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bLaboratoire de Mathámatiques Jean Leray, UMR 6629 CNRS-UN-ECN, BP

92208, 44322 Nantes Cédex 3, France
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Abstract

We study the well-posedness of the bidomain model, that is commonly used to
simulate electrophysiological wave propagation in the heart. We base our analysis
on a formulation of the bidomain model as a system of coupled parabolic and el-
liptic PDEs for two potentials and ODEs representing the ionic activity. We first
reformulate the parabolic and elliptic PDEs into a single parabolic PDE by the
introduction of a bidomain operator. We properly define and analyze this operator,
basically a non differential and non local operator. We then present a proof of ex-
istence, uniqueness and regularity of a local solution in time through a semigroup
approach, but that applies to fairly general ionic models. The bidomain model is
next reformulated as a parabolic variational problem, through the introduction of a
bidomain bilinear form. A proof of existence and uniqueness of a global solution in
time is obtained using a compactness argument, this time for an ionic model reading
as a single ODE but including polynomial nonlinearities. Finally, the hypothesis be-
hind the existence of that global solution are verified for three commonly used ionic
models, namely the FitzHugh-Nagumo, Aliev-Panfilov and MacCulloch models.
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1 Introduction

The goal of the present paper is to investigate existence and uniqueness of solu-
tions of the bidomain equations, commonly used for modeling the propagation
of electrophysiological waves in the myocardium [1–16]. The bidomain model
was proposed thirty years ago [17–19] but formal derivations of the model
were obtained later [20–22]. Consider a bounded subset Ω of R

d (d = 2, 3)
representing the myocadium. This model can be written as two degenerate
parabolic PDEs with boundary conditions, coupled to a set of m ODEs, and
some initial data:

∂u

∂t
+ f(u,w) −∇ · (σi∇ui) = si, in (0,+∞) × Ω, (1)

∂u

∂t
+ f(u,w) + ∇ · (σe∇ue) = −se, in (0,+∞) × Ω, (2)

∂w

∂t
+ g(u,w) = 0, in (0,+∞) × Ω, (3)

u = ui − ue, in (0,+∞) × Ω, (4)

σi∇ui · n = 0, σe∇ue · n = 0, in (0,+∞) × ∂Ω, (5)

u(0) = u0, w(0) = w0, in Ω. (6)

Here, the unknowns are the functions ui(t, x) ∈ R, ue(t, x) ∈ R and w(t, x) ∈
R

m (m ≥ 1), which are respectively the intra- and extra-cellular potentials
and some ionic variables (currents, gating variables, concentrations, etc). The
variable u defined in (4) denotes the transmembrane potential. Naturally, n
denotes the unit normal to ∂Ω outward of Ω.

The other data, σi,e(x) are conductivity matrices; f : R × R
m → R and g :

R×R
m → R

m are functions representing the ionic activity in the myocardium;
and si,e : (0,+∞)×Ω → R are external applied current sources. We point out
that the conductivity matrices are quite specific: at each x ∈ Ω, they have the
same eigenbasis, and for x ∈ ∂Ω, the normal n(x) to ∂Ω is an eigenvector of
both σi(x) and σe(x). In an isolated heart, no current flows out of the heart,
as expressed by the boundary conditions (5). The initial data (at t = 0) is set
only on u and w.

To our knowledge, only one proof of the well-posedness of the bidomain model
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is available in the literature [23]. This proof is based on a reformulation of (1)-
(6) as a Cauchy problem for an evolution variational inequality in a properly
chosen Sobolev space. This approach apply only to the case f(u,w) = u(u−
a)(u − 1) + w and g(u,w) = −ǫ(ku − w) known as the FitzHugh-Nagumo
equations [24]. Unfortunately, it is not well suited to modeling the action
potential in myocardial excitable cells [9][12, chap. 1].

In this paper, we propose a new approach to the bidomain equations in order
to address ionic models (i.e. functions f , g) adapted to the myocardial cells.
Our idea is to reformulate (1)-(2) as a parabolic PDE coupled to an elliptic
one, by replacing ui = u+ue in (1) and substracting (2) to (1). The boundary
condition (5) is also reformulated in terms of u and ue. The complete form of
the new system is:

∂u

∂t
+ f(u,w) −∇ · (σi∇u) −∇ · (σi∇ue) = si, in (0,+∞) × Ω, (7)

∇ · (σi∇u+ (σi + σe)∇ue) = −(si + se), in (0,+∞) × Ω, (8)

∂w

∂t
+ g(u,w) = 0, in (0,+∞) × Ω, (9)

σi∇u · n+ σi∇ue · n = 0, in (0,+∞) × ∂Ω, (10)

σi∇u · n+ (σi + σe)∇ue · n = 0, in (0,+∞) × ∂Ω, (11)

u(0) = u0, w(0) = w0, in Ω. (12)

Hence we consider the problem of finding unknown functions u, ue and w
verifying (7)-(12). Naturally, the regular solutions of (1)-(6) and (7)-(12) are
exactly the same.

While the main difficulty in (1)-(2) is the degeneracy in the temporal deriva-
tive, in our approach, we are able to replace ue in (7) by the solution of (8)
with the boundary condition (11), reducing (7)-(12) to a Cauchy problem for
a single abstract parabolic equation with unknowns u and w, which reads

∂u

∂t
+ f(u,w) + Au = s, (13)

∂w

∂t
+ g(u,w) = 0, (14)

u(0) = u0, w(0) = w0, (15)

where A is an integro-differential 2nd order elliptic operator accounting for
the boundary conditions (10) and (11) and s is a modified source term, both
given formally by

Au = −∇ · (σi∇u) + ∇ ·
(

σi∇
(

{∇ · (σi + σe)∇}−1(∇ · σi∇u)
))

,

s = si −∇ ·
(

σi∇
(

{∇ · (σi + σe)∇}−1(si + se)
))

.
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Afterwards, we are able to recover ue and ui with

ui = u+ ue, ue = {∇ · (σi + σe)∇}−1 (−(si + se) −∇ · σi∇u) . (16)

The unknowns ui and ue are defined up to an additional constant.

Two specific definitions of the so-called bidomain operator A and source term
s will be given in §3, definitions 5 and 12, in order to express (13)-(15) in
strong and weak variational senses.

We choose to study both strong (see §4, definition 12) and weak (see §5,
definition 5 and lemma 9) solutions of (7)-(12), using the operator A and the
source term s. The strong solution theory applies to fairly general ionic models
[25–28], but only provides solutions that are local in time. On the other hand,
weak solutions are obtained for simpler ionic models reading as a single ODE
with polynomial nonlinearities, but are global in time. These ionic models
include the FitzHugh-Nagumo model [24] and simple models more adapted to
myocardial cells, such as the Aliev-Panfilov [29] and MacCulloch [30] models.

Strong solutions on an interval [0, τ) are functions u(t), ue(t), w(t) with value
respectively in H2(Ω), H2(Ω)/R, L∞(Ω) such that (7)-(9) holds for all t ∈
(0, τ) and a.e. x ∈ Ω and (10)-(11) holds for all t ∈ (0, τ) and a.e. x ∈ ∂Ω
(definition 18). There is also a notion of mild solutions, but these coincide
with strong solutions because we are interested in continuous solutions. See
[31] for details.

As correctly stated in definition 26, weak solutions on an interval [0, τ) are
functions u(t), ue(t), w(t) with value respectively in H1(Ω), H1(Ω)/R, L2(Ω)
such that

d

dt
(u(t), v) +

∫

Ω
σi∇(u(t) + ue(t)) · ∇v +

∫

Ω
f(u(t), w(t))v =

∫

Ω
si(t)v

d

dt
(w(t), v) +

∫

Ω
g(u(t), w(t))v = 0

respectively for all v ∈ H1(Ω) and v ∈ L2(Ω), where for a.e. t ∈ (0, τ),

∫

Ω
σi∇u(t) · ∇ve +

∫

Ω
(σi + σe)∇ue(t) · ∇ve =

∫

Ω
(si(t) + se(t))ve

for all ve ∈ H1(Ω)/R. They are equivalently defined as weak solutions to
(13)-(14) with ue given by (16) in a weak sense (lemma 28).

Our main results are :

• Existence, uniqueness and regularity for strong solutions under weak as-
sumptions on f and g, but only with τ > 0 small enough, and for regular
data (∂Ω, σi,e, si,e and u0, w0);
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• Existence for weak solutions under more restrictive assumptions on f and
g, but for τ = +∞ and with minimal regularity on the data.

The first important difficulty concerns the definition of the mappings (t, x) 7→
f(u(t, x), w(t, x)) and (t, x) 7→ g(u(t, x), w(t, x)):

• Either f : R × R
m → R, g : R × R

m → R
m are locally Lipschitz functions

and u,w are regular enough and we can find τ > 0 small enough for strong
solutions to be defined on [0, τ);

• Or f, g are only continuous but with polynomial growth at infinity with
suitable power (as given by assumption (H3), §5) which allow for weak
solutions to exist for any t > 0.

The second difficulty concerns the operator A. Clearly, it is uniformly ellip-
tic. In the semigroup approach, the solutions are obtained through a fixed
point technique, but only with τ > 0 small enough. Since the functions f, g
of interest usually define vector fields with invariant regions, as defined in [32]
(think of the FitzHugh-Nagumo equations), global solutions (τ = +∞) are
expected from a maximum principle on A. It is interesting to note that global
existence results for system of reaction-diffusion equations, similar to our bido-
main model, are only available when the elliptic operators in the system is a
Laplacian or more generally a second order elliptic operator reading the form
∇ · (σ∇·) [33–35,31,36,32,37,38]. In these cases, essential properties of elliptic
second order differential operators are required to derive comparison theorems
or maximum principles. Unfortunately, we were not able to prove any compar-
ison theorem, because of the integro-differential form of our operator A. And
our strong solutions are proved to exist only for t < τ , with τ small enough.

There are numerical experiments and intuitions that the solution are bounded
functions, hence solutions should exist for all times. Here, the variational ap-
proach is helpful to obtain solutions for any t > 0 (τ = +∞). Of course, it
requires an energy estimates, that depends on an additional assumption on
the function f, g (besides their polynomial growth) stated as (H4). The varia-
tional approach is quite technical, for sake of simplicity it is developped only
for m = 1.

The paper is sketched as follows: some notations and explanations on the
boundary conditions are introduced in §2; the bidomain operator is defined
in §3; results on local in time strong solutions are given in §4; the variational
approach is covered in §5, and the three examples are considered in §6.

