Yagub A. SHARIFOV

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

Abstract

In this study the nonlocal and integral boundary value problems for the system of nonlinear fractional differential equations involving the Caputo fractional derivative are investigated. Theorems on existence and uniqueness the of solution are established under the some sufficient conditions on nonlinear terms. A simple example of applications of the main result of this paper is presented.

1. Introduction

Differential equations of fractional order have proved to be valuable tools in the modeling of many phenomena is various fields of science and engineering. Indeed, we can find numerous applications in viscoelasticity [1-3], dynamical processes in selfsimilar structures [4], biosciences [5], signal processing [6], system control theory [7], electrochemistry [8] and diffusion processes [9]. Further, fractional calculus has found many applications in classical mechanics [10] and the calculus of variations [11] and is a very useful and means for obtaining solutions to non-homogenous linear ordinary and partial differential equations. For more details we refer the reader to [12].

There are several approaches to fractional derivatives such as Riemann-Lowville, Caputo, Weyl, Hadamar and Grunwald-Letnikov, etc. Applied problems require those definitions of a fractional derivative that allow the utilization of physically interpretable initial and boundary conditions. The Caputo fractional derivative satisfies these demands, while the Riemann-Lowville derivative is not suitable for mixed boundary conditions.

Recently, the theory on existence and uniqueness of solutions of linear and nonlinear fractional differential equations has attracted the attention of the many authors, see for example, $[13-17]$ and references therein. However, many of the physical systems can better be described by nonlocal boundary conditions. Nonlocal boundary conditions are encountered in various applications such as population dynamics, blood flow models, chemical engineering and cellular systems.

In this paper, we study existence and uniqueness of nonlinear fractional differential equations of the type

$$
\begin{equation*}
{ }^{c} D_{0+}^{\alpha} x(t)=f(t, x(t)), \text { for } t \in[0, T], \tag{1.1}
\end{equation*}
$$

subject to nonlocal and integral boundary condition

$$
\begin{equation*}
x(0)+B x(t)=C \tag{1.2}
\end{equation*}
$$

where $0<\alpha<1, E \in R^{n \times n}$ - unit matrix, $B \in R^{n \times n}$ is given matrices and $\|B\|<1 ; f, g \in R^{n}$ given functions; ${ }^{c} D_{0+}^{\alpha}$ is the Caputo fractional derivatives.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be used in the remainder of this paper. By $C\left([0, T], R^{n}\right)$ we denote the Banach space of all continuous functions from into $[0, T]$ with the norm R^{n}

$$
\|x\|=\max \{|x(t)|: t \in[0, T]\}
$$

Definition 2.1. If $g \in C([a, b])$ and $\alpha>0$, then the Riemann-Lowville fractional integral is defined by

$$
\begin{equation*}
l_{a+}^{\alpha} g(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{g(s)}{(t-s)^{1-\alpha}} d s \tag{2.1}
\end{equation*}
$$

where $\Gamma(\cdot)$ is the Gamma function defined for any complex number z as

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

Definition 2.2. The Caputo fractional derivative of order $\alpha>0$ of a continuous function $g:(a, b) \rightarrow R$ is defined by

$$
\begin{equation*}
{ }^{c} D_{a+}^{\alpha} g(t)=\frac{1}{\Gamma(n-\alpha)} \int_{a}^{t} \frac{g^{(n)}(s)}{(t-s)^{\alpha-n+1}} d s \tag{2.2}
\end{equation*}
$$

where $n[\alpha]+1$, (the notation $[\alpha]$ stands for the largest integer not greater than α).
Remark 2.3. Under natural conditions on $g(t)$, the Caputo fractional derivative becomes the conventional integer order derivative of the function $g(t)$ as $\alpha \rightarrow n$.

