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EXISTENCE AND STRUCTURE OF INFINITELY DEGENERATE
ZERO-ENERGY GROUND STATES OF A WESS-ZUMINO TYPE
MODEL IN SUPERSYMMETRIC QUANTUM MECHANICS

- OsaMU OGURISU

Department of Mathematics, Hokkaido University
Sapporo 060, Japan

1, October 1992

ABSTRACT

It is known that the N=2 Wess-Zumino supersymmetric quantum mechanical model
with the superpotential V(z) = Ae®* (A € C\ {0}, @ > 0) has infinitely many bosonic zero-
energy ground states and no fermionic zero-energy ground states [A. Arai, J. Math. Phys.
30 (1989), 1164]. In this paper, we extend these results to a more general model. The main
results include the following: (1) identification of the spectra of the Hamiltonian H of the
model; (2) non-Fredholmness of a supercharge of the model, which is a Dirac type oper.at‘or;
(3) existence of infinitely many bosonic zero-energy states of H; (4) non-existence of fermionic

zero-energy states of H.

PACS: 02.30.Jr, 02.30.Tb, 03.65.Db, 03.65.Ge

to appear in Journal of Mathematical Physics



I. INTRODUCTION

It is known that the N=2 Wess-Zumino (WZ) model in supersymmetric quantum me-
chanics,? which describes the interaction between a complex bosonic degree z € C and two

fermionic degrees of freedom, has degenerate zero-energy ground states for some classes of

‘ superpotentials V(z).>~® The following (V1)~(V3) hold:

(V1) If V(z) is a polynomial of z, then the number of the bosonic zero-energy ground states
np is equal to deg V — 1.3:4; |

(V2) f V(z) = Az? (A € C\ {0},p € N), then n; = p— 1.5;

(V3) If V(z) = Xe** (A € C\ {0}, @ > 0), then ny = 0.°
In all the cases, the number of the fermionic zero-energy states is equal to 0 (“vanishing
theorem”).3-¢

In the case where V(z) = Az? (A € C\ {0}, p € N), a special case of (V1), and in the

case (V2), the mathematical structure of the degenerate ground states has been analyzed in

detail.%® Both of these cases have some common structures:

(i) There exists a strongly continuous one parameter unitary group acting as a symmetry
group in the quantum system governed by the bosonic part H, of the Hamiltonian
H of the model.
(ii) The generator L of the symmetry group has purely discrete spectrum and infinitely
7 many eigenspaces, each of which reduces H.,.
(iii) There exist some eigenspaces of L such that H; has a unique zero-energy state on
each of them. (Hence the number of such eigenspaces is equal to the number of the
bosonic Zéro-energy states.)

(iv) Hy has generalized zero-energy states on each of the eigenspaces of L.

However, in the case (V3), it has not been known whether the ground states have a
structure similar to the cases (V1) and (V2). In this paper we present a new class of super-
potentials containing the case (V3) such that each superpotential in the class defines a WZ -

type model with the following structures:

(i’) There exists a symmetry group of the bosonic Hamiltonian H.,.
(ii’) The generator Ny of the symmetry group has no point spectrum and every p € R is

a generalized eigenvalue of N,. Each generalized eigenspace H, of N, is regarded as
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a Hilbert space and “reduces” H,.

(iii’) There exists an interval I in R such that for every p € I, H has a unique zero-energy
state on H,.

(iv’) There exist infinitely many zero-energy ground states of H.

(v’) There exist infinitely many generalizéd zero-energy states of H,.

For another class of superpotentials containing the case (V3), we prove in a way similar
to the case of H; the vanishing theorem and that there exist infinitely many generalized
fermionic zero-energy states.

We also prove that the spectrum of Hy is equal to [0,00), which implies that a super-
charge of the model is not semi-Fredholm. This suggests the instability of ker H_. (See
Remark 3.7)

The plan of this paper is as follows. In Sec. II, we introduce a class of superpotentials
containing Ae®* and define the WZ type model with a superpotential in the class. In Sec. III,
we identify the spectra of the Hamiltonian of the model. In Sec. IV, we consider conditions
for the superpotential under which there exist infinitely many zero-energy ground states of
H,, and give a concrete class of‘ superpotentials which satisfy these conditions. In Sec.V,
we consider conditions for the superpotential under which there exists no fermionic zero-
energy ground states. In Appendix we summarize a few known results in a theory of ordinary

differential equation, which are used in the main text.



II. MODELS WITH SUPERPOTENTIALS SIMILAR TO exp(az)

In this section we define a class of functions on C and discuss the N=2 WZ type model
with a superpotential V in the class. We identify z € C with z + iy where z,y € R. We
denote §/0z and 0/0% by 0 and 3, respectively.

Let a be an arbitrary positive constant.

Definition 2.1. A function V: C — C is said to be in Vy if there exists v € C*°(R) such )
that
AV (z) = v(z)e'*V.

The Hilbert space of state vectors of the N=2 WZ type model with a superpotential
V € V), is realized as

H = L?(C;C*) = L}(R%;,C*) = M, @ H-,

where H, = { (g) fig€ L"’((C)} = L*}(C; C?)
and Y { (g) flge L'-’(C)} = L*(C; Czj

are the subspaces of “bosonic” and “fermionic” states, respectively.

