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Abstract. Using the variational method and critical point theory, the authors study

the existence of infinitely many homoclinic solutions to the difference equation

−∆
(
a(k)φp(∆u(k − 1))

)
+ b(k)φp(u(k)) = λf(k, u(k))), k ∈ Z,

where p > 1 is a real number, φp(t) = |t|p−2t for t ∈ R, λ > 0 is a parameter, a, b : Z→
(0,∞), and f : Z × R → R is continuous in the second variable. Related results in the

literature are extended.

1. Introduction. In this paper, we are concerned with the existence of solutions of the
second order difference equation with a p-Laplacian{

−∆
(
a(k)φp(∆u(k − 1))

)
+ b(k)φp(u(k)) = λf(k, u(k))), k ∈ Z,

u(k)→ 0 as |k| → ∞,
(1)

where p > 1 is a real number, φp(t) = |t|p−2t for t ∈ R, λ > 0 is a parameter, ∆ is the
forward difference operator defined by ∆u(k) = u(k + 1) − u(k) for k ∈ Z, a, b : Z → R
are positive real-valued functions, and f : Z× R → R is continuous in the second variable.
As in the literature, a solution of problem (1) is referred to as a homoclinic solution of the
equation

−∆
(
a(k)φp(∆u(k − 1))

)
+ b(k)φp(u(k)) = λf(k, u(k))), k ∈ Z.

In a recent paper [3], the present authors studied the existence of infinitely many solutions
of problem (1) and proved the following result.

Proposition 1. ([3, Theorem 3.1]) Let

F (k, t) =

∫ t

0

f(k, s)ds for all (k, t)× Z× R.

Assume that the following conditions hold:

(H1) b(k) ≥ b0 > 0 for all k ∈ Z, b(k)→∞ as |k| → ∞;

(H2) lim sup|t|→∞
F (k,t)
|t|p ≤ 0 uniformly for all k ∈ Z;
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(H3) sup|t|≤T |F (·, t)| ∈ `1 for all T > 0;

(H4) f(k,−t) = −f(k, t) for all k ∈ Z and t ∈ R;
(H5) there exists a constant M > 0 such that

a(k) ≤Mb(k) for all k ∈ Z;

(H6) there exist a constant ρ > 0 and two positive functions w1, w2 ∈ `1 such that

w1(k)|t|p ≤ F (k, t) ≤ w2(k)|t|p (2)

for all k ∈ Z and |t| ≤ ρ.

Then, there exists a constant λ > 0 such that for all λ > λ, problem (1) has a sequence
{un(k)} of nontrivial solutions satisfying

un → 0 in X and Iλ(un) ≤ 0,

where X and Iλ are defined by (3) and (6) below, respectively.

Our goal here is to apply the variational method and critical point theory to find new
criteria for the existence of infinitely many solutions of problem (1). Our theorems extend
and complement the existing results in the literature (Proposition 1, in particular). We also
wish to point out that our results here do not require conditions analogous to (H5) or (H6)
above. For more studies on homoclinic solutions for difference equations, we refer the reader
to [1, 3, 4, 6, 7, 9, 11] and the references therein.

The following assumptions will be used in this paper.

(A1) There exist α ≥ p, C > D > 0, and 0 < δ < 1 such that

D|t|α−1 < |f(k, t)| < C|t|α−1 for k ∈ Z and 0 < |t| ≤ δ;

(A2) tf(k, t) ≥ 0 for k ∈ Z and t ∈ [−δ, δ], where δ is as given in (A1).

The remainder of this paper is organized as follows. Section 2 contains some preliminary
lemmas and Section 3 contains the main results and their proofs.

2. Preliminary results. In this section, we will establish the variational framework for
problem (1) and present some lemmas that will be used in the next section.

For each 1 ≤ p <∞, let `p be the set of all functions u : Z→ R such that

‖u‖p =

(∑
k∈Z
|u(k)|p

)1/p

<∞,

and let `∞ be the set of all functions u : Z→ R such that

‖u‖∞ = sup
k∈Z
|u(k)| <∞.

Then, we have

`p ⊆ `q and ‖u‖q ≤ ‖u‖p for any 1 ≤ p ≤ q <∞.

