
Proceedings of IMM of NAS of Azerbaijan, 2012, vol. XXXVI (XLIV), pp. 125-134. 125

Yagub A. SHARIFOV

EXISTENCE AND UNIQUENESS OF SOLUTIONS

FOR NONLINEAR FRACTIONAL DIFFERENTIAL

EQUATIONS WITH NONLOCAL BOUNDARY

CONDITIONS

Abstract

In this study the nonlocal and integral boundary value problems for the sys-
tem of nonlinear fractional differential equations involving the Caputo fractional
derivative are investigated. Theorems on existence and uniqueness the of solu-
tion are established under the some sufficient conditions on nonlinear terms. A
simple example of applications of the main result of this paper is presented.

1. Introduction
Differential equations of fractional order have proved to be valuable tools in the

modeling of many phenomena is various fields of science and engineering. Indeed, we
can find numerous applications in viscoelasticity [1-3], dynamical processes in self-
similar structures [4], biosciences [5], signal processing [6], system control theory
[7], electrochemistry [8] and diffusion processes [9]. Further, fractional calculus has
found many applications in classical mechanics [10] and the calculus of variations
[11] and is a very useful and means for obtaining solutions to non-homogenous linear
ordinary and partial differential equations. For more details we refer the reader to
[12].

There are several approaches to fractional derivatives such as Riemann-Lowville,
Caputo, Weyl, Hadamar and Grunwald-Letnikov, etc. Applied problems require
those definitions of a fractional derivative that allow the utilization of physically
interpretable initial and boundary conditions. The Caputo fractional derivative
satisfies these demands, while the Riemann-Lowville derivative is not suitable for
mixed boundary conditions.

Recently, the theory on existence and uniqueness of solutions of linear and non-
linear fractional differential equations has attracted the attention of the many au-
thors, see for example, [13-17] and references therein. However, many of the physical
systems can better be described by nonlocal boundary conditions. Nonlocal bound-
ary conditions are encountered in various applications such as population dynamics,
blood flow models, chemical engineering and cellular systems.

In this paper, we study existence and uniqueness of nonlinear fractional differ-
ential equations of the type

cDα
0+x(t) = f(t, x(t)), for t ∈ [0, T ] , (1.1)
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subject to nonlocal and integral boundary condition

x(0) + Bx(t) = C, (1.2)

where 0 < α < 1, E ∈ Rn×n - unit matrix, B ∈ Rn×nis given matrices and
‖B‖ < 1; f, g ∈ Rn given functions; cDα

0+ is the Caputo fractional derivatives.

2. Preliminaries
In this section, we introduce notations, definitions, and preliminary facts that

will be used in the remainder of this paper. By C([0, T ], Rn) we denote the Banach
space of all continuous functions from into [0, T ] with the norm Rn

‖x‖ = max {|x(t)| : t ∈ [0, T ]} .

Definition 2.1. If g ∈ C([a, b]) and α > 0, then the Riemann-Lowville frac-
tional integral is defined by

lαa+g(t) =
1

Γ (α)

t∫

a

g(s)
(t− s)1−α

ds, (2.1)

where Γ (·) is the Gamma function defined for any complex number z as

Γ(z) =

∞∫

0

tz−1e−tdt,

Definition 2.2. The Caputo fractional derivative of order α > 0 of a continuous
function g : (a, b) → R is defined by

cDα
a+g(t) =

1
Γ (n− α)

t∫

a

g(n)(s)
(t− s)α−n+1

ds, (2.2)

where n[α] + 1, (the notation [α] stands for the largest integer not greater than α).
Remark 2.3. Under natural conditions on g(t), the Caputo fractional derivative

becomes the conventional integer order derivative of the function g(t) as α → n.
Remark 2.4. Let α, β > 0 and n = [α] + 1, then the following relations hold:

cDα
0+tβ =

Γ(β)
Γ(β − α)

tβ−1, β > n, and cDα
0+tk = 0, k = 0, 1, 2, ..., n− 1.

Lemma2.5. [18]. For α > 0, g(t) ∈ C(0, 1)∩L(0, 1), the homogenous fractional
differential equation

cDα
0+g(t) = 0,

has a solution
g(t) = c0 + c1t + c2t

2 + ... + cn−1t
n−1,
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where, ci ∈ R, i = 0, 1, ..., n− 1 and n = [α] + 1.
Lemma 2.6. [18]. Assume that g(t) ∈ C(0, 1) ∩ L(0, 1), with derivative of

order n that belongs to C(0, 1) ∩ L(0, 1) then

Iα
0+

cDα
0+g(t) = g(t) + c0 + c1t + c2t

2 + ... + cn−1t
n−1,

where, c1 ∈ R, i = 0, 1, ..., n− 1 and n = [α] + 1.

