the first significant
breakthrough and a step toward more solutions in this area. Since then, a large
number of papers have been published in connection with various generalizations
of Ulam’s problem and Hyers’s theorem. Particular, numerous monographs have
appeared devoted to the data dependence in the theory of ordinary differential
equations (see for example [3], [9], [10], [13], [26], [28]). We also remark that there
are some special kinds of data dependence: Ulam–Hyers, Ulam–Hyers–Rassias,
Ulam–Hyers–Bourgin, Aoki–Rassias in the theory of functional equations (see
[7], [14], [15]). Although, there are some works on the stability of solutions for
fractional differential equations (see for example [11], [18], [19]), there are a few
works on Ulam–Hyers stability for fractional differential equations. It is worth
remark that Wang et al. [31], [32] discuss four types Ulam stability of fractional
differential equations with Caputo derivative and obtain some new and inter-
esting stability results. Unfortunately, Ulam stability of fractional differential
equations with Hadamard derivative is still not studied until now.

Motivated by [1], [16], [23], [29], [31], [32], we will study the Cauchy prob-
lems, blowing-up solutions and Ulam–Hyers stability for fractional differential
with Hadamard derivative. By generalizing some new generalized nonlinear in-
tegral inequalities with Hadamard type singular kernel, some existence results
of solutions will be given by utilizing fixed point methods and a prior estima-
tion in the weighted space of the continuous functions via the nonlinear inte-
gral inequalities with Hadamard type singular kernel. Meanwhile, a sufficient
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condition for the nonexistence of blowing-up solutions will be presented. Fur-
ther, we will give four types of Ulam stability definitions for a certain frac-
tional differential equations with Hadamard derivative: Ulam–Hyers stability,
generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability and generalized
Ulam–Hyers–Rassias stability. We present the generalized Ulam–Hyers–Rassias
stability results for a fractional differential equation with Hadamard derivative.

2. Preliminaries

Let +∞ ≥ T > a ≥ −∞ and C[a, T ] be the Banach space of all continuous
functions from [a, T ] into R with the norm ‖f‖C = max{|f(x)| : x ∈ [a, T ]}.
When [a, T ] is a finite interval and for n− 1 < α ≤ n, 0 ≤ γ < 1, we denote the
space Cα

n−α,γ [a, T ] by

Cα
n−α,γ [a, T ] := {f(x) ∈ Cn−α,ln[a, T ] : HD

α
a,xf(x) ∈ Cγ,ln[a, T ]},

where Cγ,ln[a, T ] is the weighted space of the continuous functions f on the finite
interval [a, T ], which is given by

Cγ,ln[a, T ] :=
{
f(x) :

(
ln
x

a

)γ

f(x) ∈ C[a, T ]
}
.

Obviously, Cγ,ln[a, T ] is the Banach space with the norm

‖f‖Cγ,ln =
∥∥∥∥(

ln
x

a

)γ

f(x)
∥∥∥∥

C

and Cn
n−α,γ [a, T ] is the Banach space with the norm

‖f‖Cn
γ,ln

=
n−1∑
i=0

∥∥∥∥(
x
d

dx

)i

f

∥∥∥∥
C

+
∥∥∥∥(
x
d

dx

)n

f

∥∥∥∥
Cγ,ln

.

Moreover, C0,ln[a, T ] := C[a, T ].
For integrable functions h: [a, T ] → R, define the norm

‖h‖Lp([a,T ]) =
( ∫ T

a

|h(t)|p dt
)1/p

, 1 < p <∞.

We denote Lp([a, T ],R) the Banach space of all the p-th power integrable func-
tions h : [a, T ] → R with ‖h‖Lp([a,T ]) <∞.

We need the basic definitions of fractional Hadamard derivative, which are
widely used in the sequel.

Definition 2.1 ([16]). The Hadamard fractional integral of order α ∈ R+

of function f(x), for all x > 1, is defined by

HD
−α
1,xf(x) =

1
Γ(α)

∫ x

1

(ln
x

t
)α−1f(t)

dt

t
,

where Γ( · ) is the Euler Gamma function.
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Definition 2.2 ([16]). The Hadamard derivative of order α ∈ [n − 1, n),
n ∈ Z+ of function f(x) is given as follows

HD
α
1,xf(x) =

1
Γ(n− α)

(
x
d

dx

)n ∫ x

1

(
ln
x

t

)n−α−1

f(t)
dt

t
.

Let G be an open set in R and f : (a, T ] × G → R be a function such that
f(x, y) ∈ Cγ,ln[a, T ] for any y ∈ G. Consider the following fractional Cauchy
problem:

(2.1)

{
HD

α
a,xy(x) = f(x, y(x)), n− 1 < α ≤ n, x ∈ (a, T ],

HD
α−k
a,x y(a+) = bk, bk ∈ R, k = 1, . . . , n, n = −[−α],

where HD
α−k
a,x (a+) means that the limit is taken at all points of the rightsided

neighbourhood (a, a+ ε) (ε > 0) of a.
Let us define what we mean by a solution of the fractional Cauchy prob-

lem (2.1).