Remark 2.4. Let $\alpha, \beta>0$ and $n=[\alpha]+1$, then the following relations hold:

$$
{ }^{c} D_{0+}^{\alpha} t^{\beta}=\frac{\Gamma(\beta)}{\Gamma(\beta-\alpha)} t^{\beta-1}, \beta>n, \text { and }{ }^{c} D_{0+}^{\alpha} t^{k}=0, k=0,1,2, \ldots, n-1
$$

Lemma2.5. [18]. For $\alpha>0, g(t) \in C(0,1) \cap L(0,1)$, the homogenous fractional differential equation

$$
{ }^{c} D_{0+}^{\alpha} g(t)=0
$$

has a solution

$$
g(t)=c_{0}+c_{1} t+c_{2} t^{2}+\ldots+c_{n-1} t^{n-1}
$$

where, $c_{i} \in R, i=0,1, \ldots, n-1$ and $n=[\alpha]+1$.
Lemma 2.6. [18]. Assume that $g(t) \in C(0,1) \cap L(0,1)$, with derivative of order n that belongs to $C(0,1) \cap L(0,1)$ then

$$
I_{0+}^{\alpha}{ }^{c} D_{0+}^{\alpha} g(t)=g(t)+c_{0}+c_{1} t+c_{2} t^{2}+\ldots+c_{n-1} t^{n-1}
$$

where, $c_{1} \in R, i=0,1, \ldots, n-1$ and $n=[\alpha]+1$.
Lemma 2.7. [18]. Let $p, q \geq 0, f \in L_{1}[0, T]$. Then

$$
\begin{equation*}
l_{0+}^{p} I_{0+}^{q} f(t)=I_{0+}^{p+q} f(t)=I_{0+}^{q} I_{0+}^{p} f(t) \tag{2.3}
\end{equation*}
$$

is satisfied almost everywhere on $[0, T]$. Moreover, if $f \in C[0, T]$, then (2.3) is true for all $t \in[0, T]$.

Lemma 2.8 [18]. If $\alpha>0, f \in C([0, T])$, then ${ }^{c} D_{0+}^{\alpha} I_{0+}^{\alpha} f(t)=f(t)$ for all $t \in[0, T]$.

3. Main results

Lemma 3.1. Let $0<\alpha \leq 1$ and $f, g \in C\left([0, T], R^{n}\right)$. Then the unique solution of the boundary value problem for fractional differential equation

$$
\begin{gather*}
{ }^{c} D_{0+}^{\alpha} x(t)=y(t), \quad t \in[0, T] \tag{3.1}\\
x(0)+B x(T)=C \tag{3.2}
\end{gather*}
$$

is given by

$$
\begin{equation*}
x(t)=\int_{0}^{T} G(t, s) y(s) d s+(E+B)^{-1} C \tag{3.3}
\end{equation*}
$$

where,

$$
G(t, s)=\left\{\begin{array}{l}
\frac{1}{\Gamma(\alpha)}(t-s)^{\alpha-1}-\frac{1}{\Gamma(\alpha)}(E+B)^{-1} B(T-s)^{\alpha-1}, 0 \leq s \leq t \tag{3.4}\\
-\frac{1}{\Gamma(\alpha)}(E+B)^{-1} B(T-s)^{\alpha-1}, t \leq s \leq T
\end{array}\right.
$$

Proof. Assume that x is a solution of the boundary value problem (3.1), (3.2), then using Lemma 2.6, we have

$$
\begin{equation*}
x(t)=l_{0+}^{\alpha} y(t)+c_{1}, c_{1} \in R^{n} . \tag{3.5}
\end{equation*}
$$

From (3.2) and (3.5), we obtain

$$
\begin{equation*}
c_{1}+B\left(I_{0+}^{\alpha} y(T)+c_{1}\right)=C \tag{3.6}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
c_{1}=(E+B)^{-1} C-(E+B)^{-1} B I_{0+}^{\alpha} y(T) \tag{3.7}
\end{equation*}
$$

