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S U M M A R Y  
The basic existence-uniqueness theory for Stoneley waves propagating along a plane 
interface between different isotropic elastic media is re-examined, using a matrix 
formulation of the secular equation. The resulting development is appreciably 
simpler than previous treatments of the theory. The domain of existence of Stoneley 
waves and the limiting curves forming its outer boundary are characterized in terms 
of coordinates p:/p: and p2/pI where p , ,  p 2  are the shear moduli and /jI ,  p2 the 
speeds of transverse plane waves in the constituent media. The equations of the 
limiting curves are given explicitly and exemplified numerically. 

Key words: interfacial waves, isotropic elastic media, limiting curves,  secular 
equation. 

1 I N T R O D U C T I O N  

The possibility of transmitting a harmonic wave along the 
plane interface between dissimilar isotropic elastic solids was 
first considered by Robert Stoneley in 1924. He arrived at  
the secular equation governing the speed of propagation and 
showed. by examining special cases, that there are 
combinations of materials that admit an interfacial wave and 
others that d o  not. The common use of the term Stoneley 
wuzw recognizes the pioneering nature of his work. 

The domain of existence of Stoneley waves was 
subsequently investigated by a number of authors. Sezawa 
& Kanai (1939) correctly characterized the limiting curves 
that bound this domain and carried out numerical 
calculations for two particular cases. However, the 
equations o f  the limiting curves are not recorded in their 
paper. no formal proof of existence is given and the 
question of the uniqueness of the interfacial wave is not 
addressed. Scholte (1942) gave an elaborate derivation of 
the equations of the limiting curves and proved that they 
bound the domain of existence. Again, no explicit proof of 
existence and no discussion of uniqueness were provided. In 
a later contribution, Scholte (1947) restated the equations of 
the limiting curves and gave some further information about 
them, including the transformation which maps one curve 
into the other. H e  also corrected and extended numerical 
results presented in his earlier work. Cagniard 
(1962, pp. 42-49) approached the basic theory of Stoneley 
waves from a different standpoint. Applying the principle of 
the argument to a complex function that reproduces the 
secular equation when evaluated on the real axis and 
equated to zero, he verified the existence of a unique 
interfacial wave within the domain bounded by the limiting 
curves and non-existence elsewhere. 

The studies of Sezawa & Kanai, Scholte and Cagniard 
supply the ingredients for a complete account of the 
existence and uniqueness of Stoneley waves. The methods 
are recondite, however, and the details complicated. Not 
surprisingly, the topic is skimped in most texts on 
elastic-wave theory. 

During the past 20 years considerable progress has been 
made in clarifying the behaviour of interfacial waves along 
the join of two anisotropic elastic bodies differing in 
composition or orientation. Notably, Barnett r t  a f .  (1985) 
have deduced an existence-uniqueness theorem for subsonic 
interfacial waves from properties of a Hermitian interface 
impedance matrix. These developments might be expected 
to  yield, by specialization. a simplified treatment of the 
existence and uniqueness of Stoneley waves, and our 
present purpose is to  confirm that this is indeed the case. 

The line of argument runs as follows. After summarizing 
in Section 2 the solution of the displacement equations of 
motion describing a Stoneley wave, we introduce in Section 
3 two real symmetric 2 x 2 matrices, M I  and M 2 .  related to 
the surface impedance matrices of the abutting semi-infinite 
isotropic elastic bodies. The vanishing of the determinant of 
M I  + M2 reconstructs the Stoneley-wave secular equation. 
Definiteness properties of M ,  and M2 are established in 
Section 4 and used in Section 5 to  answer the fundamental 
questions of existence and uniqueness. Limiting curves 
represented by explicit equations are discussed in Section 6 
and illustrative numerical results outlined. 

