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FOR THE LINEAR KOITER MODEL

FOR SHELLS WITH LITTLE REGULARITY
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Abstract. We give a simple proof of existence and uniqueness of the solution of the
Koiter model for linearly elastic thin shells whose midsurfaces can have charts with dis-
continuous second derivatives. The proof is based on new expressions for the linearized
strain and change of curvature tensors. It also makes use of a new version of the rigid dis-
placement lemma under hypotheses of regularity for the displacement and the midsurface
of the shell that are weaker than those required by earlier proofs.

Resume. On donne une demonstration simple de l'existence et l'unicite de la solution
du modele de Koiter pour des coques minces lineairement elastiques dont les surfaces
moyennes peuvent avoir des derivees secondes discontinues. La demonstration est fondee
sur de nouvelles expressions des tenseurs linearises de deformation et de changement de
courbure. Elle utilise egalement une version nouvelle du lemme du mouvement rigide pour
une coque, sous des hypotheses de regularity du deplacement et de la surface moyenne
plus faibles que celles des demonstrations anterieures.

1. Introduction. There exist at least two different families of linear models for thin
elastic shells: the one of Reissner, which relies on the theory of Cosserat surfaces, cf.
Cosserat and Cosserat [10], and the Kirchhoff-Love type theories. The second approach
is based on the celebrated Kirchhoff-Love assumptions, which state that the normals to
the reference midsurfaces are deformed into normals to the deformed midsurface and
that the distance between a point and the midsurface remains constant throughout the
deformation of the shell.

Taking into account these assumptions, Koiter [17] proposed a two-dimensional math-
ematical model for linearly elastic thin shells where the unknown is the displacement field
of the points of the shell midsurface. An approximation for the displacement field across
the thickness of the shell may be derived from this displacement via the Kirchhoff-Love
assumptions. We refer to Bernadou [1] for a recent overview of linear shell theory.
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An existence and uniqueness theorem for Koiter's model was established for the first
time by Bernadou and Ciarlet [2] by means of a particularly technical proof relying on
results of Rougee [19]. Applying a lemma on distributions in H~x whose gradient is also
in H^1 of J.-L. Lions, Ciarlet and Miara [9] were able to give a simpler existence and
uniqueness proof.

The purpose of this work is to provide an even simpler proof of existence and unique-
ness for Koiter's model. Moreover, our result is valid for shells whose midsurface can
have charts with discontinuous second derivatives. We thus improve—and significantly
simplify—the earlier proofs of Bernadou and Ciarlet [2], Ciarlet and Miara [9], and
Bernadou, Ciarlet and Miara [3], which all assumed midsurfaces of class at least C3.

The article is as follows. We start in Sec. 2 with a brief review of some notions of
differential geometry that will be used thereafter. We then introduce in Sec. 3 expres-
sions for the linearized strain and change of curvature tensors of a displacement of the
midsurface. To the best of our knowledge, these expressions are new or at least previ-
ously unnoticed in this context, especially as concerns the change of curvature tensor.
The crucial point for our purposes here is that they do not involve any derivatives of
the second fundamental form of the midsurface. Such derivatives thus do not actually
enter in the change of curvature tensor, contrarily to what was thought previously. It is
this observation that allows us to weaken the customary regularity requirements for the
midsurface. Indeed, the new expressions are valid for midsurfaces of class W2'°° and are
defined in general as distributions. In order to obtain these new expressions, we do not
decompose the displacement on the contravariant basis as is usually done. Instead, we
simply consider displacements as Revalued functions, which is indeed a more intrinsic
approach. A further consequence of this approach is that our expressions for the strain
and change of curvature tensors are considerably simpler than the classical ones.

In Sec. 4, we use these new expressions to prove the rigid displacement lemma for a
shell, viz. Lemma 5, under hypotheses of regularity for the displacement and midsurface
that are significantly weaker than those required by earlier proofs. More precisely, the
midsurface is only of class W2'x and the displacement of class H1. The proof is based
on the existence of the infinitesimal rotation vector ip] see Vekua [21] for the classical
approach, which follows from elementary arguments of vector analysis in R3 recast in a
distributional framework.

In Sec. 5, we establish the ellipticity of the bilinear form associated with the Koiter
model over an appropriate Hilbert space in the case of simple support on the boundary.
The proof uses the standard contradiction argument, based on the one hand on the two-
dimensional Korn inequality and on the other hand on Rellich's lemma. The existence
and uniqueness result then follows from the Lax-Milgram lemma. Again, this is made
possible by our new expressions for the linearized strain and change of curvature tensors.

We show in Sec. 6 that our method also works for the case of clamping on one part
of the boundary and applied forces and moments on the remaining part. The general
philosophy at work here is the same as before. We rewrite the clamping condition in a
more intrinsic way than the classical one by considering the displacements as K3-valued
functions and not as triples of covariant components. It turns out that the resulting
expressions make sense in our functional framework. We proceed in a similar fashion
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for the infinitesimal rotation vector, which is used to write down the loading terms
corresponding to moments applied on the boundary. The resulting expressions are once
again simpler and more natural than the classical ones, and they make sense in our
functional framework. Let us note that it is especially interesting insofar as it allows quite
common situations, such as a C^-shell made of a plane part and a smooth cylindrical
part, which are excluded by the usual hypothesis that the midsurface be of class C3.

Finally, Sec. 7 is devoted to a comparison with existing results in the literature, a
discussion of numerical issues and a few examples and applications.

Let us sum up by emphasizing again that the main novelty of this article, in addition
to a significant simplification of the proofs, is that it allows shells whose midsurfaces may
have curvature discontinuities. Note that Destuynder and Salaun [13], [14] obtained a
mixed formulation of the Koiter model that is also valid for a W2'°° shell in that third-
order derivatives of the chart do not appear in the final model. However, the existence
of third-order derivatives seems to be required to derive their formulation and existence
and uniqueness are obtained as a consequence of Bernadou and Ciarlet's result; see the
discussion at the end of this article. The idea of foregoing covariant components was also
used by Le Tallec and coworkers, see e.g. [18], in the linear and nonlinear cases. Part of
the results of the present article were announced in Blouza and Le Dret [5], [6].

2. Geometry of the shell midsurface. In the sequel, Greek indices and exponents
always belong to the set {1,2}, while Latin indices and exponents belong to the set
{1,2,3}. We use the Einstein summation convention, unless otherwise specified.

Let (ei, 62,63) be the orthonormal canonical basis of the Euclidean space R3. We
denote by u ■ v the inner product of R3, |w| = \Ju ■ u the associated Euclidean norm, and
u Av the vector product of u and v.