In §4, we shall briefly but completely define and prove existence, uniqueness
and regularity results for strong solutions on a local time interval. The analysis
mainly explain how the problem enters the framework of solutions as defined
in [31]. The results are obtained for smooth data.
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In §5, our main result is stated: existence of a weak solutions. It is based on a
classical Galerkin technique, a priori estimates and compactness results [39].
The results are obtained under minimal regularity assumptions on the data.
The problem of regularity of the solutions is not addressed here.

2 Notations and Boundary Conditions

In order to formulate the weak form of the equations, we only need Ω to be a
bounded open subset of R

d with Lipschitz boundary ∂Ω, and the conductivity
matrices σi,e to be functions of the space variable x ∈ Ω with coefficients in
L∞(Ω) and uniformly elliptic. Namely, we assume that there exists constants
0 < m < M such that

m |ξ|2 ≤ ξt σi,e(x) ξ ≤M |ξ|2, ∀ξ ∈ R
d, (17)

for a.e. x ∈ Ω. The matrices σi,e are symmetric.

Now, to define strong solutions and for the boundary conditions to make sense,
we need additional regularity on these data: ∂Ω is supposed to be C2+ν and
σi,e to have their coefficients in C1+ν(Ω̄) for some ν ≥ 0. Of course condition
(17) is supposed to be valid for any x ∈ Ω̄.

The source terms si(t) and se(t) are related to the applied stimulating cur-
rents. Their regularity will be specified in §4 and §5. We point out that si + se

must have a zero mean value. The physical reason for this is that there is no
current flowing out of the heart through its boundary as stated by bound-
ary conditions (10) or (11), and that the intra- and extra-cellular medias are
electrically communicating through the cells membrane. Therefore the current
conservation applied to the whole heart, in other words Eq. (8) integrated over
all Ω ensures that si + se has a zero mean value. That is:

∫

Ω
(si(x) + se(x)) dx = 0. (18)

We now emphasize on a specificity of the bidomain equations:

(1) the symmetric matrices σi,e(x) have the same basis of eigenvectorsQ(x) =
(q1(x), . . . , qd(x)) in R

d, which reflect the organization of the muscle in
fibers (direction q1(x)) [3]; and then σi,e(x) = Q(x)Λi,e(x)Q(x)T where
Λi,e(x) = diag(λ1

i,e(x), . . . , λ
d
i,e(x)).

(2) the muscle fibers are tangent to the boundary ∂Ω [3], so that

σi,e(x)n(x) = λd
i,en(x), a.e. x ∈ ∂Ω (19)
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with λd
i,e(x) ≥ m > 0.

As a consequence, we have the

Lemma 1 Suppose that Ω has a C1 boundary ∂Ω, Q(x) and Λi,e(x) are C0(Ω̄).
For functions u, ue ∈ H2(Ω), the conditions (5), and the conditions (10)-(11),
and the homogeneous Neumann conditions

∇ui · n = 0, ∇ue · n = 0, in ∂Ω

are equivalent.

Proof. Conditions (5) and (10)-(11) are linear combination one of the other,
equivalent to the conditions above because of identity (19).

3 The bidomain operator

Now we need to study the mapping

(u, si + se) 7→
solve (8)

ue 7→
replace in (7)

si + ∇ · (σi∇u) + ∇ · (σi∇ue) := Au+ s.

Hence, we study the system

−∇ · (σi∇u) −∇ · (σi∇ue) = si, in Ω, (20)

∇ · (σi∇u+ (σi + σe)∇ue) = −(si + se), in Ω, (21)

with the boundary conditions (10) and (11), given conductivity matrices σi(x),
σe(x) and data si(x), se(x) such that

∫

Ω(si + se) = 0 (or more generally
〈si + se, 1〉 = 0).

3.1 Variational formulation

Equations (20) and (21) with the Homogeneous Neumann boundary conditions
(10) and (11) have solutions (u, ue) defined only up to an additive constant.
In practice, the nonlinear term determines u in H1(Ω) but ue remains defined
up to an additive constant. Weak solutions will be found in H1(Ω)/R, using
a bilinear form in H1(Ω)/R ×H1(Ω)/R, that is extended to H1(Ω) ×H1(Ω)
in order to address the bidomain equations.

Given a Banach space X of functions integrable on Ω, we define its subspace
X/R = {u ∈ X,

∫

Ω u = 0} ⊂ X, that is a Banach space with the norm
‖u‖X/R = ‖u‖X . For any u ∈ X, we also note [u] = u−

∫

Ω u ∈ X/R.
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In practice, we are working with V = H1(Ω), H = L2(Ω) endowed with their
usual norms. We shall note U = V/R, and we have

U ⊂ H/R ≡ (H/R)′ ⊂ U ′,

D(Ω) ⊂ V ⊂ H ≡ H ′ ⊂ V ′ ⊂ D′(Ω)

where the injections are continuous and the injection V → H and U → H/R

are compact. Note that |u|U = (
∫

Ω |∇u|2)
1/2

defines a norm on U equivalent
to the norm on V , due to the Poincaré-Wirtinger inequality

∃C > 0, ∀u ∈ U,
∫

Ω
|u|2 ≤ C|u|2U := C

∫

Ω
|∇u|2. (22)

Hence we shall use | · |U instead of the norm induced by ‖·‖V in U . An element
s in H/R or H is identified to the element s ∈ (H/R)′ by 〈s, v〉 =

∫

Ω sv for all
v ∈ H/R. An element s ∈ V ′ is identified to an element of U ′ by just restricting
the duality product 〈s, v〉 := 〈s, v〉V ′×V to functions v in the subspace U of
V . Conversely, an element s ∈ U ′ can only be extended to the whole space V
independently of the value v − [v] using a special condition like 〈s, 1〉 = 0.

Given a regular solution u, ue ∈ H2(Ω)/R, we obtain a variational formulation
by multiplying Eq. (20) by a test function v ∈ U , multiplying Eq. (21) by a
test function ve ∈ U , integrating by parts the second order terms and adding
the two resulting variational equations. The boundary terms vanish due to
the boundary conditions (10) and (11) on u and ue. The resulting variational
problem reads: Find (u, ue) ∈ U × U such that

ai(u, v) + ai(ue, v) + ai(u, ve) + (ai + ae)(ue, ve) = 〈si, v〉 + 〈si + se, ve〉, (23)

for all (v, ve) ∈ U × U . The bilinear forms ai,e(·, ·) on U × U are

ai(u, v) =
∫

Ω
σi∇u · ∇v dx, ae(u, v) =

∫

Ω
σe∇u · ∇v dx, ∀(u, v) ∈ U × U,

and si, (si + se) ∈ V ′ are given source terms.

Under the hypothesis (17), the bilinear forms ai,e(·, ·) are symmetric continu-
ous and uniformly elliptic on U . We define the bilinear form

b((u, ue), (v, ve)) = ai(u, v) + ai(ue, v) + ai(u, ve) + (ai + ae)(ue, ve)

on U × U , for the sake of simplicity. We have

Lemma 2 The bilinear form b(·, ·) is symmetric, continuous and uniformly
elliptic on (U × U) × (U × U) for the norm |(v, ve)|U×U = max(|v|U |, |ve|U).

Proof. Clearly, the bilinear form b(·, ·) can be rewritten as

b((u, ue), (v, ve)) = ai(u+ ue, v + ve) + ae(ue, ve).

8



It is bilinear and symmetric. Additionally, a simple computation shows that
1
3
|(u, ue)|

2
U×U ≤ |u + ue|

2
U + |ue|

2
U ≤ 6|(u, ue)|

2
U×U , and using the inequalities

(17) we have

|b((u, ue), (v, ve))| ≤ 6M |(u, ue)|U×U |(v, ve)|U×U ,

b((u, ue), (u, ue)) ≥
m

3
|(u, ue)|

2
U×U ,

which proves that b is continuous and coercive.

Theorem 3 Let si, se ∈ V ′ and u ∈ U be given. The variational equations

(ai + ae)(ũe, ve) = −ai(u, ve), ∀ve ∈ U, (24)

(ai + ae)(ūe, ve) = 〈si + se, ve〉, ∀ve ∈ U, (25)

have unique solutions ũe, ūe ∈ U . For any u, v ∈ U , we can define the mappings

ā(u, v) = b((u, ũe), (v, 0)), 〈s, v〉 = 〈si, v〉 − ai(ūe, v). (26)

The mapping ā is bilinear, symmetric, continuous and uniformly elliptic on
U × U , and the mapping s is linear and continuous on U .

Eq. (23) has a unique solution (u, ue) where u is also the unique solution of

ā(u, v) = 〈s, v〉, ∀v ∈ U, (27)

and ue = ũe + ūe, where ũe, ūe are the solutions of (24) and (25).

Proof. The idea is that, for any (u, ue) ∈ U × U ,

b((u, ue), (v, ve)) = 〈si, v〉 + 〈si + se, ve〉, ∀(v, ve) ∈ U × U, (28)

⇔ b((u, ue), (v, 0)) = 〈si, v〉, ∀v ∈ U, (29)

b((u, ue), (0, ve)) = 〈si + se, ve〉, ∀ve ∈ U, (30)

⇔ b((u, ũe), (v, 0)) = 〈si, v〉 − b((0, ūe), (v, 0)), ∀v ∈ U, (31)

b((u, ũe), (0, ve)) = 0, ∀ve ∈ U, (32)

b((0, ūe), (0, ve)) = 〈si + se, ve〉, ∀ve ∈ U, (33)

ue = ũe + ūe. (34)

Eqs. (32) and (33) are exactly Eqs. (24) and (25), respectively; and Eq. (31)
is exactly (27) with the notations (26).

Note that the mappings ve ∈ U 7→ ai(u, ve) ∈ R and ve ∈ U 7→ 〈si+se, ve〉 ∈ R

are linear and continuous. Equations (24) and (25) have unique solutions ũe

and ūe by the theorem of Lax-Milgram. We have

m

2M
|u|U ≤ |ũe|U ≤

M

2m
|u|U , |ūe|U ≤

C

2m
‖si + se‖U ′ , (35)
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where C > 0 is the constant of the Poincaré-Wirtinger inequality (22). The
mapping s defined in (26) is obviously linear, and continuous because:

∀v ∈ U, |〈s, v〉| ≤
(

C‖si‖U ′ +
CM

2m
‖si + se‖U ′

)

|v|U .