2 T H E  S T O N E L E Y - W A V E  SOLUTION 

We are concerned with a composite medium consisting of 
two homogeneous semi-infinite isotropic elastic bodies. B,  
and B,, which, on the plane interface. are in welded 
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contact. The density and the shear modulus of the material 
composing B , are denoted by p , and ,u , respectively and the 
speeds of propagation of longitudinal and transverse plane 
waves in this material by a, and f i , .  The corresponding 
quantities for B, are p 2 ,  p 2  and a2,  &. The dimensionless 
material constants 

A, = Bf/a; 

occur naturally in the ensuing theory, the values 1 and 2 of 
the subscript i referring throughout to B ,  and B2. The bulk 
and shear moduli of both materials are taken to be positive, 
so that 

p ,  > 0, 0 < A, < 3. (1) 
Let n be a unit vector directed along the interface and m 

the unit normal to the interface pointing towards B, (see 
Fig. 1). Then a harmonic Stoneley wave in the composite 
medium gives rise to displacement fields 

u = A  exp {ik(n - x  - ust)){exp ( - k p , m  -x ) (n  + @,m) 

(2) 
- n ,  exp ( - k q , m  * x)(q,n + im)}, 

u = rnA exp { i k ( n .  x -- ust)){exp ( k p z m .  x)(n - ip2m) 

+ n2 exp (k4,m 1 x)(q,n - im)) 

in B ,  and B, respectively. Here x is the position vector 
relative to an origin in the interface and t the time: k is the 
wave number and A a length that is arbitrary within the 
overriding restriction to  infinitesimal deformations. The 
speed of propagation us  is a positive real root of the secular 
equation 

K 2  { 1 - P I (Y I ) ( I  (Y I 1 } { 1 - P A  Y.14 (Yd 1 
- 2KlP,{l - P ? ( Y , ) q ( Y ? ) )  - P 2 { 1  -Pl(Yl)q(Yl))lu2 

+[(PI - P $ -  { P I P 2 ( Y ? ) + P 2 P I ( Y l ) J { P I 4 ( Y Z )  

+ P,q(Y,)}luJ = 0, (3 )  

(4) 

in which K = 2 ( p  , - p 2 )  and 

P, (Y , )  = (1 - 4 Y , ) , / 2 v  

y, = U'Ifif = p,u?/p,. 

dY;) = ( 1  -- Y,)1/29 

with 

( 5 )  

The numbers p ,  and q, controlling the decay of the 
displacement with increasing distance from the interface are 

= u s  and the remaining the values of p , ( y , )  and q ( y , )  at u 
constants in eqs (2) are 

I 

m 
X 

interface7 - - 
n 

Figure 1. The composite isotropic elastic medium 

3 A REFORMULATION OF T H E  SECULAR 
EQUATION 

We introduce the real symmetric matrices 

( 7 )  

(12) 

The result of setting p , d = p , y ,  in eq. ( 3 ) ,  in accordance 
with the definitions ( 5 ) ,  and invoking (12) is 

S ( u )  = 0, (13) 

J - K 9 2 ( 1  -PIYI)+Pl(ql + 4 2 ) 4  

K q  I( 1 - " 2 4 2 )  + P A 4  I + q 2 b 5  ' 
n1 = 

(cf. Chadwick 1976, Section 3). Eqs (3) and (6) stem from 
the interface conditions, requiring continuity of displace- 
ment and traction on the plane m . x = 0 .  The six scalar 
conditions reduce to  four because of the displacement being 
everywhere coplanar with m and n.  

which is consequently the secular equation for Stoneley 
waves. This form was first given by Sezawa & Kanai (1939, 
eq. 1). 
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through eqs (8) and (S), that M ( 0 )  is positive definite and 
M ’ ( u )  negative definite for all 0 < u <p.  This means that 
the eigenvalues of M ( u ) ,  necessarily real, are positive at 
u = 0 and decrease monotonically in (0, p )  (cf. Chadwick & 
Smith 1977, Section VIII, A,  1). Eqs (7) to (9) and (19) give 

2 

tr M ( u )  = c P,{P,(7, )  + A , q ( Y , ) J - ’ { P t ( Y J  + d Y , ) ) 2 ?  
, = I  

and, by virtue of (1) and (14), the expression on the right is 
positive for all 0 < u < p. At most one eigenvalue of M ( u )  
can vanish at most once, therefore, in the interval (0, p). 