Let to denote a Lipschitz domain of R2. We consider a shell of midsurface S = tp(lZ>),
where (p € W2,°°(ui; R3) is an injective mapping such that the two vectors

aa(x) = daip(x) (1)

are linearly independent at each point x £ U. We let

_ ai(aQ Aa2(i)
3 \ai(x) A a2(x)\

be the unit normal vector on the midsurface at point tp(x). The vectors ai(x) define the
covariant basis at point <p(x). The regularity of the midsurface chart and the hypothesis
of linear independence on u imply that the vectors abelong to W1,00(u;;R3). The
contravariant basis al{x) is defined by the relations

ai(x)-aJ(x) = 8) (3)

where <5] is the Kronecker symbol. In particular, a3(2) = 03(0:). As before, a1 6
R3). We let a(x) = |ai(x) A a2(x)|2, so that 1Ja is the area element of the

midsurface in the chart ip.
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The first and second fundamental forms of the surface are given in covariant compo-
nents by

daft Q>oc ' ^0 and bafi ^3 ' @0Q/a 3* (4)

Since R3) is a Banach algebra, it follows that aap £ W1,p®(o>) and bap 6 L°°(ui).
We further introduce the contravariant components of the first fundamental form

aaP =aa -a0 (5)

and the mixed components of the second fundamental form

hPa = aftpbpci. (6)

Again, aaP £ Wl'°°(ui) and £ L°°(w). Finally, the Christoffel symbols of the midsur-
face are given by

ra/3 = V0a = aP • dPac (7)

and we have Ypa^ £ L°°(uj).

3. The linearized strain and change of curvature tensors. In this section, we
define the linearized strain and change of curvature tensors of a shell displacement in a
functional framework that is weaker than the usual one.

We begin by recalling the classical definitions. Assume thus that £ C3(uJ;R3). Let
u be a displacement of the midsurface, i.e., a regular mapping from u> into R3 given in
covariant components by u(x) = Ui(x)al(x) where Ui = u ■ a,i. In the classical approach,
the displacement is identified with the triple (uft, i = 1,2,3, of its covariant components.
The covariant derivatives of the tangential components of u are defined as

^a|/3 dftUa ^a/3^P'

its linearized strain tensor is given by 7(u) = ^ya/3(u)aa <S> aft with

lapiu) = \{ua\p + u^a) -bapu3 (9)

and its linearized change of curvature tensor by T(u) = TQ^(w)aQ £g> aft with

= ^3|a/3 bapbpU3 -f- bpUp\a b^Up^p (10)

where u3\a/3 = dapu3-Tpapdpu3 and bp^a = dab^ + r^b^-T^b^. It is this last definition
that restricts the regularity of the chart in the classical approach. Indeed, in Bernadou
and Ciarlet [2] and all subsequent works, the tangential components of the displacement
Up belong to For the term dabpUp to make sense, the above-mentioned authors
are led to assume that <p is of class C3, an assumption that can be slightly relaxed but
not essentially so.

We now change points of view and instead of identifying the displacement u with its
covariant components, we consider it as a mapping from u> into R3. Note that this point
of view is not entirely intrinsic, since we are still viewing the displacement through the
chart ip and not as an object defined on the surface itself. See Destuynder [11], Valid
[20], for an intrinsic formulation on the surface. In our approach, the partial derivatives
dau and dapu are again mappings from u> into R3.

We begin with a density lemma.
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Lemma 1. Let <p G W/2'°°(u;;R3) be such that |ai A a2| > 0 on lJ. Then there exists a
sequence <pn G C3(cJ;R3) such that |a™ A a?| > 0 on U, ipn —> ip strongly in W2'p(a;;R3)
for all 1 < p < +00 and ipn ip weakly-* in W2'°°(u;; R3).

Proof. Since a; is a Lipschitz domain of R2, we may extend p to a function of VF2'°°(R2;
R3), still denoted ip. Consider now a sequence of mollifiers pn G C°°(R2) and let (pn =
pn *p G C°°(R2; R3). It is well known that the restriction of <pn to u> converges strongly
in C^wjR3) to >p as n —> +00, since M/2'°°(R2;R3) <-► CX(R2;R3). Consequently, for
n large enough, |a" A | > 0 on lJ. The convergence in W2,p(a;;R3), 1 < p < +00, is
classical. □

Lemma 2. If u e Hx{u>\ R3) and <p G W2'°°(lo- R3), then the expressions

laT(u) = \{dau ■ a$ + dpu ■ aa) (11)

define functions of L2(u>) that coincide with the covariant components of the strain tensor
when u and ip belong to C3(aJ; R3). The expressions

r^(u) = (daPu-Tpal3dpu).a3 (12)

define distributions of H~1(lo) that coincide with the covariant components of the change
of curvature tensor when u and ip belong to C3(w;R3). Moreover, if u" and ipn belong
to C3(o7;R3) and are such that it™ —» u strongly in //'(o>;R3) and <pn —> p strongly in
iy2,p(o;;R3) and pn —>- p weakly-* in W2,oc(u; R3), then 7ap(un) —> 7^w(u) strongly in

L2(u) and Tap(un) -> T^(u) strongly in

Remarks. Lemma 2 gives two expressions for the linearized strain and change of
curvature tensors that are simpler and more intrinsic than the classical expressions (9)
and (10). Note in particular that the derivatives of the second fundamental form are
absent from the definition of the change of curvature tensor. In view of Lemma 1,
expressions (11) and (12) thus provide natural extensions for the strain and change of
curvature tensors to our less smooth situation. We will thus remove the "new" exponent
from the notation after the following proof. Note also that the strain and change of
curvature tensors depend on the sequence of charts, which is not apparent in the notation.

Proof. Let us be given u and ip, two elements of C3(o7;R3) such that \a\ A 02! > 0
on lj. Consider the one-parameter family of deformed surfaces {(ip + r/u)(u>),ri G R}
for ri small enough. To obtain the linearized strain and change of curvature tensors
of the displacement u with respect to the surface p(co), we differentiate the covariant
components of the first and second fundamental forms of this family with respect to rj
at 77 = 0.

i) Let aa{rf) = aa + r)dau and aap(r]) = aa(r)) ■ ap(rj). The covariant components of
the strain tensor are equal to one half of the covariant components of the first variation
of the metric tensor and are thus given by

7a/3(u) = ^^f(0)- (13)
It is obvious that

^(0) = -^(0) • a/3(0) + aa(0) • = daU ' a0 + a" ' d0u' (14)
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hence formula (11). It is easily checked that formula (11) coincides with the classical
definition (9) for u and ip smooth.