In fact, for u ∈ `p, by normalizing, we may assume ‖u‖p = 1. Then, |u(k)| ≤ 1 for any
k ∈ Z. Hence, |u(k)|q ≤ |u(k)|p. This shows that ‖u‖q ≤ ‖u‖p, and so `p ⊆ `q.

The following lemma can be found in [2, pp. 3 and 429] and [4, Proposition 2].

Lemma 2.1. For each 1 ≤ p < ∞, (`p, ‖ · ‖p) is a reflexive and separable Banach space
whose dual is (`q, ‖ · ‖q), where 1/p + 1/q = 1. Moreover, (`∞, ‖ · ‖∞) is a Banach space,
and for all 1 ≤ p <∞, the embedding `p ↪→ `∞ is continuous since

‖u‖∞ ≤ ‖u‖p for all u ∈ `p.
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Let

X =

{
u : Z→ R :

∑
k∈Z

[
a(k)|∆u(k − 1)|p + b(k)|u(k)|p

]
<∞

}
(3)

and

‖u‖ =

(∑
k∈Z

[
a(k)|∆u(k − 1)|p + b(k)|u(k)|p

])1/p

. (4)

Clearly, if (H1) holds, we have

‖u‖∞ ≤ ‖u‖p ≤ b−1/p
0 ‖u‖. (5)

Lemma 2.2. ([3, Lemma 2.2]) For each 1 ≤ p < ∞, (X, ‖ · ‖) is a reflexive and separable
Banach space, and the embedding X ↪→ `p is compact.

For any u ∈ X and λ > 0, let

Φ(u) =
1

p

∑
k∈Z

[
a(k)|∆u(k − 1)|p + b(k)|u(k)|p

]
,

Ψ(u) =
∑
k∈Z

F (k, u(k)),

and
Iλ(u) = Φ(u)− λΨ(u). (6)

Lemma 2.3. For the functionals Φ, Ψ, and Iλ, we have the following:

(a) Assume that (H1) holds. Then Φ ∈ C1(X,R) with

〈Φ′(u), v〉 =
∑
k∈Z

[a(k)φp(∆u(k − 1))∆v(k − 1) + b(k)φp(u(k))v(k)]

for all u, v ∈ X.
(b) Assume that (A1) holds. Then Ψ ∈ C1(`p,R) with

〈Ψ′(u), v〉 =
∑
k∈Z

f(k, u(k))v(k) for all u, v ∈ `p.

(c) Assume that (H1) and (A1) hold. Then, for each λ > 0, every critical point u ∈ X of
Iλ is a solution of problem (1).

Remark 2.1. Part (a) of Lemma 2.3 with a(k) ≡ 1 on Z has been proved in [4, Proposition
5]; part (b) of the lemma has been shown in [4, Proposition 6] under the assumption

(C1) limt→0
|f(k,t)|
|t|p−1 = 0 uniformly for all k ∈ Z;

and part (c) of the lemma with a(k) ≡ 1 on Z has been verified in [4, Proposition 7] under
(H1) and (C1). The present version of the lemma can be proved essentially by the same
method used in [4]. Below, we just provide a brief sketch of the proof for part (b).

Proof of Lemma 2.3 (b). By (A1), we have

|f(k, t)| ≤ C|t|α−1 ≤ C|t|p−1 for k ∈ Z and |t| ≤ δ. (7)

Thus,

|F (k, t)| ≤ C

p
|t|p for k ∈ Z and |t| ≤ δ.

For any u ∈ `p, there exists h ∈ N such that |u(k)| ≤ δ for all k ∈ Z with |k| > h. Hence,∣∣∣∣∣∑
k∈Z

F (k, u(k))

∣∣∣∣∣ ≤ ∑
|k|≤h

|F (k, u(k))|+ C

p

∑
|k|>h

|u(k)|p,

and so Ψ is well defined.
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Noting the similarity between (7) and inequality (6) in [4], the remainder of the proof is
almost the same as that of the proof of [4, Proposition 6]. The details are omitted.

3. Main results. We first state our results in this paper. Our first theorem provides
conditions for the existence of at least one solution of problem (1), and the second one is
for infinitely many solutions.

