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Abstract

In this paper, a generalized model of Cohen-Grossberg neural net-
works with periodic coefficients and both time-varying and distributed
delays is investigated. By employing Mawhin’s continuation theorem,
analytic methods, inequality technique and M -matrix theory, some suf-
ficient conditions ensuring the existence, uniqueness and global expo-
nential stability of the periodic oscillatory solution for Cohen-Grossberg
neural networks with both time-varying and distributed delays are ob-
tained. Two examples are given to show the effectiveness of the obtained
results.
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1 Introduction

In recent years, the dynamical characteristic such as stability and periodicity of

Hopfield network, cellular neural network and bidirectional associative memory

neural network play an important rule in the pattern recognition, associative

memory, and combinatorial optimization (see, e.g., [1]-[17], and the references

cited therein). Among models of neural networks, the Cohen-Grossberg neural

1This work was jointly supported by grant 2006A109 and 07ZA047 from the Scientific
Research Fund of Sichuan Provincial Education Department.

2Corresponding author. e-mail address: lizuoan@suse.edu.cn (Z. Li)
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network [18] is an important one, which can be described by the following

ordinary differential equations:

di(xi(t))

dt
= −ai(xi(t))

[
ai(xi(t)) −

n∑
j=1

cijfj(xj(t))
]
, i = 1, 2, · · · , n, (1.1)

where, n ≥ 2 is the number of neurons in the network; xi(t) denotes the state

variable of the ith neuron at time t ; fj(xj(t)) denotes the activation function

of the j th neuron at time t; the feedback matrix C = (cij)n×n indicates the

strength of the neuron interconnections within the network; ai(xi(t)) represents

an amplification function; bi(xi(t)) is an appropriately behaved function such

that the solutions of model (1.1) remain bounded.

Due to their promising potential applications in areas such as pattern recog-

nition and optimization. The network (1.1) have attracted increasing interest

in scientific community (see, e.g., [18]-[31], and references cited therein).

In reality, time delays inevitably exist in biological and artificial neural

networks due to the finite switching speed of neurons and amplifiers. It is

also important to incorporate time delay in various neural networks. In recent

years, there exist some results on global asymptotical stability, global expo-

nential stability and periodic solutions for the neural networks with constant

delays or time-varying delays (see, e.g., [1]-[6],[8],[10]-[17],[19]-[24],[29]-[31]).

Although the use of finite delays in models with delayed feedback provides a

good approximation to simple circuits consisting of a small number of neurons,

neural networks usually should have a spatial extent due to the presence of a

multitude of parallel pathways with a variety of axon sizes and lengths. Thus,

there will be a distributed of propagation delays in finite or/and infinite time

(see, e.g., [7],[9], [25]-[28]). In the case, the signal propagation is no longer

instantaneous and cannot be modeled with finite delays or infinite delays. A

more appropriate and ideal way is to incorporate finite delays and infinite de-

lays (see, e.g., [27, 28]). However, as we well know, besides delay effect, the

nonautonomous phenomenon often occurs in many realistic systems. From

the view point of reality, it should also be taken into account evolutionary pro-

cesses of some practical systems as well as disturbances of external influence

such as varying environment of biological systems and so on. Particularly,

when we consider a long-time dynamical behavior of a system, the parameters

of the system usually will arise change along with time. In addition, in many

applications, the property of periodic oscillatory solutions of a neural networks

also is great interest. Therefore, the research on the nonautonomous neural

networks with delays is very important in like manner.
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Motivated by the above discussions, in this paper, we consider a class of

periodic Cohen-Grossberg neural networks with both variable and distributed

delays described by the following system of integro-differential equations:

dxi(t)

dt
= −αi(xi(t))

[
βi(xi(t)) −

n∑
j=1

aij(t)fj(xj(t))

−
n∑

j=1

bij(t)fj(xj(t− τij(t)))

−
n∑

j=1

cij(t)

∫ t

−∞
Kij(t− s)fj(xj(s))ds+ Ii(t)

]
(1.2)

for i = 1, 2 · · · , n. Where n ≥ 2 is the number of neurons in the net-

work, xi(t) is the state of the ith neuron at time t; fi denotes the activation

function; αi(xi(t)) presents an amplification function; βi(xi(t)) is an appro-

priately behaved function; Ii(t) denotes external input to the ithe neuron;

aij(t), bij(t), cij(t) denote the connection strengths of the jth neuron on the

ith neuron, respectively; τij(t) corresponds to the transmission delay and sat-

isfies 0 ≤ τij(t) ≤ τ (τ is a constant); Kij is the delay kernel.

To the best of our knowledge, few authors have considered dynamical be-

havior of the periodic Cohen-Grossberg neural networks with both variable and

distributed delays. This paper studies the existence, uniqueness and global ex-

ponential stability of the periodic oscillatory solution for the periodic Cohen-

Grossberg neural networks with both variable and distributed delays. Several

sufficient conditions ensuring the existence, uniqueness and global exponential

stability of the periodic oscillatory solution will be established for the system

(1.2).

The rest of this paper is organized as follows. In section 2, we introduce

some notations and preliminaries. We shall use Mawhin’s continuation theorem

[34] to establish the existence of periodic solutions of model (1.2) in section

3. In section 4, we give stability analysis of the periodic oscillatory solution.

Remarks and examples are given to illustrate our theory in section 5. Finally,

in section 6 we give the conclusion.

2 Preliminaries

Throughout this paper we assume that:

(H1) Each function αi(u) is bounded, positive and globally Lipschitz continu-
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ous, i.e. there exist constants αi, ᾱi and Li such that

0 < αi ≤ αi(u) ≤ ᾱi < +∞, for u ∈ R, i = 1, 2, · · · , n,

|αi(u) − αi(v)| ≤ Li|u− v|, for u, v ∈ R, i = 1, 2, · · · , n.

