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In this paper, we study the existence and uniqueness of solutions for the following boundary value problem of nonlinear fractional
di�erential equation: (���0+�)(�) = �(�, �(�)), � ∈ (0, 1), �(0) = ���(0) = 0, (���10+�)(1) = �(��20+�)(1), where 2 < 	 < 3, 0 < 
1 ≤ 1,
2 > 0, and � ̸= Γ(2 + 
2)/Γ(2 − 
1). 
e main tools used are nonlinear alternative of Leray-Schauder type and Banach contraction
principle.

1. Introduction

Fractional calculus has wide applications in many �elds of
science and engineering, for example, uid ow, biosciences,
rheology, electrical networks, chemical physics, control the-
ory of dynamical systems, and optics and signal processing
[1].

Recently, nonlinear fractional di�erential equations have
been discussed under the following boundary conditions
(BCs for short):

(1) Integer derivative BCs:

�(0) = �(1) = 0,�(0) + ��(0) = 0, �(1) + ��(1) = 0,�(0) = ��(1) = ���(0) = 0,�(0) = 0, ��(0) + ���(0) = 0, ��(1) + ���(1) = 0,�(0) = �0, ��(0) = �∗0 , ���(�) = ��,�(0) = ��(1) = ���(0) = ⋅ ⋅ ⋅ = �(�−1)(0) = 0;
see papers [2–7], respectively.

(2) Integer derivative and integral BCs:

��(0)−���(0) = ∫10 �(�)�(�)��, ��(1)+���(1) =
∫10 ℎ(�)�(�)��,�(0) = ��(0) = ���(0) = 0, �(1) = � ∫	0 �(�)��;

see papers [8, 9], respectively.

(3) Integer and fractional derivative BCs:

�(0) = (���10+�)(1) = 0, ���(0) = (���20+�)(1) =0,�(0) = ���(0) = 0, ��(1) = (���0+�)(1),�(0) = ��(0) = 0, ��(1) = (���0+�)(1),�(0) = 0, (�
0+�)(1) = ∑�−2�=1 ��(�
0+�)(��),�(0) = 0, �(1)+(�
0+�)(1) = ��(�)+ �(�
0+�)(�),�(0) = 0, (�
0+�)(1) = �(�
0+�)(�),�(0) = ��(0) = ⋅ ⋅ ⋅ = �(�−2)(0) = 0, (�0+�)(1) =0;
see papers [10–16], respectively.

(4) Integer derivative and fractional integral BCs:

�(0) = ���0+�(�),�(0) = 0, ��(1) = ��0+�(1);
see papers [17, 18], respectively.

Besides, there are some other BCs involved in fractional
di�erential equations, such as nonlinear BCs; refer to [19, 20].

Motivated greatly by the above-mentioned works, in this
paper, we study the following boundary value problem (BVP
for short) of nonlinear fractional di�erential equation with
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fractional integral BCs as well as integer and fractional
derivative

(���0+�) (�) = � (�, � (�)) , � ∈ (0, 1) ,
� (0) = ��� (0) = 0,

(���10+�) (1) = � (��20+�) (1) ,
(1)

where ���0+ and ���10+ denote the standard Caputo fractional
derivatives and ��20+ denotes the standard Riemann-Liouville
fractional integral. 
roughout this paper, we always assume
that 2 < 	 < 3, 0 < 
1 ≤ 1, 
2 > 0, � ̸= Γ(2 + 
2)/Γ(2 − 
1),
and � : [0, 1] ×R → R is continuous.

In order to prove our main results, the following well-
known �xed point theorems are needed.

�eorem 1 (nonlinear alternative of Leray-Schauder type
[21]). Let $ be a Banach space with % ⊆ $ closed and convex.
Assume Ω is a relatively open subset of % with * ∈ Ω and�:Ω → % is a continuous and compact map. �en either

(a) � has a �xed point in Ω or

(b) there exists � ∈ -Ω and � ∈ (0, 1) such that � = ���.
�eorem2 (Banach contraction principle [22]). Let (., �) be
a complete metric space and �: . → . be contractive. �en �
has a unique �xed point in..