Using (3.6) in (3.5), we obtain

$$
x(t)=I_{0+}^{\alpha} y(t)+(E+B)^{-1} C-(E+B)^{-1} B I_{0+}^{\alpha} y(T)
$$

which can be written as (3.3). Lemma is provided.
Lemma 3.2. Assume that $f \in C\left([0, T] \times R^{n}, R^{n}\right)$ then the function $x(t)$ is solution of fractional boundary value problem (1.1), (1.2) if and only if $x(t)$ is solution of the fractional integral equation

$$
\begin{equation*}
x(t)=\int_{0}^{T} G(t, s) f(s, x(s)) d s+(E+B)^{-1} C \tag{3.8}
\end{equation*}
$$

Proof. Let $x(t)$ be a solution of the boundary value problem (1.1), (1.2), then by same method as used in Lemma 3.1, we can prove that is solution of the fractional integral equation (3.8).

Conversely, let $x(t)$ satisfy (3.8) and denote the right hand side of equation (3.8) by $v(t)$. Then, by lemmas 2.7 and 2.8 , we obtain

$$
v(t)=\int_{0}^{T} G(t, s) f(s, x(s)) d s+(E+B)^{-1} C=I_{0+}^{\alpha} f(t, x(t))+(E+B)^{-1} C
$$

this implies that

$$
{ }^{c} D_{0+}^{\alpha} v(t)={ }^{c} D_{0+}^{\alpha} I_{0+}^{\alpha} f(t, x(t))+{ }^{c} D_{0+}^{\alpha} f(T, x(T))+{ }^{c} D_{0+}^{\alpha}(E+B)^{-1} C=f(t, x(t))
$$

Hence, $x(t)$ is solution of the fractional differential equation (1.1).
Also, it is easy to verify that satisfy the condition (1.2).
Our first result is based on Banach fixed point theorem.
Theorem 3.3. Assume that:
(H1) There exists a constant $L>0$ such that

$$
|f(t, x)-f(t, y)| \leq L|x-y|, \text { for each } t \in[0, T] \text { and all } x, y \in R^{n}
$$

If

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha+1)}\left[L T^{\alpha}\left(1+(1-\|B\|)^{-1}\|B\|\right)\right]<1 \tag{3.9}
\end{equation*}
$$

then the boundary value problem (1.1)-(1.2) has unique solution on $[0, T]$.
Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider the operator

$$
P: C\left([0, T], R^{n}\right) \rightarrow C\left([0, T], R^{n}\right)
$$

defined by

$$
\begin{equation*}
P(x)(t)=\int_{0}^{T} G(t, s) f(s, x(s)) d s+(E+B)^{-1} C \tag{3.10}
\end{equation*}
$$

Clearly, the fixed points of the operator P are solution of the problem (1.1)-(1.2). We shall use the Banach contraction principle to prove that P defined by (3.9) has a fixed point. We shall show that P is a contraction.

First, note that under condition $\|B\|<1$ the matrix $E+B$ is invertible and the estimation $\left\|(E+B)^{-1}\right\|<(1-\|B\|)^{-1}$ holds.

Let $x, y \in C\left([0, T], R^{n}\right)$. Then, for each $t \in[0, T]$ we have

$$
\begin{aligned}
& |P(x)(t)-P(y)(t)| \leq \int_{0}^{T}|G(t, s)| \mid f(s, x(s))-f(s, y(s) \mid d s \leq \\
& \quad \leq \frac{1}{\Gamma(\alpha)}\left[\int_{0}^{t}(t-s)^{\alpha-1}|f(s, x(s))-f(s, y(s))| d s+\right. \\
& \left.+\left\|(E+B)^{-1} B\right\| \int_{0}^{T}(T-s)^{\alpha-1}|f(s, x(s))-f(s, y(s))| d s\right] \leq \\
& \quad \leq \frac{1}{\Gamma(\alpha+1)}\left[L T^{\alpha}\left(1+\left\|(E+B)^{-1} B\right\|\right)\right]\|x-y\| .
\end{aligned}
$$

Thus

$$
\|P(x)(t)-P(y)(t)\| \leq \frac{1}{\Gamma(\alpha+1)}\left[L T^{\alpha}\left(1+\left(1-\|B\|^{-1}\|B\|\right)\right]\|x-y\| .\right.
$$

Consequently by (3.9) P is a contraction. As a consequence of Banach fixed point theorem, we deduce that P has a fixed point which is a solution of the problem (1.1)-(1.2). Theorem is provided.