Definition 2.3. A function y ∈ Cα
n−α,γ [a, T ] is said to be a solution of the

fractional Cauchy problem (2.1) if y satisfies the equation HD
α
a,xy(x) = f(x, y(x))

for each x ∈ (a, T ], and the conditions HD
α−k
a,x y(a+) = bk, k = 1, . . . , n, n =

−[−α].

Lemma 2.4 ([16, Theorem 3.28]). Let α > 0, n = −[−α] and 0 ≤ γ < 1.
Let G be an open set in R and let f : (a, T ] × G → R be a function such that
f(x, y) ∈ Cγ,ln[a, T ] for any y ∈ G. A function y ∈ Cn−α,ln[a, T ] is a solution of
the fractional integral equation

y(x) =
n∑

j=1

bj
Γ(α− j + 1)

(
ln
x

a

)α−j

+
1

Γ(α)

∫ x

a

(
ln
x

t

)α−1

f(t, y(t))
dt

t
,

(x > a > 0), if and only if y is a solution of the following fractional Cauchy prob-
lem (2.1). In particular, a function y ∈ Cα

1−α,γ [a, T ] is a solution of fractional
Cauchy problem:{

HD
α
a,ty(x) = f(x, y(x)), 0 < α < 1, x ∈ (a, T ],

HD
α−1
a,t (a+) = b1, b1 ∈ R,

if and only if y is a solution of the following equation:

y(x) =
b1

Γ(α)

(
ln
x

a

)α−1

+
1

Γ(α)

∫ x

a

(
ln
x

t

)α−1

f(t, y(t))
dt

t
, x > a > 0.
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3. Nonlinear integral inequality with Hadamard type singular kernel

In this section, we give an important nonlinear integral inequality with
Hadamard type singular kernel which can be used to deal with fractional differ-
ential equations with Hadamard derivative.

Lemma 3.1. If 0 < α < 1, 1 < p < 1/(1− α) then∫ t

1

(
ln
t

s

)p(α−1)

s−p ds ≤ (ln t)p(α−1)+1

p(α− 1) + 1
.

Proof. Let τ = ln t − ln s. Then s = te−τ , ds = −te−τ dτ , s−p = t−pepτ

and we have

t

∫ ln t

0

τp(α−1)(t−pepτe−τ ) dτ = t1−p

∫ ln t

0

τp(α−1)e(p−1)τ dτ ≤ (ln t)p(α−1)+1

p(α− 1) + 1
.

The proof is completed. �

The following lemma is proved in [6]. For more other nonlinear singular
integral inequalities, one can see [20]–[22].

Lemma 3.2. Let a(t), b(t), k(t), ψ(t) be nonnegative, continuous functions
on the interval J = (a, T ) (a < T ≤ ∞), ω: (0,∞) → R be a continuous,
nonnegative and nondecreasing function, ω(0) = 0, ω(u) > 0 for u > 0 and let
A(t) = max

0≤s≤t
{a(s)}, B(t) = max

0≤s≤t
{b(s)}. Assume that

ψ(t) ≤ a(t) + b(t)
∫ t

a

k(s)ω(ψ(s)) ds, t ∈ J.

Then

ψ(t) ≤ Ω−1

(
Ω(A(t)) +B(t)

∫ t

a

k(s) ds
)
, t ∈ (a, T1),

where
Ω(v) =

∫ v

v0

dσ

ω(σ)
, v ≥ v0,

and Ω−1 is the inverse of Ω and T1 > a is such that

Ω(A(t)) +B(t)
∫ t

a

k(s) ds ∈ D(Ω−1) for all t ∈ (a, T1).

Now, we can give the following new nonlinear integral inequality with Hada-
mard type singular kernel.

Lemma 3.3. Let 0 < α < 1, 1 < p < 1/(1− α) and a(t), b(t), F (t), u(t)
be nonnegative, continuous functions on the interval J = (1, T ) (1 < T ≤ ∞),
H: (0,∞) → R be a continuous, nonnegative and nondecreasing function and
H(0) = 0, H(u) > 0 for u > 0. Assume that

(3.1) u(t) ≤ a(t) + b(t)
∫ t

1

(
ln
t

s

)α−1

s−1F (s)H(u(s)) ds, t ∈ J.
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Then

u(t) ≤
(

Λ−1

[
Λ(A(t) +B(t)

∫ t

1

[F (s)]q ds
])1/q

, t ∈ (1, T1),

where q = (p− 1)/p,
(3.2)

A(t) = 2q−1 max
0≤s≤t

{[a(s)]q}, B(t) = 2q−1
max
0≤s≤t

{[b(s)]q}

p(α− 1) + 1
(ln t)[p(α−1)+1]q/p,

Λ(v) =
∫ v

v0

dz

[H(z1/q)]q
, v0 > 0,

and Λ−1 is the inverse of Λ and T1 > 1 is such that

Λ(A(t)) +B(t)
∫ t

1

[F (s)]q ds ∈ D(Λ−1), for all t ∈ (1, T1).

Proof. Using the Hölder inequality, it comes from (3.1) that

u(t) ≤ a(t) + b(t)
( ∫ t

1

(ln t− ln s)p(α−1)s−p ds

)1/p( ∫ t

1

F (s)q[H(u(s)q)] ds
)1/q

.