2. Preliminaries

In this section, we always assume that N = {1, 2, 3, . . .},�, � > 0, and [�] denotes the integer part of �. Now,
for the convenience of the reader, we give the de�nitions
of the Riemann-Liouville fractional integrals and fractional
derivatives and the Caputo fractional derivatives on a �nite
interval of the real line, which may be found in [1].

De�nition 3. 
eRiemann-Liouville fractional integrals �0+�
and �1−� of order � on [0, 1] are de�ned by

(�0+�) (�) fl 1Γ (�) ∫
�

0

� (�) ��
(� − �)1− ,

(�1−�) (�) fl 1Γ (�) ∫
1

�

� (�) ��
(� − �)1− ,

(2)

respectively.

De�nition 4. 
e Riemann-Liouville fractional derivatives�0+� and�1−� of order � on [0, 1] are de�ned by

(�0+�) (�) fl ( ���)
� (��−0+ �) (�)

= 1Γ (8 − �) ( ���)
� ∫�
0

� (�) ��
(� − �)−�+1 ,

(�1−�) (�) fl (− ���)
� (��−1− �) (�)

= 1Γ (8 − �) (− ���)
� ∫1
�

� (�) ��
(� − �)−�+1 ,

(3)

respectively, where 8 = [�] + 1.
De�nition 5. Let �0+[�(�)](�) ≡ (�0+�)(�) and �1−[�(�)](�)≡ (�1−�)(�) be the Riemann-Liouville fractional derivatives

of order�.
en theCaputo fractional derivatives ��0+� and
��1−� of order � on [0, 1] are de�ned by

(��0+�) (�) fl (�0+ [� (�) − �−1∑
�=0

�(�) (0)�! ��]) (�) ,
(��1−�) (�)

fl (�1− [� (�) − �−1∑
�=0

�(�) (1)�! (1 − �)�]) (�) ,
(4)

respectively, where

8 = {{{
[�] + 1, � ∉ N,
�, � ∈ N. (5)

Lemma 6 (see [23]). If � + � > 1, then the equation(�0+�
0+�)(�) = (�+
0+ �)(�), � ∈ [0, 1], is satis�ed for � ∈ H1[0,1].
Lemma 7 (see [23]). Let � > �. �en the equation(��0+�
0+�)(�) = (�
−0+ �)(�), � ∈ [0, 1], is satis�ed for � ∈I[0, 1].
Lemma 8 (see [1]). Let 8 be given by (5). �en the following
relations hold:

(1) For � ∈ {0, 1, 2, . . . , 8 − 1}, ��0+�� = 0.
(2) If � > 8, then ��0+�
−1 = (Γ(�)/Γ(� − �))�
−−1.

Lemma 9 (see [1]). Let 8 be given by (5) and � ∈ I�[0, 1].
�en

(�0+��0+�) (�) = � (�) + J0 + J1� + J2�2 + ⋅ ⋅ ⋅
+ J�−1��−1,

(6)

where J� ∈ R, K = 0, 1, . . . , 8 − 1.
For any L ∈ H1[0, 1], we de�ne

‖L‖�1 = ∫1
0
|L (�)| ��. (7)

Lemma 10. Let � ∈ H1[0, 1] be nonnegative. �en (�+10+ �)(�)≤ ‖�0+�‖�1 , � ∈ [0, 1].
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Proof. For any � ∈ [0, 1], we have
(�+10+ �) (�) = 1Γ (� + 1) ∫

�

0

� (�)(� − �)− ��
= 1�Γ (�) ∫

�

0
� (�) (� − �) ��

= 1Γ (�) ∫
�

0
� (�) ∫�

�
(N − �)−1 �N ��

= 1Γ (�) ∫
�

0
∫�
0

� (�)
(N − �)1− �� �N

≤ ∫1
0

1Γ (�) ∫
�

0

� (�)
(N − �)1− �� �N

= ∫1
0
(�0+�) (N) �N = OOOO�0+�OOOO�1 .