Let us now assume that u and ip satisfy the hypotheses of Lemma 2, i.e., u e Hl (u>; R3)
and p e M/2,00(w; R3). It follows then that dau € L2(u; R3) and ap € L°°(u\ R3).
Consequently, dau ■ ap G L2(u>), which shows that 7"pw(u) £ L2{lu). Finally, it is clear
that if un —> u and —> </? respectively in l/1^;!!3) and W2,p(w;R3) for some p > 2,
then 7(un) —> 7"^w(m) in L2{uj) strong. This holds true in particular when un and
tpn are regular.

ii) We now turn to the derivation of the change of curvature tensor. Let A{rj) =
01(77) A 02(77) so that 03(77) = A(r])/\A(rj)\ is the deformed normal vector (this is for
77 small enough). The second fundamental form of the deformed surface is bap(r]) =
dpaa{r]) ■ 03(77). The covariant components of the change of curvature tensor are the first
variation of the covariant components of the second fundamental form and are thus given
by

ra0(u) = d^(o). (15)

Let us compute this derivative. It follows from Leibniz' rule that

~~^f(°) = dapu ■ a3 + d0aa • ̂ (°)- (16)

To compute the derivative of the normal vector, we first remark that dA/dr](0) = a± A
&2U + d\u A 02 and d|^4|/d77(0) = (dA/dr](0)) ■ 03. Therefore,

da-j . 1 (dA d\A\ \ 1 fdA \
= TTTTvTi -3r(0) - 4^(0)a3 = rTTTvTi 3r(0) ' (17)dr) 1^4(0) | \ dr] dr] J | A(0) | \ drj

Note now that dA/dr](0) ■ ap = —-4(0) • dpu. Consequently,
da

(°) = - (|^)j ' dPu) a" = _(a3 ' dpu)aP- (18)

lto (16), we obtain

(0) = dafju ■ 03 - (ap ■ dpaa)(dpu ■ a3). (19)

drj \ l-4(0)|
Replacing this expression into (16), we obtain

dbap
dr]

In view of the definition of the Christoffel symbols (7), Eq. (19) becomes

^ (0) = (dapu - K0dpu) ■ 03. (20)

The above expression for the change of curvature tensor is valid for smooth u and ip, and
it can be checked by a straightforward albeit lengthy computation that it coincides in
this case with the classical definition (10).

Let now u and tp satisfy the hypotheses of Lemma 2. We remark that expression
(12) defines an element of Indeed, if u e Hl(u>\ R3) and p G PF2'°°(a;; R3),
Tpa0dPu ■ a-s belongs trivially to L2(u>) on the one hand, and on the other hand, dapu • 03
is a distribution of defined by

V0 € {dapu ■ a3,d) = (dapu,0a3) = - f dau ■ dp(6a3) dx. (21)
J U)
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In effect, since 03 £ K3), for all 6 € da3 belongs to Hq(u-R3) and the
second duality pairing is well defined as the rightmost integral.

Finally, let un —> u in .ff1^;®3), (pn —> ip in H^2,p(a;;E3) for all p < +00 and
<pn -+ ip weakly-* in W2'°°(w; M3). Then, (ap)n —> ap in C°(w;R3), c^a™ —> dpaa in
Lp{<jj\ R3), and dp a™ —- dpaa weakly-* in M3). Therefore, (r^)n —> Tpaf} in Lp(lo)
and {Tpap)n —Tpap weakly-* in L°°(u;R3). Since dpun —■> dpu strongly in L2(w;R3)
and a% —> <13 strongly in C°(u>;R3), we see that (TPap)ndpun ■ a% —+ • 03 in
Lq(u) for q = 2p/(p + 2) and all 2 < p < +00, and (TPap)ndpun ■ a% —»■ rp0dpu ■ 03
weakly in L2(u). Since the embedding L2(co) <—> #_1(w) is compact, it follows that
(rpa0)ndpun ■ a% -> rPapdpu • a3 strongly in

Let us now consider the other term. We have

\\dapun -03 - da0u-clzWh-x^) = sup [ [daun • dp(0a%) - dau ■ dp{9a3)\ dx
J co

by formula (21). Let us estimate the right-hand side of this equality:

\\dapun ■ a3 - dapu-a3\\H-i,w) < sup
M^>=i

+ sup
lltflfu,)-1

[ da(un — u) ■ dp(0a3) dx
J uj

/ dp6dau • (ag — a3) dx
J UJ

[ Odau ■ dp(a3 — a3) dx
J u)

(22)

The first two terms of (22) clearly tend to 0 as n —► +00. Let us examine the last term
in more detail. Note first that a3 —> a3 strongly in W/1'p(w;E3) for all p > 2 since the
space W1'p(uj) is a Banach algebra. By Holder's inequality, we thus have

/J (jj
9dau ■ dp(a^ — a3) dx < ||3aM||L2(aJ;IR3)||0||^_^^^ 11^(03 - a3)||Lp(a;.R3). (23)

By the Sobolev embedding theorem, ||0||^_2^ ^ < Cp\\d\\Hi^u) and thus

sup f ddau ■ dp(a3 — a3) dx
J U)

0 as n —> +00. (24)

Combining together the two convergences thus established, we see that Y"^w(«") —►
T™p(u) strongly in H~l{uj). This holds true in particular when un and ipn are regular,
which completes the proof. □

Remark. In the above proof, we could have assumed just as well that (p e W2,p(uj;
for some p > 2 instead of </? € H/2'°°(a;; ]

4. A new functional setting for the infinitesimal rigid displacement lemma.
In what follows, the midsurface is always assumed to be such that ip £ H/2'°°(w;R3)
unless otherwise specified. The purpose of this section is twofold. First, we introduce
a new functional framework for Koiter's model and prove that it provides a natural
extension of the classical framework of Bernadou and Ciarlet [2]. Second, we establish
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the infinitesimal displacement lemma in this functional framework. The infinitesimal
displacement lemma is a key ingredient in the existence and uniqueness proof of Sec. 5
below.

Let us introduce the space

V = {v G R3), daPv ■ a3 G L2(lo)} (25)

which we equip with the norm

IMk = + ^Ha^u"a3!l!2Hj • (26)

We recall that, if v G //1(w;M3) then dapv ■ a3 is a distribution of defined by

V6 G Hq(uj), (da0v ■ a3,0) = -(davi,d/3((a3)l9)),

where the components are the Cartesian components. Hence the space V is well defined
as a subspace of H1 (uj;R3).

Lemma 3. The space V is a Hilbert space.

Proof. Clear. □
Note that elements v of V are such that 7Q|a(u) G L2{u>) and Tap(v) G L2(ui) by

expressions (If) and (12).
Let us now prove that the space V defines a natural extension of the classical functional

framework of Bernadou and Ciarlet [2] to our case.

Lemma 4. Assume that ip G W3'°°(w;R3). Then the space V is equal to the space of
displacements v = Via1 G Hq(uj; R3) whose covariant components (i>i);=i,2,3 belong to
the space Vq = Hq(u) x x (H2(uj) DWhen Vo is equipped with the norm

HK)lk — II '•'■> i // ' ■; w. + , (27)

this correspondence defines an isomorphism.