Using the elementary inequality (a+b)q ≤ 2q−1(aq +bq), a, b ≥ 0 and Lemma 3.1
we obtain the inequality

u(t)q ≤
[
a(t) + b(t)

( ∫ t

1

(ln t− ln s)p(α−1)s−p ds

)1/p

(3.3)

·
( ∫ t

1

[F (s)]q[H(u(s))]q ds
)1/q]q

≤ 2q−1

[
[a(t)]q + [b(t)]q

( ∫ t

1

(ln t− ln s)p(α−1)s−p ds

)q/p

·
( ∫ t

1

[F (s)]q[H(u(s))]q ds
)]

≤ A(t) +B(t)
∫ t

1

[F (s)]q[H(u(s))]q ds,

where A(t) and B(t) are as in (3.2).
Denote v(t) = (u(t))q, then u(t) = (v(t))1/q. So the inequality (3.3) can be

rewritten as

v(t) ≤ A(t) +B(t)
∫ t

1

[F (s)]q[H(v(s))1/q]q ds.

By Lemma 3.2, we have

Λ(v(t)) ≤ Λ(A(t)) +B(t)
∫ t

1

[F (s)]q ds

and this yields the assertion of the lemma. �
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Corollary 3.4. Suppose 1 > α > 0, a > 0 and b > 0, and suppose u(t) is
nonnegative and locally integrable on [1,+∞) with

u(t) ≤ a+ b

∫ t

1

(
ln
t

s

)α−1

u(s)
ds

s
, t ∈ [1,+∞).

Then

u(t) ≤ a+
∫ t

0

[ ∞∑
n=1

(bΓ(α))n

Γ(nα)

(
ln
t

s

)nα−1

a

]
ds

s
, t ∈ [1,+∞).

Remark 3.5. Under the assumptions of Lemma 3.3, we restrict a( · ) = a,
b( · ) = b, F ( · ) = 1 and H(u) = u. Then by Corollary 3.4, one can obtain

u(t) ≤ aEα,1(bΓ(α)(ln t)α),

where Eα,1 is the Mittag–Leffler function defined by

Eα,1(z) =
∞∑

k=0

zk

Γ(kα+ 1)
, z ∈ C.

4. Existence of solutions

In this section, we consider the following Cauchy problem for fractional dif-
ferential equations with Hadamard derivative

(4.1)

{
HD

α
1,xy(x) = f(x, y(x)), 0 < α < 1, x ∈ (1, b], b < +∞,

HD
α−1
1,x y(1+) = b1, b1 ∈ R.

Before stating and proving the main results in this section, we introduce the
following hypotheses:

(H1) f : [1, b]×R → R be a function such that f(x, y) ∈ Cγ,ln[1, b] with γ < α

for any x ∈ R;
(H2) There exists a positive constant L > 0 such that

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|, for each x ∈ (1, b], and all y1, y2 ∈ R;

(H3) There exists a function h( · ) ∈ Lq([1, b],R) where q = p/(p− 1) and
1 < p < 1/(1− α) such that

|f(x, y)| ≤ h(x), for each x ∈ (1, b], and all y ∈ R.

Our first result is based on Banach contraction principle.
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Theorem 4.1. Assume that (H1)–(H3) hold. If

(4.2) Φx =
L(lnx)α−γ

(α− γ)Γ(α)
<

1
(ln b)γ

, for all x ∈ (1, b],

then the Cauchy problem (4.1) has a unique solution on [1, b].

Proof. From Lemma 2.4, the Cauchy problem (4.1) is equivalent to the
following fractional integral equation

y(x) =
b1

Γ(α)

(
ln
x

1

)α−1

+
1

Γ(α)

∫ x

1

(
ln
x

t

)α−1

f(t, y(t))
dt

t
, x > 1 > 0.

Let

(4.3) r ≥ (ln b)γ

Γ(α)

[
|b1|(ln b)α−1 +

(ln b)p(α−1)+1

p(α− 1) + 1
‖h‖Lq([1,b])

]
.

Now we define an operator F on Br := {y ∈ Cγ,ln[1, b] : ‖y‖Cγ,ln ≤ r} as
follows:

(4.4) (Fy)(x) =
b1

Γ(α)

(
ln
x

1

)α−1

+
1

Γ(α)

∫ x

1

(
ln
x

t

)α−1

f(t, y(t))
dt

t
,

for x > 1 > 0. It is obvious that F is well defined due to (H1). Therefore,
the existence of a solution of the Cauchy problem (4.1) is equivalent to that
the operator F has a fixed point on Br. We shall use the Banach contraction
principle to prove that F has a fixed point. The proof is divided into two steps.