(8)

3. Main Results

In the remainder of this paper, for any nonnegative function� ∈ H1[0, 1], we denote
P� = OOOOO��−10+ �OOOOO�1

+ Γ (2 + 
2) Γ (2 − 
1)QQQQ�Γ (2 − 
1) − Γ (2 + 
2)QQQQ [|�| (�
�+�2
0+ �) (1)

+ (��−�10+ �) (1)]
(9)

and for any T ∈ I[0, 1], we use the normOOOOTOOOO∞ = max
�∈[0,1]

QQQQT (�)QQQQ . (10)

Lemma 11. Let T ∈ I[0, 1] be a given function. �en the BVP

(���0+�) (�) = T (�) , � ∈ (0, 1) ,
� (0) = ��� (0) = 0,

(���10+�) (1) = � (��20+�) (1)
(11)

has a unique solution

� (�) = ∫1
0
U (�, �) T (�) ��, � ∈ [0, 1] , (12)

where

U (�, �) = − Γ (2 + 
2) Γ (2 − 
1)�Γ (2 − 
1) − Γ (2 + 
2)
⋅ � [� (1 − �)�+�2−1Γ (	 + 
2) − (1 − �)�−�1−1Γ (	 − 
1) ]

+ {{{{{
(� − �)�−1Γ (	) , 0 ≤ � ≤ � ≤ 1,
0, 0 ≤ � ≤ � ≤ 1.

(13)

Proof. It follows from the equation in (11) and Lemma 9 that

� (�) = (��0+T) (�) − J0 − J1� − J2�2, � ∈ [0, 1] . (14)

So,

�� (�) = (��−10+ T) (�) − J1 − 2J2�, � ∈ [0, 1] , (15)

��� (�) = (��−20+ T) (�) − 2J2, � ∈ [0, 1] . (16)

In view of (14), (16), and the BCs �(0) = ���(0) = 0, we get
J0 = J2 = 0, (17)

and so,

� (�) = (��0+T) (�) − J1�, � ∈ [0, 1] . (18)


en, by using Lemmas 6, 7, and 8, we may obtain

(���10+�) (�) = (��−�10+ T) (�) − J1 Γ (2)Γ (2 − 
1) �
1−�1 ,
� ∈ [0, 1] ,

(��20+�) (�) = (��+�20+ T) (�) − J1 Γ (2)Γ (2 + 
2) �
1+�2 ,
� ∈ [0, 1] ,

(19)

which together with the BC (���10+�)(1) = �(��20+�)(1) implies
that

J1 = Γ (2 + 
2) Γ (2 − 
1)�Γ (2 − 
1) − Γ (2 + 
2) [� (��+�20+ T) (1)
− (��−�10+ T) (1)] .

(20)


erefore, the BVP (11) has a unique solution

� (�) = (��0+T) (�)
− Γ (2 + 
2) Γ (2 − 
1)�Γ (2 − 
1) − Γ (2 + 
2) [� (��+�20+ T) (1)
− (��−�10+ T) (1)] � = ∫�

0
{− Γ (2 + 
2) Γ (2 − 
1)�Γ (2 − 
1) − Γ (2 + 
2)

⋅ � [� (1 − �)�+�2−1Γ (	 + 
2) − (1 − �)�−�1−1Γ (	 − 
1) ] + (� − �)�−1Γ (	) }
⋅ T (�) �� + ∫1

�
{− Γ (2 + 
2) Γ (2 − 
1)�Γ (2 − 
1) − Γ (2 + 
2)

⋅ � [� (1 − �)�+�2−1Γ (	 + 
2) − (1 − �)�−�1−1Γ (	 − 
1) ]}T (�) �s
= ∫1
0
U (�, �) T (�) ��, � ∈ [0, 1] .