Proof. Let v be an element of V. First of all, the covariant components = v ■ at
belong to L2(ui) since v G L2(w;R3) and G L°°(a;;R3). Secondly, daVi = dav ■ ai +
v ■ daai G L2(ui) since v G H1(lj\ R3) and a,; G Wl,oc{u>\ R3), so that v; G
Moreover, it is clear that the trace of Vi on dto is zero, and hence vi G H(\ (oj). Finally,
dapv3 = da0v ■ a3 + dav ■ dpa3 + daa3 ■ dpv + da0a3 ■ v G L2(u>) since a3 G W2'°°(w; R3).
Therefore (Vi) is in Vo-

Conversely, let {v\,v2,v3) be an element of Vq and let v = Via1 G L2(w;R3). Then

dav = (dav^ - Tpailvp - baflv3)aM + (dav3 + b^v^a3 G L2(u] R3), (28)

so that v G Hl(u>] R3). Moreover, it follows from (28) that

da0V = df}[dav^ - Tpa^vp - baiJ,v3\aM + [davM - Ypa^vp - ba^v3\dpa>"

+ dp[dav3 + b^v^a3 + [9Qi;3 + b^v^dpa3
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as an element of H^1^; R3). We deduce from (29) that

dapv ■ a3 = [daVf, - TpaiJvp - baflv3]b^ + da0v3 + E L2(co). (30)

Finally, since the vectors a1 belong to R3) by assumption and Vi E Hq (u>), it
follows that v = Via1 E Hq(lo-,W.3). We conclude that V = Vq algebraically.

It follows from formula (30) that for all v € Vq

WdocpV ■ a3\\L2^ < C I ||^a/3^3 || L2(w) + ^2 ll^a^lU2^) + llV»IU2(">) I (31)
\ a,P » )

since rPapiba@, and b@ belong to PF1,00(o;). Similarly, formula (28) implies that

||^a^||L2(u»;R3) — C ^^ ' || || L2 (a;)

for the same reason. Finally, it is clear that

IM|l2(w;R3) < C lki|U2(w)J • (33)

We infer from the last three estimates that for all v E Vo, ||i>||y < C||u||y0. Hence the
embedding Vo V is continuous and so is its inverse by the open mapping theorem.
Therefore V and Vo are isomorphic.

Remark. The space Vo was introduced in the classical approach of Bernadou and
Ciarlet [2]; see also Bernadou, Ciarlet and Miara [3] when the midsurface is regular, for
instance <p E C3(u;;R3).

Corollary 5. Assume that {p E W3,00(u] R3) and v E V. Then the classical expressions
for the linearized strain and change of curvature tensors and the new expressions (11)
and (12) coincide.

Proof. This follows directly from Lemmas 2 and 4. □
Let us turn to the infinitesimal rigid displacement lemma in our functional framework.

Theorem 6. Assume that ip E W/2'°°(u;; R3). Let u E R3) be a displacement of
the surface S.

i) If u satisfies 7(u) = 0 then there exists a unique tp E L2(w;R3) such that

dau = ip A daip, a = 1,2. (34)

ii) (Infinitesimal rigid displacement lemma) If in addition T(u) = 0 then rp is identified
with a constant vector of R3 and we have for all x E to

u(x) = c + tjj A tp(x) (35)

where c 6 R3 is a constant vector.

Remarks, i) Theorem 6 contains the infinitesimal rigid displacement lemma of Berna-
dou and Ciarlet [2], see also Bernadou, Ciarlet and Miara [3], under weaker hypotheses of
regularity for the midsurface and the displacement. See Blouza and Le Dret [5] for other
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versions of this result under various hypotheses of regularity. Note that if u G
satisfies 7(u) = 0 then u ■ aa e H2{lu) and tj) ■ a3 G (see below).

ii) The vector field ip is called the infinitesimal rotation field. It is given in the classical
case by the relation

iP = ip(u) = ea0{d0u3 + bpUp)aa + \ea0ua ^03, (36)

where e11 = e22 = 0 and e12 = —e21 = 1 /i/a\ see Vekua [21], Bernadou and Ciarlet [2],
Choi and Sanchez-Palencia [8] and Choi [7].

We divide the proof of Theorem 6 into three steps. The first step consists in extending
some elementary results of vector calculus to a distributional framework. For the duration
of this step, all components are Cartesian components. Recall that

{1 if {i, j, k} is an even permutation of {1,2,3},

— 1 if {«, j, A;} is an odd permutation of {1, 2,3}, (37)
0 otherwise.

Lemma 7. Let v G H~l{w;R3) (resp. L2(w;R3)) and let a G W1'00^; R3) be such that
|a(x)| > 6 > 0 on UJ.

i) If v ■ a = 0, i.e., for every 9 G Hq(u>), (v ■ a, 9) = (Vi,a%9) = 0 (resp. a.e. in lo)
then there exists w G //_1(u;;R3) (resp. L2(w;M3)) such that v = w A a, i.e., for every
9 G (vi,9) = eijk(wj,ak9).

ii) If v A a = 0, i.e., for all 9 G eijk(vj,akO) = 0 (resp. a.e. in u), then there
exists v G /f_1(w) (resp. L2(lo)) such that v = va, i.e., for all 9 G Hq(u), (vi,9) = (v,
(resp. a.e. in u).

Proof, i) Let v G //_1(o;;R3) and w = ^pf. Then w is a distribution of H~l{u;;R3)
defined by

V0 G Hq(ui), (wt,9) = eijk /vk, ^2°^ ■

Indeed, a._,^/1<212 is an element of Hq(u) since aj G VF1,00(w;R3) and, as l/|a|2 < 1 /S2,
l/|a|2 G VK1'00^; R3) too. Then we have for all 9 G

// » \ n\ / QjmQ'k s\ / Q'kQ'i s\ . / ^k^k ,A / *\
(\W A CLjii 0/ — ^ijk^jmn ( |(Zp j \^ki |^|2 j |^|2 j \Vii / '

since

tijk^jr

1 if (i, k) = (n, m),
— 1 if (i, k) = (m, n),
0 otherwise.

ii) Let v G #_1(a;;R3) and set v = v ■ a/\a\2. Then v is an element of H~l{u)
defined by (v,6) = (vj, 9) for all 9 G Hq(lo). Indeed, ^2 belongs to W1,00(u;,R3) and
therefore is an element of Hq(lu). Let us check that (v, did) = (vi,9) for i = 1. We
have

/- a\ / ai<2l/A 1 / a2<Xl a\ 1 / a3al,(v, a\9) = ( 1-1,7-7^9 ) + ( v2, -7~wv ) + < v3, -j-fj-l
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Now, since by assumption v A a = 0, i.e., tijk{vk, a-jQ) — 0, it follows that

<»,<>.«) - (»., + (»1, if) + (vu = („,«>.