Step 1. Fy ∈ Br for every y ∈ Br.
For every y ∈ Br and any δ > 0, by (H3), Hölder inequality and Lemma 3.1,

we get

|(Fy)(x + δ)− (Fy)(x)| = |b1|
Γ(α)

∣∣∣∣( ln
x+ δ

1

)α−1

−
(

ln
x

1

)α−1∣∣∣∣
+

1
Γ(α)

∣∣∣∣ ∫ x

1

(
ln
x+ δ

t

)α−1

f(t, y(t))
dt

t
−

∫ x

1

(
ln
x

t

)α−1

f(t, y(t))
dt

t

∣∣∣∣
+

1
Γ(α)

∣∣∣∣ ∫ x+δ

x

(
ln
x+ δ

t

)α−1

f(t, y(t))
dt

t

∣∣∣∣
≤ |b1|

Γ(α)

(
1

lnx
− 1

ln(x+ δ)

)1−α

+
1

Γ(α)

∫ x

1

[(
ln
x

t

)α−1

− ln
(
x+ δ

t

)α−1]
h(t)

dt

t

+
1

Γ(α)

∫ x+δ

x

(
ln
x+ δ

t

)α−1

h(t)
dt

t

≤ |b1|
Γ(α)

(
1

lnx
− 1

ln(x+ δ)

)1−α
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+
‖h‖Lq([1,b])

Γ(α)
(ln(x+ δ))p(α−1)+1 − (lnx)p(α−1)+1

p(α− 1) + 1

+
‖h‖Lq([1,b])

Γ(α)

(
ln x+δ

x

)p(α−1)+1

p(α− 1) + 1

≤ |b1|
Γ(α)

(
1

lnx
− 1

ln(x+ δ)

)1−α

+
2‖h‖Lq([1,b])

Γ(α)

(
ln x+δ

x

)p(α−1)+1

p(α− 1) + 1
.

Thus,

(ln b)γ |(Fy)(x+ δ)− (Fy)(x)|

≤ (ln b)γ

[
|b1|
Γ(α)

(
1

lnx
− 1

ln(x+ δ)

)1−α

+
2‖h‖Lq([1,b])

Γ(α)

(
ln x+δ

x

)p(α−1)+1

p(α− 1) + 1

]
.

As δ → 0, the right-hand side of the above inequality tends to zero. Therefore,
F is continuous on [1, b]. Further, Fy ∈ Cγ,ln[1, b].

Moreover, for y ∈ Br and all t ∈ [1, b], by (H3), Hölder inequality and
Lemma 3.1 again, we obtain

|(Fy)(x)| ≤ |b1|
Γ(α)

(
ln
x

1

)α−1

+
1

Γ(α)

∫ x

1

(
ln
x

t

)α−1

h(t)
dt

t

≤ 1
Γ(α)

(
|b1|(ln b)α−1 +

(ln b)p(α−1)+1

p(α− 1) + 1
‖h‖Lq([1,b])

)
,

which implies that ‖Fy‖Cγ,ln ≤ r due to (4.3).
Thus, we can conclude that for all y ∈ Br, Fy ∈ Br, i.e. F :Br → Br.

Step 2. F is a contraction mapping on Br.
For z, y ∈ Br and any t ∈ J , using (H2) and Hölder inequality, we get

|(Fz)(x)− (Fy)(x)| ≤ 1
Γ(α)

∫ x

1

(
ln
x

t

)α−1

|f(t, z(t))− f(t, y(t))| dt
t

≤ 1
Γ(α)

∫ x

1

(
ln
x

t

)α−γ−1(
ln
x

t

)γ

|f(t, z(t))− f(t, y(t))| dt
t

≤ L

Γ(α)

( ∫ x

1

(
ln
x

t

)α−γ−1
dt

t

)
‖z − y‖Cγ,ln

≤ L(lnx)α−γ

(α− γ)Γ(α)
‖z − y‖Cγ,ln .

So we obtain
‖Fz − Fy‖Cγ,ln ≤ (ln b)γΦx‖z − y‖Cγ,ln ,

where Φx is as in (4.2). Thus, F is a contraction due to the condition (4.2). By
Banach contraction principle, we can deduce that F has an unique fixed point
which is just the unique solution of the Cauchy problem (4.1). �

Our second result is based on the well known Schaefer’s fixed point theorem.
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We use the following linear growth condition to replace (H3):

(H′3) There exists a constant N > 0 such that

|f(x, y)| ≤ N |y|, for each x ∈ [1, b] and all y ∈ R.

Theorem 4.2. Assume that (H1) and (H′3) hold. Then the Cauchy problem
(4.1) has at least one solution on [1, b].

Proof. Transform the Cauchy problem (4.1) into a fixed point problem.
Consider the operator F :Cγ,ln[1, b] → Cγ,ln[1, b] defined as (4.4).

For the sake of convenience, we subdivide the proof into several steps.

Step 1. F is continuous.
Let {yn} be a sequence such that yn → y in Cγ,ln[1, b]. Then for each

x ∈ [1, b], we have

|(Fyn)(x)− (Fy)(x)| ≤ 1
Γ(α)

∫ x

1

(
ln
x

t

)α−1

|f(t, yn(t))− f(t, y(t))| dt
t

≤
‖f( · , yn( · ))− f( · , y( · ))‖Cγ,ln

Γ(α)

( ∫ x

1

(
ln
x

t

)α−γ−1
dt

t

)
≤ (ln b)α−γ

(α− γ)Γ(α)
‖f( · , yn( · ))− f( · , y( · ))‖Cγ,ln .

Since f ∈ Cγ,ln[1, b], we have

‖Fyn−Fy‖Cγ,ln
≤ (ln b)α

(α− γ)Γ(α)
‖f( · , yn( · ))− f( · , y( · ))‖Cγ,ln → 0 as n→∞.

