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Existence and Stability of Standing Pulses in Neural Networks: II. Stability∗

Yixin Guo† and Carson C. Chow‡

Abstract. We analyze the stability of standing pulse solutions of a neural network integro-differential equation.
The network consists of a coarse-grained layer of neurons synaptically connected by lateral inhibition
with a nonsaturating nonlinear gain function. When two standing single-pulse solutions coexist, the
small pulse is unstable, and the large pulse is stable. The large single pulse is bistable with the
“all-off” state. This bistable localized activity may have strong implications for the mechanism
underlying working memory. We show that dimple pulses have similar stability properties to large
pulses but double pulses are unstable.

Key words. integro-differential equations, integral equations, standing pulses, neural networks, stability

AMS subject classifications. 34A36, 37N25, 45G10, 92B20

DOI. 10.1137/040609483

1. Introduction. In the accompanying paper [27], we considered stationary localized self-
sustaining solutions of an integro-differential neural network or neural field equation. The
pulses are bistable with an inactive neural state and could be the underlying mechanism of
persistent neuronal activity responsible for working memory. However, in order to serve as a
memory, these states must be stable to perturbations. Here we compute the linear stability
of stationary pulse states.

The neural field equation has the form

∂u(x, t)

∂t
+ u(x, t) =

∫ ∞

−∞
w(x− y)f [u(y)]dy(1.1)

with a nonsaturating gain function

f [u] = [α(u(y, t) − uT ) + 1]Θ(u− uT ),(1.2)

where Θ(·) is the Heaviside function, and “wizard hat” connection function

w(x) = Ae−a|x| − e−|x|.(1.3)

In [27], we considered stationary solutions u0(x), where u0(x) > uT on an interval −xT <
x < xT , u(xT , t) = uT , and u(x, t) = u0(x) satisfies the stationary integral equation

u0(x) =

∫ xT

−xT

w(x− y)[α(u0(y) − uT ) + 1]dy.(1.4)
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Figure 1. Single-pulse solution.

We have shown the existence of pulse solutions of (1.4) in the form of single pulses, dimple
pulses, and double pulses [26, 27]. Examples can be seen in Figures 1, 17, and 14. We
constructed the pulses by converting the integral equation (1.4) into piecewise-linear ODEs
and then matching their solutions at the threshold points xT [36, 37]. When the excitation A
and gain α are small, there are no pulse solutions. If either is increased, there is a saddle-node
bifurcation where two coexisting single pulses, a small one and a large one, arise. As the gain
or excitation increases, more than two pulses can coexist. For certain parameters, the large
pulse can become a dimple pulse, and a dimple pulse can become a double pulse [26, 27].

In this paper, we derive an eigenvalue equation to analyze the stability of the pulse so-
lutions. While our eigenvalue equation is valid for any continuous and integrable connection
function w(x), we explicitly compute the eigenvalues for (1.3). For the cases that we tested,
we find that the small pulse is unstable and the large pulse is stable. If there is a third
(larger) pulse, then it is unstable. The stability properties of dimple pulses are the same as
corresponding large pulses. Double pulses are unstable.

2. Eigenvalue equation for stability. We consider small perturbations around a stationary
pulse solution by substituting u(x, t) = u0(x) + εv(x, t) into (1.1), where ε > 0 is small. Since
the pulse solutions are localized in space, we must assume the perturbation to the pulse
will lead to time dependent changes to the boundaries of the stationary pulse (i.e., where
u0(xT ) = uT ). Thus the boundaries −xT and xT become time dependent functions

x1(t) = −xT + ε∆1(t),(2.1)

x2(t) = xT + ε∆2(t),(2.2)

where ε∆1(t) and ε∆2(t) are the changes of the boundaries −xT and xT produced by the small
perturbations. Inserting u(x, t) = u0(x) + εv(x, t) into (1.1) and eliminating the stationary
solution with (1.4) give

vt(x, t) + v(x, t) = α

∫ xT

−xT

w(x− y)v(y, t)dy + I1 + I2,(2.3)
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where

I1 =

∫ −xT

−(xT +ε∆1(t))
w(x− y)[α(u0(y) + εv(y, t) − uT ) + 1]dy,(2.4)

I2 =

∫ xT +ε∆2(t)

xT

w(x− y)[α(u0(y) + εv(y, t) − uT ) + 1]dy.(2.5)

Expanding the integrals I1 and I2 to order ε yields the linearized dynamics for the perturba-
tions v(x, t)

vt(x, t) + v(x, t) = α

∫ xT

−xT

w(x− y)v(y, t)dy − w(x + xT )∆1 + w(x− xT )∆2.(2.6)

The time dependence of ∆1 and ∆2 is found by using the fact that u(x, t) is equal to
the threshold uT at the boundaries of the pulse. Inserting (2.1) and (2.2) into the boundary
condition u(x1(t), t) = uT and expanding to first order in ε lead to

∆1(t) = −v(−xT , t)

c
,(2.7)

where

c =
du0(x)

dx

∣∣∣∣
x=−xT

> 0.(2.8)

Similarly,

∆2(t) =
v(xT , t)

c
.(2.9)

Consider time variations of v(x, t) that obey

v(x, t) = v(x)eλt,(2.10)

where v(x) is a bounded and continuous function that decays to 0 exponentially as x → ±∞.
Substitute (2.10) with (2.7) and (2.9) into (2.6) to obtain

(1 + λ)v(x) = w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c
+ α

∫ xT

−xT

w(x− y)v(y)dy,(2.11)

where λ is an eigenvalue with corresponding eigenfunction v(x). Equation (2.11) is an eigen-
value problem that governs the stability of small perturbations to pulse solutions of the neural
field equation (1.1). If the real parts of all the eigenvalues are negative, the stationary pulse
solution u0(x) is stable. If the real part of one of the eigenvalues is positive, u0(x) is unstable.

We define an operator L: C[−xT , xT ] → C[−xT , xT ]:

Lv(x) = w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c
+ α

∫ xT

−xT

w(x− y)v(y)dy.(2.12)
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Then the eigenvalue equation (2.11) becomes

(1 + λ)v(x) = L(v(x)) on C [−xT , xT ] .(2.13)

We show in the appendix (Theorem A.7) that L is a compact operator. We also show the
following properties of the eigenvalue equation (2.11):

1. Eigenvalues λ are always real (Theorem A.4).
2. Eigenvalues λ are bounded by λb ≡ 2k0

c +2αk1xT−1, where k0 is the maximum of |w(x)|
on [0, 2xT ] and |w(x− y)| ≤ k1 for all (x, y) ∈ J × J , J = [−xT , xT ] (Theorem A.5).

3. Zero is always an eigenvalue (Theorem A.6).
4. λ = −1 is the only possible accumulation point of the eigenvalues (Theorem A.8).

Thus, the only possible essential spectrum of operator L is located at λ = −1, implying
that the discrete spectrum of L (i.e., eigenvalues of (2.11)) captures all of the stability
properties.

We use these properties to compute the discrete eigenvalues to determine stability of the pulse
solutions.

3. Linear stability analysis of the Amari case (α = 0). Amari [3] computed the stability
of pulse solutions to (1.1) for α = 0. He obtained stability by computing the dynamics of the
pulse boundary points. He found that the small pulse is always unstable and the large pulse
is always stable. Pinto and Ermentrout [46] later confirmed Amari’s results by deriving an
eigenvalue problem for small perturbations.

We consider a stationary pulse solution of (1.1) with width xT . Applying eigenvalue
equation (2.11) to the Amari case yields

(1 + λ)v(x) = w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c
≡ T1(v(x)),(3.1)

where T1 is a compact operator on C[−xT , xT ] (see Theorem A.7). The spectrum of a compact
operator is a countable set with no accumulation point different from zero. Therefore, the only
possible location of the essential spectrum for T1 is at λ = −1. This implies that instability
of a pulse is indicated by the existence of a positive discrete eigenvalue.