(H2) For each function βi(u) ∈ C1(R,R), the inverse function β−1(·) is locally

Lipschitz continuous, and there exists a positive constant βi such that

β̇i(u) ≥ βi > 0. For each i ∈ {1, 2, · · · , n}, u = 0 supposed to a zero point

of βi(u), moreover, β̇i(u) locally exists at u = 0 (Due to the monotonicity

of βi(u), its zero point is unique).

(H3) aij(t), bij(t), cij(t), τij(t), Ii(t) are continuously periodic functions defined

on t ∈ [0,+∞) with common period ω > 0, i, j = 1, 2, · · · , n.

(H4) Each function fi(u) is globally Lipschitz continuous, i.e. there exists a

constant Fi > 0 such that

|fi(u) − fi(v)| ≤ Fi|u− v|, i = 1, 2, · · · , n.

(H5) The delay kernel Kij : [0,+∞) → [0,+∞) is piecewise continuous func-

tion and satisfies:

(i)
∫∞
0
Kij(s)ds = 1, i, j = 1, 2, · · · , n.

(ii)
∫∞
0
sKij(s)ds <∞, i, j = 1, 2, · · · , n.

(iii) There exists a positive number μ such that∫ ∞

0

seμsKij(s)ds <∞, i, j = 1, 2, · · · , n.

(H6) E − Γ is a nonsingular M-matrix, where E is an identical matrix and

Γ = (Γij) is in the form of

Γij =
1

βi

(
|aij | + |bij| + |cij|

)
Fj, i, j = 1, 2, · · · , n.

Let PC = C((−∞, 0], Rn) be the linear space of bounded and continuous

functions which map (−∞, 0] into Rn. The initial conditions associated with

model (1.2) are of the form

xi(t) = ϕi(t), −∞ < t ≤ 0 (2.3)
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in which ϕi(·) is bounded continuous (i = 1, 2, · · · , n). For ϕ ∈ PC, ‖ϕ‖ is

defined as

‖ϕ‖ = sup
−∞<s≤0

( n∑
i=1

|ϕi(s)|r
) 1

r
,

then PC is a Banach space of continuous functions which map (−∞, 0] into

Rn with the topology of uniform convergence.

To begin with, we introduce some notations and recall some basic defini-

tions.

For an n × n matrix A, |A| denotes the absolute value matrix given by

|A| = (|aij|)n×n. Let h(t) be a continuous periodic ω-function, we denote

|h| = min
t∈[0,ω]

|h(t)|, |h| = max
t∈[0,ω]

|h(t)|.

Definition 2.1 A function x : (−∞,+∞) → Rn is said to be the special

solution of system (1.2) with initial condition (2.1) if x is a continuous function

and satisfies model (1.2) for t ≥ 0, and x(s) = ϕ(s) for s ∈ (−∞, 0].

Henceforth, we let x(t, ϕ) denote the special solution of (1.2) with initial

condition ϕ ∈ PC.

Definition 2.2 The periodic solution x(t, ϕ) of system (1.2) is said to be glob-

ally exponentially stable, if there exist positive constants ε and κ such that every

solution x(t, φ) of (1.2) satisfies

‖x(t, φ) − x(t, ϕ)‖ ≤ κ‖φ− ϕ‖e−εt for all t ≥ 0.

Definition 2.3 [32] A real matrix D = (dij)n×n is said to be a nonsingular

M-matrix if dij ≤ 0, i, j = 1, 2, · · · , n, i �= j, and all successive principal

minors of D are positive.

To the nonsingular M-matrix, we have

Lemma 2.1 [32] Each of the following conditions is equivalent:

(i) D is a nonsingular M-matrix.

(ii) D−1 exists and D−1 is a nonnegative matrix.

(iii) The diagonal elements of D are all positive and there exists a positive

vector d such that Dd > 0 or DTd > 0.

Lemma 2.2 [33] Let a, b ≥ 0, p > 1, then

ap−1b ≤ p− 1

p
ap +

1

p
bp.
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3 Existence of periodic oscillatory solution

In this section, based on the Mawhin’s continuation theorem, we study the

existence of at least one periodic solution of (1.2). First, we shall make some

preparations.

Let X, Y be normed vector spaces, L : DomL ⊂ X → Y be a linear

mapping, and N : X → Y be a continuous mapping. The mapping L will be

called a Fredholm mapping of index zero if dim Ker L=codim Im L < +∞ and

Im L is closed in Y . If L is a Fredholm mapping of index zero and there exist

continuous projectors P : X → X and Q : Y → Y such that Im P=Ker L, Ker

Q=Im L=Im (I −Q), it follows that mapping L|DomL∩KerP : (I−P )X →Im L

is invertible. We denote the inverse of that mapping by KP . If Ω is an open

bounded subset of X, the mapping N will be called L-compact on Ω if QN(Ω)

is bounded and KP (I − Q)N : Ω → X is compact. Since Im Q is isomorphic

to Ker L, there exists an isomorphism J : ImQ→ Ker L.

Now, we introduce Mawhin’s continuation theorem [34, p.40] as follows.

Lemma 3.1 Let Ω ⊂ X be an open bounded set and let N : X → Y be a

continuous operator which is L-compact on Ω. Assume

(a) For each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL,Lx �= λNx

(b) For each x ∈ ∂Ω ∩ Ker L,QNx �= 0

(c) deg(JNQ,Ω ∩ Ker L, 0) �= 0.

Then Lx = Nx has at least one solution in Ω ∩ DomL.

Theorem 3.1 Assume that (H1)-(H6) hold, then the system (1.2) has at

least one ω-periodic solution.