Let V € Vy. One of the supercharges of the model with the superpotential V is given by
(0 Q_>
Q - <Q+ 0 ’
acting in H, where Q- and Q4 are operators defined by
_ (i8V -0 .
Q-= < -3 —-i(aV)*) i H-
and

—i(oV)* 0 .
Q+=< Z(-g- ) z@V) n H-}..

We put D = C$°(R?;C*). In the same way as in the proof of Proposition 2.1 in Ref. 6,
we can prove the following proposition, because the holomorphic property of V' (z) is not used

in the proof there.



Proposition 2.2. The operator @ is essentially self-adjoint on D. Further, every power of
Q is essentially self-adjoint on D.

We denote the closure of @ by the same symbol @ and define the non-negative self-adjoint

H 0
H=Q2=( 0+ H_>

operator H by

with
Hy=Q1Qy, H_=0Q4Q%.

The operator H is the Hamiltonian of the model, called the supersymmetric Hamiltonian.

We call Hy (resp. H_) the bosonic (resp. fermionic) Hamiltonian. We have

0 —id?V
Hy = Ho + (i(82V)* 0 >
and
_ 0 —i(@oV)*
H*‘H‘”L(z"a'av 0 )

on D, where

Ho = (=88 + |oV]?) ((1) ‘1’)



III. SPECTRA OF THE HAMILTONIANS

We denote by o(4), &p(A) and D(A) the spectrum, the point spectrum and the domain
of an operator A, respectively.

In this section we identify the spectra of the Hamiltonian of the models with potentials
in a subclass of Vy. Moreover, we show that the Hamiltonians H and the supercharge @ are
not semi-Fredholm.

We first prove these facts in the case where 9V(z) = Ae®*. In this case we can identify

the point spectrum of H_, too.

Theorem 3.1. Let 8V (2) = Ae®** with A € C\ {0}. Then

o(Hy) =[0,00),  op(H-)=0.

Proof. In the present case, we have

_om . (K 0
H_=-00+ |0V| _<0 K),

where
16 1067

o 2 /\2 2011:‘
K 4 Oz? 43y2+| [Pe

It follows that o(H_) = o(K),0,(H-) = 0,(K). Let H, and H, be the self-adjoint operators

in L?(R) defined by

1 2
) 2 2azx —___
+ [A|e“?®, Hy = 17

1 d2
He=—43m
We denote by I the identity on L*(R). Then

K=H,0I+I0H,

as an operator on L?(R?) = L(R) ® L*(R). It is well known that, for self-adjoint operators )
A; and A,,

U(A1®I+I®A2)={”=ﬂl +.L‘2’/"'J'eo'(AJ')’ j=1’2}’

op(A1 @I +IQAz) = {p=p1+ p2 | pj € 0,(4;), 7 =1,2}

and that o(Hy) = [0,00) and o,(Hy) = 0. Hence we see that o,(K) = §. Thus, o,(H-) = 0.
We next prove that ¢(H,) D [0, c0).



We use the following basic criterion: Let A be a self-adjoint operator. Then v € o(A) if
and only if there exist a sequence {¢, }nen C D(A) such that ||¢,]| =1 and |[(4 — v)é,]| = 0

as n — oo. Let u > 0. We prove that u? € o(H,). Let ¢ = /7 and for eachn € N

1 e 2002
¢n($) — e2inz =z /2n .
nc

Then ¢, € D(d?/dz?)ND(e?*®) and ||$a|| = 1. Let T, be a shift operator on L?(R) defined

by |
T.f(z) = f(z +n®).

Then the following hold:

@O NTfl =11l for feL*(R),
(2) ”e2axTnf|l — e—zan-" ||e2a:z:f“ for fe D(e2aa:)

14, 142, &
) T"(“ZE}?" )—(—za‘x—z“ )Tn on D(d:ﬁ)'

Let f, = Ty, é,. Then ||fn|| =1land f, € D(dz/dxz) N D(e2°‘” ) We have

(. - )fnu_“(-li- ) on

We have
1 d? 1 z? :
(i =) #o= g (i 1)

1d?
i)

We can easily verify that

Hence
1

= 4n?

+ |/\I2e—2an3 ”e2az¢n“ .

i
{n—2 ||$2¢>n|| + 4y |lzéa| + ||¢n”} .

”az2¢n” =n2\/_1_/y4e—y2dy and  ||zén|| '—'n\/l/y%‘_yzdy
CJR CJR

(3.1)

for all n € N. Therefore, the first term on the right hand side of (3.1) converges to 0 as

n — oo. We have ”62""’¢n“ = exp(2a®n?). Thus, since « is positive, the second term on the

right hand side of (3.1) converges to 0 as n — oco. Hence

l[(Hz—yz)fnll;—)O as n — oo.

7



Hence u? € o(H;). Therefore we obtain that [0,00) C 6(H;). Since H, is non-negative self-
adjoint, it follows that o(H,) = [0, c0), which implies o¢(K) = [0,00). Hence o(H_) = [0, c0).

