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Abstract  

Fuzzy Negotiation Solution by Knowledge Engineering 

(FNSKE) and Compensatory Negotiation Solution by 

Knowledge Engineering (CNSKE) are two new solution 

concepts to n-person cooperative games. They involve a 

quantitative index, called Good Deal Index (GDI), which 

is the matrix solution of a recurrent equation. The 

existence and uniqueness of the GDI entail the existence 

and uniqueness of the solutions. Because of the strength 

of the hypotheses needed to proof uniqueness, and the 

convergence of the algorithm, those demonstrations are 

made statistically, using the Strong Law of Large 

Numbers. The proof of existence is made using the 

Schauder Theorem of fixed point. 

Keywords: Fuzzy solution to an n-person cooperative 

game, Fixed point, Knowledge Engineering  

1. Introduction 

The Fuzzy Negotiation Solution by Knowledge 

Engineering, see [4,3], and the Compensatory Negotiation 

Solution by Knowledge Engineering, see [7], designate 

two kindred solution concepts to n-person cooperative 

games. In these models the axiomatic notion of rational 

choice [6] is replaced with a heuristic, composed by a set 

of negotiation principles, expressed in natural language. 

According to Knowledge Engineering, and the Nonaka 

and Takeuchi’s classification, this is explicit knowledge 

[6].  

For representing the negotiation principles in 

mathematical form, probabilistic fuzzy logic is used in 

FNSKE, and Compensatory Fuzzy Logic is used in 

CNSKE. The last of these involves conjunction and 

disjunction operators as logic functions satisfying axioms 

of Decision Theory. 

FNSKE and CNSKE entail a set of quantitative 

bargaining indexes among n negotiators. One of them is 

the Good Deal Index (GDI), which is defined as the gains 

each player obtains in every possible coalition. The 

solution is an array in which the rows contain the GDI 

values for the players in the coalition and the truth value 

of the proposition: "likelihood to reach an agreement in 

the coalition framework". 

Two other indexes are also proposed: the Counterpart 

Convenience Index 1 (CCI1) and the Counterpart 

Convenience Index 2 (CCI2). The CCI1 yields a ranking 

on the convenience of every player to negotiate in the set 

of all coalitions. The CC2 is an index that ranks the 

convenience of every player to negotiate in a particular 

coalition, given that all coalitions are formed, such that 

any coalition can negotiate with other coalitions as they 

were single players.  

The GDI is the solution of a recurrent equation, hence 

fixed point theorems can be applied to prove the existence 

and the uniqueness of the solution, and the convergence 

of the algorithm. The aim of this paper is to demonstrate 

the existence of both solutions FNSKE and CNSKE 

through the Schauder Fixed Point Theorem [12]. The 

convergence of the fixed point algorithm to calculate the 

GDI, and the uniqueness of the GDI in the solutions, are 

examined statistically because of difficulties to apply 

fixed point theorems in such models. 

2. A fuzzy approach to cooperative n-person games 

A cooperative n-person game [9] is a pair (N,v), where N 

= {1,2,··· ,n}, 1 < n < ∞ is a set of players, and v is a 

mapping from 2
N
 into ℜ satisfying properties (i) and (ii), 

below. A coalition is an element of 2
N
  

i. v(∅)=0  

ii. v(S∪T) ≥ v(S)+v(T), where S and T are disjoints 

coalitions of 2
N
. 

In this framework, [3] proposes a fuzzy solution concept 

based on expert knowledge from literature on negotiation. 

The structure is summarized in four propositions 

expressed in natural language. The propositions are [1, 5, 

8]: 

1. A negotiation part has bargaining capacity if and 

only if the following conditions hold:  

• The contribution of its institution to the settlement 

(agreement, or business) in discussion is important. 

• The part can find feasible alternatives and some 

advantages if no settlement is reached, or its 

contribution is essential.  

2. Any increase in contribution to the business by 

one of the parts, or an increase in benefits due to its 

corresponding alternatives, increases its bargaining 

capacity.  
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3. The benefit obtained by each part is equal to the 

amount that it could obtain without the contribution of 

other parts, plus a portion of the additional benefit 

derived from the settlement. This increment obtained by 

each party is approximately proportional to its bargaining 

capacity. 

4. A settlement is possible if and only if all the 

parts are important to the business and the corresponding 

benefit to every part is important to each of them.  