The eigenvalue λ can be obtained by setting x = −xT and x = xT in (3.1) to give a two
dimensional system (

1 + λ− w(0)

c

)
v(xT ) − w(2xT )

c
v(−xT ) = 0,(3.2)

−w(2xT )

c
v(xT ) +

(
1 + λ− w(0)

c

)
v(−xT ) = 0.(3.3)

This is identical to the eigenvalue equation of [46]. Setting the determinant of system
(3.2)–(3.3) to zero gives the eigenvalues

λ =
w(0) ± w(2xT )

c
− 1,(3.4)

which agrees with [46].
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The stationary solution of the Amari problem satisfies

u(x) =

∫ xT

−xT

w(x− y)dy =

∫ x−xT

x+xT

w(y)dy.(3.5)

Differentiating u(x) yields u′(x) = w(x + xT ) − w(x− xT ), implying

u′(−xT ) = w(0) − w(2xT ) = c.(3.6)

Inserting into (3.4) gives the eigenvalues

λ =
w(0) + w(2xT )

c
− 1, 0.(3.7)

The zero eigenvalue was expected from translational symmetry. Since w(0) > w(2xT ), the sign
of c alone determines stability of the pulse. Recall that the small and large pulses arise from
a saddle-node bifurcation [3, 9, 26, 27]. At the saddle-node bifurcation, both eigenvalues are
zero. Thus, setting λ = 0 in (3.7) shows that the width of the pulse satisfies w(2xT ) = 0 [3].
For our connection function, w(x) has only one zero at x0 for w(x) on (0,∞) (see [26, 27]),
where x0 = lnA

a−1 . Thus xT = x0/2 at the saddle-node. For the large pulse, xT > x0/2, implying
w(2xT ) < 0 and c > 0. Conversely, c < 0 for the small pulse. Thus the large pulse is stable
and the small pulse is unstable.

Consider the example a = 2.4, A = 2.8, uT = 0.400273, α = 0. There exist two single
pulses, the large pulse l and the small pulse s [26, 27]. For the pulse l, xl

T = 0.607255 gives
the nonzero eigenvalue λ = −0.165986 < 0, indicating it is stable. For the small pulse s,
xs

T = 0.21325 gives λ = 0.488339 > 0, indicating it is unstable.

4. Computing the eigenvalues. For the case of α > 0, we must compute the eigenvalues of
(2.11) with the integral operator. Our strategy is to reduce the integral equation to a piecewise-
linear ODE on three separate regions. The discrete spectrum can then be obtained from the
zeros of the determinant of a linear system based on the matching conditions between the
regions. This approach is similar to the Evans function method [10, 17, 18, 19, 20, 30, 50, 61].

4.1. ODE form of the eigenvalue problem. We transform (2.11) (with the connection
function defined by (1.3)) into three piecewise-linear ODEs on (−∞, xT ), (−xT , xT ), and
(−xT ,∞). The ODEs then obey a set of matching conditions at x = xT and x = −xT .

On the domain x ∈ (−xT , xT ), we can write (2.11) in the form

(1 + λ)v(x) = T1(x) + I1 − I2 + I3 − I4,(4.1)

where

I1(x) = α

∫ x

−xT

Ae−a(x−y)v(y)dy, I2(x) = α

∫ x

−xT

e−(x−y)v(y)dy,

I3(x) = α

∫ xT

x
Aea(x−y)v(y)dy, I4(x) = α

∫ xT

x
e(x−y)v(y)dy,
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and

T1(x) = w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c
.(4.2)

Differentiating (4.1) repeatedly gives

(1 + λ)v′(x) = T ′
1(x) − aI1 + I2 + aI3 − I4,(4.3)

(1 + λ)v′′(x) = T ′′
1 (x) + a2I1 − I2 + a2I3 − I4 + 2α(1 − aA)v(x),(4.4)

(1 + λ)v′′′(x) = T ′′′
1 (x) − a3I1 + I2 + a3I3 − I4 + 2α(1 − aA)v′(x),(4.5)

(1 + λ)v′′′′(x) = T ′′′′
1 (x) + a4I1 − I2 + a4I3 − I4 + 2α(1 − a3A)v(x)(4.6)

+ 2α(1 − aA)v′′(x),

where we have used

I ′1 = −aI1 + αAv(x), I ′2 = −I2 + αv(x),

I ′3 = aI3 − αAv(x), I ′4 = I4 − αv(x).

Taking (4.5) − a2(4.1) and rearranging give

I2 + I4 =
1

a2 − 1

[
(λ + 1)v′′ + (2αaA− 2α− a2λ− a2)v + a2T1 − T ′′

1

]
.(4.7)

Substituting (4.7) back into (4.1) leads to

I1 + I3 =
1

a2 − 1

[
(λ + 1)v′′ + (2αaA− 2α− λ− 1)v + T1 − T ′′

1

]
.(4.8)

Substituting both (4.7) and (4.8) into (4.6) results in a fourth order ODE for v on the domain
x ∈ (−xT , xT )

1 + λ

α
v′′′′ =

[
(1 + λ)(a2 + 1)

α
+ 2(1 − aA)

]
v′′ + a

[
2(A− a) − λ + 1

α
a

]
v(4.9)

+ T ′′′′
1 (x) − (1 + a2)T ′′

1 (x) + a2T1(x).

Using T ′′′′
1 (x)−(1+a2)T ′′

1 (x)+a2T1(x) = 0 (obtained by differentiating T1(x)) and simplifying
lead to

(1 + λ)v′′′′ −Bv′′ + Cv = 0, x ∈ (−xT , xT ),(4.10)

where B = (1 + λ)(a2 + 1) + 2α(1 − aA) and C = (λ + 1)a2 − 2αa(A− a).
On the domain x ∈ (xT ,∞), (2.11) can be written as

(1 + λ)v = T1 + J1 − J2,(4.11)

where

J1 = αA

∫ xT

−xT

e−a(x−y)v(y)dy, J2 =

∫ xT

−xT

e−(x−y)v(y)dy,
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and T1 is defined by (4.2) on the domain (xT ,∞).
Differentiating (4.11) and using J ′

1 = −aJ1 and J ′
2 = −J2 give

(1 + λ)v′(x) = T ′
1 − aJ1 + J2,(4.12)

(1 + λ)v′′(x) = T ′′
1 + a2J1 − J2.(4.13)

Taking a(4.11) + (a + 1)(4.12) + (4.13) and using T ′′
1 + (1 + a)T ′

1 + aT1 = 0 lead to

v′′ + (a + 1)v′ + av = 0, x ∈ (xT ,∞).(4.14)

Similarly, the ODE on (−∞,−xT ) is given by

v′′ − (a + 1)v′ + av = 0, x ∈ (−∞,−xT ).(4.15)

In summary, the eigenvalue problem (2.11) reduces to three ODEs:

(ODE I) v′′ − (a + 1)v′ + av = 0, x ∈ (−∞,−xT ),

(ODE II) (1 + λ)v′′′′ −Bv′′ + Cv = 0, x ∈ (−xT , xT ),

(ODE III) v′′ + (a + 1)v′ + av = 0, x ∈ (xT ,∞),

where B = (1 + λ)(a2 + 1) + 2α(1 − aA) and C = (λ + 1)a2 − 2αa(A− a).

4.2. Matching conditions. The solutions of ODEs I, II, and III and their first three
derivatives must satisfy a set of matching conditions across the boundary points −xT and xT .
We derive these conditions from the original eigenvalue equation (2.11) which we write as

c(1 + λ)v(x) = w(x− xT )v(xT ) + w(x + xT )v(−xT ) + cαW (x),(4.16)

where W (x) =
∫ xT

−xT
w(x−y)v(y)dy, x ∈ (−∞,∞). From (4.16), we see that v(x) is continuous

on (−∞,∞). However, w(x) has a cusp at x = 0 which will lead to discontinuities in the
derivatives of v(x) across the boundary points −xT and xT .

We first probe the discontinuities of W (x) and its derivatives. W (x) is continuous on
(−∞,∞). By a change of variables, W (x) =

∫ x+xT

x−xT
w(z)v(x− z)dz, from which we obtain

W ′(x) = w(x + xT )v(−xT ) − w(x− xT )v(xT ) +

∫ x+xT

x−xT

w(z)v′(x− z)dz,

indicating that W ′(x) is also continuous on (−∞,∞). However, W ′(x) is not smooth at
−xT and xT . Differentiating W ′(x) for x �= −xT , xT gives

W ′′(x) = w′(x + xT )v(−xT ) − w′(x− xT )v(xT ) + w(x + xT )v′(−x+
T )

− w(x− xT )v′(x−T ) −
∫ x−xT

x+xT

w(z)v′′(x− z)dz,

where v′(−x+
T ) = limx→−x+

T
v′(x) for x > −xT (right limit) and v′(x−T ) = limx→x−

T
v′(x) for

x < xT (left limit).
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Using the convention

[·] |x=xT = ·|x=x+
T
− ·|x=x−

T
, [·] |x=−xT = ·|x=−x+

T
− ·|x=−x−

T

to represent the jump at the boundaries, we find that[
W ′′(xT )

]
= W ′′(x)|x=x+

T
−W ′′(x)|x=x−

T
= −

[
w′(0)

]
v(xT ),[

W ′′(−xT )
]

= W ′′(x)|x=−x+
T
−W ′′(x)|x=−x−

T
=

[
w′(0)

]
v(−xT ).