Step 2. F maps bounded sets into bounded sets in Cγ,ln[1, b].
Indeed, it is enough to show that for any η∗ > 0, there exists a ` > 0 such

that for each y ∈ Bη∗ = {y ∈ Cγ,ln[1, b] : ‖y‖Cγ,ln ≤ η∗}, we have ‖Fy‖Cγ,ln ≤ `.
For each t ∈ [1, b], we get

|(Fy)(x)| ≤ |b1|
Γ(α)

(
ln
x

1

)α−1

+
N

Γ(α)

∫ x

1

(
ln
x

t

)α−1

|y(t)| dt
t

≤ |b1|(ln b)α−1

Γ(α)
+
Nη∗(ln b)α−γ

(α− γ)Γ(α)
,

which implies that

‖Fy‖Cγ,ln ≤ (ln b)γ

[
|b1|(ln b)α−1

Γ(α)
+
Nη∗(ln b)α−γ

(α− γ)Γ(α)

]
:= `.

Step 3. F is equicontinuous of Cγ,ln[1, b].
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Let 0 ≤ x1 < x2 ≤ b, y ∈ Bη∗ . Using (H′3) and noting that |y(t)| ≤ η∗, we
have:

|(Fy)(x2) − (Fy)(x1)| ≤
|b1|
Γ(α)

(
1

lnx1
− 1

lnx2

)1−α

+
N

Γ(α)

∫ x1

1

[(
ln
x1

t

)α−1

−
(

ln
x2

t

)α−1]
|y(t)| dt

t

+
N

Γ(α)

∫ x+δ

x

(
ln
x+ δ

t

)α−1

|y(t)| dt
t

≤ |b1|
Γ(α)

(
1

lnx1
− 1

lnx2

)1−α

+
Nη∗(ln b)−γ

Γ(α)

∫ x1

1

[(
ln
x1

t

)α−1

−
(

ln
x2

t

)α−1]
dt

t

+
Nη∗(ln b)−γ

Γ(α)

∫ x2

x1

(ln
x2

t
)α−1 dt

t

≤ |b1|
Γ(α)

(
1

lnx1
− 1

lnx2

)1−α

+
2Nη∗(ln b)−γ

Γ(α+ 1)

(
ln
x2

x1

)α

.

As x2 → x1, the right-hand side of the above inequality tends to zero, therefore
F is equicontinuous.

As a consequence of Steps 1–3, we can conclude that F is continuous and
completely continuous.

Step 4. A priori bounds.
Now it remains to show that the set

E(F ) = {y ∈ Cγ,ln[1, b] : y = λFy, for some λ ∈ (0, 1)}

is bounded. Let y ∈ E(F ), then y = λFy for some λ ∈ (0, 1). Thus, for each
t ∈ [1, b], we have

y(x) = λ

(
b1

Γ(α)

(
ln
x

1

)α−1

+
1

Γ(α)

∫ x

1

(
ln
x

t

)α−1

f(t, y(t))
dt

t

)
.

For each t ∈ [1, b], we have

|y(x)| ≤ |b1|
Γ(α)

(
ln
x

1

)α−1

+
N

Γ(α)

∫ x

1

(
ln
x

t

)α−1

|y(t)| dt
t
.

By Corollary 3.4, we have

|y(x)| ≤ |b1|
Γ(α)

(lnx)α−1Eα,1(N(lnx)α), x ∈ [1, b].

Thus for every t ∈ [0, b], we have

‖y‖Cγ,ln ≤
(ln b)γ |b1|(lnx)α−1Eα,1(N(lnx)α)

Γ(α)
, x ∈ [1, b].
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This shows that the set E(F ) is bounded. As a consequence of Schaefer’s fixed
point theorem, we deduce that F has a fixed point which is a solution of the
Cauchy problem (4.1). �

In the following theorem we apply the nonlinear alternative of Leray–Schau-
der type in which the condition (H′3) is weakened to the nonlinear growth con-
dition.

(H′′3) There exist a nonnegative, continuous functions φf and a continuous,
nonnegative and nondecreasing function ψ with ψ(0) = 0, ψ(z) > 0 for
z > 0 such that

|f(x, y)| ≤ φf (x)ψ(|y|), for each x ∈ [1, b] and all y ∈ R.

Theorem 4.3. Assume that (H1) and (H′′3) hold. Then the Cauchy problem
(4.1) has at least one solution on [1, b].

Proof. Consider the operator F defined in Theorem 4.2. It can be easily
shown that F is continuous and completely continuous. Repeating the same
process in Step 4 in Theorem 4.2, using (H′′3) we have

|y(x)| ≤ |b1|
Γ(α)

(
ln
x

1

)α−1

+
1

Γ(α)

∫ x

1

(
ln
x

t

)α−1

φf (t)ψ(|y(t)|) dt
t
.

By Lemma 3.3, we have for each x ∈ [1, b], there exists a M∗ > 0 such that
‖y‖C ≤M∗, which implies that ‖y‖Cγ,ln ≤ (ln b)γM∗. Let

U = {y ∈ Cγ,ln[1, b] : ‖y‖Cγ,ln < (ln b)γM∗ + 1}.