It is evident from the solution (2) that a Stoneley wave 
exists only if p ( ,  q i ,  pz and q2 are all real and positive. 
From (4). ( 5 )  and ( l )? ,  

o*-:p.(y,)‘:l, O < q ( y ; ) < l  v o < u < p ,  (14) 

B = min 1 A), (15) 

where 

and at least one of q ( y , )  is zero or imaginary for all u 
The speed of propagation us therefore satisfies the 
inequalities 

0 < u s  < p. (16) 

M,(0)  = 2p,(1 + A t ) - ’  

Owing to the inequalities ( l) ,  M,(O) are positive definite. 

formulae 
1;1 order to differentiate the matrices M,(y , )  we use the 

1 P : ( Y O =  - 4 { 2 P , ( Y , ) } - i ?  9’ (Y , )  = - { 2 q ( Y , ) } - i ,  
P,’(Y,) = - ( I  - A , ) * { 2 P , ( Y , ) q ~ Y , ) } - I { P , ( Y , )  + A , d Y J - * ?  

(20) 
derived from eqs (4) and (19). Throughout this section a 
prime denotes differentiation with respect to  the argument, 
y, or u From eqs (7), (9), (19) and (20), 

t‘M,‘(YJ 

= P, [ {P , (Y , )  + q ( Y , ) ) p : ( Y , )  + (P,’(Y,)  + q ‘ ( Y , ) l f x Y t ) 1  

= - P , { 2 ~ , ( Y , ) q ( Y , ) } - ] { P , ( Y ~ )  + d Y , ) )  

x [ 1  + ( 1  - 4)2{P,(Yt) + A,4(Y , ) l -21?  

det M: (Y 8 1 = P 3 P ; (Y I )4 ’ (Y I )  Pf( Y I ) 

+ {Pt (Y , )q’ (Y , )  + P:(Y,)s(Y,))p,(Y,)p:(Y,) 

- (1 - P , ( Y , ) 4 ( Y , ) } ( P : ( Y , ) } 2 1  

= P ~ { 4 P ~ ( Y , ) q ( Y , ) } - l { P , ( Y ~ )  + 4 9 ( Y , ) ) - ’  

x [2(1 -A,)* + 4 { P , ( Y J  + 4(Y,)}217 (21) 

use being made of the identity (18) in reaching (21). On 
account of the inequalities (1) and (14), 

tr M,’(y,) < 0, det M,’(y , )  > 0 V 0 < v < /3, 

and M:(y,)  are therefore negative definite in this interval. 
The properties of M,(O) and M ; ( y , )  secured above imply, 

5 EXISTENCE-UNIQUENESS 
CONSIDERATIONS 

We infer from ( l l ) ,  (13) and (14) that a Stoneley wave 
exists if and only if an eigenvalue of M ( v )  has a zero in 
(0 ,p) .  It has been proved in Section 4 that the two 
eigenvalues of M ( u )  decrease monotonically from positive 
values as u increases from 0 towards p and that at most one 
eigenvalue can pass through zero. A necessary and sufficient 
condition for the existence of a Stoneley wave is thus 

det M ( @ )  < 0, (22) 

and such a wave is unique whenever it exists. We see from 
eqs (11) and (14) that the condition 

S(B)  > 0 (23) 
is equivalent t o  (22). Moreover, S ( u )  has at most one zero, 
u s ,  in ( 0 ,  p) ,  so that 

when a Stoneley wave exists. 

quantities 
We introduce at this point the additional dimensionless 

E = p:/p:, = P J P  I t (25) 
to  be treated as coordinates in Section 6 below. Eq.  (12), in 
conjunction with (4) and ( S ) ,  gives 

, M ~ ~ S ( , ~ , ) = U ~ ~ - ~ ~  + c ,  ~ ; ~ S ( / 3 2 ) = c * q ~ - b * q  + a * ,  

(26) 

(27) 

where 

u = (2 - 6)’ - 4(1 - E)”’(l - AZE)I/’, 

b 2( 1 - (1 - t ) i / 2 } 2  + (1 - 5)i’2[(1 - Al)”’E 

+ 4 { 1 - ( 1  -A26) i ’2)1 ,  

c = 1 - (1  - 6)”’(1 - .42E)1’2, 
and an asterisk signifies that the replacements 

have been made. Since 

the condition (23) and eqs (26) lead immediately to the 
following. 
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Existence-uniqueness theorem 

Given the material constants p , , p 2  and p p 2 ,  the numbers 
5 and 9 are defined by eqs (25), with p, = ( p , / p , ) ” * ,  and a, 
6, c ,  a*, b* ,  C* by (27) to (30). A Stoneley wave exists, and 
is unique, if and only if either 

0 < E s 1 ,  n q 2 - b q + c > 0  or E z l ,  c * q 2 - b * q + a * > 0 .  

