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We give some existence results and Ulam stability results for a class of Hadamard-Stieltjes integral equations. We present two
results: the 	rst one is an existence result based on Schauder’s 	xed point theorem and the second one is about the generalized
Ulam-Hyers-Rassias stability.

1. Introduction

Fractional di
erential and integral equations have recently
been applied in various areas of engineering, mathematics,
physics, bioengineering, and other applied sciences [1, 2].
�ere has been a signi	cant development in ordinary and
partial fractional di
erential and integral equations in recent
years; see the excellent classical monograph of Kilbas et al. [3]
or the recent monograph of Abbas et al. [4].

�e stability of functional equations was originally raised
by Ulam in 1940 in a talk given at Wisconsin University.
�e problem posed by Ulam was the following: under what
conditions does there exist an additive mapping near an
approximately additive mapping? (for more details see [5]).
�e 	rst answer to Ulam’s question was given by Hyers in
1941 in the case of Banach spaces in [6]. �erea�er, this
type of stability is called the Ulam-Hyers stability. In 1978,
Rassias [7] provided a remarkable generalization of theUlam-
Hyers stability of mappings by considering variables. �e
concept of stability for a functional equation arises when
we replace the functional equation by an inequality which

acts as a perturbation of the equation. �us, the stability
question of functional equations is howdo the solutions of the
inequality di
er from those of the given functional equation?
Considerable attention has been given to the study of the
Ulam-Hyers and Ulam-Hyers-Rassias stability of all kinds of
functional equations; one can see the monographs of [8, 9].
Bota-Boriceanu and Petrusel [10], Petru et al. [11], and Rus
[12, 13] discussed the Ulam-Hyers stability for operatorial
equations and inclusions. Castro and Ramos [14], and Jung
[15] considered the Hyers-Ulam-Rassias stability for a class
of Volterra integral equations. More details from historical
point of view and recent developments of such stabilities are
reported in [12, 16].

In [17], Butzer et al. investigate properties of the
Hadamard fractional integral and the derivative. In [18], they
obtained the Mellin transforms of the Hadamard fractional
integral and di
erential operators and in [19], Pooseh et al.
obtained expansion formulas of the Hadamard operators in
terms of integer order derivatives. Many other interesting
properties of those operators are summarized in [20] and the
references therein.
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�is paper deals with the existence of the Ulam stability
of solutions to the following Hadamard-Stieltjes fractional
integral equation:

� (�, �) = � (�, �) + ∫�
1
∫�
1
(log �
 )

�1−1 (log �� )
�2−1

⋅ � (
, �, � (
, �))
�Γ (�1) Γ (�2) ���2 (�, �) ���1 (�, 
) ;
if (�, �) ∈ �,

(1)

where � := [1, �] × [1, �], �, � > 1, �1, �2 > 0 and � : � → R,

� : �×R → R, �1 : [1, �]2 → R, �2 : [1, �]2 → R are given
continuous functions, and Γ(⋅) is the Euler gamma function.

Our investigations are conducted with an application of
Schauder’s 	xed point theorem for the existence of solutions
of the integral equation (1). Also, we obtain some results about
the generalized Ulam-Hyers-Rassias stability of solutions of
(1). Finally, we present an example illustrating the applicabil-
ity of the imposed conditions.

�is paper initiates the study of the existence and the
Ulam stability of such class of integral equations.

2. Preliminaries

In this section, we introduce notations, de	nitions, and
preliminary facts which are used throughout this paper.

Denote by �1(�,R) the Banach space of functions � : � → R

that are Lebesgue integrable with norm

‖�‖�1 = ∫
�

1
∫	
1

����� (�, �)���� �� ��. (2)

Let � := �(�,R) be the Banach space of all continuous
functions � : � → R with the norm

‖�‖
 = sup
(�,�)∈�

����� (�, �)���� . (3)

De�nition 1 (see [3, 21]). �eHadamard fractional integral of

order � > 0 for a function � ∈ �1([1, �],R) is de	ned as

(��1�) (�) = 1
Γ (�) ∫

�

1
(log �
 )

�−1 � (
)

 �
. (4)

De�nition 2. Let �1, �2 ≥ 0, ! = (1, 1), and � = (�1, �2). For" ∈ �1(�,R), de	ne the Hadamard partial fractional integral
of order � by the expression

(���") (�, �) = 1
Γ (�1) Γ (�2)

⋅ ∫�
1
∫�
1
(log �
 )

�1−1 (log �� )
�2−1 " (
, �)


� �� �
.
(5)