It remains to prove that the mapping ā defined in (26) is bilinear on U × U ,
continuous, uniformly elliptic and symmetric. Consider the function ṽe ∈ U
constructed like ũe (the solution of (32)) as the solution of b((v, ṽe), (0, ve)) = 0
for all ve ∈ U . The result is deduced from the definition of b(·, ·), lemma 2 and
(35) because

ā(u, v) = b((u, ũe), (v, 0)) = b((u, ũe), (v, ṽe))

= b((v, ṽe), (u, ũe)) = b((v, ṽe), (u, 0)) = ā(v, u).

Specifically, we have

|ā(u, v)| ≤M
(

1 +
M

2m

)

|u|U |v|U , ā(u, u) ≥
m

3

(

1 +
m

2M

)

|u|2U .

Remark 4 Conversely, let u be the solution to (27) and ue = ũe + ūe be
given by (24) and (25). The space U does not contain the space D(Ω), but
for any v ∈ D(Ω), we have ∇v = ∇[v] and [v] ∈ U . We must impose the
extra condition 〈si + se, 1〉 = 0 to get 〈si + se, v〉 = 〈si + se, [v]〉. In that case
ue = ũe + ūe can easily be proved to verify

∇ · (σi∇u+ (σi + σe)∇ue) = −(si + se), in D′(Ω).

Additionally, if u, ue ∈ H2(Ω), then the equation is verified a.e. in Ω and the
boundary condition (11) holds a.e. in ∂Ω

At last, the operator ā is extended to V ×V , in order to state the full bidomain
problem.

Definition 5 The bidomain bilinear form a is defined on V × V by

a(u, v) = ā([u], [v]), ∀(u, v) ∈ V × V.

Given si, se ∈ V ′ such that 〈si + se, 1〉 = 0, the source term s is extended to a
linear form on V , still denoted by s, by

〈s, v〉 = 〈si, v〉 − ai(ūe, [v]), ∀v ∈ V,

where ūe is given by (25).

10



Theorem 6 The bilinear form a(·, ·) is symmetric, continuous and coercive
on V ,

∀u ∈ V, α‖u‖2
V ≤ a(u, u) + α‖u‖2

H , (36)

∀u, v ∈ V, |a(u, v)| ≤ M‖u‖V ‖v‖V , (37)

with α = m
3

(

1 + m
2M

)

and M = 3M
(

1 + M
2m

)

. There exists an increasing
sequence 0 = λ0 < . . . ≤ λi ≤ . . . in R and an orthonormal Hilbert basis of H
of eigenvectors (ψi)i∈N such that for all i ∈ N, ψi ∈ V and

∀v ∈ V, a(ψi, v) = λi(ψi, v). (38)

Given si, se ∈ V ′ such that 〈si, 1〉 = 〈se, 1〉 = 0, if u ∈ V is a solution to

a(u, v) = 〈s, v〉, ∀v ∈ V, (39)

and ue = ũe + ūe ∈ U is given by (24) and (25), then (u, ue) is a weak
solution to (20), (21) with the boundary conditions (10), (11). If additionally
u, ue ∈ H2(Ω), then they verify (20), (21) a.e. in Ω and (10), (11) a.e. in ∂Ω.

Proof. The bilinear form a(·, ·) is well-defined and symmetric. It verifies (36)

and (37) because of theorem 3, and because ‖u‖V = (‖u‖2
H + |[u]|2U)

1/2
.

The spectral problem is very classical, and can be found for instance in [40,
th. 6.2-1 and rem. 6.2-2, p.137-138]. In this case, we have λ0 = 0 because the
bilinear form a obviously vanishes only for constant functions.

The equivalence with the strong formulation and the boundary conditions is
also a classical result, stated partly in remark 4, and easily deduced from the
definition 5 of a and s:

a(u, v) = 〈s, v〉 ⇔







b((u, ue), ([v], 0)) = 〈si, v〉 ∀v ∈ V,

b((u, ue), (0, ve)) = 〈si + se, ve〉 ∀ve ∈ U.

The second equation is equivalent to (24) and (25) to define ue from [u] ∈ U
and the first equation is obviously the weak form of (20).

Remark 7 The two conditions 〈si, 1〉 = 〈se, 1〉 = 0 are needed for the solution
u ∈ U = V/R of (39) to be interpreted as a weak solution in V of the par-
tial differential equations (20), (21) with the Homogeneous Neuman boundary
conditions (10) and (11).

For the full nonlinear bidomain problem, only 〈si + se, 1〉 = 0 will be required
with no zero-average condition on si and se taken individually. The definition
5 requires only that 〈si + se, 1〉 = 0.

11



3.2 Weak operator

This variational process can also be handled through operators. These are
weak operators, defined from U onto U ′ or V onto V ′. Indeed we are able to
define Ai,e and A by duality by setting

〈Ai,eu, v〉 = ai,e(u, v), 〈Au, v〉 = ā(u, v), ∀(u, v) ∈ U × U.

They are all one-to-one continuous mappings from U onto U ′, with continuous
inverse (from Lax-Milgram theorem).

Lemma 8 Given si, se ∈ U ′, the source term s ∈ U ′ defined in theorem 3 is
such that

s = si − Ai(Ai + Ae)
−1(si + se) = −se + Ae(Ai + Ae)

−1(si + se),

and we have
A = Ai(Ai + Ae)

−1Ae = (A−1
i + A−1

e )−1.

Proof. We can rewrite (24) and (25) as

(Ai + Ae)ūe = si + se, (Ai + Ae)ũe = −Aiu.

The result is found by substituting ũe, ūe in (26). A short computation shows
that

A = Ai − Ai(Ai + Ae)
−1Ai = Ai(Id − (Ai + Ae)

−1Ai)

= Ai(Ai + Ae)
−1(Ai + Ae − Ai).

The second equality defining A comes from a simple algebraic manipulation
and the fact that the operator A−1

i + A−1
e is invertible.

The second formulation of s is due to the identity

s− s = si + se − (Ai + Ae)(Ai + Ae)
−1(si + se) = 0.

Lemma 9 Define J : u ∈ V 7→ [u] ∈ U and its transpose JT : U ′ → V ′. For
any si, se ∈ V ′ with 〈si + se, 1〉 = 0, the source term s ∈ V ′ and the bilinear
operator a given by definition 5 are such that

s = si − JTAi(Ai + Ae)
−1(si + se) = −se + JTAe(Ai + Ae)

−1(si + se),

and

a(u, v) = 〈Au, v〉 for all (u, v) ∈ V × V, with A = JTAJ : V → V ′.

12



Proof. It is obvious since a(u, v) = ā([u], [v]) = 〈AJu, Jv〉 = 〈JTAJu, v〉 for
all (u, v) ∈ V × V . Concerning s, we have for all v ∈ V ,

〈s, v〉 = 〈si, v〉 − ai(ūe, [v]) = 〈si, v〉 − 〈Ai(Ai + Ae)
−1(si + se), Jv〉

= 〈si − JTAi(Ai + Ae)
−1(si + se), v〉.

Remark 10 Although it is a positive operator, A is not in general a differ-
ential operator, being the harmonic average of two second order differential
elliptic operators.

3.3 Strong Operator

Now, we want to see Ai and Ae as operators in H/R. Hence we suppose that
Ω has a C2 boundary ∂Ω and that σi,e have C1(Ω̄) coefficients. From a simple
regularity result, see for instance [41, th. IX.26 and rem. 25, p.182], for all
f ∈ H/R we have u = (Ai,e)

−1f ∈ H2(Ω)/R, or u = (Ai +Ae)
−1f ∈ H2(Ω)/R.

As a consequence, we have

∇ · (σi,e∇u) = f a.e. in Ω, σi,e∇u · n = 0 a.e. in ∂Ω,

∇ · ((σi + σe)∇u) = f a.e. in Ω, (σi + σe)∇u · n = 0 a.e. in ∂Ω.

With lemma 1 in addition, we can define unbounded operators in H/R, still
denoted by Ai and Ae and Ai + Ae, with domains D(Ai) = D(Ae) = D(Ai +
Ae) = D(A)/R by

Aiu = ∇·(σi∇u), Aeu = ∇·(σe∇u), (Ai+Ae)u = ∇·((σi+σe)∇u), (40)

with
D(A) =

{

u ∈ H2(Ω), ∇u · n = 0 a.e. in ∂Ω
}

⊂ H. (41)

Lemma 11 The operators Ai, Ae, Ai + Ae are maximal monotone in H/R
and self-adjoint. They have compact inverses in H/R.

Proof. The operators Ai, Ae, Ai +Ae verify, for all (u, v) ∈ D(A)/R×D(A)/R,

〈Ai,eu, v〉 = ai,e(u, v), 〈(Ai + Ae)u, v〉 = (ai + ae)(u, v).

They are obviously maximal-monotone and self-adjoint. Their inverses

(Ai,e)
−1 : H/R → H/R, (Ai + Ae)

−1 : H/R → H/R

are compact operators since their range isD(A)/R and the injectionD(A)/R →
H/R is compact.

13



Definition 12 Given si,e ∈ H such that si + se ∈ H/R, we define the strong
bidomain operator A : D(A) ⊂ H → H and the source term s ∈ H by:

Au = Ai(Ai + Ae)
−1Ae[u], ∀u ∈ D(A), (42)

s = si − Ai(Ai + Ae)
−1(si + se) = −se + Ae(Ai + Ae)

−1(si + se). (43)

The definitions make sense because [u] ∈ D(A)/R = D(Ai) and the range of
(Ai + Ae)

−1 is D(A)/R = D(Ae), and of course H/R ⊂ H. We use the same
notation for the weak and strong bidomain operators as it will be clear from
context which operator we refer to.

Theorem 13 Consider si, se ∈ H such that si + se ∈ H/R. The strong bido-
main operator A of definition 12 is self-adjoint and maximal-monotone. We
have

∀(u, v) ∈ D(A) ×D(A), (Au, v) = a(u, v),

and the source term s ∈ H of definition 12 can be identified to the source term
s ∈ V ′ of definition 5 through the identity 〈s, v〉 = (s, v) for all v ∈ V ⊂ H.

The sequence (λi)i∈N and the orthonormal Hilbert basis (ψi)i∈N of eigenvectors
defined in theorem 6 is such that ψi ∈ D(A) for all i ∈ N and

D(A) = {u ∈ H,
∑

i≥0

λ2
i (u, ψi)

2 <∞}, Au =
∑

i≥0

λi(u, ψi)ψi. (44)

For u ∈ H, we have

Au = s and ue = (Ai + Ae)
−1 ((si + se) − Aiu) ∈ D(A)/R ⇔

(u, ue) verify (20) and (21) a.e. in Ω and the boundary conditions (10) and
(11) a.e. in ∂Ω.