Proof. To apply the continuation theorem of coincidence degree theory and

establish the existence of an ω-periodic solution of (1.2), we take

X = Y = {x ∈ C(R,Rn) : x(t+ ω) = x(t), t ∈ R}

and denote

‖x‖ = sup
t∈[0,ω]

{|xi(t)|, i = 1, 2, . . . , n},

then X is a Banach space. Set

L : Dom L ∩X, Lx = ẋ(t), x ∈ X
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where DomL = {x ∈ C1(R,Rn)}, and N : X → X such that

Nxi = −αi(xi(t))
[
βi(xi(t)) −

n∑
j=1

aij(t)fj(xj(t))

−
n∑

j=1

bij(t)fj(xj(t− τij(t)))

−
n∑

j=1

cij(t)

∫ t

−∞
Kij(t− s)fj(xj(s))ds+ Ii(t)

]
= −αi(xi(t))gi(t, x(t)), i = 1, 2, . . . , n,

where

gi(t, x(t)) = βi(xi(t)) −
n∑

j=1

aij(t)fj(xj(t)) −
n∑

j=1

bij(t)fj(xj(t− τij(t)))

−
n∑

j=1

cij(t)

∫ t

−∞
Kij(t− s)fj(xj(s))ds+ Ii(t).

Define two projectors P and Q as

Qx = Px =
1

ω

∫ ω

0

x(s)ds, x ∈ X.

Clearly, Ker L = Rn,

ImL = {(x1, x2, . . . , xn)T ∈ X :

∫ ω

0

xi(t)dt = 0, i = 1, 2, . . . , n}

is closed in X. Moreover, P and Q are continuous projectors such that

Im P = Rn = Ker L, Ker Q = Im L = Im (I −Q)

and

dim Ker L = codim ImL = n.

Hence, L is a Fredholm mapping of index 0. On the other hand, it is not hard

to obtain the inverse KP : ImL→ Ker P ∩ Dom L of L|DomL∩KerP as follows:

(KPx)i(t) =

∫ t

0

xi(s)ds ∈ Ker P ∩ Dom L, i = 1, 2, · · · , n,

it follows that

(KP (I −Q)Nx)i(t) = (KPNx)i(t) − (KPQNx)i(t)

= −
∫ t

0

αi(xi(s))gi(s, x(s))ds

+
t

ω

∫ ω

0

αi(xi(s))gi(s, x(s))ds
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for i = 1, 2, · · · , n.

Hence, QN : X → Rn and Kp(I −Q)N : X → X are both continuous, by

generalizing the famous Arzela-Ascoli theorem, QN(Ω) and KP (I − Q)N(Ω)

are relatively compact for any open bounded set Ω ⊂ X. Therefore, N is

L-compact on Ω for any open bounded set Ω ⊂ X.

Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we have

dxi(t)

dt
= −λαi(xi(t))

[
βi(xi(t)) −

n∑
j=1

aij(t)fj(xj(t))

−
n∑

j=1

bij(t)fj(xj(t− τij(t)))

−
n∑

j=1

cij(t)

∫ t

−∞
Kij(t− s)fj(xj(s))ds+ Ii(t)

]
(3.1)

for i = 1, 2, · · · , n. Since for each i ∈ {1, 2, · · · , n}, xi(t), as the component

of x(t), is continuously differentiable and xi(0) = xi(ω), so that, there exists

ti ∈ [0, ω] such that |xi(ti)| = maxt∈[0,ω] |xi(t)| and ẋi(ti) = 0, so we have

0 = −λαi(xi(ti))gi(ti, x(ti)).

From (H1) and λ ∈ (0, 1), we get

βi(xi(ti)) =

n∑
j=1

aij(ti)fj(xj(ti)) +

n∑
j=1

bij(ti)fj(xj(ti − τij(ti)))

+
n∑

j=1

cij(ti)

∫ ti

−∞
Kij(ti − s)fj(xj(s))ds− Ii(ti),

it follows that

xi(ti) = β−1
i

( n∑
j=1

aij(ti)fj(xj(ti)) +

n∑
j=1

bij(ti)fj(xj(ti − τij(ti)))

+

n∑
j=1

cij(ti)

∫ ti

−∞
Kij(ti − s)fj(xj(s))ds− Ii(ti)

)
−β−1

i (0) + β−1
i (0).

Due to (H2), we know that (β−1
i (u))′ ≤ 1

βi
, β−1

i (u) is locally Lipschitz, and

β−1
i (0) = 0, so that

|xi(ti)| ≤ 1

βi

∣∣∣ n∑
j=1

aij(ti)fj(xj(ti)) +
n∑

j=1

bij(ti)fj(xj(ti − τij(ti)))
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+
n∑

j=1

cij(ti)

∫ ti

−∞
Kij(ti − s)fj(xj(s))ds− Ii(ti)

∣∣∣
≤ 1

βi

[ n∑
j=1

|aij|Fj |xj(tj)| +
n∑

j=1

|bij|Fj|xj(tj)|

+
n∑

j=1

|cij |Fj

∫ +∞

0

Kij(s)|xj(tj)|ds+ |I i|

+

n∑
j=1

|aij||fj(0)| +
n∑

j=1

|bij ||fj(0)| +
n∑

j=1

|cij ||fj(0)|
]

=
1

βi

n∑
j=1

[
|aij| + |bij | + |cij |

]
Fj|xj(tj)| + pi, (3.2)

where pi = 1
βi

[
|I i| +

n∑
j=1

(
|aij | + |bij| + |cij|

)
|fj(0)|

]
.

Then, by defining the vector p = (p1, p2, · · · , pn)
T and through the calcula-

tion of vector inequalities, from inequality (3.2), we have

(E − Γ)(|x1(t1)|, |x2(t2)|, · · · , |xn(tn)|)T ≤ p,

where E − Γ is the nonsingular M-matrix defined in (H6). Let

m = (m1, m2, · · · , mn)T = (E − Γ)−1p ≥ 0,

which implies that (|x1(t1)|, |x2(t2)|, · · · , |xn(tn)|)T ≤ m, that is, |xi(ti)| ≤ mi

for i = 1, 2, · · · , n. On the other hand, due to E − Γ is a nonsingular M-

matrix, so there exists a positive vector l = (l1, l2, · · · , ln)T > 0 such that

(E − Γ)l > 0, let μ = kl = (μ1, μ2, · · · , μn)
T be a positive vector such that

k(E − Γ)l = (E − Γ)μ > p.