If � is a real function de	ned on the interval [�, �], then
the symbol ⋁	�� denotes the variation of � on [�, �]. We say
that � is of bounded variation on the interval [�, �] whenever⋁	�� is 	nite. If " : [�, �] × [$, �] → R, then the symbol

⋁��=�"(�, 
) indicates the variation of the function � → "(�, 
)
on the interval [%, �] ⊂ [�, �], where 
 is arbitrarily 	xed
in [$, �]. In the same way we de	ne ⋁��=�"(�, 
). For the

properties of functions of bounded variation we refer to [22].
If � and ' are two real functions de	ned on the interval[�, �], then under some conditions (see [22]) we can de	ne

the Stieltjes integral (in the Riemann-Stieltjes sense)

∫	
�
� (�) �' (�) (6)

of the function � with respect to '. In this case we say that� is Stieltjes integrable on [�, �] with respect to '. Several
conditions are known guaranteeing Stieltjes integrability [22].
One of the most frequently used requirements are that � is
continuous and ' is of bounded variation on [�, �].

In what follows we use the following properties of the
Stieltjes integral ([23], section 8.13).

If � is Stieltjes integrable on the interval [�, �]with respect
to a function ' of bounded variation, then

���������∫
	

�
� (�) �' (�)��������� ≤ ∫

	

�
|� (�)| � ( �⋁

�
') . (7)

If � and V are Stieltjes integrable functions on the interval[�, �] with respect to a nondecreasing function ' such that�(�) ≤ V(�) for � ∈ [�, �], then
∫	
�
� (�) �' (�) ≤ ∫	

�
V (�) �' (�) . (8)

In the sequel we consider Stieltjes integrals of the form

∫	
�
� (�) ��� (�, 
) (9)

and Hadamard-Stieltjes integrals of fractional order of the
form

1
Γ (�) ∫

�

1
(log �
)

�−1 � (
) ��� (�, 
) , (10)

where � : [1,∞) × [1,∞) → R, � ∈ (0,∞), and the symbol�� indicates the integration with respect to 
.
De�nition 3. Let �1, �2 ≥ 0, ! = (1, 1), and � = (�1, �2). For" ∈ �1(�,R), de	ne the Hadamard-Stieltjes partial fractional
integral of order � by the expression

(����") (�, �) = 1
Γ (�1) Γ (�2) ∫

�

1
∫�
1
(log �
 )

�1−1

⋅ (log �� )
�2−1 " (
, �)


� ���2 (�, �) ���1 (�, 
) ,
(11)

where �1, �2 : [1,∞) × [1,∞) → R.

Now, we consider the Ulam stability for the integral
equation (1). Consider the operator4 : � → � de	ned by

(4�) (�, �) = � (�, �) + ∫�
1
∫�
1
(log �
 )

�1−1

⋅ (log �� )
�2−1 � (
, �, � (
, �))


�Γ (�1) Γ (�2) ���2 (�, �) ���1 (�, 
) .
(12)
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Clearly, the 	xed points of the operator4 are solution of the
integral equation (1). Let 5 > 0 and Φ : � → [0,∞) be a
continuous function. We consider the following inequalities:

����� (�, �) − (4�) (�, �)���� ≤ 5; (�, �) ∈ �, (13)

����� (�, �) − (4�) (�, �)���� ≤ Φ (�, �) ; (�, �) ∈ �, (14)

����� (�, �) − (4�) (�, �)���� ≤ 5Φ (�, �) ; (�, �) ∈ �. (15)

De�nition 4 (see [12, 24]). Equation (1) is Ulam-Hyers stable
if there exists a real number $� > 0 such that for each 5 > 0
and for each solution � ∈ � of the inequality (13) there exists
a solution V ∈ � of (1) with

����� (�, �) − V (�, �)���� ≤ 5$�; (�, �) ∈ �. (16)

De�nition 5 (see [12, 24]). Equation (1) is generalized Ulam-
Hyers stable if there exists $� : �([0,∞), [0,∞))with $�(0) =0 such that for each 5 > 0 and for each solution � ∈ C of the
inequality (13) there exists a solution V ∈ � of (1) with

����� (�, �) − V (�, �)���� ≤ $� (5) ; (�, �) ∈ �. (17)

De�nition 6 (see [12, 24]). Equation (1) is Ulam-Hyers-
Rassias stable with respect to Φ if there exists a real number$�,Φ > 0 such that for each 5 > 0 and for each solution � ∈ �
of the inequality (15) there exists a solution V ∈ � of (1) with

����� (�, �) − V (�, �)���� ≤ 5$�,ΦΦ(�, �) ; (�, �) ∈ �. (18)

De�nition 7 (see [12, 24]). Equation (1) is generalized Ulam-
Hyers-Rassias stable with respect to Φ if there exists a real
number $�,Φ > 0 such that for each solution � ∈ � of
the inequality (14) there exists a solution V ∈ C of (1) with|�(�, �) − V(�, �)| ≤ $�,ΦΦ(�, �); (�, �) ∈ �.
Remark 8. It is clear that (i) De	nition 4 ⇒ De	nition 5, (ii)
De	nition 6 ⇒De	nition 7, and (iii) De	nition 6 forΦ(⋅, ⋅) =1 ⇒ De	nition 4.