This is an application of Knowledge Engineering, instead 

of the utilitarian rationality concept. "Knowledge 

Engineering is the discipline (of Artificial Intelligence) 

that allows building intelligent systems by means of the 

deduction of knowledge, having as central processes the 

acquisition, representation, manipulation and validation of 

this knowledge" [2].  

 

Definition 2.1 The Good Deal Index (GDI) of negotiator 

i, from the point of view of negotiator j, in a given 

bargaining-set, is the benefit that i could obtain if the 

collective benefits estimated by j prevailed, and the whole 

set of negotiators-including j-had a similar performance in 

defense of their interests during the bargaining process. 

 

In this model the institutions are represented by the 

players in N, the bargaining-sets are represented by 

coalitions belonging to the power set 2
N
, and the 

characteristic function represents the benefits obtained in 

the bargaining-sets. The expression of the GDI is (see 

[3]):  
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Where r(i,C) ∈[0,1] is the truth value of the fuzzy 

predicate "player i has bargaining capacity in the 

bargaining set C ".  

The fuzzy logic system used in this model is the 

Probabilistic Fuzzy Logic. The connectives in this system  

are: 

• u(p∧q)=u(p)u(q). Conjunction.  

• u(p∨q)=u(p)+u(q)-u(p)u(q). Disjunction.  

• u(¬p)=1-u(p). Negation.  

• i(x,y)= d(n(x),y). Natural Implication. Or, i(x,y)= 

d(n(x),c(x,y)). Implication of Zadeh. 

The following expression is a consequence of Proposition 

2: 

 )),(∨ ),((∧= CipCia C)p(i,C)r(i, 2    (2) 

 

Predicates p(i,C) and a(i,C) correspond to the statements 

"player i is important to coalition C" and "player i has 

feasible and advantageous alternatives to reach an 

agreement within C". p
2
(i,C) models the linguistic 

modifier related to "very" [11].  

The following formula implies a strict fuzzy order:  
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Where = 1.  

Thus, p(i,C) = O(C,C\{i}) and q(i,C)= o(X(i,C),v({i})) 

correspond to the predicates "coalition C obtains more 

benefits than coalition C\{i}" and "player i obtains more 

benefits in coalition C than in coalition {i}", respectively. 

These affirmations correspond, equivalently, to the 

statements "the contribution of i is important for coalition 

C" and "coalition C is important for player i", 

respectively. The predicate:  
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corresponds to the statement "i obtains more benefits in 

coalition C than in coalition D".  

The formula of the predicate corresponding to Proposition 

4: "it is possible to reach an agreement within coalition 

C", is the following:  

 

  )),(∧),(((∧=)( ∈ CjqCjpCf Cj
  (5) 

 

The affirmation: "there are advantageous and possible 

alternatives for player i to reach an agreement within 

coalition C" is modeled by: 

 

a(i,C) = ∨B≠C,{i}⊂B(s(i,B,C)∧f(B)) 

 

The value λ=1.0494 has been calculated experimentally. 

The GDI is to be calculated by the recurrent formula:  

 

X(i,C)=g(X(i,C)) (6)  

 

Where, g is the operator that transforms n×m Matrices 

into n×m matrices. It yields the GDI of all players in 

every coalition of the game. The solution of the game is 

given by:  
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Expression ( 7) is a set of vectors, each has n entries as 

the division of worth among the players in the coalition, 

and an element that is the truth value of the function f(C) 

according to ( 5).  

The Counterpart Convenience Index 1(CCI1) of the 

player i, in coalition C and game v, is denoted by Dv(i,C) 

and is equal to: 

 

  )(∧= CfC)(i,q  C)(i,D vvv   (8) 
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This index ranks coalitions by order of convenience for 

each player i.  

 

Definition 2.2 (see [3]) Let v be an n-person game and ß 

a partition of N. A sub-game vß of v and ß is a game 

whose players are all the sets in ß (coalitions). A sub-

game satisfies: vβ({F1,F2,…,Fn}) = v(∪i=1
n
 Fi). The 

Counterpart Convenience Index 2 (CCI2) is defined by:  
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This index models the statement: "The bargaining set C is 

convenient for player i if the following conditions are 

satisfied: 

• it is possible to obtain an advantageous agreement in 

this set. 