We take

Ω = {x(t) ∈ X : |xi(t)| < μi, ∀ t ∈ R, i = 1, 2, · · · , n}, (3.3)

which satisfies condition (a) of Lemma 3.1. If x(t) = (x1(t), x2(t), · · · , xn(t))T ∈
∂Ω ∩ Ker L, then x(t) is a constant vector in Rn, and there exists some

i ∈ {1, 2, · · · , n} such that |xi| = μi. It follows that

(QNx)i = − 1

ω

∫ ω

0

αi(xi)
[
βi(xi) −

n∑
j=1

aij(t)fj(xj)

−
n∑

j=1

bij(t)fj(xj) −
n∑

j=1

cij(t)fj(xj) + Ii(t)
]
dt.
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We claim that |(QNx)i| > 0.

By way of contradiction, suppose that |(QNx)i| = 0, i.e.,

− 1

ω

∫ ω

0

αi(xi)
[
βi(xi) −

n∑
j=1

aij(t)fj(xj)

−
n∑

j=1

bij(t)fj(xj) −
n∑

j=1

cij(t)fj(xj) + Ii(t)
]
dt = 0.

Then there exists some t∗ ∈ [0, ω] such that

αi(xi)
[
βi(xi) −

n∑
j=1

aij(t
∗)fj(xj)

−
n∑

j=1

bij(t
∗)fj(xj) −

n∑
j=1

cij(t
∗)fj(xj) + Ii(t

∗)
]

= 0,

which implies that

|xi| = β−1
i

( n∑
j=1

aij(t
∗)fj(xj) +

n∑
j=1

bij(t
∗)fj(xj) +

n∑
j=1

cij(t
∗)fj(xj) − Ii(t

∗)
)

≤ 1

βi

∣∣∣ n∑
j=1

[
|aij | + |bij| + |cij|

]
|fj(xj)| + |I i|

∣∣∣
≤ 1

βi

n∑
j=1

[
|aij| + |bij | + |cij |

]
Fj|xj | + pi

=
n∑

j=1

Γij |xj| + pi.

Thereby, we have

μi = |xi| ≤
n∑

j=1

Γij|xj | + pi ≤
n∑

j=1

Γijμj + pi,

this implies that ((E −Γ)μ)i ≤ pi, which contradicts (E− Γ)μ > p. Therefore

condition (b) of Lemma 3.1 is satisfied.

Next, we intend to show that the topological degree is nonzero. To do this,

defined a homotopical map H(x, λ) (λ ∈ [0, 1]) by

H(x, λ) = −λ(α1(x1)β1(x1), α2(x2)β2(x2) · · · , αn(xn)βn(xn))T + (1 − λ)QNx,
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where x = (x1, x2, · · · , xn)T ∈ Ω ∩ Ker L = Ω ∩ Rn.

Arbitrarily taking x ∈ Ker L ∩ ∂Ω and λ ∈ [0, 1], we have, for all i =

1, 2, · · · , n, |xi| = μi and

H(x, λ)i = −λαi(xi)βi(xi) − (1 − λ)αi(xi)
1

ω

∫ ω

0

[
βi(xi) −

n∑
j=1

aij(t)fj(xj)

−
n∑

j=1

bij(t)fj(xj) −
n∑

j=1

cij(t)fj(xj) + Ii(t)
]
dt

= −αi(xi)βi(xi) + (1 − λ)
αi(xi)

ω

[ n∑
j=1

fj(xj)

∫ ω

0

(
aij(t) + bij(t)

+cij(t)
)
dt−

∫ ω

0

Ii(t)dt
]
.

Actually, we claim that H(x, λ)i �= 0 for all i. If this is not true, then there

exists a k ∈ {1, 2, · · · , n} such that, for t∗ ∈ [0, ω] and λ ∈ [0, 1],

βk(xk) = (1 − λ)
[ n∑

j=1

fj(xj)
(
akj(t

∗) + bkj(t
∗) + ckj(t

∗)
)
− Ik(t

∗)
]
,

and then

|xk| =
∣∣∣β−1

k

(
(1 − λ)

[ n∑
j=1

fj(xj)
(
akj(t

∗) + bkj(t
∗) + ckj(t

∗)
)
− Ik(t

∗)
]∣∣∣

≤ 1 − λ

βk

∣∣∣ n∑
j=1

fj(xj)
(
akj(t

∗) + bkj(t
∗) + ckj(t

∗)
)
− Ik(t

∗)
∣∣∣

≤ 1

βk

∣∣∣ n∑
j=1

fj(xj)
(
akj(t

∗) + bkj(t
∗) + ckj(t

∗)
)
− Ik(t

∗)
∣∣∣

≤ 1

βk

n∑
j=1

[
|akj| + |bkj| + |ckj|

]
Fj |xj| + pk.

Similarly, we obtain |xk| ≤ mk < μk, which contradicts that |xk| = μk, because

of x ∈ Ker L ∩ ∂Ω. It is therefore concluded that H(x, λ) �= 0 for every

x ∈ Ker L ∩ ∂Ω.

Hence, using the homotopy invariance theorem, we obtain

deg(JQN,Ω ∩ Ker L, 0) �= 0.

To summarize, we have proved that Ω satisfies all the conditions of Lemma

3.1. This completes the proof.
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4 Stability analysis for the periodic solution

In this section, sufficient conditions on the global exponential stability are

deduced for the ω-periodic solutions of the CGNN with both variable and

distributed delays. Let xi(s) = ϕi(s), i = 1, 2, · · · , n, s ∈ (−∞, 0], be the

initial conditions of the neural network, where ϕi : (−∞, 0] → R is a continuous

function.