We differentiate W ′′(x) for x �= −xT , xT and find[
W ′′′(xT )

]
= −

[
w′′(0)

]
v(xT ) −

[
w′(0)

]
v′(x−T ),[

W ′′′(−xT )
]

=
[
w′′(0)

]
v(−xT ) +

[
w′(0)

]
v′(−x+

T ).

To find the matching conditions for the derivatives of v(x), we differentiate (4.16) with
respect to x for x �= −xT , xT and obtain

c(1 + λ)v′(x) = w′(x− xT )v(xT ) + w′(x + xT )v(−xT ) + cαW ′(x).

v′(x) is discontinuous at the boundaries because of the discontinuity of w′(x) at x = 0.
Therefore,

[
v′(xT )

]
=

1

c(1 + λ)

[
w′(0)

]
v(xT ),

[
v′(−xT )

]
=

1

c(1 + λ)

[
w′(0)

]
v(−xT ).

Differentiating (4.16) twice yields

c(1 + λ)v′′(x) = w′′(x− xT )v(xT ) + w′′(x + xT )v(−xT ) + cαW ′′(x), x �= −xT , xT .

There are discontinuities of v′′(x) at −xT and xT that come from W ′′(−xT ) and W ′′(xT ). Note
that w′′(0−) = w′′(0+). The jump conditions of v′′(x) at −xT and xT are[

v′′(xT )
]

=
α

1 + λ

[
W ′′(xT )

]
= − α

1 + λ

[
w′(0)

]
v(xT ),[

v′′(−xT )
]

=
α

1 + λ

[
W ′′(−xT )

]
=

α

1 + λ

[
w′(0)

]
v(−xT ).

By differentiating a third time we find the jump conditions for v′′′(x) at −xT and xT :

[
v′′′(xT )

]
=

1

c(1 + λ)

[
w′′′(0)

]
v(xT ) +

α

1 + λ

[
W ′′′(xT )

]
=

1

c(1 + λ)

[
w′′′(0)

]
v(xT ) − α

1 + λ

[
w′(0)

]
v′(x−T ),

[
v′′′(−xT )

]
=

1

c(1 + λ)

[
w′′′(0)

]
v(−xT ) +

α

1 + λ

[
W ′′′(xT )

]
=

1

c(1 + λ)

[
w′′′(0)

]
v(−xT ) +

α

1 + λ

[
w′(0)

]
v′(−x+

T ).
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Using the connection function w(x) defined in (1.3), we have[
w′(0)

]
= w′(0+) − w′(0−) = 2(1 − aA),[

w′′(0)
]

= w′′(0+) − w′′(0−) = 0,[
w′′′(0)

]
= w′′′(0+) − w′′′(0−) = 2(1 − a3A).

These results lead directly to the following theorem.

Theorem 4.1. The continuous eigenfunction v(x) on (−∞,∞) in (2.11) has the following
jumps in its first, second, and third order derivatives at the boundary −xT and xT :

[v(xT )] = 0,(4.17) [
v′(xT )

]
=

2α(1 − aA)

1 + λ
v(xT ),(4.18)

[
v′′(xT )

]
=

2(aA− 1)

c(1 + λ)
v(xT ),(4.19)

[
v′′′(xT )

]
=

2(1 − a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T ),(4.20)

[v(−xT )] = 0,(4.21) [
v′(−xT )

]
=

2α(1 − aA)

1 + λ
v(−xT ),(4.22)

[
v′′(−xT )

]
=

−2(aA− 1)

c(1 + λ)
v(−xT ),(4.23)

[
v′′′(−xT )

]
=

2(1 − a3A)

c(1 + λ)
v(−xT ) − 2α(aA− 1)

1 + λ
v′(−x+

T ).(4.24)

4.3. Eigenfunction symmetries. We define v1(x), v2(x), and v3(x) as the solutions of
ODEs I, II, and III, respectively (see Figure 2). The three ODEs are all linear with constant
coefficients. The continuous and bounded eigenfunction v(x) of (2.11) is defined as

v(x) =

⎧⎪⎨
⎪⎩
v1(x), x ∈ (−∞,−xT ],

v2(x), x ∈ [−xT , xT ],

v3(x), x ∈ [xT ,∞),

and v1(x) matches v2(x) at −xT and v2(x) matches v3(x) at xT .

0−xT xT

x
ODE I                   ODE II                 ODE III

v1(x)                       v2(x)                   v3(x)

Figure 2. Valid ODEs on different sections and their solutions.
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Lemma 4.2. The eigenfunction v(x) is either even or odd.
Proof. By symmetry of ODE II, if v2(x) is a solution, then v2(−x) is also a solution.

Hence, both the even function v2(x)+v2(−x)
2 and the odd function v2(x)−v2(−x)

2 are solutions of
ODE II.

Let

T2(x) = α

∫ xT

−xT

w(x− y)v2(y)dy.

If v2(x) is an even function, then since w(x) is even, T2(x) is also even.
By the continuity of v(x) on R, v(xT ) and v(−xT ) can be replaced by v2(x

−
T ) and v2(−x+

T ),
respectively. Thus the eigenvalue problem (2.11) is

(1 + λ)v(x) = w(x− xT )
v2(xT )

c
+ w(x + xT )

v2(−xT )

c
+ T2(x).(4.25)

Given that v2(x), w(x), and T2(x) are all even functions, from (4.25) we see that v(x) is also
even. Similarly, we can show that v(x) is odd when v2(x) is odd.

Lemma 4.3. The matching conditions at −xT are identical to those at xT when v(x) is an
odd or an even function.

Proof. This is shown with a direct calculation of the matching conditions of v′(x), v′′(x),
and v′′′(x) at both −xT and xT .

If v(x) is even, i.e., v(−xT ) = v(xT ) and v′(−x+
T ) = −v′(x−T ), then defining the jump of v

at x as [v(x)] = v(x+) − v(x−), the following equalities are derived:

[v(−xT )] = − [v(xT )] ,(4.26) [
v′(−xT )

]
=

[
v′(xT )

]
,(4.27) [

v′′(−xT )
]

= −
[
v′′(xT )

]
,(4.28) [

v′′′(−xT )
]

=
[
v′′′(xT )

]
.(4.29)

Given the equalities (4.26)–(4.29), a direct calculation shows that the matching conditions
(4.21)–(4.24) at −xT are equivalent to the matching conditions (4.17)–(4.20) at xT .

When v(x) is odd, using the same approach, we can also justify that the matching condi-
tions at −xT and xT are the same.

4.4. ODE solutions. ODEs I, II, and III are linear with constant coefficients and can
be readily solved in terms of the parameters A, a, α, and uT . The eigenvalue λ is specified
when the solutions of the three ODEs are matched across the boundaries at x = −xT and
x = xT . Solutions of ODE I are related to ODE III by a reflection x → −x. By Lemma 4.3,
the matching conditions at −xT are the same as those at xT . Thus matching solutions v2(x)
of ODE II with solutions v3(x) of ODE III across xT are sufficient to specify the eigenvalues
of (2.11). The solution of ODE III is

v3(x) = c5e
−ax + c6e

−x,

where c5 and c6 are constants. Notice that v3(x) exponentially decays to zero as x → ∞, in
accordance with the assumed properties of v(x).
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The solutions of ODE II will depend nontrivially on the parameters A, a, and α. The
characteristic equation of ODE II is

(1 + λ)ω4 −Bω2 + C = 0,

where

B = (1 + λ)(a2 + 1) + 2α(1 − aA)(4.30)

and

C = (1 + λ)a2 − 2αa(A− a).(4.31)

The characteristic values are

ω2 =
B ±

√
∆

2(1 + λ)
,(4.32)

where

∆ = B2 − 4(1 + λ)C(4.33)

= (a2 − 1)2λ2 + 2(a2 − 1)(a2 − 1 − 2aAα− 2α)λ

− (a2 − 1)(1 − a2 + 4α + 4aAα) + 4α2(1 − aA)2.