We repeat the argument for i = 2 and i = 3.
To conclude the proof, we remark that if v £ L2(lo\R3) then the above construction

gives w £ L2(u; R3) and v £ L2(u) and the equalities hold almost everywhere in lo and
not just in the distributional sense. □

We now are in a position to prove the existence of the infinitesimal rotation vector for
inextensional displacements, i.e., displacements whose strain tensor vanishes.

Lemma 8. Let u £ H1 (w;R3) and tp £ R3) be such that 7(it) = 0 a.e. in cj.
Then there exists ip £ L2(u;;R3) such that (34) holds.

Remark. Note that for this result, ip is only in R3).
Proof. According to expression (11), we see that

{dau ■ aa = 0 a.e. in lo (without summation),

d\u ■ a,2 + 82u ■ a\ = 0 a.e. in lo.

By the first two equations and by Lemma 7i), we know that there exist w\ and w2 in
L2(w;R3) such that dau = wa A aa a.e. in w (without summation).

In addition, the third equation implies that A ai) • + (W2 A 02) • ai = 0 or
equivalently (w 1—iu2)-a3 = 0 a.e. inw. Consequently, W1-W2 = ((^i —W2)-al)a,i = ((wi-
W2)-aa)aa (we recall that 03 = o3). Let w2)-al)ai = W2 + {{wi—W2)-a'2)a2
a.e. in aIt is clear that

{ip A ai = w\ A a\ = diu a.e. in w, ^
ip A a,2 = u>2 A a2 = 8211 a.e. in lo,

which proves the existence of the infinitesimal rotation vector.
Concerning the uniqueness, we remark that if ip1 £ L2(oj; R3) is such that ip' A aa = 0

a.e. in u, the ip' = 0 a.e. in aIndeed, Lemma 7ii) implies that there exist ip\ and ip'2
in L2(lj) such that ip' = ip[ai — il>'2a2. Multiplying this equality by a1, we obtain that
ip2 = 0 a.e. in u>, and hence ip' = 0. □

Remarks, i) If <p £ H/2,°°(u;; R3) and 7(u) = 0, then we have da(u ■ aa) = u ■ 8aaa £
H[ (lu) (without summation) and 8\ (u ■ a2) + 82{u ■ a\) = u ■ d\a2 + u ■ 82a 1 € H1 (w). By
the two-dimensional Korn inequality we immediately infer that ua = u-aa £ H2(w); see
Geymonat and Sanchez-Palencia [15] for similar observations.

ii) In this case, if we multiply the first line of (39) by a2 and the second line by a\, we
obtain that 8\u-a2 = |ai Aa2|(a3 -ip) and 92u-ai = — |ai Aa2|(o3 -ip). It thus follows that
2|ai A a2|(a3 • ip) = 8\u ■ a2 - 92w ■ a>\ = 8\{u- a2) - <92(u • 01) 6 Hl(u) since d2a\ = 8\a2.
This shows that ips = ip ■ <13 £ Hl{u>).

We now conclude the proof of Theorem 6.

Lemma 9. Let u £ R3) and <p £ W2,°°(lo\ R3). If u satisfies 7(u) = 0 and T(it) =
0, then ip is a, constant vector and we have u(x) = c + ip A<p(x) where c € R3 is a constant
vector.
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Proof. Since u is in H1( u;;R3) then dapu is a distribution of R3). In fact,
because of (34), we have

da0U = dpip A aa + ip A dpaa. (40)

Indeed, for all 9 € (o>; R3), aa A 9 € (uj\ R3) and

{dpip Aaa,9) = (dpip, aa A 0) = - / dp(aa A 9) • ipdx, (41)
J UJ

and since dp(aa A 9) = dpaa A 9 + aa A <9/3$, it follows from (41) that

{dpip A aa, 9) = — / dpaa A 9 ■ ip dx — / aa A dpd ■ tp dx
J UJ J UJ

= — ip A dpaQ ■ 9dx — / ip A aa ■ dp9 dx
J UJ >J UJ

= -(tp A dpaa, 9) + {dg(ip Aaa),9),

which proves (40).
The distribution dapu ■ a3 6 H~l{u) thus satisfies

da0u • a3 = {dpip A aa) ■ a3 + {ip A dpaQ) ■ a3

= {dpip A aQ) ■ a3 + Tpaf){ip A ap) ■ a3 + ba0{ip A a3) ■ a3 (43)

= (dpip A aQ) ■ a3 + Tpaf}dpu ■ a3.

Note that the last two terms in (43)2 belong to L2(cu).
Consequently T(u) =0 implies that (dpip Aaa) ■ a3 = (a3 A dpip) • aa = 0. In addition,

we have (a3Adpip) -a3 = 0 by an immediate density argument. In Cartesian coordinates,
these statements read

ye e #oM> <(a3Aa^)fc,(oi)fcfl) = o, » = 1,2,3. (44)

Consider now an arbitrary function <j> e X>(u;;R3). Due to the regularity of the chart
ip, the contravariant components of <p,<pl = <j> ■ a1, belong to //,] (oj) and <j> = cpla,i. Using
(pl as a test function in (44) we thus obtain

V^eP(w;R3), ((03 A dpii)k,<t>%{ai)k) = (a3 Adpip,<f>) = 0; (45)

hence

a3 A dpip = 0. (46)

Thanks to (46) and Lemma 7, there exist ip[, ip'2 e H~1(uj) such that dpip = 1ppa3.
Since dapu = dpau, it follows from formula (40) that d2tj)A— d\ip Aa2\ in other words
ip'i(a3 A 01) = ip'2(a3 A a2). Therefore we have tp1 = ip2 = 0 and thus dpip = 0. Since u> is
a domain, this implies that ip is identified with a constant vector of R3. To conclude we
remark that then dp(u — ip A <p) = 0; hence u - ip A <p is identified with a constant vector
c of R3. □

See Blouza and Le Dret [5] for similar results under various hypotheses of regularity.
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5. Existence and uniqueness for Koiter's model. In this section, we propose
to prove the existence and uniqueness of the solution of the linearized Koiter model
for a shell whose midsurface may have curvature discontinuities, since ip is only in
W2,°°(lo\ R3). To begin with we consider the case of simple support on the entire bound-
ary We will consider more general boundary conditions in the next section.