Suppose that x(t) is a periodic solution of system (1.2). Set y(t) = x(t) −
x(t) with any solution x(t) = (x1(t), x2(t), · · · , xn(t))T of System (1.2). Hence,

System (1.2) can be transformed into the form as follows:

dyi(t)

dt
= −αi(xi(t))

{
βi(xi(t)) − βi(xi(t)) −

n∑
j=1

aij(t)
[
fj(xj(t)) − fj(xj(t))

]

−
n∑

j=1

bij(t)
[
fj(xj(t− τij(t))) − fj(xj(t− τij(t)))

]

−
n∑

j=1

cij(t)

∫ t

−∞
Kij(t− s)

[
fj(xj(s)) − fj(xj(s))

]
ds
}

−[αi(xi(t)) − αi(xi(t))]gi(t, x(t)) (4.1)

for i = 1, 2, · · · , n, and correspondingly, the initial condition becomes yi(s) =

ψi(s) = φi(s)−ϕi(s), s ∈ (−∞, 0], where φi(s) and ϕi(s) are, respectively, the

initial condition of solutions xi(t) and xi(t). Furthermore, from the arguments

in the last section, it is not hard to obtain the estimation for the periodic

solution x(t) : |gi(t, x(t))| ≤Mi for all i, where Mi = βi(mi) + βimi.

Theorem 4.1 Under hypothesis (H1)-(H6), there exists exactly one ω-periodic

solution of model (1.2) and all other solutions of model (1.2) converge expo-

nentially to it as t → +∞, if there exist real constants αij , βij, γij, σij (i, j =

1, 2, · · · , n) and r > 1 such that Λ = D − P − Q is a nonsingular M-matrix,

where

D = diag(d1, d2, · · · , dn) with di = αiβi − LiMi,

P = diag(p1, p2, · · · , pn) with pi = r−1
r
αi

n∑
j=1

F
r−σij
r−1

j

(
|aij|

r−αij
r−1 + |bij|

r−βij
r−1 +

|cij|
r−γij
r−1

)
, Q = (qij)n×n with qij = 1

r
αiF

σij

j

(
|aij|αij + |bij|βij + |cij |γij

)
.

proof. Since Λ is a nonsingular M-matrix, from Lemma 2.4, we know that

there exists a vector l = (l1, l2, · · · , ln)T > 0 such that Λl > 0, that is

li(di − pi) − 1

r
αi

n∑
j=1

ljF
σij

j

(
|aij|αij + |bij |βij + |cij |γij

)
> 0 (4.2)
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for i = 1, 2, · · · , n. Let us define function

hi(θ) = li(
θ

r
− di + pi) +

1

r
αi

n∑
j=1

ljF
σij

j

(
|aij |αij

+|bij |βijeτθ + |cij |γij

∫ +∞

0

eθsKij(s)ds
)

(4.3)

for i = 1, 2, · · · , n, where τ = max
1≤i,j≤n

{τij}. Obviously, hi(θ) is continuous on

[0,+∞), for i = 1, 2, · · · , n. From (4.2) and assumption (H5), we know that

hi(0) < 0, i = 1, 2, · · · , n. From the continuity of hi(θ), we know that there

exists a constant θi ∈ [0,+∞) such that

hi(θi) = li(
θi

r
− di + pi) +

1

r
αi

n∑
j=1

ljF
σij

j

(
|aij |αij

+|bij |βijeτθi + |cij |γij

∫ +∞

0

eθisKij(s)ds
)
≤ 0 (4.4)

for i = 1, 2, · · · , n. Choose ε such that 0 < ε < min{θ1, θ2, · · · , θn}, then

hi(ε) = li(
ε

r
− di + pi) +

1

r
αi

n∑
j=1

ljF
σij

j

(
|aij|αij

+|bij |βijeτε + |cij|γij

∫ +∞

0

eεsKij(s)ds
)
< 0 (4.5)

for i = 1, 2, · · · , n.

Next, calculating D+|yi(t)| along with (4.1), we have

d+|yi(t)|
dt

= sgn(yi(t))(y
′
i(t))

= − sgn(xi(t) − xi(t))αi(xi(t))
{
βi(xi(t)) − βi(xi(t)

−
n∑

j=1

aij(t)[fj(xj(t)) − fj(xj(t))]

−
n∑

j=1

bij(t)[fj(xj(t− τij(t))) − fj(xj(t− τij(t)))]

−
n∑

j=1

cij(t)

∫ t

−∞
Kij(t− s)[fj(xj(s)) − fj(xj(s))]ds

}
− sgn(xi(t) − xi(t))[αi(xi(t)) − αi(xi(t))]gi(t, x(t))

≤ − sgn(xi(t) − xi(t))αi(xi(t))β̇i(ξi)(xi(t) − xi(t))
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+
∣∣∣αi(xi(t)

{ n∑
j=1

aij(t)[fj(xj(t)) − fj(xj(t))]

+

n∑
j=1

bij(t)[fj(xj(t− τij(t))) − fj(xj(t− τij(t)))]

+
n∑

j=1

cij(t)

∫ t

−∞
Kij(t− s)[fj(xj(s)) − fj(xj(s))]ds

}∣∣∣
+
∣∣∣αi(xi(t)) − αi(xi(t))

∣∣∣∣∣∣gi(t, x(t))
∣∣∣

≤ −αiβi|yi(t)| + ᾱi

{ n∑
j=1

|aij(t)|
∣∣∣fj(xj(t)) − fj(xj(t))

∣∣∣
+

n∑
j=1

|bij(t)|
∣∣∣fj(xj(t− τij(t))) − fj(xj(t− τij(t)))

∣∣∣
+

n∑
j=1

|cij(t)|
∫ t

−∞
Kij(t− s)

∣∣∣fj(xj(s)) − fj(xj(s))
∣∣∣ds}

+LiMi|yi(t)|

≤ −αiβi|yi(t)| + ᾱi

{ n∑
j=1

|aij|Fj|xj(t) − xj(t)|

+
n∑

j=1

|bij |Fj|xj(t− τij(t)) − xj(t− τij(t))|

+

n∑
j=1

|cij|Fj

∫ t

−∞
Kij(t− s)|xj(s) − xj(s)|ds

}
+LiMi|yi(t)|

= −di|yi(t)| + αi

[ n∑
j=1

|aij|Fj|yj(t)| +
n∑

j=1

|bij|Fj |yj(t− τij(t))|

+
n∑

j=1

|cij|Fj

∫ t

−∞
Kij(t− s)|yj(s)|ds

]
, (4.6)