Proof. For u ∈ D(A), Au ∈ H/R ⊂ H is well defined. Consider ũe = −(Ai +
Ae)

−1Ai[u] ∈ D(A)/R and ūe = (Ai + Ae)
−1(si + se) ∈ D(A)/R . They are

exactly the solutions to (24) and (25). We haveAu = Ai[u]−Ai(Ai+Ae)
−1Ai[u]

(simple computation) for all u ∈ D(A) and then for all v ∈ D(A),

(Au, v) = (Ai[u], [v]) + (Aiũe, [v]) = ai([u], [v]) + ai(ũe, [v])

= b(([u], ũe), (v, 0)) = a(u, v),

(s, v) = (si, v) − (Aiūe, [v]) = (si, v) − ai(ūe, [v]) = 〈s, v〉.

The remaining results are deduced from theorem 6. A is maximal-monotone
(coercivity of a) and self-adjoint (symmetry of a) in H. The eigenvectors ψi ∈
V = H1(Ω) are such that Aψi = λiψi in V ′ and then ψi ∈ D(A) (regularity
result). As a consequence Aψi = λiψi in H and (44) is valid. The equivalence
is true because if u ∈ D(A) ⊂ H2(Ω) then Au = s ⇔ a(u, v) = (s, v) ∀v ∈ V
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and ue = (Ai + Ae)
−1 ((si + se) − Aiu) = ũe + ūe where ũe and ūe are the

solutions to (24) and (25).

4 Strong Solutions

The existence and uniqueness of strong solutions for (13)-(15) is established in
the framework of analytical semigroups, as presented in D. Henry’s monograph
[31].

4.1 Specific Assumptions and Notations

The result for the existence and uniqueness of strong solutions holds if we
assume that Ω has a C2 boundary ∂Ω and that σi,e have C1(Ω̄) coefficients,
in order to apply the definition and lemma from §3.3.

The integer m can be chosen as big as one wishes. As precisely stated below,
the reaction terms f and g are only assumed to be locally Lipschitz functions
(for existence and uniqueness of solutions results), so covering a wide range of
realistic ionic models [25–28].

The second unknown w (a m-dimensional vector here) will be searched in a
Banach space Bm = B ×B . . .×B where

• either B = L∞(Ω),
• or B = Cν(Ω), the space of all (globally) ν-Hölder continuous functions

on Ω 2 . This last choice will be needed to establish the regularity of the
solutions. In the sequel, ν will represent a real number 0 < ν < 1.

The function f : R × R
m 7→ R and g : R × R

m 7→ R
m are:

• locally Lipschitz continuous functions on R×R
m when assuming that B =

L∞(Ω),
• C2(R × R

m) regular functions when assuming that B = Cν(Ω).

At last, we assume the functions si, se to be locally ν-Hölder continuous in
time, si,e ∈ Cν

loc([0,+∞), H) for some ν > 0:

∀[t1, t2] ⊂ [0,+∞), ∃C > 0,

δ1, δ2 ∈ [t1, t2] ⇒ ‖si,e(δ1) − si,e(δ2)‖H ≤ C|δ1 − δ2|
ν . (45)

2 ∃C > 0, ∀x, y ∈ Ω, |w(y) − w(x)| ≤ C|x − y|ν .
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Consider Z = H × Bm, with the norm ‖(u,w)‖Z = max(‖u‖H , ‖w‖Bm). It is
a Banach space. We introduce the unbounded operator A in Z defined by

A : D(A) ⊂ Z 7→ Z, Az = (Au, 0) ∈ Z, for z = (u,w) ∈ Z,

with D(A) = D(A)×Bm; and the source term S : t ∈ [0,+∞) 7→ (s(t), 0) ∈ Z
where A and s(t) are given in definition 12.

Lemma 14 The unbounded operator A : D(A) ⊂ H 7→ H is a sectorial
operator.

Proof. Since the operators A and w ∈ Bm 7→ 0 ∈ Bm are self-adjoint, they
are also sectorial. Thus A is sectorial as the Cartesian product of two secto-
rial operators. See [31, p.18-19] for the definition and properties of sectorial
operators.

Lemma 15 If si,e : [0,+∞) → H are locally ν-Hölder continuous functions
with si(t)+se(t) ∈ H/R for all t ≥ 0, then S : [0,+∞) → Z is locally ν-Hölder
continuous.

Proof. Consider [t1, t2] ⊂ [0,+∞), and the constant C > 0 such that (45)
holds. If δ1, δ2 ∈ [t1, t2], we have

s(δ1)− s(δ2) = si(δ1)− si(δ2)−Ai(Ai +Ae)
−1(si(δ1)− si(δ2)+ se(δ1)− se(δ2)).

The result is obvious since Ai(Ai +Ae)
−1 : D(A)/R → D(A)/R is bounded.

Our next problem is to define the mapping

F : (u,w) ∈ Z 7→ (f(u,w), g(u,w)) ∈ Z.

To get rid of that difficulty, we introduce the fractional powers Aα and the
interpolation spaces Zα = D(Aα). For α ≥ 0 the unbounded operator Aα :
D(Aα) ⊂ Z 7→ Z is defined by:

Zα = {u ∈ H,
∑

i≥0

λ2α
i (u, ψi)

2 <∞}×Bm, Aα(u,w) =





∑

i≥0

λα
i (u, ψi)ψi, 0



 .

The spaces Zα, equipped with the norm ‖u‖α = ‖u + Aαu‖Z , are Banach
spaces. Moreover (see [31]), for any 0 ≤ α ≤ β, we have the continuous
and dense embedding Zβ ⊂ Zα. These spaces form a sequence of decreasing
functional spaces composed of functions whose regularity increases from Z
(α = 0) to D(A) ⊂ H2(Ω)×Bm (α = 1). With the regularity we assumed for
∂Ω, we have the following embedding lemma:

Lemma 16 (Case B = L∞(Ω)) For B = L∞(Ω), f, g locally Lipschitz con-
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tinuous on R × R
m, we have

Zα ⊂ L∞(Ω) ×Bk if d/4 < α < 1,

and in that case, F : z ∈ Zα 7→ F (z) ∈ Z is locally Lipschitz continuous.

Lemma 17 (Case B = Cν(Ω)) For B = Cν(Ω), f, g C2 functions on R ×
R

m, and α < 1, we have

Zα ⊂ Cν(Ω) ×Bk, if 0 < ν < 2α− d/2,

and in that case, F : z ∈ Zα 7→ Z is locally Lipschitz continuous.

Proof. From lemma 14 the operatorA is a sectorial operator, hence the regu-
larity embeddings from [31, p.39] apply.

A locally Lipschitzian function f : R 7→ R induces a locally Lipschitzian
function f : L∞(Ω) 7→ L∞(Ω), so that F can be extended to a locally Lipschitz
continuous function F : Zα 7→ Z.

A C2 function f : R 7→ R induces a locally Lipschitz function f : Cν(Ω) 7→
Cν(Ω) (for 0 < ν < 1). The mapping F can be extended to a locally Lips-
chitzian function F : Zα 7→ Z.

4.2 Existence of and uniqueness of local in time solution

We are ready to define the notion of strong solution local in time:

Definition 18 (Strong solution) Consider τ > 0 and the functions z : t ∈
[0, τ) 7→ z(t) = (u(t), w(t)) ∈ Z and ue : t ∈ [0, τ) 7→ ue(t) ∈ H. Given
(u0, w0) ∈ Z, we say that (u, ue, w) is a strong solution to (7)-(12) iff,

(1) z : [0, τ) → Z is continuous and z(0) = (u0, w0) in Z (that is eq. (12)),
(2) z : (0, τ) → Z is Fréchet differentiable,
(3) t ∈ [0, τ) 7→ (f(u(t), w(t)), g(u(t), w(t))) ∈ Z is well defined, locally ν-

Hölder continuous on (0, τ) (for 0 < ν < 1) and is continuous at t = 0,
(4) for all t ∈ (0, τ), u(t) ∈ H2(Ω), ue(t) ∈ H2(Ω)/R,

and (u, ue, w) verify (7)-(9) for all t ∈ (0, τ) and for a.e. x ∈ Ω, and the
boundary conditions (10)-(11) for all t ∈ (0, τ) and for a.e. x ∈ ∂Ω.

One easily derives the following characterization

Lemma 19 The functions z = (u,w) and ue are a strong solution to (7)-(12)
iff conditions (1)-(3) of definition 18 and condition (4’) below are satisfied:
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(4’) for all t ∈ (0, τ), u(t) ∈ D(A), ue(t) ∈ D(A)/R,

and z verify for all t ∈ (0, τ),

dz

dt
(t) + Az(t) + F (z(t)) = 0 in Z, (46)

using the previous definitions of A and F , while ue is given by

ue(t) = (Ai + Ae)
−1 ((si(t) + se(t)) − Ai[u(t)]) ∈ D(A)/R. (47)

Theorem 20 (Local existence and uniqueness) Consider 0 < α < 1 de-
fined by lemma 16 (case B = L∞) or lemma 17 (case B = Cν) such that F :
Zα 7→ Z is well-defined and locally Lipschitzian. Then for any (u0, w0) ∈ Zα,
there exists T > 0 such that the problem (7)-(12) has a unique strong solution
on [0, T ) in the sense of definition 18.

We point out that choosing α such that F : Zα 7→ Z is locally Lipschitzian
imposes a strong constraint on the initial data z0 = (u0, w0) ∈ D(Aα). In
dimension d = 3 for instance, one must have α > 3/4.

Proof. That theorem is a direct application of the local existence and unique-
ness theorem in [31, p.54] since:

• there always exists 0 ≤ α < 1 such that F extend to a function F : Zα 7→ Z
locally Lipschitzian, for d = 1, 2, 3.

• A is sectorial (lemma 14),
• t 7→ S(t) is locally ν-Hölder continuous for some ν > 0.

4.3 Regularity of the solutions

Given a real number 0 < ν < 1, we will assume throughout that subsection
that B = Cν(Ω) and that the reaction terms f and g have C2 regularity on
R × R

m. We will moreover assume that the boundary ∂Ω of the domain has
C2+ν regularity, and that σi,e have their coefficients in C1+ν(Ω̄).