Let λB be the zero of B. If ∆ is negative, (4.32) shows that ODE II will have complex
characteristic values. If ∆ is positive, combinations of B and ∆ yield either real or imaginary
values. For fixed A, a, and α, ∆ is a parabola with a left zero λl and a right zero λr. By
Lemmas A.9 and A.10 in the appendix, either λl ≤ λB ≤ λr and does not intersect with either
branch of

√
∆ or λB ≤ λl and intersects with the left branch of

√
∆. Tables 1 and 2 describe

all the possible structures of the characteristic values ±ω1 and ±ω2. There are three possible
forms of solution v2(x): (1) both ω1 and ω2 are real; (2) both ω1 and ω2 are complex; and
(3) ω1 is real and ω2 is imaginary.

Table 1
Characteristic value chart when λl < λB < λr.

1 2 3 4 5

−1 < λ < λl λ = λl λl < λ < λr λ = λr λ > λr

B < 0 B < 0 B > 0 or B < 0 B > 0 B > 0

∆ > 0, ∆ = 0 ∆ < 0 ∆ = 0 ∆ > 0

|B| <
√

∆

ω1 real ω1,2 imaginary ω1,2 complex ω1,2 real ω1,2 real
ω2 imaginary ω1 = ω∗

2 ω1 = ω∗
2 ω1 = ω2

We denote the even solutions of ODE II as ve
2(x) and the odd solutions as vo

2(x). When
λ ≥ λr or λI ≤ λ ≤ λl, both ω1 and ω2 are real. Thus

ve
2(x) = c3µ1(x) + c4

µ1(x) − µ2(x)

ω1 − ω2
,(4.34)
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Table 2
Characteristic value chart when λB < λl < λr.

1 2 3 4 5 6

−1 < λ < λI λI ≤ λ < λl λ = λl λl < λ < λr λ = λr λ > λr

B < 0 or B > 0 B > 0 B < 0 B > 0 B > 0
B > 0

∆ > 0, ∆ > 0, ∆ = 0 ∆ < 0 ∆ = 0 ∆ > 0

|B| <
√

∆ |B| >
√

∆

ω1 real ω1,2 real ω1,2 real ω1,2 complex ω1,2 real ω1,2 real
ω2 imaginary ω1 = ω2 ω1 = ω∗

2 ω1 = ω2

where µ1(x) = eω1x + e−ω1x and µ2(x) = eω2x + e−ω2x. We use (4.34) because it is more con-
venient to resolve the degenerate case of ω1 = ω2. As λ → λ−

r , µ1 → µ2, and ε = ω1 −ω2 → 0,
(4.34) becomes

ve
2(x) = c3(e

ω1x + e−ω1x) + c4
(eω1x + e−ω1x) − (eω1xe−εx + e−ω1xeεx)

ε
.

Replacing eεx by 1 + εx and e−εx by 1 − εx and taking the limit as ε → 0 yield

ve
2(x) = c3(e

ω1x + e−ω1x) + c4x(eω1x − e−ω1x)

= 2c3 cosh px + 2c4x sinh px.(4.35)

Equation (4.34) approaches (4.35) as λ → λ−
r . It matches the solution ve

2(x) as λ → λ+
r , which

is given in (4.37).

Similarly, vo
2(x) can be written as

vo
2(x) = c3(e

ω1x − e−ω1x) + c4
(eω1x − e−ω1x) − (eω2x − e−ω2x)

ω1 − ω2
.

When λl < λ < λr, ω1 and ω2 are complex. Let ω1 = p + iq, ω2 = p− iq. When v2(x) is
even, write ve

2(x) as

ve
2(x) = 2c3 cos qx cosh px + 2c4

sin qx

q
sinh px.(4.36)

As λ → λ+
l or λ−

r , q → 0,

ve
2(x) → 2c3 cosh px + 2c4x sinh px.(4.37)

vo
2(x) can be written as

vo
2(x) = 2c3 cos qx sinh px− 2c4

sin qx

q
cosh px,

where p =

√√
B2+|∆|

2(1+λ) cos θ, p =

√√
B2+|∆|

2(1+λ) sin θ, and θ = 1
2 arctan

√
|∆|
B .
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When −1 < λ < λI , ω1 is real and w2 is imaginary. Let ω2 = iq, where q =
√√

∆−B
2(1+λ) .

Then

ve
2(x) = c3(e

ω1x + e−ω1x) + 2c4 cos(qx),(4.38)

vo
2(x) = c3(e

ω1x − e−ω1x) + 2c4
sin(qx)

q
.(4.39)

5. Stability criteria. By Theorem 4.1, v1(x) and v2(x) must match at −xT , and v2(x)
and v3(x) must match at xT . By Lemma 4.3, the matching conditions at −xT are same as the
matching conditions at xT for v(x) even or odd. Therefore, it suffices to apply the matching
condition to v2(x) and v3(x) at xT for the even and odd cases separately. This reduces the
dimensionality of the resulting eigenvalue problem by a factor of two. In general, the matching
conditions can be written as

T1 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[v(xT )] = v3(x
+
T ) − v2(x

−
T ) = 0,

[v′(xT )] = v′3(x
+
T ) − v′2(x

−
T ) =

2α(1 − aA)

1 + λ
v(xT ),

[v′′(xT )] = v′′3(x+
T ) − v′′2(x−T ) =

2(aA− 1)

c(1 + λ)
v(xT ),

[v′′′(xT )] = v′′′3 (x+
T ) − v′′′2 (x−T ) =

2(1 − a3A)

c(1 + λ)
v(xT ) +

2α(aA− 1)

1 + λ
v′(x−T ),

where v(xT ) = v3(x
+
T ) and v′(x−T ) = v′2(x

−
T ).

A given stationary pulse solution u0(x) will be specified by a set of parameters a, A, α, xT ,
and uT . The eigenvalues λ that determine stability of pulse solutions are given by system T1.
To compute these eigenvalues, we require the appropriate form of the eigenfunctions v2(x)
and v3(x). We do so by finding characteristic values (4.32) corresponding to the parameters
specifying the given stationary pulse solution. We expedite this process by calculating the
constants B (4.30) and C (4.31) and then using Tables 1 and 2 to deduce the characteristic
value types. We then substitute the appropriate form for v2(x) and v3(x) into T1, where
coefficients c3 and c4 in v2(xT ) and c5 and c6 in v3(xT ) are unknown. We replace v(xT ) by
v3(x

+
T ) and v′(x−T ) by v′2(x

−
T ). This results in a 4 × 4 homogeneous linear system with four

unknown free parameters c3, c4, c5, c6. We must do this for both even and odd eigenfunctions
resulting in two separate linear systems that must be solved.

The coefficient matrix of this system must be singular for a nontrivial solution (c3, c4,
c5, c6). Hence, the determinant D(λ) of the coefficient matrix must be zero. Thus, the solution
of D(λ) = 0 is an eigenvalue and it determines the stability of the stationary solution. If there
exists a λ such that 0 < λ < λb and D(λ) = 0, then the standing pulse is unstable. If there
is no positive λ such that 0 < λ < λb and D(λ) = 0, the standing pulse is stable. Our
determinant D(λ) for stability is similar to the Evans function [17, 18, 19, 20].

5.1. Stability of the small and large pulse. Two single-pulse solutions were shown to exist
in the accompanying paper [26] for parameters a = 2.4, A = 2.8, α = 0.22, uT = 0.400273,
and β = 1. The large pulse has a higher amplitude and larger width and is denoted by ul(x).
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The small pulse is slightly above threshold and much narrower than ul(x) and is denoted by
us(x). The explicit forms are given by

ul(x) =

{
0.665 cos(0.31x) cosh(1.49x) − 3.78 sin(0.31x) sinh(1.49x) + 0.33, x ∈ [−xT , xT ],

6.237e−2.4|x| − 1.604e−|x| otherwise,

where xT = 0.683035, and

us(x) =

{
0.22 cos(0.31x) cosh(1.49x) − 8.03 sin(0.31x) sinh(1.49x) + 0.33, x ∈ [−xT , xT ],

1.203e−2.4|x| − 0.416e−|x| otherwise,

where xT = 0.202447.
We first calculate the upper bound for the eigenvalue λb, which is different for the large

pulse and small pulse because λb depends on xT . Let λl
b be the upper bound for the large

pulse and λs
b be the upper bound for the small pulse. For the parameter set a = 2.4, A = 2.8,

α = 0.22, uT = 0.400273, the upper bounds are λl
b = 1.25917 and λs

b = 1.66628.
For the above set of parameters, v3(x) always has the following form:

v3(x) = c5e
−ax + c6e

−x.