Furthermore, let Yi(t) = eεt|yi(t)|r, and calculate the upper right Dini
derivative D+Yi(t) of Yi(t) along the solution of (1.2), from (4.5), (4.6), as-
sumption (H5) and Lemma 2.5, we get

D+Yi(t) = εYi(t) + reεt|yi(t)|r−1 d+|yi(t)|
dt

≤ εYi(t) + reεt|yi(t)|r−1
{
− di|yi(t)| + αi

[ n∑
j=1

|aij|Fj |yj(t)|
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+
n∑

j=1

|bij|Fj |yj(t − τij(t))|

+
n∑

j=1

|cij |Fj

∫ t

−∞
Kij(t − s)|yj(s)|ds

]}

= (ε − rdi)Yi(t) + eεtαi

[ n∑
j=1

r|aij|Fj |yi(t)|r−1|yj(t)|

+
n∑

j=1

r|bij |Fj |yi(t)|r−1|yj(t − τij(t))|

+
n∑

j=1

∫ t

−∞
Kij(t − s)r|cij|Fj |yi(t)|r−1|yj(s)|ds

]
= (ε − rdi)Yi(t)

+eεtαi

[ n∑
j=1

r
(
|aij|

r−αij
r(r−1) F

r−σij
r(r−1)

j |yi(t)|
)r−1(

|aij |
αij
r F

σij
r

j |yj(t)|
)

+
n∑

j=1

r
(
|bij|

r−βij
r(r−1) F

r−σij
r(r−1)

j |yi(t)|
)r−1(|bij |

βij
r F

σij
r

j |yj(t − τij(t))|
)

+
n∑

j=1

∫ t

−∞
Kij(t − s)r

(
|cij |

r−γij
r(r−1)F

r−σij
r(r−1)

j |yi(t)|
)r−1

×
(
|cij|

γij
r F

σij
r

j |yj(s)|
)
ds
]

≤ (ε − rdi)Yi(t)

+eεtαi

[ n∑
j=1

(r − 1)|aij|
r−αij
r−1 F

r−σij
r−1

j |yi(t)|r +
n∑

j=1

|aij |αijF
σij

j |yj(t)|r

+
n∑

j=1

(r − 1)|bij |
r−βij
r−1 F

r−σij
r−1

j |yi(t)|r +
n∑

j=1

|bij|βijF
σij

j |yj(t − τij(t))|r

+
n∑

j=1

∫ t

−∞
Kij(t − s)(r − 1)|cij |

r−γij
r−1 F

r−σij
r−1

j |yi(t)|r

+
n∑

j=1

∫ t

−∞
Kij(t − s)|cij |γijF

σij

j |yj(s)|rds
]

= Yi(t)
[
(ε − rdi) + (r − 1)αi

n∑
j=1

F
r−σij
r−1

j

×
(
|aij |

r−αij
r−1 + |bij|

r−βij
r−1 + |cij |

r−γij
r−1

)]

+αi

n∑
j=1

F
σij

j

(
|aij |αijeεt|yj(t)|r + |bij |βijeετijeε(t−τij) |yj(t − τij(t))|r
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+|cij |γij

∫ t

−∞
eε(t−s)Kij(t − s)eεs|yj(s)|rds

)

≤ Yi(t)
[
(ε − rdi) + (r − 1)αi

n∑
j=1

F
r−σij
r−1

j

×
(
|aij |

r−αij
r−1 + |bij|

r−βij
r−1 + |cij |

r−γij
r−1

)]

+αi

n∑
j=1

F
σij

j

(
|aij |αijYj(t) + |bij |βijeετYj(t − τij(t))

+|cij |γij

∫ t

−∞
eε(t−s)Kij(t − s)Yi(s)ds

)

= r
{
Yi(t)

[
(
ε

r
− di) +

r − 1
r

αi

n∑
j=1

F
r−σij
r−1

j

×
(
|aij |

r−αij
r−1 + |bij|

r−βij
r−1 + |cij |

r−γij
r−1

)]

+
1
r
αi

n∑
j=1

F
σij

j

(
|aij |αijYj(t) + |bij|βijeετYj(t − τij(t))

+|cij |γij

∫ t

−∞
eε(t−s)Kij(t − s)Yi(s)ds

)}

= r
[
Yi(t)

(ε

r
− di + pi

)
+

1
r
αi

n∑
j=1

F
σij

j

(
|aij |αijYj(t)

+|bij |βijeετYj(t − τij(t)) + |cij|γij

∫ t

−∞
eε(t−s)Kij(t − s)Yi(s)ds

)]
(4.7)

for i = 1, 2, · · · , n.
Defining the curve Γ =

{
z(k) = (kl1, kl2, · · · , kln) : k > 0

}
and the set

Θ(z) =
{

u : 0 ≤ u ≤ z, z ∈ Γ
}

. It is obvious that Θ(z(k)) ⊃ Θ(z(k′)) as k > k′.