The operator F :U → Cγ,ln[1, b] is continuous and completely continuous. From
the choice of U , there is no y ∈ ∂U such that y = λF (y), λ ∈ (0, 1). As
a consequence of the nonlinear alternative of Leray–Schauder type, we deduce
that F has a fixed point y ∈ U , which implies that the Cauchy problem (4.1)
has at least one solution y ∈ Cγ,ln[1, b]. �

5. Nonexistence of blowing-up solutions

In this section, a sufficient for the nonexistence of blowing-up solutions of
the Cauchy problem (4.1) will be proved, where by a blowing-up solution of this
equation we mean a solution y(x) for which there is a point 1 < τ < +∞ such
that it is defined on the interval [1, τ) and lim

x→τ−
|y(x)| = +∞.

Theorem 5.1. Let 0 < α < 1, 1 < p < 1/(1− α) and q = (p− 1)/p. As-
sume that f : [1,+∞)×R → R is continuous function and there are a continuous
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nonnegative function R: [1,+∞)× R → R and a continuous, nonnegative, non-
decreasing function ω: R+ → R+ with ω(u) > 0 for u > 0 such that the following
two conditions hold:

|f(x, u)| ≤ R(x)ω(u), (x, u) ∈ [1,+∞)× R;(K1) ∫ ∞

v0

σq−1

[ω(σ)]q
dσ = ∞, v0 > 0.(K2)

Then the Cauchy problem (4.1) has no blowing-up solution.

Proof. Suppose that y(x) is a solution of the Cauchy problem (4.1) defined
on the interval [1, τ), where 1 < τ < +∞ and lim

x→τ−
|y(x)| = +∞.

From Lemma 2.4 and the condition (K1) it follows that for x ∈ [1, τ) we
have:

u(x) ≤ b1
Γ(α)

(
ln
x

1

)α−1

+
1

Γ(α)

∫ x

1

(
ln
x

t

)α−1 1
t
R(t)ω(u(t)) dt,

where u(x) := |y(x)|. This inequality has the form (3.1) with

a(x) =
b1

Γ(α)

(
ln
x

1

)α−1

, F (x) = R(x) and H(u) = ω(u).

Therefore from Lemma 3.3 we obtain the inequality

(5.1) Λ([u(x)]q) ≤ Λ(A(x)) +B(x)
∫ x

1

[F (s)]q ds, x ∈ (1, τ),

where q = (p− 1)/p,
(5.2)

A(t) = 2q−1 max
0≤s≤t

{[a(s)]q}, B(t) = 2q−1
max
0≤s≤t

{[b(s)]q}

p(α− 1) + 1
(ln t)[p(α−1)+1]q/p,

and

Λ(v) =
∫ v

a0

1
[ω(z1/q)]q

dz, v0 = aq
0.

Obviously, the limit of the right-hand side of the inequality (5.1) as x → τ− is
finite, however, the condition (K2) yields that

lim
x→τ−

Λ([u(x)]q) = q

∫ ∞

v0

σq−1

[ω(σ)]q
dσ = +∞

and this is the contradiction. �
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6. Ulam–Hyers stability results

Let 0 < α < 1, 1 < b ≤ +∞, ε is a positive real number, f : [1, b) × R → R
be a function such that f(t, x) ∈ Cγ,ln[1, b) with γ < α for any x ∈ R and
ϕ: [1, b) → R+ be a continuous function. We consider the following fractional
differential equation:

(6.1) HD
α
1,tx(t) = f(t, x(t)), t ∈ (1, b),

and the following fractional differential inequations:

|HDα
1,ty(t)− f(t, y(t))| ≤ ε, t ∈ (1, b),(6.2)

|HDα
1,ty(t)− f(t, y(t))| ≤ ϕ(t), t ∈ (1, b),(6.3)

|HDα
1,ty(t)− f(t, y(t))| ≤ εϕ(t), t ∈ (1, b).(6.4)

Definition 6.1. The equation (6.1) is Ulam–Hyers stable if there exists
a real number cf > 0 such that for each ε > 0 and for each solution y ∈
Cα

1−α,γ [1, b) of the inequation (6.2) there exists a solution x ∈ Cα
1−α,γ [1, b) of the

equation (6.1) with
|y(t)− x(t)| ≤ cfε, t ∈ (1, b).

Definition 6.2. The equation (6.1) is generalized Ulam–Hyers stable if there
exists θf ∈ C(R+,R+), θf (0) = 0 such that for each solution y ∈ Cα

1−α,γ [1, b) of
the inequation (6.2) there exists a solution x ∈ Cα

1−α,γ [1, b) of the equation (6.1)
with

|y(t)− x(t)| ≤ θf (ε), t ∈ (1, b).

Definition 6.3. The equation (6.1) is Ulam–Hyers–Rassias stable with re-
spect to ϕ if there exists cf,ϕ > 0 such that for each ε > 0 and for each solution
y ∈ Cα

1−α,γ [1, b) of the inequation (6.2) there exists a solution x ∈ Cα
1−α,γ [1, b)

of the equation (6.1) with

|y(t)− x(t)| ≤ cf,ϕεϕ(t), t ∈ (1, b).