Lemma 2.7. [18]. Let p, q ≥ 0, f ∈ L1[0, T ]. Then

lp0+Iq
0+f(t) = Ip+q

0+ f(t) = Iq
0+Ip

0+f(t) (2.3)

is satisfied almost everywhere on [0, T ]. Moreover, if f ∈ C[0, T ], then (2.3) is true
for all t ∈ [0, T ].

Lemma 2.8 [18]. If α > 0, f ∈ C([0, T ]), then cDα
0+Iα

0+f(t) = f(t) for all
t ∈ [0, T ].

3. Main results
Lemma 3.1. Let 0 < α ≤ 1 and f, g ∈ C([0, T ], Rn). Then the unique solution

of the boundary value problem for fractional differential equation

cDα
0+x(t) = y(t), t ∈ [0, T ] (3.1)

x(0) + Bx(T ) = C (3.2)

is given by

x(t) =

T∫

0

G(t, s)y(s)ds + (E + B)−1C, (3.3)

where,

G(t, s) =





1
Γ(α)

(t− s)α−1 − 1
Γ(α)

(E + B)−1B(T − s)α−1, 0 ≤ s ≤ t,

− 1
Γ(α)

(E + B)−1B(T − s)α−1, t ≤ s ≤ T.
(3.4)

Proof. Assume that x is a solution of the boundary value problem (3.1), (3.2),
then using Lemma 2.6, we have

x(t) = lα0+y(t) + c1, c1 ∈ Rn. (3.5)

From (3.2) and (3.5), we obtain

c1 + B(Iα
0+y(T ) + c1) = C, (3.6)

which implies that

c1 = (E + B)−1C − (E + B)−1BIα
0+y(T ). (3.7)
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Using (3.6) in (3.5), we obtain

x(t) = Iα
0+y(t) + (E + B)−1C − (E + B)−1BIα

0+y(T ),

which can be written as (3.3). Lemma is provided.
Lemma 3.2. Assume that f ∈ C([0, T ] × Rn, Rn) then the function x(t) is

solution of fractional boundary value problem (1.1), (1.2) if and only if x(t) is
solution of the fractional integral equation

x(t) =

T∫

0

G(t, s)f(s, x(s))ds + (E + B)−1C. (3.8)

Proof. Let x(t) be a solution of the boundary value problem (1.1), (1.2), then
by same method as used in Lemma 3.1, we can prove that is solution of the fractional
integral equation (3.8).

Conversely, let x(t) satisfy (3.8) and denote the right hand side of equation (3.8)
by v(t). Then, by lemmas 2.7 and 2.8, we obtain

v(t) =

T∫

0

G(t, s)f(s, x(s))ds + (E + B)−1C = Iα
0+f(t, x(t)) + (E + B)−1C,

this implies that

cDα
0+v(t) =c Dα

0+Iα
0+f(t, x(t)) +c Dα

0+f(T, x(T )) +c Dα
0+(E + B)−1C = f(t, x(t)).

Hence, x(t) is solution of the fractional differential equation (1.1).
Also, it is easy to verify that satisfy the condition (1.2).
Our first result is based on Banach fixed point theorem.
Theorem 3.3. Assume that:
(H1) There exists a constant L > 0 such that

|f(t, x)− f(t, y)| ≤ L |x− y| , for each t ∈ [0, T ] and all x, y ∈ Rn.

If
1

Γ(α + 1)

[
LTα

(
1 + (1− ‖B‖)−1 ‖B‖

)]
< 1 (3.9)

then the boundary value problem (1.1)-(1.2) has unique solution on [0, T ].
Proof. Transform the problem (1.1)-(1.2) into a fixed point problem. Consider

the operator
P : C([0, T ], Rn) → C([0, T ], Rn)

defined by

P (x)(t) =

T∫

0

G(t, s)f(s, x(s))ds + (E + B)−1C. (3.10)
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Clearly, the fixed points of the operator P are solution of the problem (1.1)-(1.2).
We shall use the Banach contraction principle to prove that P defined by (3.9) has
a fixed point. We shall show that P is a contraction.

First, note that under condition ‖B‖ < 1 the matrix E + B is invertible and the
estimation

∥∥(E + B)−1
∥∥ < (1− ‖B‖)−1 holds.

Let x, y ∈ C([0, T ], Rn). Then, for each t ∈ [0, T ] we have

|P (x)(t)− P (y)(t)| ≤
T∫

0

|G(t, s)| |f(s, x(s))− f(s, y(s)| ds ≤

≤ 1
Γ(α)




t∫

0

(t− s)α−1 |f(s, x(s))− f(s, y(s))| ds+

+
∥∥(E + B)−1B

∥∥
T∫

0

(T − s)α−1 |f(s, x(s))− f(s, y(s))| ds


 ≤

≤ 1
Γ(α + 1)

[
LTα

(
1 +

∥∥(E + B)−1B
∥∥)] ‖x− y‖ .