The form of v2(x) depends on ω1 and ω2. For this specific set of parameters, the left and
right solutions of ∆ (4.33) are λl = −0.627692 and λr = 0.192861. When 0 ≤ λ ≤ λr, both
ω1 and ω2 are complex, implying

v2(x) =

⎧⎪⎪⎨
⎪⎪⎩
ve
2(x) = 2c3 cos qx cosh px + 2c4

sin qx

q
sinh px, v2(x) is even,

vo
2(x) = 2c3 cos qx sinh px− 2c4

sin qx

q
cosh px, v2(x) is odd,

where p, q are real and c3, c4 are unknown.
Substituting ve

2(x) (vo
2(x)) and v3(x) into system T1 results in an unwieldy 4 × 4 linear

system in c3, c4, c5, and c6. We use Mathematica [59] to calculate the determinant of the
coefficient matrix as a function of λ.

When 0.192861 = λr ≤ λ ≤ λl
b = 1.25917, ω1,2 is real, and v2(x) has the form

v2(x) =

⎧⎪⎪⎨
⎪⎪⎩
c3(e

ω1x + e−ω1x) + c4
(eω1x + e−ω1x) − (eω2x + e−ω2x)

ω1 − ω2
, v2(x) is even,

c3(e
ω1x − e−ω1x) − c4

(eω1x − e−ω1x) − (eω2x + e−ω2x)

ω1 − ω2
, v2(x) is odd.

Figure 3 gives a plot of D(λ) on the domain [0, λb], combining the regimes where ω1,2 is real
and complex. We see that there is no positive λ that satisfies D(λ) = 0. Figure 4 shows D(λ)
for odd v(x). We see that D(λ) = 0 only when λ = 0, which is consistent with Theorem A.6.
The lack of a positive zero of D(λ) indicates that the large pulse is stable.

For the same set of parameters, {a = 2.4, A = 2.8, α = 0.22, uT = 0.400273}, the upper
bound of the small pulse is λs

b = 1.66628. Repeating the same procedure as for the large
pulse, we plot D(λ) for both ve

2(x) and vo
2(x) (Figures 5 and 6). The existence of a positive

eigenvalue λ = λ∗ satisfying D(λ∗) = 0 in Figure 5 implies the instability of the small single
pulse. The plot of D(λ) corresponding to vo(x) in Figure 6 identifies the zero eigenvalue.
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λ0
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D(λ)

Figure 3. Plot of D(λ) for large single pulse ul(x) when v2(x) is even. a = 2.4, A = 2.8, α = 0.22,
uT = 0.400273, xT = 0.683035, λr = 0.192861, λl

b = 1.25917. There is no positive λ such that D(λ) = 0,
λ ≤ λl

b.

λr λb

b
0 1

λ0

50
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Figure 4. Plot of D(λ) for large single pulse ul(x) when v2(x) is odd. a = 2.4, A = 2.8, α = 0.22,
uT = 0.400273, xT = 0.683035, λr = 0.192861, λl

b = 1.25917. There is no positive λ such that D(λ) = 0,
λ ≤ λl

b. When v2(x) is odd, D(λ) does identify the zero eigenvalue.

5.2. Stability and instability for different gain α. For both the large single pulses and
the small single pulses, D(λ) is monotonically increasing (see Figures 7 and 8). However, D(0)
for small pulses is negative. As λ increases, D(λ) crosses the λ-axis and becomes positive.
Therefore, D(λ) has a positive zero. For the large pulse, D(0) is positive and D(λ) has no
positive zero. We follow D(0) for a range of α ∈ (0.22, 0.59) in Figure 9 and find that D(0)
is always negative for small pulses and positive for large pulses. Hence, the large pulses are
stable and the small pulses are unstable in this range.

5.3. Stability of the dimple pulse ud(x) and the instability of the third pulse. When
there are only two single pulses, the large pulse could be a dimple pulse instead of a single
pulse. This dimple pulse has the same stability properties as a large pulse. The parameter
set a = 2.4, A = 2.8, α = 0.22, uT = 0.18, and xT = 2.048246 corresponds to a dimple pulse.
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Figure 5. Plot of D(λ) for small single pulse us(x) when v2(x) is even. a = 2.4, A = 2.8, α = 0.22,
uT = 0.400273, xT = 0.683035, λr = 0.192861, λs

b = 1.66628, λ∗ = 0.603705. There is one positive λ = λ∗

such that D(λ∗) = 0, λ∗ ≤ λs
b.
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s
0 1

λ0

50

D(λ)

Figure 6. Plot of D(λ) for small single pulse us(x) when v2(x) is odd. a = 2.4, A = 2.8, α = 0.22,
uT = 0.400273, xT = 0.683035, λr = 0.192861, λs

b = 1.66628. There is no positive λ such that D(λ) = 0,
λ ≤ λs

b. When v2(x) is odd, D(λ) = 0 at λ = 0 identifies the zero eigenvalue.

Carrying out the stability calculation yields D(λ) shown in Figures 10 and 11. We see that
there is no zero crossing and thus the dimple pulse is stable. This is true for all dimple pulses
we tested in this category.

As shown in [26] and [27], for certain parameter regimes, there can be more than two
coexisting pulses. When there are three pulses, the third pulse can be either a single pulse or
a dimple pulse. For example, when A = 2.8, a = 2.2, α = 0.8, uT = 0.2, the third pulse is the
single pulse

u(x) =

{
1.28 cos(0.47x) cosh(1.2x) + 1.27 sin(0.47x) sinh(1.2x) + 0.8129, x ∈ [−xT , xT ],

198.78e2|x| − 15.15e−|x| otherwise,

where xT = 2.20629. D(λ) shown in Figure 12 indicates that this pulse is unstable. When
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Figure 7. Plots of D(λ) for large single pulses with different gain α. a = 2.4, A = 2.8, α = 0.22,
uT = 0.400273.
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Figure 8. Plots of D(λ) for small single pulses with different gain α. a = 2.4, A = 2.8, α = 0.22,
uT = 0.400273.

a = 2.6, A = 2.8, α = 0.6178, uT = 0.063, the third pulse is the dimple pulse

u(x) =

{
0.35 cos(1.112x) cosh(1.112x) + 0.24 sin(1.112x) sinh(1.112x) + 0.163, x ∈ [−xT , xT ],

232.89e2.6|x| − 9.31e−|x| otherwise,

where xT = 1.98232. As seen in Figure 13, D(λ) crosses zero for a positive λ, indicating that
it is unstable. In all the cases that we have examined, we find that the third pulse is unstable.

6. Double pulse and its stability. For certain parameter regimes, there can be double-
pulse solutions which have two disjoint open and finite intervals for which the synaptic input
u(x) is above threshold [26, 27, 35]. An example is shown in Figure 14. We consider symmetric
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Figure 9. Plots of D(0) for both large single pulses (blue branch) and small single pulse (red branch) with
α ∈ (0.22, 0.59). a = 2.4, A = 2.8, uT = 0.400273.
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Figure 10. Plot of D(λ) for dimple pulse when v2(x) is even. a = 2.4, A = 2.8, α = 0.22, xT = 2.048246,
λr = 0.192861, λd

b = 2.48147. There is no positive λ such that D(λ) = 0.

double pulses that satisfy the equation

u(x) =

∫ x1

−x2

w(x− y)f [u(y)]dy +

∫ x2

x1

w(x− y)f [u(y)]dy,(6.1)

where x1,2 > 0. Thus u > uT for x ∈ (x1, x2) ∪ (−x2,−x1), u = uT for x = −x2,−x1, x1, x2,
and u < uT outside of these regions and approaches zero as x → ∞. We show their existence
in [26] and [27].

Linearizing the dynamical neural field equation (1.1) around a stationary double-pulse
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Figure 11. Plot of D(λ) for dimple pulse when v2(x) is odd. a = 2.4, A = 2.8, α = 0.22, uT = 0.18,
xT = 2.048246, λr = 0.192861, λs

b = 2.48147. There is no positive λ such that D(λ) = 0, λ ≤ λd
b . When v2(x)

is odd, D(λ) does identify the zero eigenvalue because D(λ) = 0 at λ = 0. This is consistent with Theorem A.6.