The second result is based on Schaefer's fixed point theorem.
Theorem 3.4. Assume that:
(H2) The function $f:[0, T] \times R^{n} \rightarrow R^{n}$ is continuous.
(H3) There exists a constant $N_{1}>0$ such that

$$
|f(x, t)| \leq N_{1} \text { for each } t \in[0, T] \text { and all } x \in R^{n} .
$$

Then the boundary value problem (1.1)-(1.2) has at least one solution on $[0, T]$.
Proof. We shall use Schaefer's fixed point theorem to prove that P defined by (3.10) has a fixed point. The proof will be given in several steps.

Step 1: Operator P is continuous. Let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \rightarrow x$ in $C\left([0, T], R^{n}\right)$. Then for each $t \in[0, T]$

$$
\begin{aligned}
& \left|P\left(x_{n}\right)(t)-P(x)(t)\right| \leq \int_{0}^{T}|G(t, s)|\left|f\left(s, x_{n}(s)\right)-f(s, x(s))\right| d s \leq \\
& \quad \leq \frac{1}{\Gamma(\alpha)}\left[\int_{0}^{t}(t-s)^{\alpha-1} \max \left|f\left(s, x_{n}(s)\right)-f(s, x(s))\right| d s+\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left(1-\|B\|^{-1}\|B\| \int_{0}^{T}(T-s)^{\alpha-1} \max \left|f\left(s, x_{n}(s)\right)-f(s, x(s))\right| d s\right)\right] \leq \\
& \leq \frac{1}{\Gamma(\alpha+1)}\left[L T^{\alpha}\left(1+(1-\|B\|)^{-1}\|B\|\right)\right]\left\|f\left(s, x_{n}(s)\right)-f(s, x(s))\right\|
\end{aligned}
$$

Since f is continuous function, we have

$$
\begin{gathered}
\left\|P\left(x_{n}\right)(t)-P(x)(t)\right\| \leq \\
\leq \frac{1}{\Gamma(\alpha+1)}\left[L T^{\alpha}\left(1+(1-\|B\|)^{-1}\|B\|\right)\right]\left\|f\left(s, x_{n}(s)\right)-f(s, x(s))\right\| \rightarrow 0
\end{gathered}
$$

as $a \rightarrow \infty$.
Step 2: P maps bounded sets in bounded sets in $C\left([0, T], R^{n}\right)$. Indeed, it is enough to show that for any $\eta>0$, there exists a positive constant l such that for each $x \in B_{\eta}=\left\{x \in C\left([0, T], R^{n}\right):\|x\| \leq \eta\right\}$, we have $\|P(x)\| \leq l$. By (H3) we have for each $t \in[0, T]$,

$$
|P(x)(t)| \leq \int_{0}^{T}|G(t, s)||f(s, x(s))| d s+\left\|(E+B)^{-1} C\right\|
$$

Hence,

$$
|P(x)(t)| \leq \frac{N_{1} T^{\alpha}}{\Gamma(\alpha+1)}\left[1+\left(1-\|B\|^{-1}\|B\|\right] .\right.
$$

Thus

$$
\|P(x)(t)\| \leq \frac{N_{1} T^{\alpha}}{\Gamma(\alpha+1)}\left[1+\left(1-\|B\|^{-1}\|B\|\right]=l\right.
$$