(21)
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Lemma 12. Let � ∈ H1[0, 1] be nonnegative. �en

∫1
0
|U (�, �)| � (�) �� ≤ P�, � ∈ [0, 1] . (22)

Proof. In view of Lemma 10, we have

∫1
0
|U (�, �)| � (�) �� = ∫�

0
|U (�, �)| � (�) ��

+ ∫1
�
|U (�, �)| � (�) ��

≤ ∫�
0
{ Γ (2 + 
2) Γ (2 − 
1)QQQQ�Γ (2 − 
1) − Γ (2 + 
2)QQQQ

⋅ � [ |�| (1 − �)�+�2−1Γ (	 + 
2) + (1 − �)�−�1−1Γ (	 − 
1) ]
+ (� − �)�−1Γ (	) } � (�) ��
+ ∫1
�
{ Γ (2 + 
2) Γ (2 − 
1)QQQQ�Γ (2 − 
1) − Γ (2 + 
2)QQQQ

⋅ � [ |�| (1 − �)�+�2−1Γ (	 + 
2) + (1 − �)�−�1−1Γ (	 − 
1) ]}� (�) ��
= 1Γ (	) ∫�

0

� (�)
(� − �)1−� ��

+ Γ (2 + 
2) Γ (2 − 
1)QQQQ�Γ (2 − 
1) − Γ (2 + 
2)QQQQ � [
|�|Γ (	 + 
2)

⋅ ∫1
0

� (�)
(1 − �)1−�−�2 �� +

1Γ (	 − 
1)
⋅ ∫1
0

� (�)
(1 − �)1−�+�1 ��] = (��0+�) (�)

+ Γ (2 + 
2) Γ (2 − 
1)QQQQ�Γ (2 − 
1) − Γ (2 + 
2)QQQQ � [|�| (�
�+�2
0+ �) (1)

+ (��−�10+ �) (1)] ≤ OOOOO��−10+ �OOOOO�1
+ Γ (2 + 
2) Γ (2 − 
1)QQQQ�Γ (2 − 
1) − Γ (2 + 
2)QQQQ [|�| (�

�+�2
0+ �) (1)

+ (��−�10+ �) (1)] = P�, � ∈ [0, 1] .

(23)

Now, we de�ne an operator � : I[0, 1] → I[0, 1] by
(��) (�) = ∫1

0
U (�, �) � (�, � (�)) ��, � ∈ [0, 1] . (24)

Obviously, � is a solution of the BVP (1) if and only if � is a
�xed point of �.

�eorem 13. Assume that �(�, 0) ̸≡ 0, � ∈ (0, 1), and there
exist nonnegative functions �1, �2 ∈ H1[0, 1], nonnegative
increasing continuous function\ de�ned on [0, +∞), and N > 0
such that

QQQQ� (�, L)QQQQ ≤ �1 (�) + �2 (�) \ (|L|) ,
(�, L) ∈ [0, 1] ×R, (25)

P�1 + \ (N)P�2 < N. (26)

�en the BVP (1) has one nontrivial solution.

Proof. Let Ω = {� ∈ I[0, 1] : ‖�‖∞ < N}. Since U(�, �)
and �(�, L) are continuous on [0, 1] × [0, 1] and [0, 1] × R,
respectively, we may denote

H = max
(�,�)∈[0,1]×[0,1]

|U (�, �)| , (27)

_ = max
(�,�)∈[0,1]×[−�,�]

QQQQ� (�, L)QQQQ . (28)

First, we prove that �: Ω → I[0, 1] is continuous.