If the bodies B,  and B, are separated and their plane 
boundaries left traction free. the inequalities (1) are 
sufficient conditions for the existence of Rayleigh waves in 
B, and B,. The speeds of propagation of these waves are 
/3,ygf where yKi  is the unique real root in (0, 1) of the 
secular equation 

R , ( Y , ) : = Y ; ’ { ( ~ -  Yi)’ - ~ P , ( Y ; ) ~ ( Y , ) }  = 0  (32) 

(e.g. Chadwick 1976, Section 2e). The properties 

R;(O) = -2( 1 - A,), 

R:(yi) = 1 + 2 ( Y ~ P i ( Y , ) q ( Y , ) } p ’ ( P , ( Y , )  - q(Y;)12, 

R,( 1) = 1, 

drawn from eqs (32) and (4), show that when A; is held 
fixed, R,(y,)  increases monotonically as yi increases, from a 
negative value at y, = 0 to a positive value at yi = 1 (see Fig. 
2).  

1 

R,(Y,) 

Figure 2. Variation with y, of the function R,(y,)  defined by eqs 
(32) and (4). Here. A, = 0.3. 

With the aid of the definitions (32) and (4), eq. (12) can 
be written as 

S ( v )  PL:YI{1 -PAY2)q(Yz)}Rl(YI) 

-P,P2[2[{1 - P I ( Y l ) q ( Y 1 ) ) 2  +&Ylq2!YI)l 

x -Pz(Y2)4(Y2)}2 + AzY242(Yz)l 

+ Y I Y z { P I ( Y I ) d Y Z )  + P 2 ( Y Z ) d Y l ) ) l  

+ P : Y A  1 - PI(Yl)q(YI)}R’(YI). (33)  

Let { j ,  k} be the permutation of { 1 ,2}  such that 
p,yg; 5 Pkyg: and let 

‘K = b~y:;. 

This speed lies between 0 and p :  otherwise we would have 
P = P k  (as u K  < p,) and 

P k  v R  P k Y k / :  < p k  1 

which is impossible. When v = u K .  the coefficient of p f  in 
eq. (33) is zero, by (32). Since p;*v; 5 y K k ,  it is seen from 
Fig. 2 that R,(P;’v;), and hence the coefficient of p i  in 
(33) ,  is non-positive. The inequalities (1) and (14) ensure 
that the coefficient of pjpj  is negative, so that S(v,) < 0. It 
follows from (24) that when a Stoneley wave exists in the 
composite body its speed of propagation exceeds u R ,  the 
smaller of the Rayleigh-wave speeds in the constituent 
bodies B,  and B2 (cf. Barnett et al. 1985, Theorem 3) .  The 
bounds (16) on the Stoneley-wave speed can therefore be 
tightened to  

u K  < <b- (34) 

There is some confusion in the literature about the 
bounds (34). Koppe (1948, Section 2) asserted that v S  lies 
between the speeds of the Rayleigh wave and the transverse 
wave in the medium of greater acoustic density. This 
statement is repeated by Ewing, Jardetzky & Press 
(1957, p. 112) and misquoted by Owen (1964, Section S ) ,  
while Ginzbarg & Strick (1958, p. 53) replace the acoustic 
density by the density. Eqs (32), (4) and (5) show that the 
Rayleigh-wave speed in Bi depends on p, and A,, so no 
association between the lower bound and a single material 
constant can be generally valid. 