• if the agreement is not very advantageous for i then, 

no matter what structure of coalition had been 

presented, a convenience bargaining set S for the 

coalition C (as a player of vβ) exists"  

Let v be a sub-game, created after the negotiation, with a 

coalition structure ß. The CCI2 indicates the convenience 

of renegotiating, where every C∈ß negotiates as a single 

player. The joint of the solution set from (7), the 

CCI1given by (8) and the CCI2 from (9), is called Fuzzy 

Negotiation Solution by Knowledge Engineering 

(FNSKE).  

 

Remark 2.3 The formula (3) of O(C,D) is evidently ill-

defined for any game (N,v) in which v ≡ 0. Such games 

will not be considered in this paper. 

3. Compensatory Negotiation Solution by Knowledge 

Engineering 

The Compensatory Negotiation Solution by Knowledge 

Engineering, see [7], is a fuzzy solution to n-person 

cooperative games in which the probabilistic fuzzy logic 

is replaced with Compensatory Fuzzy Logic. The 

Compensatory Fuzzy Logic is a logic system in which the 

conjunction and disjunction operators are idempotents 

and satisfy axioms of Decision Theory.  

Conjunction, disjunction and negation operators in 

compensatory fuzzy logic are, respectively [3]:  

• [0,1]→
n

[0,1]:c , such that  

n
n

1i
in21 xx,x,c(x ∏=),

=

 . Conjunction. 

• [0,1]→
n

[0,1]:d , such 

that ( )n
n

1i
in21 x-11x,x,d(x ∏−=),

=

 . Disjunction. 

• n:[0,1]→[0,1], such that n(x)=1−x. Negation. 

• i:[0,1]
2→[0,1], such that  i(x,y) = d(n(x),y). Natural 

Implication. Or, i(x,y) = d(n(x),c(x,y)). Implication of 

Zadeh. 

Compensatory Model 2 is obtained by substituting 

probabilistic operators with compensatory operators, and 

the fourth proposition above, about bargaining capacity, is 

replaced with the proposition:  

4. A settlement is possible if and only if the following 

conditions are satisfied:  

• All the parts are important to the business and the 

corresponding benefit to every part is important to each 

of them.  

• The number of parts associated to the settlement is not 

large.  

The change to the fourth proposition implies a change in 

(5). The new expression for the "likelihood to reach an 

agreement in the coalition C" is the following:  
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Where J(card(C)) is the membership function of the 

proposition: "the quantity of players in the coalition C is 

not large". Function J depends on the cardinal number 

card(C).  

The function J is the negation of the sigmoidal 

membership function according to: 
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proposition "the quantity of players in the coalition C is 

large". The other formulas remain as stated. 

The GDI in the Compensatory Model 2 is: 
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This means that players in every coalition have much 

bargaining capacity, according to the linguistic modifiers, 

or hedges, used empirically in fuzzy logic. 

The Compensatory Negotiation Solution by Knowledge 

Engineering is the Compensatory Model 2, for ß = 1 and 

γ= 4, the solution set defined by formula 7, the CCI1 and 

the CCI2 with formulas 8 and 9 respectively. 

These parameters have been estimated statistically, 

according to the best pair of values, such that the GDI in 

compensatory solution is the closest to the GDI in a 

probabilistic solution. The maximum relative error 

between the GDI of the two solutions is less than 5% for a 

probability of 0.95.  
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The advantage of CNSKE over FNSKE is that the 

idempotency of conjunction and disjunction operators 

gives to every membership function, obtained from the 

predicates, the possibility to be self interpreted. From the 

point of view of the measurement theory [6], these are 

cardinal decision functions. 

4. Preliminary topological results 

Theorem 4.1 (Schauder Theorem) [12]: Let E be a 

Banach space and consider a compact convex set K ⊂ E 

with more than one point. Every continuous function f: 

K→K has at least one fixed point. 

 

Theorem 4.2 [13]: Let X be a compact space and f a 

continuous mapping of X onto a topological space Y. 

Then Y = f(X) is itself compact.  

 

Theorem 4.3 [13]: Every closed subset F of a compact 

topological space T is itself compact. 

 

Theorem 4.4 (Tychonoff) [14]: The product of compact 

spaces is compact.  

 

Theorems (4.2), (4.3) and (4.4) can be applied, in general, 

to compact sets, not exclusively to compact topological 

spaces, see [15]. 

5. Proof of the existence of the FNSKE and CNSKE 

Theorem 5.1 The normed space Mm×n(ℜ) of real matrices 

of order m×n is a Banach space. 