Suppose that �� (8 = 1, 2, . . .), �0 ∈ Ω, and ‖�� − �0‖∞ → 0
(8 → ∞). 
en for any 8 and � ∈ [0, 1], we have |��(�)| ≤ N.

is together with (27) and (28) implies that, for any 8 and� ∈ [0, 1],

QQQQU (�, �) � (�, �� (�))QQQQ ≤ H_, � ∈ [0, 1] . (29)

By applying Lebesgue dominated convergence theorem, we
get

lim�→∞ (���) (�) = lim�→∞∫1
0
U (�, �) � (�, �� (�)) ��

= ∫1
0
U (�, �) � (�, �0 (�)) ��

= (��0) (�) , � ∈ [0, 1] ,
(30)

which indicates that �: Ω → I[0, 1] is continuous.
Next, we show that �: Ω → I[0, 1] is compact. Assume

that` is a subset ofΩ. 
en for any � ∈ `, we have

|� (�)| ≤ N, � ∈ [0, 1] . (31)

In what follows, we will prove that�(`) is relatively compact.
On the one hand, for any T ∈ �(`), there exists � ∈ ` such
that T = ��, and so, it follows from (27), (28), and (31) that

QQQQT (�)QQQQ = |(��) (�)| = QQQQQQQQQ∫
1

0
U (�, �) � (�, � (�)) ��QQQQQQQQQ

≤ ∫1
0
|U (�, �)| QQQQ� (�, � (�))QQQQ �� ≤ H_,

� ∈ [0, 1] ,
(32)

which shows that �(`) is uniformly bounded. On the other
hand, for any a > 0, since U(�, �) is uniformly continuous on



International Journal of Di�erential Equations 5

[0, 1]×[0, 1], there exists � > 0 such that, for any �1, �2 ∈ [0, 1]
with |�1 − �2| < �,

QQQQU (�1, �) − U (�2, �)QQQQ < a_, � ∈ [0, 1] . (33)

For any T ∈ �(`), there exists � ∈ ` such that T = ��, and
so, for any �1, �2 ∈ [0, 1]with |�1−�2| < �, it follows from (28),
(31), and (33) that

QQQQT (�1) − T (�2)QQQQ = QQQQ(��) (�1) − (��) (�2)QQQQ
= QQQQQQQQQ∫
1

0
[U (�1, �) − U (�2, �)] � (�, � (�)) ��QQQQQQQQQ

≤ ∫1
0

QQQQU (�1, �) − U (�2, �)QQQQ QQQQ� (�, � (�))QQQQ ��
≤ _∫1

0

QQQQU (�1, �) − U (�2, �)QQQQ �� < a,

(34)

which indicates that �(`) is equicontinuous. By Arzela-
Ascoli theorem, we know that �(`) is relatively compact.


erefore, �: Ω → I[0, 1] is compact.
Now, we will prove that (a) of 
eorem 1 is ful�lled.

Suppose on the contrary that (b) of
eorem 1 is satis�ed; that
is, there exists � ∈ -Ω and � ∈ (0, 1) such that � = ���.
en,
in view of (25), (26), and Lemma 12, we have

|� (�)| = QQQQ� (��) (�)QQQQ ≤ |(��) (�)|
= QQQQQQQQQ∫
1

0
U (�, �) � (�, � (�)) ��QQQQQQQQQ

≤ ∫1
0
|U (�, �)| QQQQ� (�, � (�))QQQQ ��

≤ ∫1
0
|U (�, �)| [�1 (�) + �2 (�) \ (|� (�)|)] ��

≤ ∫1
0
|U (�, �)| �1 (�) ��

+ \ (N) ∫1
0
|U (�, �)| �2 (�) ��

≤ P�1 + \ (N)P�2 < N, � ∈ [0, 1] ,

(35)

which shows that

‖�‖∞ < N. (36)


is contradicts the fact � ∈ -Ω.
So, it follows from
eorem 1 that � has a �xed point �∗,

which is a desired solution of the BVP (1). At the same time,
since �(�, 0) ̸≡ 0, � ∈ (0, 1), we know that the zero function
is not a solution of the BVP (1). 
erefore, �∗ is a nontrivial
solution of the BVP (1).