Let aa/3p<7 G L°°(uj) be an elasticity tensor that we assume to satisfy the usual sym-
metries and to be uniformly strictly positive, i.e., there exists a constant C > 0 such that
for all symmetric tensors t = (rap) and almost all x G lo, aa0pG(x)TapTpa > C(Ta/sTa/s).
These hypotheses are for example satisfied by a homogeneous, isotropic material with
Lame moduli (i > 0 and A > 0, in which case

a"01"7 = 2 u,(aapa0a + aarTa0p) + --^-aQ/V'T.v ' A + 2(i

Finally let e £ L°°(uj), such that e(x) > C > 0 almost everywhere on u, represent the
thickness of the shell. This means that the actual three-dimensional shell is the set of
points M — <p(x) + zas(x) with x G to and \z\ < e(x).

Theorem 10. Let ip G VF2,00(a;;M3) and let P G L2(o;;IR3) be a given force resultant
density. Then there exists a unique solution to the variational problem: Find u G V such
that

V«GV, J eaaf3pa (ja/3(u)jp<7(v) + ap{u)Tp<T{v) \ -Jadx = J P ■ v^adx. (47)

Remark. In view of Lemma 4 and Corollary 5, if f is assumed to be of class C3, we
thus recover the result of Bernadou and Ciarlet [2].

Note first that the right-hand side of problem (47) clearly defines a continuous linear
form over the space V. We thus only need to prove that the bilinear form of the left-hand
side of (47) is l^-elliptic. This is the object of the next lemma.

Lemma 11. The bilinear form of the left-hand side of (47) is F-elliptic.

Proof. Under the hypotheses made on the chart <p, the elasticity tensor and the thick-
ness of the shell, we only need to prove that

IIMII = + (48)
\a,0 )

is a norm over the space V that is equivalent to II "Ik-
First of all, let us check that the mapping v G V i-» ||M|| is indeed a norm over V. It

is clear that this mapping is a semi-norm. By Theorem 6, if v G V is such that |||u||| =0,
then there exist ip, c G M3 such that v(x) = ijj A <p(x) + c. The set of points y G R3 such
that ip Ay + c vanishes is either a straight line {ip ^ 0 and c ^ 0), empty (ip = 0 and
c ^ 0) or the whole space (ip — 0 and c = 0). Since v vanishes on du and ip(du) is not
included in a straight line, it follows that v = 0.
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Let us now prove that the norm ||| ■ ||| is equivalent to the || • ||y norm. We argue by
contradiction. Let us assume that there exists a sequence vn in V such that

ll^n |[v — 1 and 111vn\\ | —> 0 when n —> +oo. (49)
By extracting a subsequence, still denoted vn, we may assume that there exists a

v € V such that vn —>■ v weakly in Hl (cu; R3) and dapvn • a3 — dapv ■ a3 weakly in L2(lo).
Consequently,

IccpiVn) — -yap(v) and TQ/3(vn) Ta/3(v) weakly in L2(lo), (50)

by expressions (11) and (12). Since hypothesis (49) implies that these tensors converge
strongly to zero in L2(u>) we obtain v = 0 thanks to Theorem 6. Rellich's lemma now
implies that vn —> 0 strongly in L2(w;R3).

Let us introduce the vector (wn)a = vn ■ aa, which is such that wn —> 0 strongly in
L2(u; R2) by the previous remark. Let us define 2eap(w) = dpwa + daWf). We see that,
by expression (11)

ea(}(u>n) = 7a/3(wn) + \vn ' (dpaa + dQap) 0 strongly in L2(u) (51)

since aa £ W1,00(ti>;]R3). By the two-dimensional Korn inequality, we deduce then that
wn ^ 0 strongly in /^(wjR2). Consequently,

dpVn ■ aa = dp((wn)a) - vn ■ dpaa 0 strongly in L2(w) (52)

since dpaa € L°°(w;E3).
Moreover, as vn —" 0 in Hl(u>; R3), it follows that dpvn-a3 —1 0 in L2(lu). On the other

hand, dp(dpvn ■ a3) = dppvn ■ a3 + dpvn ■ dpa3 0 in L2(lu). Indeed, dpa3 G L°°(a;;]R3)
and we already know that dppvn • a3 —' 0 weakly in L2(lo). Consequently, dpvn ■ a3 —>• 0
weakly in H1(u;) and by Rellich's lemma

dpvn ■ a3 —* 0 strongly in L2(u>). (53)

We deduce from (53) and (49) that

dapVn ■ a3 = Tap(vn) + rpa0dpvn ■ a3 -> 0 strongly in L2(u), (54)

since Kp e (lj), on the one hand, and on the other hand that

dpvn = (dpvn ■ a,i)a1 —► 0 strongly in L2(ui\ R3) (55)

by (52), (53) and since both ai and a1 belong to L°°(o;;R3). Consequently, vn —> 0
strongly in H1^; R3). Since by (54), dapvn ■ a3 —> 0 strongly in L2(uj), we see that
Ilun||v ~^ 0 which contradicts (49) and proves the lemma. □

Theorem 10 now follows directly from Lemma 11 by applying the Lax-Milgram Lemma,

6. Existence and uniqueness for general boundary conditions. In Blouza and
Le Dret [6], we gave an existence and uniqueness result for the clamped shell problem for
shells of class W2,°°, with the restriction that the midsurface be piecewise PF3-00. The
purpose of this section is to remove this unnecessary restriction. Indeed, we prove below
an existence and uniqueness theorem for a Koiter shell clamped on part of the boundary
and subjected to given forces and moments on the remaining part of the boundary, under
the sole hypothesis <p € W2'°°(uj\ R3). This is achieved by reinterpreting the classical
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conditions of clamping and moment loading in the light of the ideas set forth in the
previous sections.

We thus assume that the boundary dco of the chart domain is divided into two parts,
a part 70 of strictly positive 1-dimensional measure^ on which the shell is clamped and a
complementary part 71 on which the shell is subjected to applied tractions and moments.
In the classical approach, the clamping condition reads

Vi = dvv3 = 0 on 70, (56)

where dv denotes the normal derivative on the boundary. The loading condition amounts
to adding to the right-hand side of the variational problem a term li(v) of the form

h(v) = I (N ■ v + M ■ ip(v))y/aapTaTp da, (57)
J 71

where r is a unit tangent vector to dco, N = Nla,i is the applied traction density, M =
Maaa Aaz = e$aMaaP the applied moment density and ip(v) is the infinitesimal rotation
vector, which is still defined by

ip{v) = eal3(dgv 3 + bPpVp)aa + \ea0va\pa3, (58)

even for a non-necessarily inextensional displacement. Naturally in this case, dav ^
A aa.
Our goal now is to show that (56) and (57) can be rewritten in a simpler and more

intrinsic fashion that makes sense in our functional framework. We let

W = {v E H1^; R3) | daf}V • 03 £ L2(u>)}, (59)

endowed with the same norm as V, which is thus a closed subspace of W.
Let us begin with the clamping condition.