The operator A has a smoothing effect on the solutions of (46): for an initial
data u0 ∈ D(Aα), the solution satisfy u(t) ∈ D(A) for t > 0. This is due to
the following elliptic regularity result (see [42, p.128] or [41, p.182]):

Lemma 21 Let σ be a uniformly elliptic tensor on Ω whose components be-
long to C1+ν(Ω̄) for some ν > 0. We also assume the boundary ∂Ω to have
C2+ν regularity. If u ∈ D(A) satisfies ∇ · (σ∇u) ∈ Cν(Ω), then u ∈ C2+ν(Ω).
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Beyond this space smoothing effect on the first unknown u, some regularity
in time also takes place [31, p.71]:

Lemma 22 Let z : t ∈ (0, T ) 7→ z(t) ∈ D(A) = Z1 be the solution of the
Cauchy problem (46) given by theorem 20. We have Z1 ⊂ Zν for any ν ≤ 1,
and the solution moreover satisfies: t ∈ (0, T ) 7→ z(t) ∈ Zν is continuously
(Fréchet) differentiable for any ν < 1.

Together with the previous elliptic regularity argument, these two results im-
ply that the solutions for (46) actually are classical solutions provided that
the initial data w0 for the second variable w is smooth enough.

Theorem 23 (Regularity of the strong solution) Consider d/4 < α <
1 and 0 < ν < 2α − d/2, and assume that si,e : [0,+∞) → H are locally
ν-Hölder continuous and such that si,e(t) ∈ Cν(Ω) for all t ≥ 0. For z0 =
(u0, w0) ∈ Zα the unique solution z of (46) defined on [0, T ) for some T > 0
satisfies furthermore:

• Given any x ∈ Ω̄, the function t ∈ (0, T ) 7→ z(t, x) is continuously differen-
tiable in t,

• Given any t ∈ (0, T ), the function x ∈ Ω̄ 7→ u(x, t) is twice continuously
differentiable in x, i.e. u(·, t) ∈ C2(Ω).

Proof. Using the embedding from lemma 17 ensures that the solution t ∈
(0, T ) 7→ z(t) ∈ Cν(Ω) × (Cν(Ω))m is continuously (Fréchet) differentiable.
This actually implies that (t, x) ∈ (0, T ) × Ω̄ 7→ z(x, t) = (u(x, t), w(x, t)) is
continuously differentiable in t.

Let us now prove that Au(t) ∈ Cν(Ω) for t ∈ (0, T ). One has Au(t) =
−du/dt(t) − f(u(t), w(t)) + s(t). Easily, we have f(u(t), w(t)) ∈ Cν(Ω) and
also du/dt(t) ∈ Cν(Ω) thanks to lemma 22. Now s(t) = −se(t) + Ae(Ai +
Ae)

−1(si(t)+se(t)) and (si +se)(t) ∈ Cν(Ω) by assumption. By lemma 21, the
function (Ai +Ae)

−1(si(t+ se(t)) belongs to C2+ν(Ω) and then s(t) ∈ Cν(Ω).

Consequently Au(t) ∈ Cν(Ω) for t ∈ (0, T ). Remark now that −Ae(Ai +
Ae)

−1Ai[u(t)] = Au(t) (with the previous notations). Lemma 21 ensures that
A−1

e Au(t) ∈ C2+ν(Ω), and therefore (Ai + Ae)A
−1
e Au(t) ∈ Cν(Ω) and at last

[u(t)] = −A−1
i (Ai + Ae)A

−1
e Au(t) ∈ C2+ν(Ω). This implies that x 7→ u(t, x) ∈

C2(Ω) for t ∈ (0, T ), since functions in C2+ν(Ω) belongs to C2+ν(Ω̄).

5 Global Solution based on a Variational Formulation

The existence of weak solutions for (7)-(12) is established by a Faedo-Galerkin
technique: construction of an approximate solution, a priori estimates and
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compactness result [39].

5.1 Specific Assumptions and notations

The existence of a weak solution holds under minimal regularity assump-
tions: Ω has a Lipschitz boundary ∂Ω, σi,e have L∞(Ω) coefficients, and si,e :
[0,+∞) → V ′ are defined and such that 〈si(t) + se(t), 1〉 = 0 for a.e. t > 0, in
order to use the bilinear form a and the linear source term s : t ∈ [0,+∞) 7→
s(t) ∈ V ′ as in definition 5.

For sake of simplicity, we assume that m = 1, meaning that w(t, x) ∈ R. We
still use the notations V = H1(Ω), H = L2(Ω) and U = V/R.

We want to write (7) in V ′ and (9) in H ′ ≡ H. Hence we need assumptions
on f, g : R

2 → R to prove that (u,w) ∈ V ×H 7→ (f(u,w), g(u,w)) ∈ V ′×H ′

is well-defined. Therefore, we shall assume that f and g are both polynomial
functions (see lemma 25 below). Additionally, some energy-like estimates are
needed to construct the a priori bounds. At last, the technical assumption
(H2) below is used to pass to the limit in the variational formulation. We
suppose that there exists p ≥ 2 such that

(H1) the Sobolev embedding V = H1(Ω) ⊂ Lp(Ω) holds: p ≥ 2 if d = 2; or
2 ≤ p ≤ 6 if d = 3 [41];

(H2) the functions f and g are affine with respect to w:

f(u,w) = f1(u) + f2(u)w, g(u,w) = g1(u) + g2w, (48)

where f1 : R → R, f2 : R → R, g1 : R → R are continuous functions and
g2 ∈ R;

(H3) there exists constants ci ≥ 0 (i = 1 . . . 6) such that for any u ∈ R,

|f1(u)| ≤ c1 + c2|u|
p−1, (49)

|f2(u)| ≤ c3 + c4|u|
p/2−1, (50)

|g1(u)| ≤ c5 + c6|u|
p/2; (51)

(H4) there exists constants a, λ > 0, b, c ≥ 0 such that for any (u,w) ∈ R
2,

λuf(u,w) + wg(u,w) ≥ a|u|p − b
(

λ|u|2 + |w|2
)

− c. (52)

Remark 24 Three examples of models in electrocardiology satisfying these
assumptions will be given in §6.

Using hypothesis (H1), we have the framework

V ⊂ Lp(Ω) ⊂ H ≡ H ′ ⊂ Lp′(Ω) ⊂ V ′, (53)
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meaning in particular that an element u ∈ H ′ or u ∈ (Lp(Ω))′ is identified to
an element of u ∈ H or u ∈ Lp′(Ω) by 〈u, v〉 =

∫

Ω uv.

At last, we use the classical spaces Lq(0, T ;X) (1 ≤ q ≤ ∞) of measurable
vector valued functions f : t ∈ (0, T ) 7→ f(t) ∈ X where X is a separable
Banach space (X alternatively is U,U ′, V, V ′ or H here). The derivative ∂tf
(or df

dt
) of this function is taken in the space of vector valued distributions

from (0, T ) onto X [39]. A distribution f and a function f ∈ Lq(0, T ;X) are
identified if

〈f, φ〉 =
∫ T

0
f(t)φ(t)dt (in X) ∀φ ∈ D(0, T ),

where D(0, T ) is the space of real functions C∞ on R with compact support
in (0, T ). We recall that if f ∈ L1(0, T ;X) and ∂tf ∈ L1(0, T ;X), then f is
equal a.e. to a function in C0([0, T ], X).

We have the

Lemma 25 Under hypotheses (H2) and (H3), the mappings (u, v) ∈ Lp(Ω)×
H 7→ f(u, v) ∈ Lp′(Ω) and (u, v) ∈ Lp(Ω)×H 7→ g(u, v) ∈ H are well defined.
Specifically, for any (u,w) ∈ Lp(Ω) ×H, we have

‖f(u,w)‖Lp′ (Ω) ≤ A1|Ω|1/p′ + A2‖u‖
p/p′

Lp(Ω) + A3‖w‖
2/p′

H , (54)

‖g(u,w)‖H ≤ B1|Ω|1/2 +B2‖u‖
p/2
Lp(Ω) +B3‖w‖H , (55)

where the Ai ≥ 0 (i = 1 . . . 3) and Bi ≥ 0 (i = 1 . . . 3) are numerical constants
that depend only on the ci (i = 1 . . . 6) and on p.

Proof. For (u,w) ∈ R
2, we have from (H2) and (H3),

|f(u,w)| ≤ c1 + c2|u|
p−1 + c3|w| + c4|w||u|

p/2−1,

|g(u,w)| ≤ B1 +B2|u|
p/2 +B3|w|,

with exactly B1 = c5, B2 = c6 and B3 = |g2|.

If p 6= 2 it is proved by the inequality of Young that

|w||u|p/2−1 ≤
|w|β

β
+

|u|(p/2−1)β′

β′
,

where β = 2/p′ > 1 and 1
β

+ 1
β′

= 1. Since
(

p
2
− 1

)

β′ =
(

p
2
− 1

)

2p−1
p−2

= p− 1,
we have

|f(u,w)| ≤ c1 +

(

c2 +
c4
β′

)

|u|p−1 + c3|w| +
c4
β
|w|β.

But β > 1 and then we also have |w| ≤ |w|β

β
+ 1

β′
, so that it can be found

positive constants A1, A2 and A3 such that

|f(u,w)| ≤ A1 + A2|u|
p−1 + A3|w|

β.
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If p = 2, this inequality is still valid, with A1 = c1, A2 = c2, A3 = c3 + c4.

Now for (u, v) ∈ Lp(Ω) ×H, we can write

‖f(u,w)‖Lp′ (Ω) ≤
∥

∥

∥A1 + A2|u|
p−1 + A3|w|

β
∥

∥

∥

Lp′ (Ω)

≤ ‖A1‖Lp′ (Ω) +
∥

∥

∥A2|u|
p−1
∥

∥

∥

Lp′ (Ω)
+
∥

∥

∥A3|w|
β
∥

∥

∥

Lp′ (Ω)

= A1|Ω|1/p′ + A2‖u‖
p/p′

Lp(Ω) + A3‖w‖
2/p′

H , (56)

because (p− 1)p′ = p, βp′ = 2, and similarly,

‖g(u,w)‖H ≤
∥

∥

∥B1 +B2|u|
p/2 +B3|w|

∥

∥

∥

H

≤ ‖B1‖H +
∥

∥

∥B2|u|
p/2
∥

∥

∥

H
+ ‖B3|w|‖H

= B1|Ω|1/2 +B2‖u‖
p/2
Lp(Ω) +B3‖w‖H . (57)

5.2 Existence for the Initial Value Problem

Under the minimal regularity assumptions on the data Ω, σi,e and si,e given
at the beginning of §5, we are able to write the

Definition 26 (Weak solutions) Consider τ > 0 and the three functions
u : t ∈ [0, τ) 7→ u(t) ∈ H, ue : t ∈ [0, τ) 7→ ue(t) ∈ H, w : t ∈ [0, τ) 7→ w(t) ∈
H. Given (u0, w0) ∈ H, we say that (u, ue, w) is a weak solution to (7)-(12)
iff, for any T ∈ (0, τ),

(1) u : [0, T ] → H and w : [0, T ] → H are continuous, and u(0) = u0,
w(0) = w0 in H (that is eq. (12));

(2) for a.e. t ∈ (0, τ), we have u(t) ∈ V , ue(t) ∈ V/R, and u ∈ L2(0, T ;V ) ∩
Lp(QT ), where QT = (0, T ) × Ω;

and (u, ue, w) verify in D′(0, T ):

d

dt
(u(t), v) +

∫

Ω
σi∇(u(t) + ue(t)) · ∇v +

∫

Ω
f(u(t), w(t))v = 〈si(t), v〉,

d

dt
(w(t), v) +

∫

Ω
g(u(t), w(t))v = 0,

respectively for all v ∈ V and for all v ∈ H, and

∫

Ω
σi∇u(t) · ∇ve +

∫

Ω
(σi + σe)∇ue(t) · ∇ve = 〈si(t) + se(t), ve〉, ∀ve ∈ V/R.