6 LIMITING CURVES 

It is clear from (26) to (30) that the equations S(j3,) = 0 
represent curves in the ( E ,  q )  plane, and, in view of (31), 
the condition (23) implies that, for specified values of Al  
and A*, the domain bounded by these curves in the first 
quadrant constitutes the set of all pairs ( 6 ,  q )  for which a 
Stoneley wave exists. We refer to  

I (35)  
L- :  S(P , )=O,  0 5 E 5 1 ,  q 2 0 ,  

L+: S(P,)  = 0 ,  E 2 1, q 2 0 ,  

as the limiting curves (cf. Sezawa & Kanai 1939, Section 3). 
Owing to  eqs (26) being quadratic in q ,  each limiting 

curve consists of two arcs represented by the factors equated 
to  zero. We write L‘ = L’ u L: and the equations of the 
arcs, derived from (26) and (35) ,  are 

L;: q = q ;  = (2a ) - ’ (b  f ( b 2  - ~ u c ) ” ’ } ,  

L:: q = q ~ = 2 a * { b * f ( b * 2 - 4 a * c * ) ” 2 } p 1 ,  (36) 
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11 

3.5 1 t - -I I 
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2.5 1 
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Figure 3. The limiting curves L; and L z  and the domain of 
existence D in the ( 5 ,  7) plane for a composite medium with 
dimensionless material constants A1 = 0.2, A, = 0.3. 

(cf. Scholte 1947, Section 2). It may readily be checked from 
eqs (36) and (26) to  (29) that the point 5 = 1, q = 1 lies on 
each of L; and 152, and it is confirmed below that the 
limiting curves have the forms shown in Fig. 3. 

First, however, we verify that the interior of the region D, 
bounded by the limiting curves and hatched in Fig. 3, is the 
domain of existence of Stoneley waves. With reference to  
the condition (23) and eqs ( 3 1 ) ,  it suffices to show that S(/3,) 
and S(D2) are positive somewhere in the parts of D in which 
they are defined. From (26) to  (30), 

S(PI)IE=I =S(P,)l,=, = d ( v  - 1)’, 

so the positivity requirement is satisfied everywhere on the 
intersection of D with the line E = 1.  

Returning now to the limiting curves, we consider first the 
arcs L;. We find from eqs (27) to  (29) that 

b‘ - ~ U C  = t ( 1  - 5)”*[4E(1  - A2t)”’ 

X { 1 - ( 1  - AI)”’(l - E ) I l 2 }  

+ (1 - A I ) ” * [ ( l  - A1)1’2E(1 - 6)”’ 
+ 4(2 - E ) {  1 - ( 1  - lj)1’2(l - Ay!j)1/2}]], (37) 

b -- 2~ = ( 1  - t)’’’[(l - A,)i’25 + 2E(1 - 5)”’ 
+ 4{ ( 1  - A,E)i/2 - (1 - E)”’}], (38) 

b - a - c = ( l  - ~ ) 1 ’ 2 [ ( l - A i ) i ’ 2 ~ + ~ ( l - ~ ) i ’ z  

+ ((1 - A2E)’12 - (1 - E)”’)], 

and the inequalities ( I ) *  guarantee that each of these 
expressions, and the right-hand sides of eqs (28) and (29), 
are positive for all O <  8 < 1.  From (36), and (37), q ;  are 
therefore real in this interval, and since 

q I=2c{b  +(62-4ac) i /2}- i ,  

1 -171 = 2(h - a  - c ) { b  -2a + (6’-4ac)1’*}-~, 

0 <  q 1  < 1 .  Eq. (36), and (27) to (29), expanded to the first 
power in 5, give the value of ~1 at  E = 0 as 

7 -  = {4(1, - A2)}-’[{5 - A1 + 4 ( 1  - Al)”2Az)”’ 

- ( 1  - A,)”’ - 2A2]. (39) 

The arc LX is thus confined to the square 0 c: < 5 1, 
0 5  q 5 1 and has the form shown in Fig. 3. From eqs (36),, 
(28), (37) and ( 3 9 %  

q ;  = (2~)-’{b + (6’- ~ u c ) ” ~ }  

and 

q ;  - 1 = (2a)-I(h - 2a + (b2 - 4ac)’/’) 

have the same sign as a. Eqs (27) and (32) lead to 
a = &Y?,(E) whence, by inspection of Fig. 2, a is negative 
when 0 < 6 < yK2 and positive when y n 2  < 5 1.  In the first 
quadrant of the ( E ,  9 )  plane, L ;  is therefore restricted to 
the strip yK2 < 5 5 1, q 2 1 and approaches asymptotically 
the line 5 = yR2 (where a = 0) as q + 00, as shown in Fig. 3. 