 

proof 

The infinity norm of X ∈ Mm×n(ℜ) is defined by: 

||X||∞=maxj∑k=1
n
|Xjk| [17]. 

Let < X
1
, X

2
, ... > be a Cauchy sequence of elements of 

Mm×n(ℜ). For any ε > 0, ∃n0 ∈ N, such that r,s > n0, ||X
r
 

−X
s||∞ < ε, or maxj∑k=1

n
|X

r
jk−X

s
jk| < ε. Hence, |X

r
jk−X

s
jk| < 

ε, ∀r,s > n0 and < X
1

jk, X
2

jk,... > is a Cauchy sequence of 

ℜ. 

Because ℜ is a complete space [14], < X
1

jk, X
2

jk,... > is a 

convergent sequence. This is a property that is satisfied 

for all pair of indexes, j and k, where, 1 ≤ j ≤ m and 1 ≤ k 

≤ n. Hence, < X
1
, X

2
, ... > is convergent and Mm×n(ℜ) is a 

complete space. This proof is valid when using other 

norms.� 

 

Definition 5.2 Let (N,v) be an n-person cooperative 

game, X ∈ Mn×(2
n
−1)( ℜ) belongs to the set K(v), if: 

X(i,k)= 
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Where, i ∈ N, Ck ∈ 2
N
, η(i,Ck) ≥ 0, and ∑i=1

nη(i,Ck)=1. 

Let us call R(Ck) = [v(Ck)−∑j ∈ Ckv({i})].  

 

Remark 5.3 Evidently, GDI indexes corresponding to 

FSNKE and CSNKE belong to the set K(v). 

 

Theorem 5.4 Let (N,v) be an n-person cooperative game. 

Then, K(v) is a convex set.  

 

Proof 

Let X1,X2 ∈ K(v) satisfy X1=[X1(i,k)] and X2=[X2(i,k)], 

according to one of the formulas (1) or (11). η1(i,Ck), 

η2(i,Ck) ∈ [0,1] and λ ∈ [0,1]; λX1+(1−λ)X2 = 

[λX1(i,k)+(1−λ)X2(i,k)] = 

= λX1(i,k)+(1−λ)X2(i,k)=
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η1(i,Ck), η2(i,Ck), λ ∈ [0,1] implies that 

λη1(i,Ck)+(1−λ)η2(i,Ck) ≥ 0 and 

∑i=1
n
[λη1(i,Ck)+(1−λ)η2(i,Ck)] 

=λ∑i=1
nη1(i,Ck)+(1−λ)∑i=1

nη1(i,Ck) = λ1+(1−λ)1=1. 

Hence, λX1+(1−λ)X2 ∈ K(v) and K(v) is convex.�  

 

Theorem 5.5 Let (N,v) be an n-person cooperative game. 

Then, K(v) is a compact set.  

 

proof 

[0,1] is compact [14], thus the topological space [0,1]
n(2n

−
1)

 

is compact due to theorem (4.4).  

Let D ⊂ [0,1]
n(2n

−
1)

 be the set of vectors with elements ηi, 

such that: ∑i=kn+1
(k+1)nηi = 1 for k=0,1,…,2

n−2. 

We prove now that D is closed. 

Let {xm} ⊂ D be a sequence convergent to x0. Suppose x0 

∉ D, then x0 ∈ [0,1]
n(2n

−
1)

 because it is a closed set. The 

hypothesis implies that ∃  k, such that: ∑i=kn+1
(k+1)n

x0i = M 

≠ 1; therefore, ∑i=kn+1
(k+1)n

xmi−∑i=kn+1
(k+1)n

x0i=1−M. 

If M < 1, then 1−M= ∑i=kn+1
(k+1)n

xmi−∑i=kn+1
(k+1)n

x0i ≤ 

∑i=kn+1
(k+1)n|xmi − x0i|, let ε = 

2n

M1−
. 

Because of the convergence of the sequence {xm}, ∃ m0 

such that: |xm0i − x0i| < ε ∀i and ∑i=kn+1
(k+1)n|xm0i − x0i| < 

( )
2n

M1n −
=

2

M1−
, 1−M <

2

M1−
, this is a contradiction, 

therefore x0 ∈ D. 

If M > 1, then M−1= ∑i=kn+1
(k+1)n

x0i−∑i=kn+1
(k+1)n

xmi ≤ 

∑i=kn+1
(k+1)n|xmi − x0i|, now, let ε = 

2n

1-M
. 
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∃ m1 such that: |xm1i − x0i| < ε ∀i and ∑i=kn+1
(k+1)n|xm1i − x0i| 

< 
( )
2n

1-Mn
=

2

1-M
, M−1 < 

2

1-M
, this is also a 

contradiction, hence x0 ∈ D. 