Let k0 = (1+δ)‖φ−ϕ‖r

min
1≤i≤n

{li} (δ is a positive constant), then

Yi(s) = eεs|xi(s) − xi(s)|r ≤ ‖φ − ϕ‖r < lik0, −∞ < s ≤ 0, (4.8)

for i = 1, 2, · · · , n.
In the following, we will prove that

Yi(t) < lik0, i = 1, 2, · · · , n (4.9)

for t > 0. No loss of generality, we assume that there exist some i0 and t∗ > 0 such
that

Yi0(t
∗) = li0k0, D+Yi0(t

∗) ≥ 0,

Yi(t) ≤ lik0, −∞ < t ≤ t∗, i = 1, 2, · · · , n.
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Then, from (4.7) and (4.5), we get

D+Yi0(t
∗) ≤ r

[
Yi0(t

∗)
(ε

r
− di0 + pi0

)
+

1
r
αi

n∑
j=1

F
σij

j

(
|aij |αijYj(t∗)

+|bij|βijeετYj(t∗ − τij(t∗))

+|cij |γij

∫ t∗

−∞
eε(t∗−s)Kij(t∗ − s)Yi(s)ds

)]

≤ r
[(ε

r
− di0 + pi0

)
li0k0 +

1
r
αi

n∑
j=1

F
σij

j

(
|aij|αij ljk0

+|bij|βijeετ ljk0 + |cij |γij

∫ t∗

−∞
eε(t∗−s)Kij(t∗ − s)ljk0ds

)]

= rk0

[
li0

(ε

r
− di0 + pi0

)
+

1
r
αi

n∑
j=1

ljF
σij

j

(
|aij |αij

+|bij|βijeετ + |cij|γij

∫ +∞

0
eεsKij(s)ds

)]
< 0,

this is a contradiction, so (4.9) holds. Let κ =

⎛
⎝ (1+δ)

n�

i=1
li

min
1≤i≤n

{li}

⎞
⎠

1
r

, from (4.9) we get

‖x(t) − x(t)‖ =
( n∑

i=1

|xi(t) − xi(t)|r
) 1

r

≤
( n∑

i=1

k0lie
−εt
) 1

r

=

⎛
⎜⎜⎝

(1 + δ)
n∑

i=1
li

min
1≤i≤n

{li}

⎞
⎟⎟⎠

1
r

‖φ − ϕ‖e− ε
r
t

= κ‖φ − ϕ‖e− ε
r
t,

that is

‖x(t) − x(t)‖ ≤ κ‖φ − ϕ‖e− ε
r
t (4.10)

for t ≥ 0. The proof is completed.

Corollary 4.1 Under hypothesis (H1)-(H6), there exists exactly one ω-periodic
solution of model (1.2) and all other solutions of model (1.2) converge exponentially
to it as t → +∞, if Λ1 = D−α(|Ā|+ |B̄|+ |C̄|)F is a nonsingular M -matrix, where
D = diag(d1, d2, · · · , dn) with di = αiβi − LiMi, |Ā| = (|aij|)n×n, |B̄| = (|bij|)n×n,
|C̄| = (|cij |)n×n, F = diag(F1, F2, · · · , Fn), α = diag(α1, α2, · · · , αn).
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proof. Take αij = βij = γij = σij = 1, and let r → 1+, then Λ in Theorem 4.1
turns to Λ1. The proof is completed.

As αi(xi(t)) = αi, βi(xi(t)) = di(t)xi(t), model (1.2) may reduce to the following
model:

dxi(t)
dt

= −di(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t)) +
n∑

j=1

bij(t)fj(xj(t − τij(t)))

+
n∑

j=1

cij(t)
∫ t

−∞
Kij(t − s)fj(xj(s))ds + Ii(t), (4.11)

for i = 1, 2, · · · , n, where di(t) > 0 is continuously periodic functions defined on
t ∈ [0,+∞) with common period ω > 0, i = 1, 2, · · · , n. For model (4.11), by
applying Theorem 3.2 and Theorem 4.1, we can easily obtain the following results.

Theorem 4.2 Under hypothesis (H3)-(H5), there exists exactly one ω-periodic so-
lution of model (4.11) and all other solutions of model (4.11) converge exponentially
to it as t → +∞, if there exist real constants αij , βij , γij , σij (i, j = 1, 2, · · · , n) and
r > 1 such that Λ = D − P − Q is a nonsingular M -matrix, where

D = diag(d1, d2, · · · , dn),
P = diag(p1, p2, · · · , pn) with

pi = r−1
r

n∑
j=1

F
r−σij
r−1

j

(
|aij |

r−αij
r−1 + |bij|

r−βij
r−1 + |cij |

r−γij
r−1

)
,

Q = (qij)n×n with qij = 1
r F

σij

j

(
|aij|αij + |bij|βij + |cij|γij

)
.

Corollary 4.2 Under hypothesis (H3)-(H5), there exists exactly one ω-periodic so-
lution of model (4.11) and all other solutions of model (4.11) converge exponentially
to it as t → +∞, if D − (|Ā| + |B̄| + |C̄|)F is a nonsingular M -matrix, where

D = diag(d1, d2, · · · , dn), |Ā| = (|aij|)n×n, |B̄| = (|bij|)n×n,

|C̄| = (|cij |)n×n, F = diag(F1, F2, · · · , Fn).

5 Remarks and examples

Remark 5.1 Some famous neural network models become a special case of model
(1.2). For example, Refs. [19, 20, 23, 25, 26], and as model (1.2) becomes neural
networks model (4.11), it contains those models studied by many authors, see, for
example, Refs. [1]-[17]. Thus the results of this paper can be applied to the recurrent
neural networks with and/or without delays. Moreover, our results need only the
activation function fi satisfies the assumption (H4), not requiring the activation
function fj to be bounded and monotone nondecreasing. In addition, we do not
demand that variable delay function τij(t) is differentiable. Therefore, we improve
some previous results.
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Remark 5.2 In [26], the authors considered a special case model (1.2) as (aij(t))n×n

= (bij(t))n×n = 0, (cij(t))n×n = (cij)n×n, the sufficient conditions given in Theorem
4.3-Theorem 4.5 not only require fj to be bounded, but also rely on the estimation
of constant C̄i, but b̄i in the definition of C̄i depends on the value of solution x(t) at
t = 0 (Remark 4.2 in [26, p.11]). Hence the estimation of constant C̄i is difficult when
αi(x) is not a constant. The estimation of constant Mi in this paper is independent
of the solution of model (1.2).