Definition 6.4. The equation (6.1) is generalized Ulam-Hyers-Rassias sta-
ble with respect to ϕ if there exists cf,ϕ > 0 such that for each solution y ∈
Cα

1−α,γ [1, b) of the inequation (6.3) there exists a solution x ∈ Cα
1−α,γ [1, b) of the

equation (6.1) with

|y(t)− x(t)| ≤ cf,ϕϕ(t), t ∈ (1, b).

Remark 6.5. A function y ∈ Cα
1−α,γ [1, b) is a solution of (6.2) if and only

if there exists a function g ∈ C1−α,ln[1, b) (which depend on y) such that

(a) |g(t)| ≤ ε, t ∈ (1, b);
(b) HD

α
1,ty(t) = f(t, y(t)) + g(t), t ∈ (1, b).
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One can have similar remarks for the inequations (6.3) and (6.4).
So, the Ulam stabilities of fractional differential equations with Hadamard

derivative are some special types of data dependence of the solutions of fractional
differential equations with Hadamard derivative.

Remark 6.6. Let 0 < α < 1, if y ∈ Cα
1−α,γ [1, b) is a solution of the inequa-

tion (6.2) then y is a solution of the following integral inequation∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

∣∣∣∣ ≤ (ln t)α

Γ(α+ 1)
ε,

for t ∈ (1, b), where HD
α−1
1,t y(1+) = y1.

Indeed, by Remark 6.5 we have that

HD
α
1,ty(t) = f(t, y(t)) + g(t), t ∈ (1, b).

Then

y(t)− y(1+) =
1

Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s
+

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

g(s)
ds

s
,

for t ∈ (1, b). By HD
α−1
1,t y(1+) = y1, we have

y(1+) =
1

Γ(α− 1)

∫ t

1

(
ln
t

s

)α−2

y1
ds

s

=
−y1

Γ(α− 1)

∫ t

1

(ln t− ln s)α−2d(ln t− ln s) =
y1

Γ(α)
(ln t)α−1.

This implies that

y(t) =
y1

Γ(α)
(ln t)α−1 +

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

+
1

Γ(α)

∫ t

1

(
ln
t

s

)α−1

g(s)
ds

s
, t ∈ (1, b).

From this it follows that∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

∣∣∣∣
=

∣∣∣∣ 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

g(s)
ds

s

∣∣∣∣ ≤ 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

|g(s)| ds
s

≤ ε

Γ(α)

∫ t

1

(
ln
t

s

)α−1
ds

s
≤ (ln t)αε

Γ(α+ 1)
.

Meanwhile, we have the following remarks for the solutions of the fractional
inequations (6.3) and (6.4).
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Remark 6.7. Let 0 < α < 1, if y ∈ Cα
1−α,γ [1, b) is a solution of the inequa-

tion (6.3) then y is a solution of the following integral inequation:∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

∣∣∣∣
≤ 1

Γ(α)

∫ t

1

(
ln
t

s

)α−1

ϕ(s)
ds

s
, t ∈ (1, b).

Remark 6.8. Let 0 < α < 1, if y ∈ Cα
1−α,γ [1, b) is a solution of the inequa-

tion (6.4) then y is a solution of the following integral inequation:∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

∣∣∣∣
≤ ε

Γ(α)

∫ t

1

(
ln
t

s

)α−1

ϕ(s)
ds

s
, t ∈ (1, b).

Consider (6.1) and (6.2) in the case b < +∞. We have the following gener-
alized Ulam–Hyers stability results.

Theorem 6.9. In the conditions (H1) and (H2), the equation (6.1) is Ulam–
Hyers stable.

Proof. Let y ∈ Cα
1−α,γ [1, b] be a solution of the inequation (6.2). Denote

by x the unique solution of the Cauchy problem

(6.5)

{
cDαx(t) = f(t, x(t)), for all t ∈ (1, b],

HD
α−1
1,t x(t)|t=1+ = HD

α−1
1,t y(t)|t=1+ = y1.

We have that

x(t) =
y1

Γ(α)
(ln t)α−1 +

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, x(s))
ds

s
, t ∈ (1, b].

By differential inequation (6.2), we have:∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

∣∣∣∣
≤ ε

Γ(α)

∫ t

1

(
ln
t

s

)α−1
ds

s
≤ (ln t)αε

Γ(α+ 1)
,

for all t ∈ (1, b]. From above it follows:

|y(t)− x(t)| =
∣∣∣∣y(t)− y1

Γ(α)
(ln t)α−1 − 1

Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, x(s))
ds

s

∣∣∣∣
=

∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

+
1

Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s
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− 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, x(s))
ds

s

∣∣∣∣
≤

∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

∣∣∣∣
+

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

|f(s, y(s))− f(s, x(s))| ds
s

≤ (ln t)αε

Γ(α+ 1)
+

L

Γ(α)

∫ t

1

(
ln
t

s

)α−1

|y(s)− x(s)| ds
s
.

By Lemma 3.3 and Remark 3.5, for all t ∈ (1, b], we have that:

|y(t)− x(t)| ≤ (ln t)αε

Γ(α+ 1)
Eα,1(L(ln t)α) ≤ (ln b)αEα,1(L(ln b)α)ε

Γ(α+ 1)
.