D is a closed set because every convergent sequence of 

elements of D converges to an element of D. It is a closed 

subset of a compact set, therefore, by theorem (4.3), D is 

compact. 

τ:D→ D̂ , where τ(η1,η2,…,ηn(2
n
−1)) = B is a matrix and  
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Let us note that if i ∈ Cj, then the value v({i}) is added to 

ηjR(Cj) in B. 

D̂ =τ(D). 

This function is well defined. Suppose that 

τ(η1,η2,…,ηn(2
n
−1)) = B, τ(η1,η2,…,ηn(2

n
−1)) = Bʹ′, and ∃i,j, 

where Bij ≠ Bʹ′ij, and v({i})+ηlR(Cj) ≠ v({i})+ηʹ′lR(Cj) or 

ηlR(Cj) ≠ ηʹ′lR(Cj) (R(Cj) ≠ 0 because Bij ≠ Bʹ′ij), hence ηl 

≠ ηʹ′l, which is a contradiction because both matrices are 

the images of the same vector. 

Let us prove that τ is a continuous mapping. Let {νk}k∈N a 

convergent sequence of elements of D to ν0, let ε > 0, 

∃m0 ∈ N such that:||νk−ν0||∞ < 
R̂n

ε
, for every k > m0, 

where R̂ = maxjR(Cj). Using the definition of τ, 

||τ(νk)−τ(ν0)||∞ = maxj∑k=1
n
|(ν j

k−ν j
0
)R(Cj)| < ε, now with 

the maximum norm defined over the space of matrices, 

for every k > m0. Hence, τ(νk)→τ(ν0), when k→∞, and τ 
is a continuous mapping. According to the theorem (4.2), 

D̂  is a compact set. 

K(v) ⊂ D̂ , let {Xm}m∈N be a convergent sequence of 

elements of K(v), suppose that {Xm}m∈N converges to X0 

∈ D̂ \ K(v), therefore, ∃i,j (row index and column index 

of the matrices), such that Xmij = 0 ∀m ∈ N (because it is 

the difference between K(v) and D̂ ), but X0ij = M > 0. It 

follows from the hypothesis that ||Xm − X0||∞ ≥ M > 0, and 

{Xm}m ∈ N is not a convergent sequence. This is a 

contradiction, hence, K(v) is a closed subset of the 

compact set D̂ , and K(v) is compact according to the 

theorem (4.3).� 

 

Theorem 5.6 Let (N,v) be a cooperative n-person game. 

The operator g is continuous as function of X, the GDI of 

the game.  

 

proof 

Let {Xm}m∈N ⊂ K(v) be a convergent sequence to X0. If 

m→∞, then ||Xm−X0||∞→ 0. r(i,Ck) is a continuous 

function of X, because it is an algebraic combination of 

continuous functions that depend on X, like the fuzzy 

operators and the fuzzy order function. 

r(i,Ck) > 0 because the fuzzy order function used in the 

models is divided by a value λ = 1.0494 > 1, see (3), 

hence p and a are strictly positive operators. 
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⎢
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s=1 in case of the FNSKE, s=2 in case of the CNSKE and  

( )
⎩
⎨
⎧

∉

∈
=

k

k

kC Ciif0

Ciif1
i1  

f  is a continuous function of X, according to the results 

above, because all its elements are continuous functions 

of X and the ratio is always well-defined (with a non-null 

denominator). 

||g(Xm)−g(X0)||∞ ≤ 

maxi∑k=1
2n

−
1|| ( )

m
f X − ( )

0
f X ||∞maxi∑k=1

2n
−
1|R(Ck)|, 

where i is the row index and k is the column index. 

Because of the continuity of f , || ( )
m

f X − ( )
0

f X ||∞→ 0 for 

||Xm − X0||∞→ 0 and therefore, using last inequality above, 

||g(Xm)−g(X0)||∞→ 0 for Xm→ X0. Hence, g is a 

continuous operator of X ∈ K(v).� 

 

Theorem 5.7 If (N,v) is an n-person cooperative game. 

The operator g, corresponding to the game, has at least 

one fixed point in K(v). 