Eqs (36) indicate that the transformation (30) maps, by 
interchange of Al and A,, the connection between 9 and E 
on L; into the connection between q - ’  and 5-I on L’. 
The forms of the latter arcs are thereby deducible from 
those of the former, already described. The arc L’ lies in 
the rectangle 1 5 6 5 y i i ,  0 5 q 5 1 and, corresponding to 
the asymptote E = y R 2  of L;,  L? meets the 5 axis at 
6 = y;;.  The arc L z  lies in the quarter-plane 5 2 1, q 2 1, 

Table 1. Numbers defining the intercepts and asymptotes of the 
limiting curves for various values of A $  and A?. 

AI A? Y R i  q- YK2 q+ 

0 0 1.095744 0.309017 0.912622 3.236068 

0 0.1 1.095744 0.31216J 0.899137 3.162278 

0 0.2 1.095744 0.315100 0.881076 3.085318 

0 0.3 I .095744 0.3 178.53 0.85593 1 3.004608 

0 0.4 1.095744 0.320436 0.819359 2.919358 

0 0.5 1.095744 0.322876 0.763932 2.828427 

0.1 0.1 1.112177 0.319174 0.899137 3 I33085 

0.1 0.2 1 . 1  12177 0.321928 0.881076 3 059545 

0.1 0 3  1.1 I2177 0.324513 0.855931 2.982241 

0.1 0.4 1.1 12177 0.326947 0.819359 2 900375 

0. I 0.5 1.1  12177 0.329246 0.763932 2.812798 

0.2 0.2 1.134975 0.329404 0.881076 3.035789 

0.2 0.3 1.134975 0.331809 0.855931 2.961534 

0.2 0.4 1.134975 0.334078 0.819359 2.882715 

0.2 0.5 1.134975 0.336225 0.763932 2.798178 

0.3 0.3 1 .  1683 19 0.33987:) 0.85593 1 2 942279 

0.3 0.4 1.168319 0.341%1 0.819359 2.866222 

0.3 0.5 1.168319 0.343942 0.763932 2.784458 

0.4 0.4 ’ 1.220467 0.350783 0.819359 2 850766 

0.4 0.5 1.220467 0.352580 0.763932 2771411 

0.5 0.5 1.309017 0.362404 0.763932 2.759348 
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a d ,  as counterpart tci L I  intersecting the q axis at q = q - ,  
given by eq. (39), L: approaches asymptotically, as E--+m, 

the line q = q + ,  where 

q +  = (1 + A,)- ' [ {5  + 4Al(1 - A2)'12 - A2'12 

+ 2 A ,  + (1 - 

To illustrate the prcceding analysis we have computed the 
limiting curves for the 21 pairs of values of A, and A2 set 
out in the first two columns of Table 1. The results for the 
pair A, = 0.2, A, = 0.3 are displayed in Fig. 3 and the values 
of y ; ; ,  q -  and yK2, q + ,  specifying the intercepts of L? on 
the axes and the asymptotes to  L:, are listed for all 21 
combinations in the last four columns of Table 1. It is clear 
from these entries that none of the 21 plots differs very 
much from Fig. 3, the proportional differences between the 
greatest and least values being only 19 per cent for 7,; and 
yR, and 17 per cent for q -  and q + .  In connection with this 
choice of data, it should be noted, first, that the pairs 
( A , , & )  and ( & , A l )  are equivalent in the sense that 
relabelling B ,  as B, and B2 as B, converts the latter into the 
former, and, second, that A, = $(l - vi)-'(l - 2vi) where vi 
is Poisson's ratio. The extreme values A, = 0 (vi = 0.5) and 
A, = 0.5 (Y, = 0 )  correspond to  materials which are 
incompressible and trmsversely rigid respectively. 

A C KN 0 W L E D G lU E NTS (P. Chadwick) 

This paper is a mode.;t token of my regard for the memory 
of Robert Stoneley. I was his research student some 40 years 
ago and my early career benefited greatly from his guidance 
and encouragement. Much later (for my PhD topic was 
outside Stoneley's main field of interest), his basic 
contributions to  elastic-wave theory provided several points 
of departure for my own efforts in that area. His personality 
and scientific standards have been ever-present influences. 

I thank the Leverhulme Trust for the award of an 
Emeritus Fellowship during the tenure of which this work 
was completed. 
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