0.5 1λ∗

λ
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Figure 12. Plot of D(λ) for the third pulse (a single pulse) when v2(x) is even. a = 2.2, A = 2.8, α = 0.8,
uT = 0.2, xT = 2.0629, c = 2.75017, D(0) = −0.0153. There is a positive λ such that D(λ) = 0.

solution u(x) gives eigenvalue equation

(1 + λ)v(x) = w(x− x1)
v(x1)

c1
+ w(x + x1)

v(−x1)

c1
+ w(x− x2)

v(x2)

c2
(6.2)

+ w(x + x2)
v(−x2)

c2
+ α

(∫ −x1

−x2

w(x− y)v(y)dy +

∫ x2

x1

w(x− y)v(y)dy

)
.

The eigenvalues λ of (6.2) possess the same properties as those of the eigenvalue equation for
the single-pulse solutions.

For simplicity, we consider the Amari case in which α = 0. The solution of (6.2) for α > 0
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Figure 13. Plot of D(λ) for the third pulse (a dimple pulse) when v2(x) is even. a = 2.6, A = 2.8,
α = 0.6178, uT = 0.063, xT = 1.98232, c = 2.21523, D(0) = −0.094. There is a positive λ such that D(λ) = 0.
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Figure 14. Double pulse for Amari case in which α = 0. A = 2.8, a = 2.6, α = 0, uT = 0.26, x1 = 0.279525,
x2 = 1.20521.

would involve a long calculation. For α = 0, the eigenvalue equation (6.2) becomes

(1 + λ)v(x) = w(x− x1)
v(x1)

c1
+ w(x + x1)

v(−x1)

c1
(6.3)

+ w(x− x2)
v(x2)

c2
+ w(x + x2)

v(−x2)

c2
,

where c1 = u′(x1) and c2 = u′(−x2). Then u′(−x1) = −c1 and u′(x2) = −c2. Using an
approach similar to Theorem A.4 in the appendix, we can show that λ is real. By taking
the derivative of (6.1), we can also show that zero is an eigenvalue of system (6.3), and the
corresponding eigenfunction is u′(x).
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Figure 15. Plot of polynomial d(λ) for the small double pulse shown in Figure 14.

Setting x = x1, x = −x1, x = x2, and x = −x2 in (6.3) gives a four-dimensional system⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w(0) − λ− 1

c1

w(2x1)

c1

w(x1 − x2)

c2

w(x1 + x2)

c2

w(2x1)

c1

w(0) − 1 − λ

c1

w(x1 + x2)

c2

w(x1 − x2)

c2

w(x1 − x2)

c1

w(x1 + x2)

c1

w(0) − 1 − λ

c2

w(2x2)

c2

w(x1 + x2)

c1

w(x1 − x2)

c1

w(2x2)

c2

w(0) − 1 − λ

c2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

v(x1)

v(−x1)

v(x2)

v(−x2)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.(6.4)

The determinant D(λ) of coefficient matrix in system (6.4) is a fourth order polynomial.
Since zero is an eigenvalue, then D(λ) = λd(λ), where d(λ) is a third order polynomial.
Consequently, the stability of the stationary solution u(x) is determined by the roots of a
third order polynomial d(λ), which can be found numerically. We computed d(λ) for the two
double pulses shown in Figure 14. Figure 15 shows a plot of the third order polynomial d(λ)
for the small double pulse. It has three positive zeros indicating instability. The plot of d(λ)
for the large double pulse as shown in Figure 16 has two positive zeros. Therefore, both the
small and the large double pulses are unstable. We have not found any stable double pulses
for any parameter sets that we tested. However, we have not fully investigated the parameter
space of A, a, and uT .

7. Discussion. Our results show that although many types of pulse solutions are possible,
only the family of large pulses and associated dimple pulses are stable. For the situation of
three coexisting pulses, the third and largest pulse is always unstable. It is possible that more
than three pulses can coexist, although we did not investigate situations beyond three. The
double pulses we examined were not stable in accordance with previous work [35].

The caveat is that we were only able to examine specific examples individually or over
limited parameter ranges. Although we have an analytical expression for the eigenvalues, the
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Figure 16. Plot of polynomial d(λ) for the large double pulse shown in Figure 14.

length of these expressions makes them difficult to analyze. As a result, we were unable to
make as strong a claim as Amari, who showed that large pulses are always stable and small
pulses are always unstable [3]. It may be possible to find some patterns in the expressions
to make more general deductions. From our parameter explorations, we were unable to find
stable pulse solutions other than the large and associated dimple pulse.

In this paper, we derived an eigenvalue problem for the linear stability of standing pulses.
Then we used an equivalent ODE formulation of the eigenvalue problem to develop the Evans
function for the neural field equation (1.1). Alternatively, one can derive the Evans function
using the integral form of the neural field equation instead of using ODEs. This approach
might be able to give a more general stability criteria, which would compensate the limitation
of our ODE approach. Evans functions for models with nonlocal terms have been constructed
for traveling wave solutions and periodic solitary waves [10, 30, 50, 61]. To the best of our
knowledge, this approach has not been applied to standing pulses of the neural field equation.

We wish to note that numerical simulations on discretized lattices can give misleading
results regarding the stability and existence of pulse solutions of the associated continuum
neural field equation. We conducted some numerical experiments using a discretization of the
neural field equation (1.1), and to our surprise we were able to easily find examples of stable
dimple and double pulses even though the continuum analogue shows that these solutions
either do not exist or cannot be stable. The resolution to this paradox is that a discrete
lattice may stabilize solutions that are marginally stable in the continuum case.

Consider the Amari neural network equation consisting of N neurons,

dui
dt

= ∆x
N∑
j=0

w(∆x(i− j))Θ[uj − uT ],(7.1)

where w(i−j) is given by (1.3), Θ(·) is the Heaviside function, and ∆x gives the discretization
mesh size. For an initial condition for which uj > uT on a contiguous set of points {i . . . k}
and k− i is less than the expected width of the large pulse in the analogous continuum neural
field equation, the numerical solution converges toward the expected large-pulse solution.
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However, if the initial set of points is larger than the width of the large pulse (we have
not fully investigated how much larger it needs to be), then there is a possibility that the
simulation will converge toward an entirely different state.

For example, a numerical simulation of the parameter set N = 200, ∆x = 0.1, A = 1.8,
a = 1.6, and uT = 0.124, with an initial condition ui = 1 for i ∈ 50 . . . 150, converges to a
stable dimple-pulse state shown in Figure 17. Different initial domains will lead to different
attracting states where the width is close to the initial domain width. For a large enough
initial domain, the dimple pulse will break into a stable double pulse. Increasing the initial
domain can lead to increasingly higher number stable multiple pulses.

−10 −5 0 5 10

−0.2

0.2

0.4

u(x)

uT

Figure 17. Result of numerical simulation of (7.1) for parameters N = 200, ∆x = 0.1, A = 1.8, a = 1.6,
and uT = 0.124. The arbitrary discretization length scale is chosen so that x = 0.1i.

We can show that these states do not exist in the analogous continuum neural field equa-
tion. Consider a stationary pulse solution of (1.1) for α = 0. A pulse of width xT satisfies

u(x) = φ(x, xT ),(7.2)

where

φ(x, xT ) =

∫ xT

−xT

Ae−a|x−y| − e−|x−y|dy.(7.3)

The pulse can exist if it satisfies the existence condition

uT = φ(xT , xT ),(7.4)

from which the width xT can be obtained. A plot of the existence condition is shown in
Figure 18.

It is immediately apparent that the large pulse does not exist. The existence function
approaches u = uT from above for large enough xT . While it is very close to uT , it never
crosses it. However, for the analogous discretized equation (7.1), the discrete mesh can break
the symmetry of this nearly marginal mode and result in a family of stable pulse solutions for
arbitrary widths larger than a given width.
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Figure 18. Existence condition for pulse solutions of neural field equation (7.2) for parameters A = 1.8,
a = 1.6, and uT = 0.124.

This effect can be intuitively understood by examining Figure 17. The neurons imme-
diately adjacent to the edge of the pulse are significantly below threshold and thus have no
effect on the rest of the network. A perturbation on the order of the distance they are below
threshold would be necessary to cause these neurons to fire and influence the network. In
the continuum equation, the neurons on the boundary of the pulse are precisely at threshold.
Arbitrarily small perturbations can push the field above threshold and influence the other
neurons. A stable pulse must withstand these edge perturbations. Discretization eliminates
these destabilizing edge perturbation effects.