Thus, the equation (6.1) is Ulam–Hyers stable. �

Next, we consider the equation (6.1) and the inequation (6.3) in the case
b = +∞. We suppose that:

(H′1) f : [1,+∞) × R → R is a function such that f(t, x) ∈ Cγ,ln[1,+∞) for
any x ∈ R;

(H′2) There exists a L > 0 such that

|f(t, u1)− f(t, u2)| ≤ L|u1 − u2|,

for each t ∈ [1,+∞) and all u1, u2 ∈ R;
(H3) ϕ∈C([1,+∞),R+) is continuous, nondecreasing, and there exists λϕ>0

such that

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

ϕ(s)
ds

s
≤ λϕϕ(t), for each t ∈ [1,+∞).

We have the following generalized Ulam–Hyers–Rassias stability results.

Theorem 6.10. In the conditions (H′1), (H′2) and (H3), the equation (6.1)
is generalized Ulam–Hyers–Rassias stable.

Proof. Let y ∈ Cα
1−α,γ [1,+∞) be a solution of the inequation (6.3). Denote

by x the unique solution of the Cauchy problem (6.5). We have that

x(t) =
y1

Γ(α)
(ln t)α−1 +

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, x(s))
ds

s
, for all t ∈ (1,+∞).

By differential inequation (6.3), we have∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1 − 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

f(s, y(s))
ds

s

∣∣∣∣
≤ 1

Γ(α)

∫ t

1

(
ln
t

s

)α−1

ϕ(s)
ds

s
≤ λϕϕ(t), t ∈ [1,+∞).
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From above it follows

|y(t)− x(t)| ≤ λϕϕ(t) +
L

Γ(α)

∫ t

1

(
ln
t

s

)α−1

|y(s)− x(s)| ds
s
.

By Lemma 3.3 and Remark 3.5, we have that

|y(t)− x(t)| ≤ λϕϕ(t)Eα,1(L(ln t)α), t ∈ (1,+∞).

Thus, the equation (6.1) is generalized Ulam–Hyers–Rassias stable. �

7. Example

We consider the following fractional differential equation with Hadamard
derivatives

(7.1) HD
α
1,tx(t) = 0, 0 < α < 1, t ∈ (1, b),

and the inequation

(7.2) |HDα
1,ty(t)| ≤ ε, t ∈ [1, b).

Let y ∈ Cα
1−α,γ [1, b] be a solution of (7.2). Then there exists a g ∈ Cγ,ln[1, b]

such that:

(7.3)
|g(t)| ≤ ε, t ∈ (1, b),

HD
α
1,ty(t) = g(t), t ∈ (1, b).

By (7.3) we have:

y(t) =
y1

Γ(α)
(ln t)α−1 +

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

g(s)
ds

s
, t ∈ (1, b).

We have, for all x ∈ Cα
1−α,γ [1, b]:

|y(t)− x(t)| =
∣∣∣∣ y1
Γ(α)

(ln t)α−1 − x(t) +
1

Γ(α)

∫ t

1

(
ln
t

s

)α−1

g(s)
ds

s

∣∣∣∣
≤

∣∣∣∣ y1
Γ(α)

(ln t)α−1 − x(t)
∣∣∣∣ +

1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

|g(s)| ds
s

≤ | y1
Γ(α)

(ln t)α−1 − x(t)|+ ε

Γ(α)

∫ t

1

(
ln
t

s

)α−1
ds

s

≤
∣∣∣∣ y1
Γ(α)

(ln t)α−1 − x(t)
∣∣∣∣ +

(ln t)αε

Γ(α+ 1)
,

for t ∈ (1, b). If we take x(t) := y1
Γ(α) (ln t)

α−1, then

|y(t)− x(t)| ≤ (ln t)αε

Γ(α+ 1)
, t ∈ (1, b).

If b < +∞, then

|y(t)− x(t)| ≤ (ln b)αε

Γ(α+ 1)
, t ∈ (1, b).
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So, the equation (7.1) is Ulam–Hyers stable.
Let b = +∞. The function

y(t) =
(ln t)αε

Γ(α+ 1)

is a solution of the inequation (7.2) and∣∣∣∣y(t)− y1
Γ(α)

(ln t)α−1

∣∣∣∣ =
(ln t)α−1

Γ(α)

∣∣∣∣ε ln t
α

− y1

∣∣∣∣ → +∞ as t→ +∞.

So, the equation (7.1) is not Ulam-Hyers stable on the interval [1,+∞).
Let us consider the inequation:

(7.4) |HDα
1,ty(t)| ≤ ϕ(t), t ∈ (1,+∞).

Let y be a solution of (7.4) and

x(t) =
y1

Γ(α)
(ln t)α−1, t ∈ (1,+∞)

be a solution of (7.1). We have that

|y(t)− x(t)| =
∣∣∣∣y(t)− y1

Γ(α)
(ln t)α−1

∣∣∣∣ ≤ 1
Γ(α)

∫ t

1

(
ln
t

s

)α−1

ϕ(s)
ds

s
,

for t ∈ (1,+∞). If there exists cϕ > 0 such that

1
Γ(α)

∫ t

1

(ln
t

s
)α−1ϕ(s)

ds

s
≤ cϕϕ(t), t ∈ (1,+∞),

then (7.1) is generalized Ulam–Hyers–Rassias stable on [1,+∞) with respect
to ϕ.
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