Thus

‖P (x)(t)− P (y)(t)‖ ≤ 1
Γ(α + 1)

[
LTα

(
1 + (1− ‖B‖−1 ‖B‖

)]
‖x− y‖ .

Consequently by (3.9) P is a contraction. As a consequence of Banach fixed point
theorem, we deduce that P has a fixed point which is a solution of the problem
(1.1)-(1.2). Theorem is provided.

The second result is based on Schaefer’s fixed point theorem.
Theorem 3.4. Assume that:
(H2) The function f : [0, T ]×Rn → Rn is continuous.
(H3) There exists a constant N1 > 0 such that

|f(x, t)| ≤ N1 for each t ∈ [0, T ] and all x ∈ Rn.

Then the boundary value problem (1.1)-(1.2) has at least one solution on [0, T ].
Proof. We shall use Schaefer’s fixed point theorem to prove that P defined by

(3.10) has a fixed point. The proof will be given in several steps.
Step 1: Operator P is continuous. Let {xn} be a sequence such that xn → x in

C([0, T ], Rn). Then for each t ∈ [0, T ]

|P (xn)(t)− P (x)(t)| ≤
T∫

0

|G(t, s)| |f(s, xn(s))− f(s, x(s))| ds ≤

≤ 1
Γ(α)




t∫

0

(t− s)α−1 max |f(s, xn(s))− f(s, x(s))| ds+
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+


1− ‖B‖−1 ‖B‖

T∫

0

(T − s)α−1 max |f(s, xn(s))− f(s, x(s))| ds





 ≤

≤ 1
Γ(α + 1)

[
LTα

(
1 + (1− ‖B‖)−1 ‖B‖

)]
‖f(s, xn(s))− f(s, x(s))‖ .

Since f is continuous function, we have

‖P (xn)(t)− P (x)(t)‖ ≤

≤ 1
Γ(α + 1)

[
LTα

(
1 + (1− ‖B‖)−1 ‖B‖

)]
‖f(s, xn(s))− f(s, x(s))‖ → 0

as a →∞.
Step 2: P maps bounded sets in bounded sets in C ([0, T ], Rn). Indeed, it is

enough to show that for any η > 0, there exists a positive constant l such that for
each x ∈ Bη = {x ∈ C ([0, T ], Rn) : ‖x‖ ≤ η}, we have ‖P (x)‖ ≤ l. By (H3) we have
for each t ∈ [0, T ],

|P (x)(t)| ≤
T∫

0

|G(t, s)| |f(s, x(s))| ds +
∥∥(E + B)−1C

∥∥ .

Hence,

|P (x)(t)| ≤ N1T
α

Γ(α + 1)

[
1 + (1− ‖B‖−1 ‖B‖

]
.

Thus
‖P (x)(t)‖ ≤ N1T

α

Γ(α + 1)

[
1 + (1− ‖B‖−1 ‖B‖

]
= l.

Step 3: P maps bounded sets into equicontinuous sets of C ([0, T ], Rn).Let
t1, t2 ∈ (0, T ], t1 < t2, Bη be a bounded set of C ([0, T ], Rn) as in Step 2, and let
x ∈ Bη. Then

|P (x)(t2)− P (x)(t1)| =
∣∣∣∣∣∣

1
Γ (α)

t2∫

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
f(s, x(s))ds+

+
1

Γ (α)

t2∫

t1

(t2 − s)α−1 − f(s, x(s))ds

∣∣∣∣∣∣
≤ N1

Γ(α + 1)
[2(t2 − t1)α + (tα2 − tα1 )] .

As t1 → t2, the right-hand side of the above inequality tends to zero. As a conse-
quence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can conclude
that the operator P : C([0, T ], Rn) → C([0, T ], Rn) is completely continuous.

Step 4: A priori bounds. Now it remains to show that the set

4 = {x ∈ C([0, T ], Rn) : x = λP (x), for some 0 < λ < 1}

is bounded.
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Let x ∈ 4, then x = λ(Px) for some 0 < λ < 1. Thus, for each t ∈ [0, T ] we have

x(t) = λ




T∫

0

G(t, s)f(s, x(s))ds + (E + B)−1C


 .

This implies by (H3) (as in step2) that for each t ∈ [0, T ] we have

|P (x)(t)| ≤ N1Tα

Γ(α + 1)

[
1 + (1− ‖B‖−1 ‖B‖

]
.