We can make a simple estimate of how fine the discretization mesh must be in order for
these discrete affects to disappear. The distance the neuron adjacent to the pulse is below
threshold is approximately given by ∂xφ(x = xT , xT )dx ∼ (A−1)dx. For the parameter set of
our simulation, the continuum existence condition shows that φ(xT ,−xT )−uT > 0.001. Thus
to eliminate the discreteness effect, we require the adjacent neuron to be above threshold,
i.e., (A − 1)dx < 0.001, as it would be in the continuum case. This leads to an estimate of
dx < 0.00125. Hence, for a domain of dimension x > 20, a network size of N > 16,000 is
necessary to eliminate the discreteness effect.

Biological neural networks are inherently discrete. Thus this discreteness effect may be
exploited by the brain to stabilize localized excitations. Our numerical simulation is an exam-
ple of a discretized line attractor [55] where the width of the pulse is determined by the initial
condition. Although the discrete network may have a richer structure, this does not imply
that the study of continuum neural field equations are not necessary. Field equations lend
themselves more readily to analysis and many insights into the structure and properties of
neural networks have been gained by studying them. We suggest that studies combining neu-
ral field equations, discrete neural network equations, and biophysically based spiking neurons
may be a fruitful way to uncover the dynamics of these systems [28, 34, 51].

Appendix. Properties of the eigenvalue problem. We prove some properties of the
eigenvalue problem (2.11) with the connection function given by (1.3). First consider functions
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φ1(x) =
1

2a

∫ ∞

−∞
e−a|x−y|(Fu + Θu)v(y)dy,

φ2(x) =
1

2

∫ ∞

−∞
e−|x−y|(Fu + Θu)v(y)dy,

where F (u) = α(u− uT ), Θ(u) is the Heaviside function, and subscript denotes partial differ-
entiation.

Lemma A.1. The eigenfunction v(x) satisfies

(1 + λ)v = 2(aAφ1 − φ2).

Proof.

(1 + λ)v = w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c
+ α

∫ xT

−xT

w(x− y)v(y)dy

=

∫ ∞

−∞
w(x− y)

δ(x− xT ) + δ(x + xT )

c
v(y)dy +

∫ ∞

−∞
w(x− y)Fuv(y)dy

=

∫ ∞

−∞
w(x− y)Θuv(y)dy +

∫ ∞

−∞
w(x− y)Fuv(y)dy

= A

∫ ∞

−∞
e−a|x−y|(Fu + Θu)v(y)dy −

∫ ∞

−∞
e−|x−y|(Fu + Θu)v(y)dy

= 2(aAφ1 − φ2).

Lemma A.2. Functions φ1 and φ2 satisfy

−φ′′
1 + a2φ1 = (Fu + Θu)v,(A.1)

−φ′′
2 + a2φ2 = (Fu + Θu)v.(A.2)

Proof. The second order derivative of φ1(x) is

φ′′
1 =

a

2

[∫ x

−∞
e−a(x−y)(Fu + Θu)vdy +

∫ ∞

x
ea(x−y)(Fu + Θu)vdy

]
(A.3)

− (Fu + Θu)v.

Subtracting (A.3) + a2φ1(x) yields

−φ′′
1 + a2φ1 = (Fu + Θu)v.(A.4)

−φ′′
2 + a2φ2 = (Fu + Θu)v can be obtained in the same fashion.
Lemma A.3. limx→±∞ φ1,2 = 0 and limx→±∞ φ′

1,2 = 0 provided that v(x) is bounded on
(−∞,∞) and exponentially decays to zero as x → ±∞.

Proof. When x >> xT ,

φ1(x) =
1

2a

[
αe−ax

∫ xT

−xT

eayv(y)dy + e−a(x−xT ) v(xT )

c
+ e−a(x+xT ) v(−xT )

c

]
.
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Hence, limx→∞ φ1 = 0 provided that v(x) is bounded on [−xT , xT ].
When x << −xT < 0, as x → −∞,

φ1(x) =
1

2a

[
αeax

∫ xT

−xT

e−ayv(y)dy + ea(x−xT ) v(xT )

c
+ ea(x+xT ) v(−xT )

c

]
→ 0,

φ′
1 =

1

2

[
−
∫ x

−∞
e−a(x−y)(Fu + Θu)vdy +

∫ ∞

x
ea(x−y)(Fu + Θu)vdy

]
.

As x → ∞,

lim
x→∞

φ′
1 = lim

x→∞

{
−1

2

∫ x

−∞
e−a(x−y)(Fu + Θu)vdy

}

= lim
x→∞

{
−e−ax

2

[
α

∫ xT

−xT

eaydy + eay
v(xT )

c

]}
= 0.

As x → −∞,

lim
x→−∞

φ′
1 = lim

x→−∞

{
−1

2

∫ ∞

x
ea(x−y)(Fu + Θu)vdy

}

= lim
x→∞

{
−eax

2

[
α

∫ xT

−xT

eaydy + eaxT
v(xT )

c

]}
= 0.

Similarly, one can prove that limx→±∞ φ2 = 0 and limx→±∞ φ′
2 = 0. Therefore, limx→±∞ φ1,2

= 0 and limx→±∞ φ′
1,2 = 0.

Theorem A.4. The eigenvalue λ in (2.11) is always real.
Proof. Using the results of Lemma A.2, aAφ̄1(A.1) − φ̄2(A.2) gives

aAφ̄1(−φ′′
1 + a2φ1) − φ̄2(−φ′′

2 + φ2) = (Fu + Θu)v(aAφ̄1 − φ̄2),(A.5)

where φ̄1,2 are the complex conjugates of φ1,2. Integration by parts gives∫ ∞

−∞
φ̄1φ

′′
1dx = φ̄1φ

′
1

∣∣∞
−∞ −

∫ ∞

−∞
φ̄′

1φ
′
1dx = −

∫ ∞

−∞

∣∣φ′
1

∣∣2 dx,
and similarly

∫∞
−∞ φ̄2φ

′′
2dx = −

∫∞
−∞ |φ′

2|2dx. From Lemma A.1,

1

2
(1 + λ)v = aAφ1 − φ2,

1

2
(1 + λ̄)v̄ = aAφ̄1 − φ̄2.

Integrating both sides of (A.5) gives

aA

(∫ ∞

−∞

∣∣φ′
1

∣∣2 dx + a2

∫ ∞

−∞
|φ1|2 dx

)
(A.6)

−
(∫ ∞

−∞

∣∣φ′
2

∣∣2 dx +

∫ ∞

−∞
|φ2|2 dx

)
=

1

2
(1 + λ̄)

∫ ∞

−∞
|v|2 (Fu + Θu)dx.
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Using∫ ∞

−∞
|v|2 Θudx =

1

c

∫ ∞

−∞
|v|2 (δ(x− xT ) + δ(x + xT )) dx =

1

c

(
|v(xT )|2 + |v(−xT )|2

)
in (A.6) and rearranging give

1

2
(1 + λ̄) =

aA
(∫∞

−∞ |φ′
1|

2 dx + a2
∫∞
−∞ |φ1|2 dx

)
−

(∫∞
−∞ |φ′

2|
2 dx +

∫∞
−∞ |φ2|2 dx

)
∫∞
−∞ Fu |v|2 dx + 1

c

(
|v(xT )|2 + |v(−xT )|2

) .(A.7)

The right-hand side of (A.7) is real; therefore, λ is real.
Theorem A.5. The eigenvalue λ in (2.11) is bounded by λb ≡ 2k0

c + 2αk1xT − 1, where
k0 is the maximum of |w(x)| on [0, 2xT ] and |w(x − y)| ≤ k1 for all (x, y) ∈ J × J , where
J = [−xT , xT ].

Proof. We write the eigenvalue problem (2.11) as

(1 + λ)v = Lv,(A.8)

where operator L is defined as (2.12).
Function w(x− y) is continuous on square J ×J . We take the norm of both sides of (A.8)

(1 + λ)‖v‖ = ‖Lv‖

with norm

‖ · ‖ = max
x∈J

| · |.