Theorem 3.1. Assume that (H1)–(H3), (A1), and (A2) hold. Then, there exists λ∗ > 0
such that for any λ > λ∗, problem (1) has at least one nontrivial solution {uλ(k)} which is
a global minimizer of the functional Iλ defined by (6).

Theorem 3.2. Assume that (H1)–(H4), (A1), and (A2) hold. Then, there exists λ > 0 such
that for any λ > λ, problem (1) has a sequence {uλ,n(k)} of nontrivial solutions satisfying

uλ,n → 0 in X as n→∞ and Iλ(uλ,n) ≤ 0,

where X and Iλ are defined by (3) and (6), respectively.

In the remainder of this section, we prove our theorems above. Recall that a functional I
defined on X is said to satisfy the Palais–Smale (PS) condition if every sequence {un} ⊂ X,
such that I(un) is bounded and I ′(un)→ 0 as n→∞, has a convergent subsequence.

Lemma 3.3. Assume that (H1)–(H3) and (A1) hold. Then, for any λ > 0, Iλ is coercive
and satisfies the PS condition.

Remark 3.1. The conclusion of Lemma 3.3 with a(t) ≡ 1 was proved in [4, Proposition 9]
under the assumptions (H1)–(H3) and (C1). Note that, in the proof, the role of (C1) is to
guarantee that Ψ ∈ C1(X,R). Then, in view of Lemma 2.3 (b), the proof here is essentially
the same. We omit the details.

Lemma 3.4 below can be found in [8, 10].

Lemma 3.4. Let X be a real reflexive Banach space, and let I be a weakly lower (upper,
respectively) semicontinuous functional such that

lim
||u||→∞

I(u) =∞
(

lim
||u||→∞

I(u) = −∞, respectively

)
.

Then, there exists u0 ∈ X such that

I(u0) = inf
u∈X

I(u)

(
I(u0) = sup

u∈X
I(u), respectively

)
.

Furthermore, if I ∈ C1(X,R), then I ′(u0) = 0.

Next we prove our first main result.

Proof of Theorem 3.1. Fix λ > 0. By Lemma 3.3, the functional Iλ is coercive, that is,
lim||u||→∞ Iλ(u) = ∞. Note that Iλ is continuously differentiable and sequentially weakly
lower semicontinuous and X is reflexive (by Lemma 2.2). Then, from Lemma 3.4 with
I = Iλ, Iλ attains its infimum in X at some uλ ∈ X and I ′λ(uλ) = 0. In view of Lemma 2.3
(c), uλ(k) is a solution of problem (1).

We now show that uλ(k) 6≡ 0 on Z. Let δ be given as in (A1). Choose a function w ∈ X
satisfying w(k) 6≡ 0 and |w(k)| ≤ δ on Z. Then, by Lemma 2.2 and the fact that 1 < p ≤ α,
we have w ∈ `α. From (A1) and (A2), we see that

F (k, t) ≥ 1

α
D|t|α for k ∈ Z and |t| ≤ δ. (8)
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Then, from (4), (6), and (8), we have

Iλ(w) = Φ(w)− λΨ(w)

<
1

p
‖w‖p − 1

α
λD

∑
k∈Z
|w(k)|α

=
1

p
‖w‖p − 1

α
λ‖w‖ααD < 0 if λ > λ∗, (9)

where

λ∗ =
α‖w‖p

pD‖w‖αα
> 0.

Then, Iλ(uλ) < 0 if λ > λ∗. Hence, uλ(k) 6≡ 0 on Z for λ > λ∗, i.e, problem (1) has a
nontrivial solution for λ > λ∗. This completes the proof of the theorem.

To prove Theorem 3.2, we first recall the notion of genus.

Definition 3.5. Let X be a Banach space and A a subset of X. A is said to be symmetric
if u ∈ A implies −u ∈ A. For a closed symmetric set A with 0 6∈ A, the genus γ(A) of A is
defined as the smallest integer k such that there exists an odd continuous mapping from A
to Rk \ {0}. If there does not exist such k, we define γ(A) =∞. Moreover, we set γ(∅) = 0.
Let Γk denote the family of closed symmetric subsets A of X such that 0 6∈ A and γ(A) ≥ k.