In general, for any densely defined closed linear operator A from a Hilbert space to
another one, g(A*A) \ {0} = oc(AA*)\ {0}. (See Ref.7) Hence o(H,)\ {0} = o(H_)\ {0}. It
follows that o(H4) = [0,00). O

Corollary 3.2. Let 0V(z) = Ae®* with A € C\ {0}. Then Hy is not semi-Fredholm.

Proof. It is known that a densely defined closed linear operator A is semi-Fredholm if and
only if (1) inf o(A*A) \ {0} > 0 and (2) at least one of dimker A*A and dimker AA* is finite.
By Theorem 3.1, it follows that o( Hf Hy) = o(H3) = [0, 00), which implies that H. is not
semi—Fredholm. a

We introduce a subclass V; of V.

Definition 3.3. We say that V isin V; if V € V, and there exist constants ¢ and 8 > 0 such
that
v(z)| < ce*, z€R, j=0,1
where v()(z) = div(z)/dz’.
For this subclass we obtain the following results.

Theorem 3.4. Suppose V € V;. Then

U(H:t) = [0700)
Proof. Let
1 d? 1 d? 2 . 212
HO——ZE&T{@)I—I@ZW-FW(Q:)I ®I in L*(R?).

We can write

_(Hy 0 T 0 —(v' — av) @ e~t¥
1= (5 8) 5 (e THETT).

Let 4 > 0. We prove that 2u% € o(H_). Let ¢, and f, be the functions in the proof of

Theorem 3.1. Then,
1 d? . 1 d? 9

(Gr-S L B (C+-S

8

—0 as n — oo.




Moreover,
“|v|2fn|| < c? ”éwzfnll —0 as n— oo,

I" - av)fall and [T = av)s

@ =i(fn®¢n)
T V2\fa®¢n )

<(c +‘ozc) le?"fn]| 20 as n— oo

Let

Then ||®,|| = 1. We have
2

(2= - 26%)84] = || (Ho - 2% - ;,;( ~av)® e—"“y) fn ® ¢n

2
(3.2)

+ “ (Ho 2’ 4 L —av) ® e"“y) fn® én

We have

I(Ho o - ST T an)e ) fn® b

+5 [Tt

67l + (-3 s = e

”(_sz——” )fn 137

— 0. as. . n— oo.

In the same way, the second term on the right hand side of (3.2) converges to 0 as n — oo.

Hence

||(H_ - 2/«‘2)@11“ —0 as n— oo
Therefore, for every pp > 0, 2u% € o(H.). Since H_ is non-negative self-adjoint, o(H_) =
[0, 00). 1t follows in the same way as in the proof of Theorem 3.1 that o(H4) = [0,00). O
Corollary 3.5. ’Suppose V € V1. Then Hy is not semi-Fredholm. -
Proof. We can prove this corollary in the same way as in the proof of Corollary 3.2. O
Corollary 3.6. The operator Q4+ is not semi-Fredholm.

Proof. We have 0(Q%Q+) = o(H4) = [0,00). Hence inf 6(Q%Q+) \ {0} = 0. It implies that
@+ is not semi-Fredholm. 0O
Remark 3.7. We have index@+ = dimker H4 — dimker H_. By Corollary 3.6, index@Q) 4+ may

be unstable under perturbations. This suggests that ker H_ may be also unstable under

perturbations.



IV. ZERO-ENERGY GROUND STATES OF THE BOSONIC HAMILTONIAN

In this section we discuss zero-energy ground states of the bosonic Hamiltonian H, and
the structure of them, and give a concrete class of superpotentials with which the models

have infinitely many bosonic zero-energy ground states.

A. Symmetry Group and Direct Integral Decomposition.

Let 8/0y be the generalized derivative and put

.0«
N..|. = 155 -+ E g3
with D(N4 ) = D(0/dy) C Hs, where o3 = <(1) _01> Then Ny is self-adjoint. Hence,

by Stone’s theorem it generates the strongly continuous one parameter unitary group

{e**N+ | s € R} on H.

Lemma 4.1. Let V € V. Then, for all t,s € R,

itHt gisNy . gisNy gitHy

Proof. We can prove this lemma in the same way as in the proof of Lemma 3.1 in Ref. 6. O

Remark. In the case V(z) = Az? = ArPe*? (polar coordinate; z = re'®), the generator of a
symmetry group of H, is given by L = 19/96 + (p — 2)03/2. In the case V(z) = A/z? =
ArPe=PY the operator M = i8/00 — (p+2)o3/2 is the generator of a symmetry group of H..
Both of the spectrum of L and of M are equal to {n — p/2 | n € N}. (See Refs.4 and 5.)
The generator N4 has no point spectrum and the spectrum of N is equal to R. This is
different from the case of L and M. However every p € R is a generalized eigenvalue of N,

and the generalized eigenspace with eigenvalue p is given by

¢(w)e'—i(p—a/2)y

Hp = { <¢($)e—i(p+a/2)y)

This suggests that the bosonic Hilbert space H.. may be written as the constant fiber direct

b € L?(R)} ~ & I2(R).

integral over R with fiber ®? L%(R) and H, may be decomposable with respect to the direct

integral decomposition. In fact, this is true as we show in the following.
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The operator U: L%(R?; C?) — L?(R; ®% L?(R)) given by
f (em)e / e f(y, z)dy 5
v (5 o= 3 (1) erwnen,
’ (2m)~1/2 / e PN g(y, z)dy I
R

is unitary. Then this operator gives a direct integral decomposition of L?(R;®2 L#(R)). We
- denote by f' the derivative of f with respect to z.