Step 3: P maps bounded sets into equicontinuous sets of $C\left([0, T], R^{n}\right)$. Let $t_{1}, t_{2} \in(0, T], t_{1}<t_{2}, B_{\eta}$ be a bounded set of $C\left([0, T], R^{n}\right)$ as in Step 2, and let $x \in B_{\eta}$. Then

$$
\begin{aligned}
& \left|P(x)\left(t_{2}\right)-P(x)\left(t_{1}\right)\right|=\left\lvert\, \frac{1}{\Gamma(\alpha)} \int_{0}^{t_{2}}\left[\left(t_{2}-s\right)^{\alpha-1}-\left(t_{1}-s\right)^{\alpha-1}\right] f(s, x(s)) d s+\right. \\
& +\frac{1}{\Gamma(\alpha)} \int_{t_{1}}^{t_{2}}\left(t_{2}-s\right)^{\alpha-1}-f(s, x(s)) d s \left\lvert\, \leq \frac{N_{1}}{\Gamma(\alpha+1)}\left[2\left(t_{2}-t_{1}\right)^{\alpha}+\left(t_{2}^{\alpha}-t_{1}^{\alpha}\right)\right] .\right.
\end{aligned}
$$

As $t_{1} \rightarrow t_{2}$, the right-hand side of the above inequality tends to zero. As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude that the operator $P: C\left([0, T], R^{n}\right) \rightarrow C\left([0, T], R^{n}\right)$ is completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

$$
\triangle=\left\{x \in C\left([0, T], R^{n}\right): x=\lambda P(x), \text { for some } 0<\lambda<1\right\}
$$

is bounded.

Let $x \in \triangle$, then $x=\lambda(P x)$ for some $0<\lambda<1$. Thus, for each $t \in[0, T]$ we have

$$
x(t)=\lambda\left[\int_{0}^{T} G(t, s) f(s, x(s)) d s+(E+B)^{-1} C\right] .
$$

This implies by (H3) (as in step2) that for each $t \in[0, T]$ we have

$$
|P(x)(t)| \leq \frac{N_{1} T \alpha}{\Gamma(\alpha+1)}\left[1+\left(1-\|B\|^{-1}\|B\|\right] .\right.
$$

Thus for every $t \in[0, T]$, we have

$$
\|x\| \leq \frac{N_{1} T \alpha}{\Gamma(\alpha+1)}\left[1+\left(1-\|B\|^{-1}\|B\|\right]=R .\right.
$$

This shows that the set \triangle is bounded. As a consequence of Schaefer's fixed point theorem, we deduce that P has a fixed point which is a solution of the problem (1.1)(1.2).

In the following theorem we shall give an existence result for the problem (1.1)(1.2) by means of an application of a Leray-Schauder type nonlinear alternative, where the condition (H3) is weakened.

Theorem 3.5. Assume that (H2) and the following conditions hold.
(H4) There exist $\theta_{f} \in L_{1}\left([0, T], R^{+}\right)$and continuous and no decreasing ψ_{f} : $[0, \infty) \rightarrow[0, \infty)$ such that

$$
|f(t, x)| \leq \theta_{f}(t) \psi_{f}(|x|) \text { for each } t \in[0, T] \text { and all } x \in R .
$$

(H5) There exists a number $K>0$ such that

$$
\frac{K}{\psi_{f}(K)\left[\left\|I^{\alpha} \theta_{f}\right\|_{L_{1}}+(1-\|B\|)^{-1}\|B\|\left(I^{\alpha} \theta_{f}\right)(T)\right]}>1 .
$$