We now give the following version of the symmetric mountain pass lemma, which follows
from [5, Theorem 1].

Lemma 3.6. Let X be an infinite dimensional Banach space and I ∈ C1(X,R) satisfy the
following two conditions:

(B1) I(u) is even, bounded from below, I(0) = 0, and I(u) satisfies the PS condition;
(B2) for each n ∈ N, there exists an An ∈ Γn such that supu∈An

I(u) < 0.

Then, I(u) has a sequence of critical points un such that

I(un) ≤ 0, un 6= 0, and lim
n→∞

un = 0.

Lemma 3.7. Assume that (H1), (A1), and (A2) hold. Then, there exists λ > 0 such that
for any λ > λ and n ∈ N, there exists An ∈ Γn such that supu∈An

Iλ(u) < 0.

Proof. Let λ > 0 be fixed. For any n ∈ N, we can choose an n-dimensional subspace Yn ⊂ X.
Let

Sn−1 = {u ∈ Yn : ‖u‖ = 1} .
Since Sn−1 is finite dimensional and compact, we have

κn−1 := inf
w∈Sn−1

‖w‖αα > 0.

Define

κ = inf
n∈N

κn−1.

To show that κ > 0, assume to the contrary that κ = 0. Then, for any l ∈ N, there exists
wl ∈ Sl−1 such that ∑

k∈Z
|wl(k)|α < 1

l
.

Thus,

lim
l→∞

wl(k)→ 0 for k ∈ Z.

Then, from the facts that ∑
k∈Z

b(k)|wl(k)|p ≤ ‖wl‖p = 1
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and ∑
k∈Z

a(k)|∆wl(k − 1)|p ≤ ‖wl‖p = 1,

we see that there exists L ∈ N such that∑
k∈Z

b(k)|wl(k)|p ≤ 1

3
and

∑
k∈Z

a(k)|∆wl(k − 1)|p ≤ 1

3
for l ≥ L.

Hence,

‖wl‖p =
∑
k∈Z

[
a(k)|∆wl(k − 1)|p + b(k)|wl(k)|p

]
≤ 2

3
for l ≥ L.

On the other hand, since wl ∈ Sl−1, we have ‖wl‖ = 1 for any l ∈ N, which is a contradiction.
Therefore, κ > 0.

Now, choose µ > 0 small enough so that µb
−1/p
0 ≤ δ, where δ is given in (A1). Then, for

any w ∈ Sn−1, in view of (5), we see that

‖µw‖∞ ≤ µb−1/p
0 ‖w‖ ≤ δ.

Then, as in (9), from (4), (6), and (8), we have that, for any w ∈ Sn−1,

Iλ(µw) = Φ(µw)− λΨ(µw)

<
1

p
‖w‖pµp − 1

α
λµαD

∑
k∈Z
|w(k)|α

≤ 1

p
µp − 1

α
λκn−1µ

αD

≤ 1

p
µp − 1

α
λκµαD < 0 if λ > λ,

where

λ =
αµp−α

pκD
.

Let An = µSn−1. Then, γ(An) = n and supu∈An
Iλ(u) < 0 for λ > λ. This completes the

proof of the lemma.

Proof of Theorem 3.2. Let λ > λ be fixed. Then, by (H4) and Lemmas 3.3 and 3.7, condi-
tions (B1) and (B2) of Lemma 3.6 with I = Iλ are satisfied. Hence, Lemma 3.6 and Lemma
2.3 (c) imply that, for every λ > 0, problem (1) has a sequence {un(k)} of nontrivial solutions
satisfying the required properties. This completes the proof of the theorem.

We conclude this paper with the following remark.

Remark 3.2. It is not hard to see that if α = p, then the results here are independent
from those of Iannizzotto and Tersian [4]. That is, our condition (A1) does not imply their
condition (F1) and vice-versa. If α > p, then our condition (A1) does imply their (F1). On
the other hand, our Theorem 3.2 guarantees the existence of an infinite number of solutions,
whereas in [4] the authors obtain the existence of only two solutions.

Acknowledgments. The authors would like to thank the referee who pointed out some
errors in the original version of our paper and made several suggestion that lead to an
improvement of our results.
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