Lemma 4.2. Let V € Vy with 8V (z) = v(z)e®¥. Let

14 L1, i,
Mp) = —Z'gq:—g+|v| + 7P 2—5(1’ + av)
LT 1 P+ ap
2 4 dz? 4
acting in ©? L*(R). Then
(5%
UHLU* = / h(p)dp. (4.1)

, R

Proof. Let D = C§°(R; C?) and A, be an operator given by

_ 1/d )
R 5(@*?‘“
’ _1.<_C_l__> v
2 \ dz

with D(A4,) = D. The operator

can be written

0 0 0 1
1o o0 10\ 4d
T=3510 1 00lm""?
1 0 00

with D(T ) = D @ D and B being a C*° 4x4 matrix-valued function. It is obvious that T is
symmetric on D(T'). By Theorem 2.2 in Ref.8,

A A5 0
T2=<PP . )
0" 434,

is essentially self-adjoint on D @ D. Hence A} A, is essentially self-adjoint on D. Since h(p) =
ApAp on D, h(p) is essentially self-adjoint on D. The operator R given by

5]
R= /R {h(p) +i}1dp

11



is bounded and decomposable on L*(R; ®? L?*(R)). Moreover we have R = (UH,U* + 1)1,
Hence UH U™ is decomposable and has the representation (4.1). 0O

The following lemma will be needed.

Lemma 4.3. Let < M, u > be a o-finite measure space. Let H and K be separable Hilbert
spaces and C(H,K) be the set of densely defined closed linear operators from H to K. Let ..
A(m) be a C(H,K)-valued, measurable function on M. Let H(m) = A(m)*A(m), m € M,

and

@
H = / H(m)d/i
M :
which acts in [, ]3 Hdy, the constant fiber direct integral of ‘H. Then

@
kerH:/ ker A(m)du.
M

Proof. In general, ker A*A = ker A. By the general theory of constant fiber direct integral,
ker H = f;’; ker H(m)du. Hence we obtain the desired result. O

The identity ker A*A = ker A implies that ker(UH U*) = kex(UQ+U™).

Lemma 4.4. Let V € V, with dV(z) = v(z)e’*?. Let & € ker(UQ.U*). Write
®(p) = (é(p,-), —(p,-)). Then the following equations hold a.e. (almost everywhere) p

in the generalized sense:

o(-)¢(p,-) + —;— (;% +p- a) ¥(p,-) =0, (4.2)

3 (3 —7) 60, + 000000, =0 (43)

Proof. By direct computations. O

We fix p to solve the equation UQ, U*® = 0 on each of fiber spaces. We rewrite

(¢(p,-),b(p,-)) as ((¢(-), %(-)).
Lemma 4.5. Let V € Vo with 0V (z) = v(z)e'®Y. Suppose v' /v € C=(R).

12



(i) Every solution (¢,%) of (4.2) and (4.3) is a C*°-function and satisfies the following

ordinary differential equations:

—¢+ (Saa) o+ (b - p% +ap-a)) =0, (44)
—¢”+<%+a)W+(ﬂWﬂ%p—®%+w@—aO¢=0, (4.5)
%(%—p)¢+v¢=0. ‘ (4.6)

(ii) For every solution ¢ of (4.4), the function v satisfying (4.6) is a solution of (4.5).

Proof.’ Since v and v’ /v are in C*°(R), it follows from elliptic regularity that ¢ and ¢ are in

C*(R). Therefore we have the desired results. O

B. Zero-energy states in each of fiber spaces.

We introduce a subclass of superpotentials in V.

Definition 4.6. We say that V is in V, if there exist a constant A € C\ {0} and v € C*(R)
such that v > 0, 8V (z) = Mv(z)e'*¥ and

lim e*®v(z) > 0. (4.7)

o0

Let V € V,. It is well known that the equations (4.4) and (4.5) can be transformed into

the equations of the form

y' =Gy =0. (4.8)

Let h(z) = v/e**v(z) and define f(z) = ¢(z)/h(z) and g(z) = ¥(z)/h(z). Then we have
from (4.4) and (4.5)

F' = Gyf =0, (4.9)
g" - Ga—pg = 01_ (410)

where

1/ 21\ 1!
Gp(z) = 4|A|*v +4(v 2p+a) +2(v> 5
We next investigate properties of solutions of the equation (4.8).

13



Lemma 4.7. Suppose that G € C(R) and there exist constantsc_, c4+ € R, positive constants
8,4, o and p > 1/2 such that

(i) ¥* <G(z) <8 on (—oo,c] and lim h(z)e2-Mzl|z)? = o,
(ii) 02 < G(z) on [cy,0) and lim h(z)e "%z” = 0.
00
Then there exists a unique solution y of (4.8), up to constant multiples, such that hy € L*(R).