Then boundary value problem (1.1)-(1.2) has at least one solution on $[0, T]$.
Proof. Consider the operator P defined in Theorems 3.3 and 3.4. It can be easily shown that P is continuous and completely continuous. For $\lambda \in[0,1]$ let x be such that for each $t \in[0, T]$ we have $x(t)=\lambda(P x)(t)$. Then from (H7) we have for each $t \in[0, T]$

$$
\begin{gathered}
|x(t)| \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \theta_{f}(s) \psi(|x(s)|) d s+ \\
+\frac{1}{\Gamma(\alpha)}\left\|(A+B)^{-1} B\right\| \int_{0}^{T}(T-s)^{\alpha-1} \theta_{f}(s) \psi_{f}(|x(s)|) d s \leq \\
\leq \psi_{f}(\|x\|) \frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \theta_{f}(s) d s+
\end{gathered}
$$

$$
\begin{aligned}
& +\psi_{f}(\|x\|) \frac{1}{\Gamma(\alpha)}\left\|(A+B)^{-1} B\right\| \int_{0}^{T}(T-s)^{\alpha-1} \theta_{f}(s) d s+ \\
& \leq \psi_{f}(\|x\|)\left[\left\|I^{\alpha} \theta_{f}\right\|_{L_{1}}+\left(1-\|B\|^{-1}\|B\|\left(I^{\alpha} \theta_{f}\right)(T)\right]\right.
\end{aligned}
$$

Thus

$$
\frac{\|x\|}{\psi_{f}(\|x\|)\left[\left\|I^{\alpha} \theta_{f}\right\|_{L_{1}}+\left(1-\|B\|^{-1}\|B\|\left(I^{\alpha} \theta_{f}\right)(T)\right]\right.} \leq 1 .
$$

Then, by condition (H9), there exists K such that $\|x\| \neq K$.
Let

$$
U=\{x \in C([0, T], R):\|x\|<K\} .
$$

The operator $P: \bar{U} \rightarrow C([0, T], R)$ is continuous and completely continuous. By the choice of U, there exists no $x \in \partial U$ such that $x=\lambda P(x)$ for some $\lambda \in(0,1)$. As a consequence of the nonlinear alternative of Leray-Schauder type [19], we deduce that P has a fixed point x in \bar{U}, which is a solution of the problem (1.1)-(1.2). This completes of proof.

4. An example

In this section we give an example to illustrate the usefulness of our main results. Let us consider the following nonlocal boundary value problem for system fractional differential equation

$$
\begin{gather*}
\left\{\begin{array}{l}
{ }^{c} D^{\alpha} x_{1}(t)=\frac{1}{10} \sin x_{2}, t \in[0,], 0<\alpha<1, \\
{ }^{c} D^{\alpha} x_{2}(t)=\frac{\left|x_{1}\right|}{\left(9+e^{\prime}\right)\left(1+\left|x_{1}\right|\right)},
\end{array}\right. \tag{4.1}\\
x_{1}(0)=\int_{0}^{1} \sin 0,1 x_{2}(t) d t, \quad x_{2}(0)+0,5 x_{1}(1)=1 . \tag{4.2}
\end{gather*}
$$

Evidently, $E+B=\left(\begin{array}{ll}1 & 0 \\ 0,5 & 1\end{array}\right), B=\left(\begin{array}{ll}0 & 0 \\ 0,5 & 0\end{array}\right),\|B\|=0,5$
and $(1-\|B\|)^{-1}=2$.
Hence, the conditions (H1) hold with $L=0,1$. We shall check that condition (3.9) is satisfied for appropriate values of $0<\alpha \leq 1$ with $T=1$. Indeed

$$
\begin{equation*}
\frac{1}{\Gamma(\alpha+1)}\left[L T^{\alpha}\left(1+(1-\|B\|)^{-1}\|B\|\right)\right]=\frac{0.2}{\Gamma(\alpha+1)}<1 . \tag{4.3}
\end{equation*}
$$

Then by Theorem 3.3 the boundary value problem (4.1)-(4.2) has a unique solution on for values α of satisfying condition (4.3). For example, if $\alpha=0,2$ then Γ and $\frac{0,2}{\Gamma(\alpha+1)}=0,217<1$..