Thus

‖Lv‖ =

∥∥∥∥w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c
+ α

∫ xT

−xT

w(x− y)v(y)dy

∥∥∥∥
≤ max

x∈J

∣∣∣∣w(x− xT )
v(xT )

c

∣∣∣∣ + max
x∈J

∣∣∣∣w(x + xT )
v(−xT )

c

∣∣∣∣
+ max

x∈J

∣∣∣∣α
∫ xT

−xT

w(x− y)v(y)dy

∣∣∣∣
≤ |w(x− xT )| ‖v‖

c
+ |w(x + xT )| ‖v‖

c
+ α ‖v‖

∫ xT

−xT

max
x∈J

|w(x− y)| dy

≤ 2k0
‖v(x)‖

c
+ 2αk1xT‖v(x)‖,

where

k0 = max
x∈J

|w(x− xT )| = max
x∈J

|w(x + xT )|

since w(x) is symmetric and |w(x− y)| ≤ k1 for all (x, y) ∈ J × J . Therefore,

(1 + λ)‖v(x)‖ = ‖Lv(x)‖ ≤ 2k0
‖v(x)‖

c
+ 2αk1xT‖v(x)‖,
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leading to

λ ≤ 2k0

c
+ 2αk1xT − 1 ≡ λb.

Theorem A.6. λ = 0 is an eigenvalue.
Proof. Consider the equilibrium equation

u(x) =

∫ ∞

−∞
w(x− y)f [u(y)]dy

=

∫ xT

−xT

w(x− y) {α [u(y) − uT ] + 1} dy,(A.9)

where u(x) is a stationary standing pulse solution. After a change of variables p = x − y,
(A.9) becomes

u(x) =

∫ x+xT

x−xT

w(p) {α [u(x− p) − uT ] + 1} dp.(A.10)

Differentiating (A.10) with respect to x yields

u′(x) = w(x + xT ) [α(u(−xT ) − uT ) + 1] − w(x− xT ) [α(u(xT ) − uT ) + 1](A.11)

+ α

∫ x+xT

x−xT

w(p)u′(x− p)dp.

Since u(−xT ) = u(xT )uT and u′(−xT ) = c = −u′(xT ),

u′(x) = w(x + xT )
u′(−xT )

c
− w(x− xT )

−u′(xT )

c
+ α

∫ x+xT

x−xT

w(p)u′(x− p)dp

= w(x− xT )
u′(xT )

c
+ w(x + xT )

u′(−xT )

c
+ α

∫ xT

−xT

w(x− y)u′(y)dy.(A.12)

Equation (A.12) is the eigenvalue problem (2.11) with eigenvalue λ satisfying 1 + λ = 1,
resulting in λ = 0. The corresponding eigenfunction is u′(x). Therefore, λ = 0 is an eigenvalue
of (2.11) corresponding to eigenfunction u′(x).

Theorem A.7. Consider the operator

L = T1 + T2,(A.13)

where

T1(v(x)) = w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c
, T1 : C [−xT , xT ] → C [−xT , xT ] ,

T2(v(x)) = α

∫ xT

−xT

w(x− y)v(y)dy, T2 : C [−xT , xT ] → C [−xT , xT ] .

Both T1 and T2 and hence L are compact operators.
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Proof. It is obvious that both T1 and T2 are linear operators. The boundedness of T1

follows from

‖T1v‖ = max
x∈J

∣∣∣∣w(x− xT )
v(xT )

c
+ w(x + xT )

v(−xT )

c

∣∣∣∣
≤ |w(x− xT )|‖v(x)‖

c
+ |w(x + xT )| ‖v(x)‖

c

≤ 2k0
‖v‖
c

.

Let vn be any bounded sequence in C[−xT , xT ] and ‖vn‖ ≤ c0 for all n. Let y1
n = T1vn. Then

‖y1
n‖ ≤ ‖T1‖‖vn‖. Hence sequence y1

n is bounded. Since w(x, t) = w(x − t) is continuous on
J ×J and J ×J is compact, w is uniformly continuous on J ×J . Hence, for any given ε1 > 0,
there is a δ1 > 0 such that, for t = xT and all x1, x2 ∈ J satisfying |x1 − x2| < δ1,

|w(x1 − xT ) − w(x2 − xT )| < c

2c0
ε1.

Consequently, for x1, x2 as before and every n, one can obtain

∣∣y1
n(x1) − y1

n(x2)
∣∣ =

∣∣∣∣[w(x1 − xT ) − w(x2 − xT )]
vn(xT )

c

+ [w(x1 + xT ) − w(x2 + xT )]
vn(−xT )

c

∣∣∣∣
< |w(x1 − xT ) − |w(x2 − xT )| c0

c
+ |w(x1 + xT ) − w(x2 + xT )| c0

c

<
c

2c0
ε1
c0
c

+
c

2c0
ε1
c0
c

= ε1.

The boundedness of T2 follows from

‖T2v‖ ≤ ‖v‖max
x∈J

∫ xT

−xT

|w(x− t)|dt.

Similarly, let y2
n = T2vn. Then y2

n is bounded. For any given ε2 > 0, there is a δ2 > 0 such
that, for any t ∈ J and all x1, x2 ∈ J satisfying |x1 − x2| < δ2,

|w(x1 − t) − w(x2 − t)| < ε2
2xT

,

∣∣y2
n(x1) − y2

n(x2)
∣∣ =

∣∣∣∣
∫ xT

−xT

[w(x1 − t) − w(x2 − t)]vn(t)dt

∣∣∣∣
< 2xT

ε2
2xT c0

= ε2.

This proves the equicontinuity of {y1
n} and {y2

n}. By Ascoli’s theorem, both sequences have
convergent subsequences. vn is an arbitrary bounded sequence and y1

n = T1vn, y2
n = T2vn. The

compactness of T1 and T2 follows from the criterion that an operator is compact if and only
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if it maps every bounded sequence xn in X onto a sequence Txn in Y which has a convergent
subsequence.

Theorem A.8. λ = −1 is the only possible accumulation point of the eigenvalues of L and
every spectral value λ �= −1 of L is an eigenvalue of L. Thus the only possible essential
spectrum of compact operator L is at λ = −1.

Proof. Letting γ = (1 + λ), the eigenvalue problem becomes

γv(x) = Lv(x),

and the linear operator L is compact on the normed space C[−xT , xT ]. γ is the eigenvalue of
operator L. The spectrum of a compact operator is a countable set with no accumulation point
different from zero. Each nonzero member of the spectrum is an eigenvalue of the compact
operator with finite multiplicity [32, 31]. Therefore, the only possible point of accumulation
for the spectrum set of compact operator L is γ = 0; i.e., λ = −1 and every spectral value
λ �= −1 of L is an eigenvalue of L. This suggests that the only possible essential spectrum is
at λ = −1. All the spectral values λ such that λ > −1 are eigenvalues.

Lemma A.9. The zero of B, λB, obeys −1 < λB < λr. For the case a3 > A, λl < λB < λr,
and for the case a3 < A, λB < λl < λr.

Proof. Set

B = (1 + λ)(a2 + 1) + 2α(1 − aA) = 0.

The zero of B is

λB = −a2 + 1 + 2α− 2aAα

a2 + 1
= −1 +

2α(aA− 1)

a2 + 1
> −1.

∆ is a quadratic function in λ and it has two zeros. The left zero is

λl =
1 − a2 + 2aAα + 2α− 4α

√
aA

a2 − 1
.

The right zero is

λr =
1 − a2 + 2aAα + 2α + 4α

√
aA

a2 − 1
.

The difference between λr and λB is

λr − λB =
4aα(a + A) + 4α

√
aA(a2 + 1)

a4 − 1
> 0.

Therefore, −1 < λB < λr.

The difference between λB and λl is λB − λl = 4α(
√
aA−1)(a2−

√
aA)

a4−1
. The sign of λB − λl

depends on a2 −
√
aA. If a2 −

√
aA is positive, i.e., a3 > A, then λl < λB < λr. If a2 −

√
aA

is negative, i.e., a3 < A, then λB < λl < λr.
Lemma A.10. (i) For a3 > A and λl < λB < λr, B does not intersect the left branch or

the right branch of
√

∆. (ii) For a3 < A and λB < λl < λr, B intersects only the left branch
of

√
∆ once at λI .
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Proof. It is not difficult to see that B does not intersect the right branch of
√

∆ for both
(i) and (ii).

√
∆ is linear in λ with slope a2 − 1 for large λ. The slope of B is a2 + 1. Both

a2 − 1 and a2 + 1 are positive and a2 + 1 > a2 − 1; thus B and the right branch of
√

∆ never
meet. When λl < λB < λr, B < 0 for λ < λB and

√
∆ > 0 for λ < λl < λB. Therefore, B and√

∆ never intersect. In (ii), B intersects the left branch of
√

∆ at λI = 2Aα−2aα−a
a .
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