Lemma 12. Assume that ip E VF2'°°(u;; R3) and let v E W be such that v = 0 in the
sense of trace on 70. Then dav ■ a3 e with \\dav ■ a3||//i(w) < C||u||w and the
condition

dav ■ a3 = 0 in H1/2(70) (60)

is well defined. Moreover, it is equivalent to (56) if tp E W/3,oc(a;; M3).

Proof. We first remark that dav ■ a3 € HJ(w) with the norm estimate. Indeed,

dp(dav ■ a3) = da0v ■ a3 + dav ■ d0a3 € L2(u>). (61)

Note that the left-hand side of this equality is a priori only in The fact that
Leibniz' rule holds true in this case can be checked by reasoning along the same lines as
in the proof of Lemma 9.

Consequently, condition (60) is well defined for elements of the space W. Let us verify
that, together with the nullity of the displacement on 70, it coincides with the classical
clamping condition for <p smooth. We let v denote the normal outer unit vector to du>
and r a tangent unit vector to dto (which we assume smooth enough for this).

tThe case of pure traction and moments, i.e., 70 of null measure, is dealt with by working in the
obvious quotient space.
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Assume thus that ip G W/3,00(w; IR3) and let v G W be such that v = 0 on 70 and
v satisfies condition (60). Then v3 = v ■ a3 G H2(u>), viz. Lemma 4, and dav3 =
dav ■ a3 + v ■ daa3. Hence, dav3 = 0 on 70 so that dav3va = 0 on 70, i.e., v satisfies
condition (56).

Conversely, assume that v satisfies condition (56) and « = 0on 70. Then dav3va = 0
and dav3Ta = 0 on 70 in the sense of Hl^2{70). Therefore, dav3 = 0 on 70 and thus
dav ■ a3 = dav3 - v ■ daa3 = 0 on 70.

Remarks, i) Geometrically, the new clamping condition (60) simply means that, at
almost every point of 70, the tangent plane to the deformed surface remains orthogonal
to the original normal vector a3.

ii) Convergence results in the spirit of those of Lemma 2 also hold true and are left to
the reader. They can serve to further stress that condition (60) is a natural extension of
the classical condition.

Let us now consider the infinitesimal rotation vector.

Lemma 13. Assume that (p e Wr2;OC(aj; R3) and let v G W. Then the expression

iP(v) = ea0(dpv ■ a3)aa + ±ea0(dav ■ a0)a3 (62)

defines an element of L2(lo; R3) such that

aa ■ ip(v) = eal3(dpv ■ a3) G Hl{u). (63)

Moreover, it coincides with the classical infinitesimal rotation vector (58) if <p G
W3'°°(w;]

Proof. It is clear that if v belongs to W, then expression (62) defines an element
of L2(oj; K3) that satisfies (63). Indeed, eQ/3 G W1,00(o;). Let us thus assume that
<p G iy3'°°(w; R3) and let us compare the new expression with the classical expression in
this case. We thus have for the tangential components

aa ■ ip(v) = ea0{dpv ■ a3)

= eaP(d(3i>3 - v ■ df3a3)

= ea0{d0v3 + bpVp).

The calculation for the normal component is virtually identical:

2a3 • ip(v) = ea/3(dav ■ ap)

= ea/3(davp - v ■ daa0)

= eal3(dav0 - Tpa0vp - ba0v3)

= £a0va\0,

since eQ/36Q/3 = 0. □
Remarks, i) We had already obtained the expression of the normal component of

the infinitesimal rotation vector by a direct argument in the inextensional case; see the
remarks following Lemma 8.

ii) It is easy to check with expressions (62) and (11) that for all v G

dav = ijj(v) A aa + 7



EXISTENCE AND UNIQUENESS FOR THE KOITER SHELL MODEL 333

hence formula (34) holds when v is inextensional.
We now turn to the Koiter problem. Let us define a new space

V = {v € H1 (w; R3), dapv ■ a3 € L2(u), v = dav ■ a3 = 0 on 70}. (64)

Note that the condition daf)V ■ a3 6 L2(u) may alternatively be written dav ■ a3 6 H1 (lj).
By Lemma 12, we see that V is a closed subspace of W that extends the classical space of
Bernadou and Ciarlet [2] to the case tp € W/2,°°(a;; R3). We prove the following existence
and uniqueness result.

Theorem 14. Let P e L2(w;R3), N1 G £2(7i) and Ma e L2{71). Then there exists a
unique solution of the variational problem: Find u £ V such that

VveV, B(u, v) = l(v) (65)

where

and

B(u,v) = j eaQ/3p<7{7a/3(u)7pcT(t;) + ^Ta0(u)Tpr7(v)}^adx (66)

l(v) = / (P-v)\/adx+ / (N ■ v + M ■ ip(v))y/a^fff^T0 da (67)
J Ld J 71

with N — Nla,i and M = Maaa A 03 = ejgQMQa'3.

Proof. Let us first check that the linear form I is continuous on the space V. Since
the vectors Oi belong to W1,00(u;; R3), their trace on 71 belongs to C°(71). Therefore, if
Nl G L2{71) and Ma s L2(7i), then N £ L2(7i;K3) and M € L2(7i;R3). Moreover, by
expression (62), M-tp{v) = Mp{dpv-a3). Consequently, Lemma 12 and the trace theorem
imply that I is continuous on W, hence on V (we could have taken N £ R3)
and MP e 7l)).

Secondly, we show that the bilinear form B is ^-elliptic (it is obviously continuous).
For this, it suffices to prove that the semi-norm (48) defines a norm on V that is equivalent
to the norm of W defined by (26). Assume thus that v € V is such that |||w||| = 0. By
the infinitesimal rigid displacement lemma, this implies that v(x) = ip A ip{x) + c. First
of all, v vanishes on 70. If <p(70) is not included in a straight line, it follows that v = 0
as before. Assume that 1^(70) is included in a straight line D and that tp ^ 0. Then D
is parallel to the plane spanned by (aQ)|7o and ijj is parallel to D. On the other hand,
dav = ip Aaa and the clamping condition imply that dav ■ a:i = aa A <23 -tp = 0. Thus ip is
orthogonal to the plane spanned by (ao.)|70, which contradicts the hypothesis. Therefore,
ip = 0 and u = 0 on 70 then imply that c = 0.