Proof. By Lemma A.2 (see Appendix), there exists one and only one solution y+ of (4.8) on
(—o0,c-] such that

y+(c—)=1 and y4(z)—=0 as z — —oo.
Moreover, by Lemma A.4 the following estimate holds:
e~Slz=c-l < y+(z) < e~ME=e-l for z<ec_. (4.11)

Let
2(z) = y+(w)/ yi(t)72dt for z<c_.

Then z is a solution of (4.8) and linearly independent of y4. (4.11) gives the following
estimate:

< const. e(2é=Nlzl,

JEO

c..

|2(z)] < y4(2)

Since all the solutions y of (4.8) are linear combinations of yy and z, it follows that
hy € L%(—o0,c.).
By Lemma A.4 there exists a unique subdominant solution y; of (4.8), up to constant

multiples, on [c4,00) such that
0 < y+(z) < const.e™® for =z > cy.

Obviously we have hyy € L?(cy,00). On the other hand, by Lemma A.3 any solution z of “
(4.8) linearly independent of y4 tends to infinity as ¢ — oco. Since lim h(z) > 0 by (4.7), -
it follows that hz ¢ L%*(c4,00). Consequently, there exists a uniqu;-;cc;fution y of (4.8) on
[c4,00) such that hy € L?(c4,00). Since every solution of (4.8) is continuous on [c—, cy], it

follows that there exists a unique solution y of (4.8) such that hy € L%(R). O
We are now ready to solve the equations (4.4)-(4.6).
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Lemma 4.8. Let V € V,. Suppose that the functions G, and G-, satisfy the hypoth-
esis in Lemma 4.7 with G = G,, G = G4—,. Suppose that lim e**v~!(z) < oo and
lim Iv'(x)v'z(a:)l < oo. Then there exists a unique solution of (4.4)-(4.6) in &% L*(R),

up to constant multiples.

Proof. By Lemma 4.7 we can construct a unique solution ¢ = hf of (4.4) in L?(R). We define
¥ by (4.6) with this ¢. Then by part (ii) of Lemma 4.5, ¢ is a solution of (4.5). We can prove

in the same way as in the proof of Lemma 4.7 that 1 is in L?(—c0,c_). Since ¢ = hf and
h = v/,
=1(L0)s
v \ dz

holds. By the construction of ¢, the function f is a subdominant solution of (4.9). Hence,
by Lemma A.2, f' € L?(c4,00) and by Lemma A .4, f € L?(cy, 00). Hence it follows that all
the terms on the right hand side of (4.12) are in L?(c4,00). Consequently, v € L?(R). By

1[a-2p
'2'[ . W]"”

ea':l:

f (4.12)

v

Lemma 4.7, this ¢ is a unique solution of (4.5) in L?(R). Hence the pair (¢,%) is a unique
solution of (4.4)-(4.6) in &2 LZ(R). O

C. Zero-energy states in the whole space.

In the last subsection we got a zero-eigenvalue solution of UH,U*® = 0 restricted to
each fiber space. By bundling them, we shall construct solutions of UH, U*® = 0. But it
is not obvious whether the bundled function is Lebesgue measurable on R or not. In this
subsection we first examine this measurability and then prove that dimker H; = oo. The

following is the main theorem in this section.

Theorem 4.9. Let V € V,. Suppose that there exists an interval I of R with non-zero
Lebesgue measure, satisfying the following properties:
(i) there exist c_, cy, 6, v, o and p such that for all p € I, G = G, satisfies the
hypothesis in Lemma 4.7;
(i) there exist c_, cy, 8, 7, o and p such that forallp € I, G = Go-p satisfies the
hypothesis in Lemma 4.7;
(iii) zfir;ol_o e**v7(z) < 00 and z@ v/ (z)v™2()] < co.
Then

dimker H; = oo.
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The proof of this theorem is based on the following proposition.

Proposition 4.10. Suppose that hypothesis (1) for G, in Theorem 4.9 is satisfied. Then

there exists a solution y, of

y'-~Gy=0 on IxR (4.13)
such that h(-)y,(-) € L*(R) for every p € I and hy,: I — L%(R), p — h(-)yp(-) is measurable.
Moreover if the measure of 1 is finite, then hy, € L*(I; L*(R)).

Remark. The function hy,: I — L?(R) is measurable if and only if for all ¢ € L%(R) the
mapping I3 p — (hyp, 9) 12(g) € C is measurable. (See Ref. 9, vol. I.)

Proof. Without loss of generality we can assume I is a bounded closed interval.

Step 1. We prove the continuity of the functions y, and yp, on I x R.
We assume yp(c4) = 1 for every p € I. For each p €1, let y,; and y, o be the solutions
of (4.13) with yp1(c+) =1, yp1(ct+) =0, ypo(c+) =0 and y,, o(c4) = 1. We put

From the proof of Lemma 4.7, y, must be the normalized subdominant solution of (4.13) on

(c4,00). By Lemma A.2, we can write

Yp(2) = yp,1(2) + a(p) yp,o(2).