Thus for every t ∈ [0, T ], we have

‖x‖ ≤ N1Tα

Γ(α + 1)

[
1 + (1− ‖B‖−1 ‖B‖

]
= R.

This shows that the set 4 is bounded. As a consequence of Schaefer’s fixed point
theorem, we deduce that P has a fixed point which is a solution of the problem (1.1)-
(1.2).

In the following theorem we shall give an existence result for the problem (1.1)-
(1.2) by means of an application of a Leray-Schauder type nonlinear alternative,
where the condition (H3) is weakened.

Theorem 3.5. Assume that (H2) and the following conditions hold.
(H4) There exist θf ∈ L1([0, T ], R+) and continuous and no decreasing ψf :

[0,∞) → [0,∞) such that

|f(t, x)| ≤ θf (t)ψf (|x|) for each t ∈ [0, T ] and all x ∈ R.

(H5) There exists a number K > 0 such that

K

ψf (K)
[
‖Iαθf‖L1

+ (1− ‖B‖)−1 ‖B‖ (Iαθf )(T )
] > 1.

Then boundary value problem (1.1)-(1.2) has at least one solution on [0, T ].
Proof. Consider the operator P defined in Theorems 3.3 and 3.4. It can be

easily shown that P is continuous and completely continuous. For λ ∈ [0, 1] let x be
such that for each t ∈ [0, T ] we have x(t) = λ(Px)(t). Then from (H7) we have for
each t ∈ [0, T ]

|x(t)| ≤ 1
Γ(α)

t∫

0

(t− s)α−1θf (s)ψ(|x(s)|)ds+

+
1

Γ(α)

∥∥(A + B)−1B
∥∥

T∫

0

(T − s)α−1θf (s)ψf (|x(s)|)ds ≤

≤ ψf (‖x‖) 1
Γ(α)

t∫

0

(t− s)α−1θf (s)ds+
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+ψf (‖x‖) 1
Γ(α)

∥∥(A + B)−1B
∥∥

T∫

0

(T − s)α−1θf (s)ds+

≤ ψf (‖x‖)
[
‖Iαθf‖L1

+ (1− ‖B‖−1 ‖B‖ (Iαθf )(T )
]
.

Thus ‖x‖
ψf (‖x‖)

[
‖Iαθf‖L1

+ (1− ‖B‖−1 ‖B‖ (Iαθf )(T )
] ≤ 1.

Then, by condition (H9), there exists K such that ‖x‖ 6= K.

Let
U = {x ∈ C([0, T ], R) : ‖x‖ < K} .

The operator P : U → C([0, T ], R) is continuous and completely continuous. By
the choice of U , there exists no x ∈ ∂U such that x = λP (x) for some λ ∈ (0, 1). As
a consequence of the nonlinear alternative of Leray-Schauder type [19], we deduce
that P has a fixed point x in U , which is a solution of the problem (1.1)-(1.2). This
completes of proof.

4. An example
In this section we give an example to illustrate the usefulness of our main results.

Let us consider the following nonlocal boundary value problem for system fractional
differential equation





cDαx1(t) =
1
10

sinx2, t ∈ [0, ], 0 < α < 1,

cDαx2(t) =
|x1|

(9 + e′)(1 + |x1|) ,
(4.1)

x1(0) =

1∫

0

sin 0, 1x2(t)dt, x2(0) + 0, 5x1(1) = 1. (4.2)

Evidently, E + B =

(
1 0
0, 5 1

)
, B =

(
0 0
0, 5 0

)
, ‖B‖ = 0, 5

and (1− ‖B‖)−1 = 2.

Hence, the conditions (H1) hold with L = 0, 1. We shall check that condition
(3.9) is satisfied for appropriate values of 0 < α ≤ 1 with T = 1. Indeed

1
Γ(α + 1)

[
LTα(1 + (1− ‖B‖)−1 ‖B‖)] =

0.2
Γ(α + 1)

< 1. (4.3)

Then by Theorem 3.3 the boundary value problem (4.1)-(4.2) has a unique so-
lution on for values α of satisfying condition (4.3). For example, if α = 0, 2 then Γ

and
0, 2

Γ(α + 1)
= 0, 217 < 1..
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5. Conclusion
In this work, some existence and uniqueness of a solution results have been es-

tablished for the system of nonlinear fractional differential equations under some
sufficient conditions on nonlinear terms. Of course, such type existence and unique-
ness results hold under the same sufficient conditions on nonlinear terms for the
system of nonlinear fractional differential equations (1), subject to multipoint non-
local boundary conditions

x(0) +
j∑

k=1

Bkx(tk) = C.

where Bk ∈ Rn×n are given matrices and
j∑

k=1

‖Bk‖ < 1. Here 0 < t1 < ... <

< tj ≤ T.
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