�eorem 14. Assume that there exists a nonnegative function�3 ∈ H1[0, 1] such thatQQQQ� (�, L) − � (�, T)QQQQ ≤ �3 (�) QQQQL − TQQQQ ,
� ∈ [0, 1] , L, T ∈ R, (37)

P�3 < 1. (38)

�en the BVP (1) has a unique solution.

Proof. For any �, V ∈ I[0, 1], in view of (37) and Lemma 12,
we have

|(��) (�) − (�V) (�)|
= QQQQQQQQQ∫
1

0
U (�, �) [� (�, � (�)) − � (�, V (�))] ��QQQQQQQQQ

≤ ∫1
0
|U (�, �)| QQQQ� (�, � (�)) − � (�, V (�))QQQQ ��

≤ ∫1
0
|U (�, �)| �3 (�) |� (�) − V (�)| ��

≤ ‖� − V‖∞ ∫1
0
|U (�, �)| �3 (�) �� ≤ P�3 ‖� − V‖∞ ,

� ∈ [0, 1] .

(39)


is indicates that

‖�� − �V‖∞ ≤ P�3 ‖� − V‖∞ , (40)

which together with (38) implies that � is contractive. So, it
follows from
eorem 2 that � has a unique �xed point, and
so, the BVP (1) has a unique solution.

Example 15. We consider the BVP

(��5/20+ �) (�) = � − �2√|� (�)|, � ∈ (0, 1) ,
� (0) = ��� (0) = 0,

(��1/20+ �) (1) = 12 (�3/20+ �) (1) .
(41)

Let �(�, L) = � − (�/2)√|L|, (�, L) ∈ [0, 1] × R. 
en � :[0, 1] ×R → R is continuous and �(�, 0) ̸= 0, � ∈ (0, 1).
If we choose �1(�) = �, �2(�) = �/2, � ∈ [0, 1], and \(T) =√T, T ∈ [0, +∞), then it is easy to verify that (25) is satis�ed.
Since 	 = 5/2, 
1 = 1/2, 
2 = 3/2, and � = 1/2, a direct

calculation shows that

Γ (2 + 
2)Γ (2 − 
1) = 154 ,
P�1 = 6656 + 4305i43680√i ,
P�2 = 6656 + 4305i87360√i .

(42)

If we choose N = 1, then (26) is ful�lled.
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erefore, it follows from 
eorem 13 that the BVP (41)
has one nontrivial solution.

Example 16. We consider the BVP

(��5/20+ �) (�)
= �i {� (�) arctan � (�) − 12 ln [1 + �2 (�)]} ,

� ∈ (0, 1) ,
� (0) = ��� (0) = 0,
(��1/20+ �) (1) = 12 (�3/20+ �) (1) .

(43)

Let �(�, L) = (�/i)[L arctanL − (1/2) ln(1 + L2)], (�, L) ∈[0, 1] ×R. 
en � : [0, 1] ×R → R is continuous.
If we choose �3(�) = �/2, � ∈ [0, 1], then we may assert

that (37) is satis�ed. In fact, for any � ∈ [0, 1], if L = T, then
(37) is obvious. When L ̸= T, we may suppose that L < T.
In this case, by Lagrange mean value theorem, there exists� ∈ (L, T) such that, for any � ∈ [0, 1],

QQQQ� (�, L) − � (�, T)QQQQ = �i
QQQQQQQL arctanL − 12 ln (1 + L2)

− T arctanT + 12 ln (1 + T2)QQQQQQQ = �i QQQQarctan �QQQQ QQQQL
− TQQQQ ≤ �3 (�) QQQQL − TQQQQ ;

(44)

that is, (37) is satis�ed.
On the other hand, in view of P�3 = P�2 = (6656 +4305i)/87360√i, we know that (38) is ful�lled.

erefore, it follows from 
eorem 14 that the BVP (43)

has a unique solution.
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