The function Gp(z) is continuous in z € R and we have for all p,q € R

Go(e) ~ Golo) = (a-1) (5 +a=p—g).

Since v'/v is continuous and I is bounded, G, satisfies the Lipschitz condition with respect to
p on every compact interval of R. Hence, by a general theory of ordinary differential equation, -

the solutions y,1, ¥p1, Yp,0 and y, o are continuous in p at each z € R. (See e.g. Ref. 10.)

Claim. Let ¢ € (0,00]. We consider a family of C*-functions such that

{fa: (0,) = R | fo 20, lim fa(z)} 4
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If there exists a function F': (0,c) — R such that F(z) > fl(z) on (0,c) for every o € A and
foc F(t)dt < oo, then the convergence, lim fo(z) = falc), is uniform in a € A.

Proof. For every a € A, we have

0< fule) = fult) = [ fals)ds < [ F(s)as,
t t
As t — ¢, the right hand side of this inequality converges to 0 uniformly in a. Hence the
desired result follows. O

Since yp 0 > 0 by Lemma A.1, the function y,1/y,,0 is differentiable on (c4,00). We have

d <yp,1) _ W(Yp1, Ypo) _ < 1 )2 S0,

dm yp,O (yp;0)2 yP,O

where W is Wronskian. For the solution Y of y” — oy = 0 with Y(cy) =0 and Y'(cy) = 1,

Lemma A.4 implies that 0 < Y(z) < y,0 on (c4, o0) for every p € I. Hence

() =2 ().

Since Y (z) = sinh(o(z — ¢4.))/0o, we have

/c:l (Y(lm))zdm < oo

By the above claim, —y,,1(2)/yp,0(z) converges to a(p) as £ — oo uniformly in p € 1. Since

Yp,1(2)/Yp,0(z) is continuous in p at each z € R, a(p) is continuous. Consequently, y, and Yp

are continuous in p and z. This fact will be used also in the proof of Theorem 4.9.

Step 2. We prove the measurability of hy,. To do this, we construct a function F on R such
that hF € L*(R) and |yp] < |F| on R for every p € I. Then, it follows from Step 1 and
Lebesgue dominate convergence theorem that for all g € L?(R), (hy,, ¢) is continuous in p.
On the interval (¢4, 0), y, is the normalized subdominant solution of (4.13) for each p.
Hence we define F' on (c4,00) to be the normalized subdominant solution of " — o2y = 0.

Then, by Lemma A.4, we have
0 < yp(z) < Fz) e =) on ey, 00).

It is clear that hF € L?(cy,00).
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Let M = sup{ly,(z)l; p€ L,c- <z < ¢4} and N = sup{|y,(c-)|; p € I}. Since y, and
y, are continuous in p and z and I is bounded, M and N are finite. |

We put F(z) = M on (c—,c4). Then hF € L*(c_,cy) and |y,| < F.

For each p € I, there exists the normalized subdominant solution z, of (4.13) on (—o0,c.).

The solution w, of (4.13) given by
wp(z) = 5(a) [ =plt)
is linearly independent of z,. Then wy(c_) =0 and wy(c~) = z,(c_)~! = 1. Hence we have
Yp(2) = yp(e-)zp(2) + {yp(c-) = yp(c-)zp(c-)}wp(2).

Lemma A.4 implies

edlz—c-) < zp(z) < erle—c-),
We obtain
lwp(z)| < e7l==e-)

z
/ e-—26(t-—c_)dt
co

— %6(26_7)6— e‘yx(e-—26:c _ e—25c- )

These estimates do not depend on p. In the same way as in Step 1, we see that zy(c-) is
continuous in p. Hence, the quantity L = sup{|z,(c_)|; p € I} is finite. Consequently, we

have for every p € I
lyp(e)| < Me™=e-) 4 (N+ML)_21_56(26—7)C_ 7% (=267 _ g=26e-),
Hence there exists a constant C' not depending on p such that
lyp(z)| < CeL72% on  (—o0,c_].

We put F(z) = Cel""2)% on (—co,c_]. By the hypothesis of this proposition, AF € -
L*(—o00,c.).
In this way we obtain a function F on R such that AF € L%(R) and |y,| < |F|. Hence,

the function I 5 p +— hf, € L?(R) is measurable. Since I is bounded, hF € L%(I; L%(R)).
Hence hy, € L*(T; L*(R)). O

18



Remark 4.11. 1t is-easy to see that it is sufficient to assume, in Step 1, that y,(c4) is contin-

uous in p. Then we have y,(z) = y,(ct+){yp,1(z) + a(p)yp,o(z)}.

Proof of Theorem 4.9. By Lemma 4.8, for each p € I, there exists a unique solution
(¢(p,-),¥(p,-)) of (4,4)-(4.6), up to constant multiples. We normalize the solution with
é(p,c4+) = 1. By Step 1 in the proof of Proposition 4.10, ¢(p,z) and ¢'(p,z) are continuous
in I x R. Hence by (4.6), ¥(p, c+) is continuous in p € I, too. By Proposition 4.10 together
with Remark 4.11, the function I 5 p — (¢, %) € &% L*(R) is measurable.