In order to illustrate the feasibility of our above-established criteria in the preced-
ing sections, we provide concrete examples. Although the selection of the coefficients
and functions in the examples is somewhat artificial, the possible application of our
theoretical theory is clearly expressed.

Example 5.1 Consider the following model

dxi(t)
dt

= −αi(xi(t))
[
βi(xi(t)) −

n∑
j=1

aij(t)fj(xj(t))

−
n∑

j=1

bij(t)fj(xj(t − τij(t)))

−
n∑

j=1

cij(t)
∫ t

−∞
Kij(t − s)fj(xj(s))ds + Ii(t)

]
, i = 1, 2, (5.1)

where the coefficients and functions are taken as

α1(x) = α2(x) = 2 +
1

10π
arctan x, α1 = α2 = 1, α1 = α2 = 3,

L1 = L2 =
1
30

, β1(x) = β2(x) = x, β1 = β2 = 1,

f1(x) = f2(x) =
1
2
(|x + 1| + |x − 1|), F1 = F2 = 1,

(aij(t)) =

(
− 1

24 sin t − 1
24 cos t

− 1
24 sin 2t − 1

24 cos 4t

)
, (bij(t)) =

(
− 1

24 sin t − 1
24 cos t

− 1
24 sin 2t − 1

24 cos 4t

)
,

(cij(t)) =

(
− 1

24 sin t − 1
24 cos t

− 1
24 sin 2t − 1

24 cos 4t

)
, (τij(t)) =

(
cos2 t 2 cos2 t

3 sin2 t 4 sin2 t

)
,

(Kij(s)) =

(
e−2s e−s

e−s e−2s

)
, I(t) =

(
I1(t)
I2(t

)
=

(
5
12 sin2 t
5
12 cos t

)
.

It is not hard to verify the validity of (H1)-(H5), and it is easy to calculate that

(|aij|) = (|bij|) = (|bij|) =

(
1
24

1
24

1
24

1
24

)
, |I| =

(
5
12
5
12

)
.
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It follows that

E − Γ =

(
7
8 −1

8

−1
8

7
8

)
, (E − Γ)−1 =

4
3

(
7
8

1
8

1
8

7
8

)
, p =

(
2
3
2
3

)
,

Obviously, E − Γ is a nonsingular M -matrix, that is, (H6) holds, and

m = (E − Γ)−1p = (
8
9
,

8
9
)T ,

hence
M = (M1,M2)T = (

16
9

,
16
9

)T .

It follows that

Λ1 = D − α(|Ā| + |B̄| + |C̄|)F

=

(
1 0
0 1

)(
1 0
0 1

)
−
(

1
30 0
0 1

30

)(
16
9 0
0 16

9

)
−
(

3 0
0 3

)(
1
8

1
8

1
8

1
8

)

=

(
571
1080 −3

8

−3
8

571
1080

)
,

Therefor Λ1 is a nonsingular M-matrix, from Theorem 3.2 and Corollary 4.2,

we know that system (5.1) has exactly one 2π-periodic solution, and the 2π-

periodic solution of system (5.1) is globally exponentially stable.

Remark 5.3 When (aij(t)) = 0, (bij(t)) = 0, (cij(t)) =

(
1
8

1
8

1
8

1
8

)
in Example 5.3,

System (5.1) become to Cohen-Crossberg neural networks with distributed delays.
Here, it is not hard to know that it has exactly one 2π-periodic solution which is
globally exponentially stable. However, those results given in Theorem 4.3-Theorem
4.5 in [26] cannot be applied to here.

Example 5.2 Consider the following model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t)
dt = −d1(t)x1(t) + b11(t)f1(x1(t − τ11(t))) + c11(t)

t∫
−∞

e−(t−s)f1(x1(s))ds

+c12(t)
t∫

−∞
e−2(t−s)f2(x2(s))ds − 2 cos t,

dx2(t)
dt = −d2(t)x2(t) + b21(t)f1(x1(t − τ21(t))) + b22(t)f2(x2(t − τ22(t)))

+c21(t)
t∫

−∞
e−2(t−s)f1(x1(s))ds

+c22(t)
t∫

−∞
e−(t−s)f2(x2(s))ds + 3 sin t

(5.2)
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where d1(t) = 5 + sin t, d2(t) = 5 − 0.5 cos t, b11(t) = 1 − 0.5 sin t, b12(t) =
0, b21(t) = sin t, b22(t) = cos t, τ11(t) = 0.2 + 3| cos t

2 |, τ21(t) = 0.3 + | sin t
2 |,

τ22(t) = 1−sin t, c11(t) = cos t, c12(t) = 0.5+0.5 sin t, c21 = 0.5+0.5 sin t, c22

= 1 − 0.5 sin t, fi(x) = 1
2(|x + 1| + |x − 1|), i = 1, 2.

It is easy to check that assumptions (H3)-(H5) hold, and F1 = F2 = 1, d1 =
4, d2 = 4.5, b11 = 2, b12 = 0, b21 = 1, b22 = 1, c11 = 1, c12 =
1, c21 = 1, c22 = 1.5, 0.2 ≤ τ11(t) ≤ 3.2, 0.3 ≤ τ21(t) ≤ 2.3, 0 ≤ τ22(t) ≤ 2.

Thus

D − (|B| + |C|)F =

(
3.5 0
0 4.5

)
−
((

4 0
1 1

)
+

(
1 1
1 1.5

))(
1 0
0 1

)

=

(
1.5 −1
−2 2

)
.

Obviously, D − (|B| + |C|)F is a nonsingular M -matrix, from Corollary 4.4, model
(5.2) has exactly one 2π-periodic solution and all other solutions of model (5.2)
converge exponentially to it as t → +∞.

6 Conclusions

In this paper, a class of periodic Cohen-Grossberg neural networks with both variable
and distributed delays have been studied. Some sufficient conditions for the existence
and exponential stability of the periodic solutions have been established. These
obtained results are new and they complement previously known results. Moreover,
Two examples are given to illustrate the effectiveness of the new results.
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