One can have similar remarks for the inequalities (13) and
(15).

3. Existence and Ulam Stabilities Results

In this section, we discuss the existence of solutions and we
present conditions for the Ulam stability for the Hadamard
integral equation (1).

�e following hypotheses will be used in the sequel.

(81) �ere exist functions %1, %2 ∈ �(�,R+) such that, for
any � ∈ R and (�, �) ∈ �,

����� (�, �, �)���� ≤ %1 (�, �) + %2 (�, �)1 + ����� (�, �)����
����� (�, �)���� , (19)

with

%∗� = sup
(�,�)∈�

sup
(�,�)∈[1,�]×[1,�]

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1

⋅ %� (
, �)
�Γ (�1) Γ (�2) ; 9 = 1, 2.
(20)

(82) For all �1, �2 ∈ [1, �] such that �1 < �2, the function
 @→ �(�2, 
)−�(�1, 
) is nondecreasing on [1, �]. Also,
for all �1, �2 ∈ [1, �] such that �1 < �2, the function
 @→ �(�2, �) − �(�1, �) is nondecreasing on [1, �].

(83) �e functions 
 @→ �1(0, 
) and � @→ �2(0, �) are
nondecreasing on [1, �] or [1, �], respectively.

(84) �e functions 
 @→ �1(�, 
) and � @→ �1(�, 
) are
continuous on [1, �] for each 	xed � ∈ [1, �] or 
 ∈[1, �], respectively. Also, the functions � @→ �2(�, �)
and � @→ �2(�, �) are continuous on [1, �] for each
	xed � ∈ [1, �] or � ∈ [1, �], respectively.

(85) �ere exists AΦ > 0 such that, for each (�, �) ∈ �, we
have

(����Φ) (�, �) ≤ AΦΦ(�, �) . (21)

Set

�∗ = sup
(�,�)∈�

�⋁
�2=1

�2 (�, B2)
�⋁
�1=1

�1 (�, B1) . (22)

�eorem9. Assume that the hypotheses (81)–(84) hold.en
the integral equation (1) has a solution de�ned on �.
Proof. Let C > 0 be a constant such that

C > DDDD�DDDD∞ + �∗ (%∗1 + %∗2 ) . (23)

We will use Schauder’s theorem [25], to prove that the
operator 4 de	ned in (12) has a 	xed point. �e proof will
be given in four steps.

Step 1 (4 transforms the ball E� := {� ∈ C : ‖�‖
 ≤ C} into
itself). For any � ∈ E� and each (�, �) ∈ �, we have
����(4�) (�, �)���� ≤ ����� (�, �)���� + 1

Γ (�1) Γ (�2)
⋅ ∫�
1
∫�
1

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1

⋅ %1 (
, �)
� �������2 (�, �) ���1 (�, 
)����
+ 1
Γ (�1) Γ (�2) ∫

�

1
∫�
1

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1

⋅ %2 (
, �) |� (
, �)|
� (1 + |� (
, �)|) �������2 (�, �) ���1 (�, 
)����
≤ DDDD�DDDD
 + 1

Γ (�1) Γ (�2) ∫
�

1
∫�
1

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1

⋅ %1 (
, �) + %2 (
, �) C
� ��
�⋁
�2=1

�2 (�, B2) ��
�⋁
�1=1

�1 (�, B1)
≤ DDDD�DDDD
 + (%∗1 + %∗2 )
⋅ ∫�
1
∫�
1
��
�⋁
�2=1

�2 (�, B2) ��
�⋁
�1=1

�1 (�, B1)
≤ DDDD�DDDD
 + �∗ (%∗1 + %∗2 ) ≤ C.