We can decompose the interval I into infinitely many subintervals {I,}nen such that the

measure of I, is non-zero. For each n € N we define a 2 L? (R)-valued function @, on R by

¢(pa ) ) .
. ) if pel,,
0, otherwise.
Then, by Proposition 4.10, &, is in L2(R;®? L?(R)) and by the construction of @, we have

UH U*®, = 0. It is clear that for n # m &, is orthogonal to &,,. Consequently, it follows
that dimkerUH, U* = c0. O

Remark 4.12. From the discussions in this section, we can see that there exist infinitely many

generalized zero-energy states of Hy. For the generalized eigenvector
f(x)e_z(p_a/2)y
_ig(x)e_'(p'*'a/z)y
of N4 with eigenvalue p, we have
. - 179 «
—je—ipta/2)y S =—p==
i (w@s@ +3 (5 -r-3)5)

Q+¥ = e—ilp—a/2)y (% (6% +p— %) f(z)+ Av(z)g(w))

Hence for every solution (f, g) of

- 1/0 e 1/0 a
/\vf+§<6_x_ ———2->g=0 and §(a—x+P—‘2‘>f+/\Ug=0:

the vector ¥ = (f(z)e~HP=o/2¥, _ig(z)e(P+o/D¥) satisfies the equation H1 ¥ = Q4 Q4+ ¥ =
0. But ¥ ¢ L*(R?). It means that ¥ is a generalized zero-energy eigenvector of H.. Since
every p € R is a generalized eigenvalue of N, H; has infinitely many generalized zero-energy
states. This kind of phenomenon occurs also in the N=2 WZ model with V(z) = Az? and
V(z) = A/2P 45 |
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D. A Concrete Class of Superpotentials.
In this subsection we give a concrete class of superpotentials, which satisfy the hypotheses
of Theorems 4.9. In other words, we give a class of the N=2 WZ type models which have

infinitely many bosonic zero-energy ground states.
Definition 4.13. We say that V': C — C is in Vs if there exist constants A € C\ {0}, 3 € R
with f > a and w € C*°(R) such that:

(1)  0V(z) = A1 + w(z))eP=eiy,

(2) 1+w>0o0nR,

(3) w(z)—»0asz— o0,

(4) w(z),w'(z) and w"(z) - 0 asz — —o0,

(5) w'/(1+w) and w" /(1 + w) are bounded on R.

It is clear that V3 C V; N V.

Theorem 4.14. Let V € V3. Then

dimker H; = oo.

Proof. We must prove that every function in V; satisfies the hypotheses of Theorems 4.9.
Since V' € V3, we can write OV (z) = A(1 4+ w(z))eP®e'*¥. Let I = (0, ). We have

1 w \?
= /\2 2 28z = _
Gofe) =AAP(1-+ et 1 3 (ot p—2p+ 22 )

1 w' 21/ w w' 9
+§(—+ﬁ) ——( +28 +ﬂ>.

14w 2\1+4+w 14w

By (4.13.5), Gp(z) tends to infinity as ¢ — oo uniformly in p € I. Hence there exist constants
ct+ and 0 > (a + B)/2 such that for every p € I, G, > 02 on [c4,00) and for all p > 0, by
(4.13.3),

h(z)e 7%zf = \/me(“"'ﬂ)’ﬂe_”w” —0 as z — oo.

By (4.13.4), Gp(z) — (a+B8—2p)*/4 as £ — —oo uniformly in p € I. Thus, for each § € (0, 1)

there exists a constant c_ such that for every p € 1,

2 2
o (%—33) <Gya) < = (M) . z€(~ooc].



We put v = 6(a + f —2p)/2 and § = 6~ (a + B — 2p)/2. We have

as 60— 1.

N =

Hence for every € > 0, there exists 6 in (0,1) such that

1 9_1+e
6 2 2 °
Thus,
25—y 2t fat gy~ (1o

Since p > 0, it follows that for all sufficiently small €, 26 — 4 — (a + 8)/2 < 0, which implies

that for all p > 0

h(m)e(z‘s"’)'”'[mI” =1+ w(z e(c>t+ﬂ)ﬂv/26(26—*1)IzlI:E|p -0 as z — —oo.

Hence hypothesis (i) of Theorem 4.9 is satisfied. Similarly we can show that hypothesis (ii)

of Theorem 4.9 is satisfied. Hypothesis (iii) of Theorem 4.9 can easily be verified. We have

thus proved Theorem 4.14. O

It is obvious that V(z) = Ae®* with A € C\ {0} is in V;. Hence we obtain the following

result, which has been proved in Ref. 6.

Corollary 4.15. Let V(z) = Ae®* with A € C\ {0}. Then

dim ker Hy = oo.

Example 4.16. Let S(R) be the set of rapidly decreasing C'*°-functions on R. Let

JA e C\ {0}, 38 > a, Is € S(R)

SP={V:C— C|stinfer{l + s(z)} >0,

OV (z) = M1 + s(z))ePzei¥

Then it is clear that every function in SP is in Vs.
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V. THE VANISHING THEOREM

In the last section, we formulated a condition under which dimker Hy = oo. In this
section we consider a condition under which dimker H_ = 0. By Remark 3.7, we can not
expect that the kernel of H_ is stable. Hence a class of V' for which ker H_ = ) may be very
small.