(58)
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Remark 27 The weak derivatives of u : t ∈ [0, T ] 7→ H and w : t ∈ [0, T ] 7→
H identify to functions ∂tu ∈ L2(0, T ;V ′) +Lp′(QT ) and ∂tw ∈ L2(0, T ;V ′) +
Lp′(QT ). Indeed the following equalities are true in D′(0, T ):

〈∂tu, v〉 =
d

dt
(u(t), v) ∀v ∈ V = V ∩ Lp(Ω),

〈∂tw, v〉 =
d

dt
(w(t), v) ∀v ∈ H.

Naturally, we have the two following lemma:

Lemma 28 The functions (u, ue, w) are a weak solution to (7)-(12) iff con-
ditions (1)-(2) of definition 26 hold and (u,w) verify in D′(0, T ):

d

dt
(u(t), v) + a(u(t), v) +

∫

Ω
f(u(t), w(t))v = 〈s(t), v〉 ∀v ∈ V,

d

dt
(w(t), v) +

∫

Ω
g(u(t), w(t))v = 0 ∀v ∈ H,

where a(·, ·) and s ∈ V ′ are given in definition 5. The function ue is then
recovered from (58).

Lemma 29 Any strong solution (u, ue, w) on [0, τ) is a weak solution on
[0, τ). Conversely, if ∂Ω is C1 regular, any weak solution (u, ue, w) on [0, τ)
such that u(t) ∈ H2(Ω) for a.e. t ∈ [0, τ) is a strong solution.

Theorem 30 (Global existence of a weak solution) Let Ω, σi,e have the
minimal regularity specified in §2. Suppose that hypotheses (H1) to (H4) on
f, g hold for some p ≥ 2. Let be given u0, w0 ∈ H and si, se ∈ L2(R+;V ′)
such that 〈si(t) + se(t), 1〉 for a.e. t > 0. Then the system (7)-(12) has a weak
solution (u, ue, w) in the sense of definition 26 with τ = +∞.

Proof. Using lemma 28, it is given in the next subsections, in three parts:

• construction of an approximate solution using the Faedo-Galerkin tech-
nique;

• a priori estimates on the approximate solution;
• compactness results, and convergence of the approximate solution towards

a weak solution.

5.2.1 Construction of an approximate solution

We use the special orthonormal Hilbert basis (in H) (ψi)i∈N of eigenvectors
defined in theorem 6. For m ≥ 1, we note Vm = span(ψ0, . . . , ψm) ⊂ V . We
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are looking for a couple of functions t 7→ (um(t), wm(t)) with

um(t) =
m
∑

i=0

uim(t)ψi ∈ Vm, wm(t) =
m
∑

i=0

wim(t)ψi ∈ Vm

where (uim(t), wim(t))i=0...m are real valued functions solutions of

d

dt
uim(t) + λiuim(t) +

∫

Ω
f(um(t), wm(t))ψi = 〈s(t), ψi〉, (59)

d

dt
wim(t) +

∫

Ω
g(um(t), wm(t))ψi = 0 (60)

for i = 0 . . .m, and with initial data

um(0) = um0, wm(0) = wm0. (61)

Since u0 and w0 are in H, we can take um0 and wm0 to be the H orthogonal
projections of u0 and w0 on Vm:

‖um0 − u0‖H → 0, ‖wm0 − w0‖H → 0 as m→ ∞. (62)

Equations (59) and (60) make sense because um(t) ∈ V ⊂ Lp(Ω), wm(t) ∈ H
so that f(um(t), wm(t)) ∈ Lp′(Ω) ⊂ V ′ and g(um(t), wm(t)) ∈ H (from lemma
25) and ψi ∈ V ⊂ Lp(Ω) and ψi ∈ H. Moreover, it can easily be seen that
the last three terms in Eq. (59) and the last term in Eq. (60) are continuous
functions of uim and wim.

The initial value problem composed of the 2m+ 2 differential equations (59)-
(60) with initial data (61) has a maximal solution defined for t ∈ [0, tm) with
uim and wim in C1 (theorem of Cauchy-Peano from [43, p.59]). If (um, wm) is
not a global solution (i.e. tm < +∞) then it is unbounded in [0, tm). It will
be shown in the next section, using a priori estimates, that (um, wm) remains
bounded for all time, namely tm = +∞.

5.2.2 A priori estimates

The following lemma establishes uniform bounds for any T ∈ (0, tm), first
on the sequences um and wm in L∞(0, T ;H), then on the sequences um, u

′
m

respectively in Lp(QT ) ∩ L2(0, T ;V ) and its dual Lp′(QT ) + L2(0, T ;V ′), and
finally on the sequences wm, w

′
m in L2(QT ) (identified to its dual). We use the

norm ‖ · ‖Lp(QT )∩L2(0,T ;V ) = max(‖ · ‖Lp(QT ), ‖ · ‖L2(0,T ;V )) and the dual norm

‖u‖Lp′ (QT )+L2(0,T ;V ′) = infu=u1+u2

(

‖u1‖Lp′ (QT ) + ‖u2‖L2(0,T ;V ′)

)

.

Lemma 31 (A priori estimates) The maximal solution of the Cauchy prob-
lem (59)-(61) is defined for any t > 0; and for any T > 0, there exists positive
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constants C1, C2, C3, C4 such that

λ‖um(t)‖2
H + ‖wm(t)‖2

H ≤ C1, ∀t ∈ [0, T ], (63)

‖um‖Lp(QT )∩L2(0,T ;V ) ≤ C2, (64)

‖u′m‖Lp′ (QT )+L2(0,T ;V ′) ≤ C3, (65)

‖w′
m‖L2(QT ) ≤ C4, (66)

where u′m(t) =
∑m

i=0 u
′
im(t)ψi, w

′
m(t) =

∑m
i=0w

′
im(t)ψi are the derivative of

um : [0,+∞) → V and wm : [0,+∞) → H.

The estimate (63) is the bound in L∞(0, T ;H) for um and wm; and the bound
for wm in L2(QT ) is easily derived from it.

Proof. Multiplying (59) by λuim (λ > 0 defined in hypothesis (H4)), multiply-
ing (60) by wim, and summing over i = 1 . . .m yields, for any t ∈ [0, tm),

1

2
λ
d

dt
‖um‖

2
H +

1

2

d

dt
‖wm‖

2
H + λa(um, um)

+
∫

Ω
(λf(um, wm)um + g(um, wm)wm) = λ〈s, um〉.

Using the properties of a(·, ·) from theorem 6 (coercivity and continuity) and
hypothesis (H4), we have for any t ∈ [0, tm) and for any ξ > 0,

1

2

d

dt

(

λ‖um(t)‖2
H + ‖wm(t)‖2

H

)

+ αλ‖um(t)‖2
V + a

∫

Ω
|um(t)|p

≤ (b+ α)
(

λ‖um(t)‖2
H + ‖wm(t)‖2

H

)

+ c|Ω| + ‖s(t)‖V ′‖um(t)‖V

≤ (b+ α)
(

λ‖um(t)‖2
H + ‖wm(t)‖2

H

)

+ c|Ω| +
1

2ξ
‖s(t)‖2

V ′ +
ξ

2
‖um(t)‖2

V .

And then, choosing ξ = αλ, we have

1

2

d

dt

(

λ‖um(t)‖2
H + ‖wm(t)‖2

H

)

+
αλ

2
‖um(t)‖2

V + a
∫

Ω
|um(t)|p

≤ b̃
(

λ‖um(t)‖2
H + ‖wm(t)‖2

H

)

+ c|Ω| +
1

2αλ
‖s(t)‖2

V ′ , (67)

with b̃ = b+ α.

We know that ‖um(0)‖H ≤ ‖u0‖H , ‖wm(0)‖H ≤ ‖w0‖H , Ω is bounded and
St :=

∫ t
0 ‖s(τ)‖

2
V ′dτ < +∞. From the Gronwall inequality there exists a con-

stant C1 > 0 that depends only on σi,e, f , g, u0, w0, Ω, si,e and tm, such
that

0 ≤ t < tm ⇒ λ‖um(t)‖2
H + ‖wm(t)‖2

H ≤ C1.

As an immediate consequence the solution um, wm cannot explode in finite
time. It is defined on [0,+∞) (it is a global solution, tm = +∞).
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Now, for any fixed T > 0, we have found a constant C1 > 0 such that (63) is
valid. Coming back with C1 into (67) we immediately have the estimate (64)
of lemma 31 with

C2 = max

(

(

2CT

αλ

)1/2

,
(

CT

a

)1/p
)

,

where

CT =
1

2

(

λ‖u0‖
2
H + ‖w0‖

2
H

)

+ b̃TC1 + cT |Ω| +
1

2αλ
ST .

The remaining estimates on u′m, w
′
m is the most difficult. Consider the projec-

tion Pm : V ′ → V ′ defined for u ∈ V ′ by

Pmu =
m
∑

i=1

〈u, ψi〉ψi.