(24)
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�us, ‖(4�)‖
 ≤ C. �is implies that 4 transforms the ballE� into itself.
Step 2 (4 : E� → E� is continuous). Let {��}�∈N be a
sequence such that �� → � in E�. �en

����(4��) (�, �) − (4�) (�, �)���� ≤ 1
Γ (�1) Γ (�2)

⋅ ∫�
1
∫�
1

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1

⋅ ����� (
, �, �� (
, �)) − � (
, �, � (
, �))����
� ���2 (�,
�) ���1 (�, 
)
≤ sup(�,�)∈�

����� (
, �, �� (
, �)) − � (
, �, � (
, �))����Γ (�1) Γ (�2)
⋅ ∫�
1
∫�
1

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1 ��

�⋁
�2=1

�2 (�, B2) ��

⋅ �⋁
�1=1

�1 (�, B1) ≤ �∗ DDDD� (⋅, ⋅, �� (⋅, ⋅)) − � (⋅, ⋅, � (⋅, ⋅))DDDD
 .

(25)

From Lebesgue’s dominated convergence theorem and the
continuity of the function �, we get

����(4��) (�, �) − (4�) (�, �)���� F→ 0 as G F→ ∞. (26)

Step 3 (4(E�) is bounded).�is is clear since4(E�) ⊂ E� andE� is bounded.
Step 4 (4(E�) is equicontinuous). Let (�1, �1), (�2, �2) ∈�, �1 < �2, �1 < �2. �en

����(4�) (�2, �2) − (4�) (�1, �1)���� ≤ ����� (�1, �1) − � (�2, �2)����
+ ���������

1
Γ (�1) Γ (�2) ∫

�1

1
∫�1
1

�������log
�2

�������
�1−1 �������log

�2�
�������
�2−1

⋅ � (
, �, � (
, �))
� ���2 (�2, �) ���1 (�2, 
)
− 1
Γ (�1) Γ (�2) ∫

�1

1
∫�1
1

�������log
�1

�������
�1−1 �������log

�1�
�������
�2−1

⋅ � (
, �, � (
, �))
� ���2 (�1, �) ���1 (�1, 
)
���������

+ 1
Γ (�1) Γ (�2) ∫

�2

�1
∫�2
�1

�������log
�2

�������
�1−1 �������log

�2�
�������
�2−1

⋅ ����� (
, �, � (
, �))����
� �������2 (�2, �)���� ���1 (�2, 
)
+ 1
Γ (�1) Γ (�2) ∫

�1

1
∫�2
�1

�������log
�2

�������
�1−1 �������log

�2�
�������
�2−1

⋅ ����� (
, �, � (
, �))����
� �������2 (�2, �) ���1 (�2, 
)����
+ 1
Γ (�1) Γ (�2) ∫

�2

�1
∫�1
1

�������log
�2

�������
�1−1 �������log

�2�
�������
�2−1

⋅ ����� (
, �, � (
, �))����
� �������2 (�2, �) ���1 (�2, 
)���� .
(27)

�us, we obtain����(4�) (�2, �2) − (4�) (�1, �1)���� ≤ ����� (�1, �1) − � (�2,
�2)���� + (%∗1 + %∗2 )
⋅ ∫�1
1
∫�1
1

�����������
��
�⋁
�2=1

�2 (�2, B2) ��
�⋁
�1=1

�1 (�2, B1)

− ��
�⋁
�2=1

�2 (�1, B2) ��
�⋁
�1=1

�1 (�1, B1)
�����������
+ (%∗1 + %∗2 )

⋅ ∫�2
�1
∫�2
�1
��
�⋁
�2=1

�2 (�2, B2) ��
�⋁
�1=1

�1 (�2, B1)
+ (%∗1 + %∗2 )
⋅ ∫�1
1
∫�2
�1
��
�⋁
�2=1

�2 (�2, B2) ��
�⋁
�1=1

�1 (�2, B1)
+ (%∗1 + %∗2 )
⋅ ∫�2
�1
∫�1
1
��
�⋁
�2=1

�2 (�2, B2) ��
�⋁
�1=1

�1 (�2, B1) .

(28)

Hence, we get

����(4�) (�2, �2) − (4�) (�1, �1)���� ≤ ����� (�1, �1)
− � (�2, �2)���� + (%∗1 + %∗2 )
⋅
�����������
�1⋁
�2=1

�2 (�2, B2)
�1⋁
�1=1

�1 (�2, B1)

− �1⋁
�2=1

�2 (�1, B2)
�1⋁
�1=1

�1 (�1, B1)
�����������
+ (%∗1 + %∗2 )

⋅ �2⋁
�2=�1

�2 (�2, B2)
�2⋁
�1=�1

�1 (�2, B1) + (%∗1 + %∗2 )

⋅ �2⋁
�2=�1

�2 (�2, B2)
�2⋁
�1=1

�1 (�2, B1) + (%∗1 + %∗2 )

⋅ �2⋁
�2=1

�2 (�2, B2)
�2⋁
�1=�1

�1 (�2, B1) .