We put
v

F@) =% - (—) +2p-0) (L -5).

Definition 5.1. We say that V' is in V, if there exist a constant A € C\ {0} and v € C®(R)
such that 8V (z) = Av(z)e’®¥, v' /v and v" /v are bounded on R and v’ /v € C®(R).

Theorem 5.2. Let V € V4. Suppose that for a.e. p € R, either F, <0 onR or Fy_p <0 on
R holds. Then,

dimker H_ = 0.

To prove Theorem 5.2, we prepare some lemmas. We first note that there exists a

symmetry group of the fermionic Hamiltonian H_. Let
N_=i @y with D(N_)=D(2)cn
- = ) g3 1 - )= ay —

Then the following lemma holds (see Lemma 4.1).

Lemma 5.3. Let V € Vy. Then for all s,t € R,

i9H- it _ JitN_ jisH.
The operator U: L*(R?; C?) — L2(R; &2 L*(R)) given by

~ (27)=1/2 [ e=ip=2)v f(y, z)dy
U (ch> (p) = (2%)_1/4(/ e~ "PYg(y, z)dy
R

1s unitary. To identify the kernel of H_ = Q4 Q7 , we solve ﬁQi U*® = 0 on each of the fiber
spaces of L?(R; ®% L%(R)) in a way similar to that in Sec. IV.
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Let V € V4. Let @ € ker(ﬁH_ﬁ*) with ®(p) = (¢(p,), —i¥(p,-)). In the same way
as in the proof of Lemma 4.5, we can see that for a.e. p the following equations hold in the

ordinary sense:

— ¢+ (S -a) ¢+ (40P - p- )% +plp-a)) 6 =0, (51)
—9'+ (L -a)w (4P 452 +plp - ) v =0, (52)
%(d—(fc-~p+a)¢+_Xv¢=0 and Av¢+%—<-&%+p>1/)=0. (5.3)

We fix p in the following lemma.

Lemma 5.4. Let V € V4. Let ¢ (resp. ¥) be a solution of (5.1) (resp. (5.2)) in D(d*/dz® ) n
D(v2 ) Then the following hold: v

(i) If F, <0 on R, then ¢ = 0.
(i) If Fo—p < 0 on R, then 3 = 0.

Remark. By (5.3), either ¢ = 0 or % = 0 implies that both of them are equal to 0.

Proof. We prove part (i). Taking the L?(R)-inner product of (5.1) with ¢ yields that

61 + Il + ((5-a)é.6)-(0-a) (L~ p)éd)=0. (9

v v

Via integration by parts, we have

(5.4) implies that

2117 + 2 (Mgl = < {— (%) +20-0) (Y ) } 4 ¢> = (R4, ). (59

By the hypothesis of part (i) the right hand side of (5.5) is non-positive. But the left hand
side of (5.5) is non-negative. Hence the both sides of (5.5) are equal to 0. Hence it follows

that ¢ = 0. In the same way we can prove part (i1). O

We are now ready to prove Theorem 5.2.
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Proof of Theorem 5.2. By the assumption of this theorem and Lemma 5.4, we immediately

obtain the desired result. ~ [J

A concrete example of superpotential satisfying the assumption in Theorem 5.2 is given
by
OV (z) = AeP=ei*¥
with constants A € C\ {0} and 8 > a/2.

Remark 5.5. By a reason similar to that given in Remark 4.12, we can see that for H_, there

exist infinitely many generalized zero-energy states.
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APPENDIX

In this appendix, we present some facts on the ordinary differential equatibn,
y" —Gy=0 on [0,00). (A.1)

For the proof of them, we refer to, for example, Sec. 9.2 in Ref.10.
We suppose that the function G is positive, continuous and zG(z) ¢ L'(0,00). Let yo
and y; be the solutions of (A.1) with

y1(0) =1, 31(0) =0, yo(0) =0 and yz(0) = 1.

Lemma A.1l. yo(z) > 0 and y1(z) > 0 on (0, c0).

Lemma A.2. The limit @ = — lim y1(z)/yo(z) exists and y4(z) = y1(z) + aye(z) is the
r—00

unique solution of (A.1) such that

y+(0)=1 and yu(z)—0 as z — oo.

Moreover, y4 is monotone decreasing on (0, 00) and y!, € L*(0,0).
‘We call y; in Lemma A.2 the “normalized subdominant” solution.

Lemma A.3. lim y;(z) = o0 and lim yo(z) = co. Hence every solution of (A.1) linearly

independent of y,. tends to infinity as z — oo.
The following comparison theorem holds.

Lemma A.4. Let H be a function such that H > G. Let Y, be the normalized subdominant
solution of y" — Hy = 0 and Yy be the solution of it with Y5(0) = 0 and Y;(0) = 1. Then

0<Y;<y;s and 0<y <Yy on (0,00).

In particular, if there exist v and § > 0 such that 6> < G < 42, then the following estimate
holds:

e” " <yy(z) < e on (0,00).
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