 

proof 

K(v) is a convex compact set, according to theorems (5.4) 

and (5.5). It is a subset of a Banach space of matrices, 

according to the theorem (5.1) and g is a continuous 

operator by theorem (5.6), therefore, using the Schauder’s 

Theorem (4.1), g has at least a fixed point in K(v), there 

exists the GDI and a solution of the game (N,v).� 

Due to the complexity necessary to make a theoretical 

proof of the uniqueness and the convergence of the 

algorithm of calculation, using fixed point theorems, this 

approach will be made statistically. 

The uniqueness of the Fuzzy Negotiation Solution by 

Knowledge Engineering and the convergence of the 

algorithm were proved statistically in [4]. 
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The GDI of the Compensatory Negotiation Solution by 

Knowledge Engineering was run 660 times for cases 

generated at random. The algorithm converged in all the 

runs. This result proves that the algorithm has a 

probability of convergence closed to 1, according to the 

Strong Law of Large Numbers [16] of Bernoulli Trials. 

Also, this proves the existence of the GDI and, 

consequently, the existence of n-person game solutions 

for n ≤ 9. 

To prove the uniqueness of the GDI and, hence, the 

uniqueness of the solution of the n-person games, the 

Strong Law of Large Numbers was used. 32 cases, 4 for 

each case of n-person game, where 2 ≤ n ≤ 9, were 

randomly generated. The following algorithm was made: 

1. One of the 32 cases of n-person games is chosen. 

The number of the case is denoted by m, starting with m = 

1. 

2. The GDI of the current case is calculated 31 

times.  

3. If the norm of the difference between the first 

two calculated GDI is smaller than 10−
6
, then S1 = 1, else 

S1 = 0. If the norm of the difference between every pair of 

the first 3 GDI is smaller than 10−
6
, then S2 = 1, else S2 = 0 

and so on... If the norm of the difference between every 

pair of the 31 GDI calculated is smaller than 10−
6
, then S30 

= 1, else S30 = 0.  

4. If 
30

S
30

1m

n∑
=  = 1 then 

m
S  = 1, else 

m
S  = 0.  

5. If m < 32, go to step 1 with m+1, else go to the 

next step.  

6. Compute Ŝ  = 
32

S
32

1n

m∑
= .  

 

Following the experiment described in the algorithm 

above, it was obtained a value Ŝ = 1. 

This means, according to the Strong Law of Large 

Numbers, that the probability of the uniqueness of the 

GDI is close to 1 for n-person games where 2 ≤ n ≤ 9. 

These results arise from the Compensatory Negotiation 

Solution by Knowledge Engineering. Hence, the solution 

to an n-person game, where 2 ≤ n ≤ 9, of the 

Compensatory Negotiation Solution by Knowledge 

Engineering has a probability of uniqueness near 1. 

6. Concluding Remarks 

The Fuzzy Negotiation Solution by Knowledge 

Engineering and the Compensatory Negotiation Solution 

by Knowledge Engineering are novelty fuzzy solutions to 

n-person cooperative games. They involve a fuzzy 

solution based upon an index called Good Deal Index, 

which is calculated by the recurrent equation X = g(X). 

Two fuzzy indexes are also included, the Counterpart 

Convenience Indexes 1 and 2.  

Equation X = g(X), where X is a matrix, can be calculated 

numerically through a fixed point algorithm. Hence, the 

existence and the uniqueness of X and the convergence of 

the algorithm should be proved.  

The existence of GDI, hence the fuzzy solution in both 

models, has been proved in this paper by applying the 

Schauder’s Theorem. First, we showed that the GDI in 

both solutions belong to a compact and convex set. Then, 

we demonstrate that operator g, which maps this compact 

convex set into itself, is continuous. These are the 

hypotheses of the Schauder Theorem on the existence of 

at least one fixed point in equation X =g(X).  

The theorems that prove the uniqueness of the fixed point 

and the convergence of the algorithm demand strong 

hypotheses, which are difficult to verify. Therefore, the 

proof of uniqueness of the solution and the convergence 

of the algorithm has been approached statistically by the 

Strong Law of Large Numbers. 32 cases of games were 

generated randomly, and the GDI of each of them was 

calculated 31 times. The GDI in every case was 

considered the same with a maximum relative error of  

10
-6

. 

Finally, the Strong Law of Large Numbers was used to 

prove the convergence of the calculation algorithm, 

generating 660 random cases. The algorithm converged 

for all of them. 
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