(29)

As �1 → �2 and �1 → �2, the right-hand side of the above
inequality tends to zero.
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As a consequence of Steps 1 to 4 together with the Arzelá-
Ascoli theorem, we can conclude that 4 is continuous and
compact. From an application of Schauder’s theorem [25], we
deduce that 4 has a 	xed point � which is a solution of the
integral equation (1).

Now, we are concerned with the stability of solutions for
the integral equation (1).

�eorem 10. Assume that (81)–(85) hold. Furthermore,
suppose that there exists �� ∈ �(�,R+), 9 = 1, 2, such that,
for each (�, �) ∈ �, we have

%� (�, �) ≤ �� (�, �)Φ (�, �) . (30)

en the integral equation (1) is generalized Ulam-Hyers-
Rassias stable.

Proof. Let� be a solution of the inequality (14). By�eorem9,
there exists V which is a solution of the integral equation (1).
Hence

V (�, �) = � (�, �) + ∫�
1
∫�
1
(log �
 )

�1−1 (log �� )
�2−1

⋅ � (
, �, V (
, �))
�Γ (�1) Γ (�2) ���2 (�, �) ���1 (�, 
) .
(31)

By the inequality (14) for each (�, �) ∈ �, we have
���������� (�, �) − � (�, �) − ∫

�

1
∫�
1
(log �
 )

�1−1 (log �� )
�2−1

⋅ � (
, �, � (
, �))
�Γ (�1) Γ (�2) ���2 (�, �) ���1 (�, 
)
���������

≤ Φ (�, �) .

(32)

Set

�∗� = sup
(�,�)∈�

�� (�, �) ; 9 = 1, 2. (33)

For each (�, �) ∈ �, we have
����� (�, �) − V (�, �)���� ≤

���������� (�, �) − � (�, �)

− ∫�
1
∫�
1
(log �
 )

�1−1 (log �� )
�2−1

⋅ � (
, �, � (
, �))
�Γ (�1) Γ (�2) ���2 (�, �) ���1 (�, 
)
���������

+ ∫�
1
∫�
1

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1

⋅ ����� (
, �, � (
, �)) − � (
, �, V (
, �))����
�Γ (�1) Γ (�2) ���2 (�,

�) ���1 (�, 
) ≤ Φ (�, �) + 1
Γ (�1) Γ (�2)

⋅ ∫�
1
∫�
1

�������log
�


�������
�1−1 �������log

�
�
�������
�2−1 (2�∗1 + �∗2 |� (
, �)|1 + |�|

+ �∗2 |V (
, �)|1 + |V| ) Φ (
, �)

� ���2 (�, �) ���1 (�, 
)

≤ Φ (�, �) + 2 (�∗1 + �∗2 ) (����Φ) (�, �) ≤ [1
+ 2 (�∗1 + �∗2 ) A�]Φ (�, �) := $�,ΦΦ(�, �) .

(34)

Hence the integral equation (1) is generalized Ulam-Hyers-
Rassias stable.

4. An Example

As an application of our results we consider the following
Hadamard-Stieltjes integral equation

� (�, �) = � (�, �) + ∫�
1
∫�
1
(log �
 )

�1−1 (log �� )
�2−1

⋅ � (
, �, � (
, �))
�Γ (�1) Γ (�2) ���2 (�, �) ���1 (�, 
) ;
(�, �) ∈ [1, L] × [1, L] ,

(35)

where

�1, �2 > 0,
� (�, �) = � + �2; (�, �) ∈ [1, L] × [1, L] ,
�1 (�, 
) = 
,
�2 (�, �) = �;


, � ∈ [1, L] ,
� (�, �, � (�, �)) = ��2 (L−7 + � (�, �)

L�+�+5 ) ;
(�, �) ∈ [1, L] × [1, L] .

(36)

�e condition (81) is satis	ed with %1(�, �) = ��2L−7 and%∗2 = ��2/L�+�+5. We can see that the functions �1 and �2
satisfy (82)–(84). Consequently �eorem 9 implies that the
Hadamard integral equation (35) has a solution de	ned on[1, L] × [1, L].

Also, the hypothesis (85) is satis	ed with

Φ(�, �) = L3,
AΦ = 1

Γ (1 + �1) Γ (1 + �2) .
(37)

Indeed, for each (�, �) ∈ [1, L] × [1, L] we get
(����Φ) (�, �) ≤ L3

Γ (1 + �1) Γ (1 + �2) = AΦΦ(�, �) . (38)

Consequently, �eorem 10 implies that (35) is generalized
Ulam-Hyers-Rassias stable.
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