It is equivalently defined as the unique element of Vm such that 〈u, v〉 =
〈Pmu, v〉 for all v ∈ Vm. For any v ∈ V and any t > 0, remark that

d

dt
(um(t), v) = (u′m(t), v) = 〈u′m(t), v〉,
∫

Ω
f(um(t), wm(t))v = 〈f(um(t), wm(t)), v〉,

because u′m(t) ∈ Vm ⊂ V ′ and f(um(t), wm(t) ∈ Lp′(Ω) while v ∈ V ⊂ Lp(Ω).
And then equation (59) reads

∀v ∈ Vm, ∀t > 0, 〈u′m(t), v〉 = −〈Aum(t) + f(um(t), wm), v〉 + 〈s(t), v〉,

so that

∀t > 0, u′m(t) = −Pm (Aum(t) + f (um(t), wm(t)) + s(t)) , (68)

where A is the weak operator associated to the bilinear form a(·, ·) on V × V ,
as defined in lemma 9.

For T > 0 fixed, we have from (64) and the continuity of A,

‖Aum‖L2(0,T ;V ′) ≤ M

(

∫ T

0
‖um(t)‖2

V dt

)1/2

≤ MC2

and from (63), (64) and lemma 25,

‖f(um, wm)‖Lp′ (QT ) ≤
∥

∥

∥A1|Ω|1/p′ + A2‖um(t)‖
p/p′

Lp(Ω) + A3‖wm(t)‖
2/p′

H

∥

∥

∥

Lp′ (0,T )

≤ A1(|Ω|T )1/p′ + A2‖um‖
p/p′

Lp(QT ) + A3‖wm‖
2/p′

L2(QT )

≤ A1(|Ω|T )1/p′ + A2C
p/p′

2 + A3(C1T )1/p′ .
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It remains to bound the projection operator Pm. First, remark that the re-
striction of Pm to V can be viewed as an operator from V onto V (since
Pm(V ′) ⊂ Vm ⊂ V ), given by

∀u ∈ V, Pmu =
m
∑

i=1

(u, ψi)ψi.

For u ∈ H, Pmu is the orthogonal projection of u on Vm, and ‖Pmu‖H ≤ ‖u‖H .
The transpose P T

m of Pm|V identifies with Pm : V ′ → V ′ (simple computation),
and then we have ‖Pm‖L(V ′,V ′) = ‖Pm‖L(V,V). For u ∈ V we can compute

a(Pmu, Pmu) =
+∞
∑

i=0

λi(Pmu, ψi)(Pmu, ψi)

=
m
∑

i=0

λi(u, ψi)(u, ψi) ≤
+∞
∑

i=0

λi|(u, ψi)|
2 = a(u, u).

As a consequence, for all u ∈ V ,

α‖Pmu‖
2
V ≤ a(Pmu, Pmu) + α‖Pmu‖

2
H ≤ M‖u‖2

V + α‖u‖2
H ≤ (M + α) ‖u‖2

V .

It shows that Pm is uniformly bounded in V ′: ‖Pm‖L(V ′,V ′) ≤ 1 + M
α

, and we
have

‖Pm(Aum)‖L2(0,T ;V ′) ≤
(

1 +
M

α

)

MC2,

‖Pm(f(um, wm))‖Lp′ (QT ) ≤
(

1 +
M

α

)

(

A1(|Ω|T )1/p′ + A2C
p/p′

2 + A3(C1T )1/p′
)

,

‖Pms‖L2(0,T ;V ′) ≤
(

1 +
M

α

)

‖s‖L2(0,T ;V ′)

The bound (65) is a consequence of these estimates and of (68).

In a similar way, equation (60) reads

∀v ∈ Vm ⊂ H, ∀t > 0, 〈w′
m(t), v〉 = −〈g(um(t), wm(t)), v〉,

so that

∀t > 0, w′
m(t) = −Pm (g(um(t), wm(t))) , (69)

where the operator Pm can be restricted to the orthogonal projection Pm|H ,
in particular, ‖Pm‖L(H,H) ≤ 1.

27



For T > 0 fixed, from (63), (64) and lemma 25, we have (66):

‖w′
m‖L2(QT ) ≤ ‖g(um, wm)‖L2(QT )

≤
∥

∥

∥B1|Ω|1/2 +B2‖um(t)‖
p/2
Lp(Ω) +B3‖wm(t)‖H

∥

∥

∥

L2(0,T )

≤ B1(|Ω|T )1/2 +B2‖um‖
p/2
Lp(QT ) +B3‖wm‖L2(QT )

≤ B1(|Ω|T )1/2 +B2(C2)
p/2 +B3(C1T )1/2 := C4.

5.2.3 Convergence towards a solution

It is easy to see that Lp′(QT ) + L2(0, T ;V ′) ⊂ Lp′(0, T ;V ′) since p′ ≤ 2
and Lp′(Ω) ⊂ V ′ (Sobolev inequality). Hence the sequence (u′m) remains in a
bounded set of Lp′(0, T ;V ′) while (um) remains in a bounded set of L2(0, T ;V ).
It follows from a classical compactness result, see for instance [39, th. 5.1, p.58],
that the sequence (um) has a subsequence that converges in L2(QT ).

As a consequence, we can construct subsequences of um and wm, still denoted
by um and wm, such that

• um → u weak in Lp(QT ) ∩ L2(0, T, V ) and u′m → ũ weak in Lp′(QT ) +
L2(0, T, V ′),

• wm → w weak in L2(QT ), and w′
m → w̃ weak in L2(QT ),

and from the compactness result,

• um → u strong in L2(QT ), and then almost everywhere in QT ,

where u ∈ Lp(QT )∩L2(0, T, V ), w ∈ L2(QT ), and ũ ∈ Lp′(QT ) +L2(0, T, V ′),
w̃ ∈ L2(QT ).

For i ≥ 1 fixed and φ ∈ D(0, T ), we naturally have

−
∫ T

0

∫

Ω
u′mψiφ =

∫ T

0

∫

Ω
umψiφ

′ →
∫ T

0

∫

Ω
uψiφ

′,

−
∫ T

0

∫

Ω
w′

mψiφ =
∫ T

0

∫

Ω
wmψiφ

′ →
∫ T

0

∫

Ω
wψiφ

′,

because ψiφ
′ ∈ L2(QT ) ∩ Lp(QT ) ∩ L2(0, T ;V ). As a consequence, we have in

the space D′(0, T ) of distribution on (0, T ),

d

dt
(u(t), ψi) = 〈ũ(t), ψi〉,

d

dt
(w(t), ψi) = (w̃(t), ψi) . (70)

Since a(·, ·) is bilinear and continuous on V ×V and ψiφ ∈ Lp(QT )∩L2(0, T ;V )
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for any φ ∈ D(0, T ), we have

∀φ ∈ D(0, T ),
∫ T

0
a(um(t), φ(t)ψi)dt→

∫ T

0
a(u(t), φ(t)ψi)dt.

Concerning the nonlinear terms, we use hypothesis (H2) to write

f(um, wm) = f1(um) + f2(um)wm = f1(um) + (f2(um) −f2(u))wm + f2(u)wm,

g(um, wm) = g1(um) + g2wm.

Now, we have um → u a.e. in QT and f1 is continuous, so that f1(um) → f1(u)
a.e.in QT ; and f1(um) is uniformly bounded in Lp′(QT ),

‖f1(um)‖Lp′ (QT ) ≤ ‖c1 + c2|um|
p−1‖Lp′ (QT ) ≤ c1 (|Ω|T )1/p′ + c2‖um‖

p/p′

Lp(QT ).

It follows from a classical result, see [39, lemma 1.3, p.12], that f1(um) → f1(u)
weak in Lp′(QT ):

∀φ ∈ D(0, T ),
∫ T

0
(f1(um(t)), φ(t)ψi)dt→

∫ T

0
(f1(u(t)), φ(t)ψi)dt.

Similarly, g1 is continuous and then g1(um) → g1(u) a.e.in QT ; and g1(um) is
bounded in L2(QT ),

‖g1(um)‖L2(QT ) ≤ ‖c5 + c6|um|
p/2‖L2(QT ) ≤ c5 (|Ω|T )1/2 + c6‖um‖

p/2
Lp(QT ),

and then g1(um) → g1(u) weak in L2(QT ),

∀φ ∈ D(0, T ),
∫ T

0
(g1(um(t)), φ(t)ψi)dt→

∫ T

0
(g1(u(t)), φ(t)ψi)dt.

Since wm → w weak in L2(QT ) we naturally have

∀φ ∈ D(0, T ),
∫ T

0
(g2wm(t), φ(t)ψi)dt→

∫ T

0
(g2w(t), φ(t)ψi)dt.

As f2(u)φ(t)ψi ∈ L2(QT ) from hypothesis (H3), the weak convergence of wm

in L2(QT ) also implies that

∀φ ∈ D(0, T ),
∫ T

0
(f2(u)wm(t), φ(t)ψi)dt→

∫ T

0
(f2(u)w(t), φ(t)ψi)dt.
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The remaining term in f is such that

∣

∣

∣

∣

∣

∫ T

0

∫

Ω
(f2(um(t)) − f2(u(t)))wm(t)φ(t)ψidx dt

∣

∣

∣

∣

∣

≤ ‖(f2(um) − f2(u))φψi‖L2(QT ) ‖wm‖L2(QT )

Remark that

‖(f2(um) − f2(u))φψi‖
2
L2(QT ) = 〈(f2(um)) − f2(u))

2, (φψi)
2〉.

The duality product on the right hand side makes sense because (φψi)
2 ∈

Lp/2(QT ) and f2(um)2 and f2(u)
2 are bounded in Lβ(QT ) where β > 1 is given

by 2
β

+ 2
p

= 1:

‖f2(um)2‖Lβ(QT ) ≤ ‖c3 + c4|um|
p/2−1‖Lβ(QT ) ≤ c3(|Ω|T )1/β + c4‖um‖

1/β
Lp(QT ),

because (p/2 − 1)β = p. Again we have (f2(um)) − f2(u))
2 → 0 a.e. in QT ,

and we can conclude with the same classical result that (f2(um)−f2(u))
2 → 0

weak in Lβ(QT ). Consequently,

∀φ ∈ D(0, T ), ‖(f2(um) − f2(u))φψi‖L2(QT ) → 0.

Since ‖wm‖L2(QT ) is bounded, we finally have

∀φ ∈ D(0, T ),
∫ T

0
((f2(um(t)) − f2(u(t)))wm(t), φ(t)ψi) dt→ 0.

Gathering all these results, the functions u and w verify, for any i ≥ 1,

d

dt
(u(t), ψi) + a(u(t), ψi) + 〈f(u(t), w(t)), ψi〉 = 〈s(t), ψi〉

d

dt
(w(t), ψi) + 〈g(u(t), w(t)), ψi〉 = 0,

in the space of distributions D′(0, T ), for any i ≥ 0. Since (ψi)i≥0 is dense in
V , this is exactly the desired result (lemma 28).