5. Conclusion

In this work, some existence and uniqueness of a solution results have been established for the system of nonlinear fractional differential equations under some sufficient conditions on nonlinear terms. Of course, such type existence and uniqueness results hold under the same sufficient conditions on nonlinear terms for the system of nonlinear fractional differential equations (1), subject to multipoint nonlocal boundary conditions

$$
x(0)+\sum_{k=1}^{j} B_{k} x\left(t_{k}\right)=C .
$$

where $B_{k} \in R^{n \times n}$ are given matrices and $\sum_{k=1}^{j}\left\|B_{k}\right\|<1$. Here $0<t_{1}<\ldots<$ $<t_{j} \leq T$.

References

[1] Sorrentinos G. Analytic modeling and experimental identification of viscoelastic mechanical systems, Advances in Fractional Calculus, Springer, 2007.
[2] Mainardi F.. Fractals and fractional calculus in continuum mechanics, Springer New York, 1997.
[3] Magin R. Fractional calculus in bioengineering, Crit. Rev. Biom. Eng., 2004, 32, 1, pp. 1-104.
[4] Ortigueira M. Special issue on fractional signal processing and applications, Signal Processing, 2003, 83, 11, pp. 2285-2480.
[5] Vinagre B.M., Podlubny I., Hernandez A., Feliu V. Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 2000, 3, 3, pp. 231-248.
[6] Oldham K.B.. Fractional differential equations in electrochemistry, Advances in Engineering Software (2009), doi: 10. 1016/j.advengsoft.2008. 12012.
[7] Metzler R., Joseph K. Boundary value problems for fractional diffusion equations, Physics A, 2000, 278, pp. 107-125.
[8] Rabei E.M., Alhalhol T.S. Potentials of arbitrary forces with fractional derivatives. Int. J. Mod. Phys. A, 2004, 19, pp. 17-18, 3083-3092.
[9] Agrawal O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl., 2002, 272, pp. 368-379.
[10] Tu S., Nishimoto K., Jaw S. Applications of fractional calculus to ordinary and partial differential equations of second order. Hiroshima Math. J., 1993, 23, pp. 63-77.
[11] Agarwal R.P., Benchohra M., Hamani S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. DOI 10.1007/s10440-008-9356-6.
[12] Benchohra M., Hamani S., Ntouyas S.K. Boundary value problems for differential equations with fractional order, Surveys in Mathematics and its Applications, 2008, 3, pp. 1-12.
[13] Ibrahim R.W., Momani S.. On existence and uniqueness of solutions of a class of fractional differential equations, Journal of Mathematical Analysis and Applications, 2007, 3334, pp. 1-10.
[14] Lakshmikantham V., Vatsala A.S. Basic theory of fractional differential equations, Nonlinear Analysis, 2008, 26, pp. 2677-2682.
[15] Xinwei S., Landong L. Existence of solution for boundary value problem of nonlinear fractional differential equation, Appl. Math.. J. Chinese Univ. Ser. B, 2007, 223, 3, pp. 291-298.
[16] Shuqin Z. Existence of solution for boundary value problem of fractional order, Acta Mathematica Scentia, 2006, 26 B, 2, pp. 220-228.
[17] Agarwal R.P., Benchohra M., Hamani S.. Boundary value problems for fractional differential equations, Georgian Mathematical Journal, 2009, vol. 16, 3, pp. 401-411.
[18] Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsever Science B. V., Amsterdam, 2006.
[19] Granas A., Dugundji J. Fixed point theory, Springer Monographs in Mathematics, Springer-Verlag, New-York, 2003.

Yagub A. Sharifov

Baku State University
23, Z.I.Khalilov str., AZ1148, Baku, Azerbaijan
Tel.: (99412) 5394720 (off.).
Institute of Cybernetics of NAS of Azerbaijan
9, B.Vahabzade str., AZ1141, Baku, Azerbaijan
Received December 02, 2011; Revised February 22, 2012