The rest of the proof concerning the norm equivalence is identical to the proof of
Lemma 11. □

7. Examples and applications. As we mentioned in the introduction, there exists
another formulation of the Koiter model that is valid for W2'°°-midsurfaces. This for-
mulation is due to Destuynder and Salaim [13, 14]. In this formulation, the infinitesimal
rotation vector is not a priori related to the displacement. The relationship between the
two is enforced a posteriori by a Lagrange multiplier equal to the transverse shear force.
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Nonetheless, in their derivation, Destuynder and Salaiin still assume that the midsurface
is of class C3. It so happens that the contributions of the derivatives of the second fun-
damental form cancel out and therefore, the resulting model does not require that these
derivatives exist as functions, even though they are used in the derivation of the formula-
tion. Moreover, the existence and uniqueness result for the mixed formulation is based on
the fact that the inf-sup condition is satisfied, which is proved by appealing to Bernadou
and Ciarlet's ellipticity result, i.e., with a C3-midsurface. It would be interesting to see if
Destuynder and Salaiin's formulation can be rewritten in a more coordinate-free manner
so as to allow M/2'00-midsurfaces as well. The fact that the mixed formulation does not
require third derivatives of the chart is not too surprising since it uses the displacement
and infinitesimal rotation vector as independent variables. It thus resembles Naghdi's
model, a model that does not involve third derivatives of the chart; see Blouza [5] for an
approach similar to the one used in the present article.

It should be noted that the terms dab^up for up G H1 (uj), which restrict the regularity
of the midsurface in the classical approach, actually are distributions in H_1(u>) in the
W2'°° case. It is thus conceivable that an analysis could be carried out in that case
that would yield existence and uniqueness for a formulation in covariant components.
However, the variational space cannot be H1 x Hl x H2 because the requirement that
Tap(u) be square integrable amounts to asking that dagus + dabpUp belongs to L2{to),
which is certainly not the same as U3 G H2(ui). Our approach incorporates this condition
very simply and naturally.

On the numerical side, the mixed formulation is interesting insofar as it only requires
C° finite elements and, at the expense of introducing an extra unknown, the infinitesimal
rotation vector. In the classical Bernadou and Ciarlet formulation, the natural splitting
of the variational space into Hl for the tangential components and H~ for the normal
component implies that conforming methods require C° tangential elements together
with C1 normal elements, such as the Argyris triangle (see Bernadou [1]). In our for-
mulation, this splitting is hidden in the fact that da0u ■ a3 belongs to L2(co), hence the
need for C1 (conforming) elements for the whole displacement and not only its normal
component, i.e., more degrees of freedom than in the classical formulation. On the other
hand, the new formulation requires much less information on the geometry of the mid-
surface than the classical formulation and assembling the stiffness matrix turns out to
be quite a bit simpler. Numerical experiments by Kerdid and Mato-Eiroa [16] show that
the new formulation compares well with the classical one on the usual benchmarks. In
this respect, it should be pointed out that the new formulation accomodates piecewise
C3-midsurfaces, which are not usually considered in the literature, entirely naturally; see
below for examples. It is also possible to try to lower the computational cost implied by
Cl elements by using nonconforming DKT type mixed elements; see in this direction Le
Tallec and Mani [18].

The simplest and most natural examples of W2,00-shells are given by globally Cl- and
piecewise C3-midsurfaces. Consider for instance a shell consisting of a planar part that
is connected to a circular cylinder part or an egg-shaped shell made of a quarter of a
sphere and a quarter of an ellipsoid glued together along a circle (see Fig. 1).

Note that some midsurfaces generated by CAD software packages can also be of this
type. In these cases, the derivatives of the second fundamental form contain Dirac masses
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Fig. 1. A simple H/2'°°-shell

concentrated on the interfaces between the smooth parts of the shell. The condition
dapu ■ e L2(lo) is easily worked out. Indeed, since it is equivalent to dau ■ <23 € H1(w),
this means that the jump of dau-a-j vanishes on each interface. In covariant components,
this reads [dau3 + bpaup\ = 0, or equivalently [dau3] = -[6£]up, on each interface (with
U3 piecewise H2). It is clear that the latter condition cannot easily be numerically
implemented, at least in a conforming fashion, whereas the new formulation does not
"see" it.

Let us now give another type of application to shells with piezoelectric patches. We
consider a shell of constant thickness e to which piezoelectric wafers are bonded. Let us
recall the weak formulation of the problem: Find u € V such that

VueV, B(u,v) = l{v),

where B is the bilinear form of Koiter's model and the right-hand side is of the form

hat3 f hai3 f
l(v) = V / 7a0(v)\^adx - (e + t) V / Tap(v)\/adx. (68)

C Jujp C J UJp

The open set lov is the pre-image in the chart ip of the part of the shell where the piezo-
wafer(s) are located. The wafers have piezoelectric tensor /iQ/3 and capacity c and a
voltage V is applied to them. We assume for simplicity that the chart is such that these
coefficients are constant (this is not very important). The wafers are of thickness 21, a
parameter that can be much smaller than e in the case of a polymer film for instance. We
neglect the stiffness of the wafers compared to that of the shell. Actually, the physically
relevant problem is the control problem; in particular, it is a time-dependent problem.
To keep a long story short, we only consider here the static problem; see Destuynder and
Saidi [12] for more details.

Under the hypothesis ip e W2'°°(a;;R3), the right-hand side (68) remains continuous
over V and there is no difficulty in proving existence and uniqueness. The difficulty
comes in however when looking for a mechanical interpretation of this right-hand side in
terms of applied forces and moments. Indeed, the integrations by parts required for this
interpretation can only be performed in the distributional sense in this case, which is not
very illuminating. Let us consider the case of a piecewise C3-shell. Since the problem is
local, it is sufficient to consider a shell made of two C3-pieces, separated by an interface
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7 across which some curvatures are discontinuous. Moreover, we assume that there is a
single wafer bonded on the shell and that it intersects the interface.

Under these hypotheses, the piezoelectric effect amounts to a contribution of several
terms. First is a surface force effect on u>p of the form /_ g ■ v^/adx with density

ha/3V
g = —-7^{daaj}{y/a) - (e + t)(dal3{a3^a) + dp(Tpa/3a3^a)))

<V CL

(here da^(a3y/a) and df)Vpnp denote the regular part of these quantities. Also note that
da (y/a) = (r^j + r^JVa). There is also a distribution of forces along the wafer's
boundary dujp of the form fQuj h ■ Vy/ax^Tyr^ da with density

hal3V
h =  (vgapy/a - (e + t){vpda(a3<Ja) + vpYp ga3s/a)),

c^/axpT\Tp

where va are the Cartesian components of the outer normal vector to du>p. Applied
moments also arise on dcop of the form fg^ M ■ ip(v)^a\pT\Tp da with density

haf>V(e + t) n.
M =  ^yg flq A a3).

Cy/a^f^

Finally, the curvature discontinuity manifests itself through a density h! of forces con-
centrated on the interface 7

h' = V(e + 0(^[da(a3^)] +v'p\T pa/3]a3s/a),
cVaVTArM

where r' and is' are tangent and normal unit vectors on the interface.
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