5.3 Continuity

We have u ∈ L2(0, T ;V )∩Lp(QT ), w ∈ L2(QT ); and we deduce from (70) that
u and w have their weak derivative ∂tu and ∂tw respectively in L2(0, T ;V ′) +
Lp′(QT ) and L2(QT ).

It is deduced from a classical result, see for instance [39, lemma 1.2, p.7], that
the functions u : t ∈ [0, T ] 7→ u(t) ∈ V ′ and w : t ∈ [0, T ] 7→ w(t) ∈ H are
continuous. Concerning u, it only proves that u is weakly continuous in V .
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But we also have the following identity in D′(0, T ):

〈∂tu(t), u(t)〉 =
1

2

d

dt
‖u(t)‖2

H ,

and then

1

2

d

dt
‖u(t)‖2

H = −a(u(t), u(t)) − 〈f(u(t), w(t)), u(t)〉 + 〈s(t), u(t)〉,

so that t 7→ ‖u(t)‖2
H is H1(0, T ), and then it is continuous from [0, T ] to R.

As a consequence, the function u : t ∈ [0, T ] 7→ u(t) ∈ H is continuous. Since
um(0) → u0 and wm(0) → w0 in H, we easily prove that u(0) = u0 and
w(0) = w0.

5.4 Uniqueness

Assume that (u1, ue1, w1) and (u2, ue2, w2) are two weak solutions of (7)-(12)
with the same initial data u1(0) = u2(0) = u0 and w1(0) = w2(0) = w0. For any
u ∈ L2(0, T ;V ) ∩ Lp(QT ) and w ∈ L2(QT ) with ∂tu ∈ L2(0, T ;V ′) + Lp′(QT )
and ∂tw ∈ L2(QT ), we have in D′(0, T ) that

〈∂tu(t), u(t)〉 =
1

2

d

dt
‖u(t)‖2

H , 〈∂tw(t), w(t)〉 =
1

2

d

dt
‖w(t)‖2

H .

As a consequence, we easily prove that

1

2

d

dt
‖u1 − u2‖

2
H + a(u1 − u2, u1 − u2)

+
∫

Ω
(f(u1, w1) − f(u2, w2)) (u1 − u2) = 0,

and
1

2

d

dt
‖w1 − w2‖

2
H +

∫

Ω
(g(u1, w1) − g(u2, w2)) (w1 − w2) = 0.

With a linear combination of these two equations, we will be able to conclude
using a Gronwall inequality if we can bound below

Φ(u1, w1, u2, w2) =
∫

Ω
µ (f(u1, w1) − f(u2, w2)) (u1 − u2) + (g(u1, w1) − g(u2, w2)) (w1 − w2)dx

for some µ > 0. Consider the function F : R
2 → R

2 defined by

F (u,w) =







µf(u,w)

g(u,w))





 , ∀(u,w) ∈ R
2,
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and denote by z ∈ R
2 the vector z = (u,w)T ∈ R

2. Then we have

Φ(u1, w1, u2, w2) = Φ(z1, z2) =
∫

Ω
(F (z1) − F (z2)) · (z1 − z2)dx,

where · denotes the inner product in R
2. Here F is continuously differentiable,

so that Taylor expansion with an integral remainder implies that ∀z1, z2 ∈ R
2

F (z1) − F (z2) =
∫ 1

0
[∇F (zθ)](z1 − z2) dθ

where zθ = θz1 + (1 − θ)z2 and ∇F =







µ∂uf µ∂wf

∂ug ∂wg





 .

Now, let Q(z) = 1
2
(∇F (z)T +∇F (z)) be the symmetric part of ∇F for z ∈ R

2,
and denote by λ1(z) ≤ λ2(z) its eigenvalues. We can complete the proof under
the hypothesis that

∃C ∈ R, ∀z ∈ R
2, λ2(z) ≥ λ1(z) ≥ C. (71)

Indeed, in that case, we have for any z1, z2 ∈ R
2,

Φ(z1, z2) =
∫

Ω

∫ 1

0
(z1 − z2)

T [∇F (zθ)](z1 − z2) dθdx ≥ C
∫

Ω

∫ 1

0
|z1 − z2|

2 dθdx

≥ Cmin(1, µ−1)
(

µ‖u1 − u2‖
2
H + ‖w1 − w2‖

2
H

)

.

As a consequence, taking Y (t) = (µ‖u1(t) − u2(t)‖
2
H + ‖w1(t) − w2(t)‖

2
H), un-

der assumption (71) on the data f and g, we prove that

1

2
Y ′(t) ≤ −Cmin(1, µ−1)Y (t), (72)

for any t ∈ [0, T ].

Using the lemma of Gronwall, we have proved the following result:

Theorem 32 If the condition (71) is satisfied, then the solution obtained in
Theorem 30 is unique.

Remark that Eq. (72) also provide a stability estimate with respect to the
initial condition.

We will apply that theorem to the first example presented below, though it is
not clear how to obtain uniqueness for the last two examples.
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6 Examples

6.1 FitzHugh-Nagumo

The FitzHugh-Nagumo model reads as

f(u,w) = u(u− a)(u− 1) + w, g(u,w) = −ǫ(ku− w),

with 0 < a < 1, k, ǫ > 0. The functions f and g are obviously of the form (48)
with f1, f2, g1 continuous and g2 = ǫ. Using Young’s inequality, we have

|u|2 ≤
2|u|3

3
+

1

3
, |u| ≤

|u|3

3
+

2

3
, |u| ≤

|u|2

2
+

1

2
, (73)

and then (H3) holds with p = 4 (and c4 = 0):

|f1(u)| = |u(u− a)(u− 1)| ≤
2

3
a+

1

3
(1 + a) +

(

1

3
a+

2

3
(1 + a) + 1

)

|u|3,

|f2(u)| = 1,

|g1(u)| = ǫk|u| ≤
1

2
ǫk +

1

2
ǫk|u|2.

Consider the function E(u,w) = ǫkuf(u,w)+wg(u,w) defined in R
2. We have

E(u,w) = ǫku4 − ǫk(1 + a)u3 + ǫkau2 + ǫw2 ≥ ǫk
(

|u|4 − (1 + a)|u|3
)

.

With Young’s inequality, we can find a constant γ > 0 such that

(1 + a)|u|3 ≤
|u|4

2
+ γ.

Consequently,

E(u,w) + ǫkγ ≥
ǫk

2
|u|4,

which is exactly (H4) with λ = kǫ, a = kǫ/2, b = 0 and c = kǫγ.

As regards the uniqueness of the solution, we verify the condition (71) to apply
Theorem 32. One easily calculates

∇F (z) =







µ(3u2 − 2(1 + a)u+ a) µ

−ǫk ǫ





 .

Taking µ = ǫk, we get rid of the antisymmetric part in the quadratic form
and easily bound below the eigenvalues by C = ǫmin(k(a− (1 + a)2/3), 1).
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6.2 Aliev-Panfilov

The Aliev-Panfilov model [29] is

f(u,w) = ku(u− a)(u− 1) + uw, g(u,w) = ǫ (ku(u− 1 − a) + w) ,

with 0 < a < 1, k, ǫ > 0. The functions f and g are obviously of the form (48)
with f1, f2, g1 continuous and g2 = ǫ. Using the inequalities (73), we get (H3)
with p = 4 (and c4 = 1, c3 = 0):

|f1(u)| = k|u(u− a)(u− 1)| ≤
2

3
ka+

1

3
k(1 + a) +

(

1

3
a+

2

3
(1 + a) + 1

)

k|u|3,

|f2(u)| = |u|,

|g1(u)| = ǫk|u(u− 1 − a)| ≤
1

2
ǫk(1 + a) +

(

1

2
(1 + a) + 1

)

ǫk|u|2.

Now, we compute the function E(u,w) = λuf(u,w) + wg(u,w). It is

E(u,w) = λku4−λk(1+a)u3+λkau2+(λ+ǫk)u2w−ǫk(1+a)uw+ǫw2. (74)

Here, we will prove (52) because it allows negative |u|2 and |w|2 bounds below,
so that the terms in u3 and u2w can be manipulated to enter the main bound
λku4. For instance with λ = ǫk, we write

|(1 + a)u3| ≤
3

4

(

α|u|3
)4/3

+
1

4

(

1 + a

α

)4

, (75)

|u2w| ≤
1

2
(β|u|2)2 +

1

2

(

|w|

β

)2

, (76)

|uw| ≤
1

2
|u|2 +

1

2
|w|2, (77)

for any α > 0 and β > 0, and then

E(u,w) ≥
(

ǫk2 − ǫk2 3

4
α4/3 − ǫkβ2

)

|u|4

−
1

4
ǫk2

(

1 + a

α

)4

− ǫk
1

β2
|w|2 − ǫk

1 + a

2
|u|2 − ǫk

1 + a

2
|w|2 + ǫ|w|2 + ǫk2a|u|2.

Now, we can simply take α and β such that

3

4
α4/3 =

1

2
, and

1

4
ǫk2 = ǫkβ2,
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and we get (52) with

a =
1

4
ǫk2,

b = max

(

ǫk

(

1

β2
+

1 + a

2

)

− ǫ,
1 + a

2
− ak

)

,

c =
1

4
ǫk2

(

1 + a

α

)4

.

6.3 MacCulloch

The model introduced by McCulloch [30] is

f(u,w) = bu(u− a)(u− 1) + uw, g(u,w) = ǫ (−ku+ w) ,

with 0 < a < 1, and b, k, ǫ > 0. The functions f and g are obviously of the
form (48) with f1, f2, g1 continuous and g2 = ǫ. Using the inequalities (73),
we get (H3) with p = 4 (and c4 = 1, c3 = 0):

|f1(u)| = b|u(u− a)(u− 1)| ≤
2

3
ba+

1

3
b(1 + a) +

(

1

3
a+

2

3
(1 + a) + 1

)

b|u|3,

|f2(u)| = |u|,

|g1(u)| = ǫk|u| ≤
1

2
ǫk +

1

2
ǫk|u|2.

Using again (75)-(77), we have this time

E(u,w) = λbu4 − λb(1 + a)u3 + λbau2 + λu2w − ǫkuw + ǫw2

≥ λ

(

b−
3

4
α4/3b−

β2

2

)

u4 −
1

4

(

1 + a

α

)4

λb

−
1

2β2
λ|w|2 −

ǫk

2
|u|2 −

ǫk

2
|w|2 + ǫ|w|2 + λba|u|2,

and (52) holds if we take

3

4
α4/3 =

1

2
, and

1

4
b =

β2

2
.
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