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Abstract. The purpose of this paper is to obtain an indirect boundary integral
formulation for the three-dimensional viscous flow problem in a granular material with a
void. The corresponding existence and uniqueness result of the classical solution to this
problem is proved by using the theory of hydrodynamic potentials.

1. Introduction. Due to its increasing applications in chemical engineering, oil reser-
voirs, and geology, the study of incompressible viscous flow in a porous medium has
gained a lot of attention. Fluid flow at the interfacial region in systems that consist of
a fluid saturated porous medium and an adjacent fluid layer occurs in a wide variety
of physical and engineering applications. Generally, there are three interface zones -
the interface region between two porous media, the interface region between a porous
medium and a fluid, and the interface region between a porous medium and an imper-
meable medium. Few examples are where the oil flow in petroleum reservoirs encounters
different layers of sand, rock, shale, lime stone, etc. Similar situations can be observed in
geothermal operations, thermal insulation in buildings, etc. There are extensive studies
on viscous flow past porous regions. The problem of Stokes flow past porous particles
using the Brinkman equation began with the work of Higdon and Kojima [8]. Also Qin
and Kaloni [24] have discussed the creeping flow past a porous spherical shell. For ax-
isymmetric flows, there were studies where the corresponding stream function for Stokes
equations was used ([5], [37], [38]). In the case of arbitrary viscous flow past various
porous spherical objects, Palanippan [26], Padmavathi et al. [25], and Raja Sekhar et.
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684 MIRELA KOHR AND G. P. RAJA SEKHAR

al. [31], [32], [36] have contributed using the corresponding complete general solutions
of Stokes equations and Brinkman equations.

The study of viscous flow past porous structures of complex geometries is very lim-
ited. Though there are various computational methods like finite differences and finite
element methods which are domain discretization methods, integral equation techniques
are attractive to begin the numerical solution of a wide variety of problems concerning
the slow motion of viscous fluids. The aim of this paper is to give a boundary integral
formulation for the problem of a viscous flow through porous media. The current prob-
lem of our interest in studying ground water, geophysical phenomena in soil mechanics
and civil engineering where solid structure is maintained by arching and friction between
the grains. In geological applications the collapse of a microstructure due to viscous
stress causes some non-linear effects like inhomogeneity in the matrix, destruction of the
cavity boundary, growth of a cavity, etc. Sano [30] and Raja Sekhar and Sano [34] have
calculated the flow around a two-dimensional (2D) hole which has a circular boundary
and a slightly but symmetrically deformed one respectively, which shows that the effect
of the hole increases with the value of ζ0 = R0/

√
k, where R0 is the characteristic void

radius and k is the permeability of the porous medium. At the same time, as an appli-
cation to measure groundwater velocity, they made a theoretical study on the viscous
flow past a spherical void in porous media which is the corresponding three dimensional
(3D) problem [33]. Because in practical applications a bore hole might not be a complete
circle or sphere, to answer the question on whether the velocity at the center or volume
flux into the cavity is sensitive to the deformation of the cavity boundary, Raja Sekhar
and Sano [35] studied the viscous flow in a granular material with a void of arbitrary
shape in the 2D case. They have expanded the boundary to represent the deformation
of the cavity and calculated the flow fields both inside and outside the cavity up to the
second order of the deformation parameter. In [33] and [35] the Stokes system is used for
the flow inside the cavity and the Brinkman equation for the flow in the porous region,
and the flow field is computed by matching the continuity of velocity and stress (see also
[1, 9, 21, 22, 23]).

The theory of boundary integral equations offers attractive methods as a basis for
the study of a wide variety of problems concerning viscous incompressible flows at low
Reynolds numbers past or due to the motion of solid particles or fluid interfaces (see
e.g. [11], [15]). Green’s representation formula analogous to those employed in the
potential theory is well known for Stokes flow (see e.g. [15], Chapter 3). This formula
has been extensively used in the numerical solution of various Stokes flow problems since
the original work of Youngren and Acrivos [43]. The application of this formula to
the case of exterior Stokes problems of Dirichlet type (for which the boundary velocity
is prescribed) leads to a Fredholm integral equation of the first kind for the unknown
boundary traction. However, it is known that the Fredholm integral equations of the
first kind generally give rise to unstable numerical schemes based upon the discretization
of the surface involved. On the other hand, the numerical solution corresponding to a
well-posed Fredholm integral equation of the second kind is always stable. For a three-
dimensional exterior Stokes problem with a prescribed boundary velocity (i.e., an exterior
boundary value problem of the Dirichlet type for the Stokes system), Power and Miranda
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[28] remarked that the integral representation of the velocity field in terms of a double-
layer potential without any additional term can represent only those Stokes flows which
exert zero total force and torque on the boundary of the flow domain. This representation
may be completed by adding some terms in a linear combination that lead to arbitrary
total force and torque. Karrila and Kim [10] called the method of Power and Miranda
the Completed Double Layer Boundary Integral Equation Method (CDLBIEM), in view of
the fact that it involves the idea of completing the double-layer integral operator. Botte
and Power [2] obtained an extension of Power and Miranda’s indirect method for three-
dimensional interior Stokes flow problems. Also Power [27] extended the CDLBIEM from
the case of three-dimensional exterior Stokes flow problems to the case of two-dimensional
exterior Stokes flow problems. Briceno and Power [3] obtained a completed boundary
integral equation approach for the numerical solution of the boundary value problem
corresponding to the motion of N solid particles in the interior of a deformable viscous
drop. Kohr [12] obtained a boundary integral method in order to study the oscillatory
Stokes flow due to the oscillations of two solid spheres in an incompressible Newtonian
fluid. On the other hand, Varnhorn [39], [40], [41] developed a complete potential theory
for the Stokes resolvent system whose unknowns are defined only on domains in R

n

with connected boundaries. The method developed by Kohr [12] leads to the idea of
the extension of the potential theory for the Stokes resolvent system from the case of
domains in R

n with connected boundaries to the general case of domains in R
n (n ≥ 2)

with non-connected boundaries (see [13], [14]). Recently, Kohr [13] used this extension
in order to obtain an indirect boundary integral method for a mixed boundary value
problem associated to the (unsteady) Stokes resolvent system in a bounded domain in
R

n with compact but non-connected boundary. The corresponding steady case has been
treated by Briceno and Power [3]. More recently, Kohr [14] obtained the existence and
uniqueness results for the Dirichlet problems associated to the Stokes resolvent system
in bounded and exterior domains in R

n with compact but non-connected boundaries by
using some indirect boundary integral representations. In addition, the corresponding
boundary integral methods extend the CDLBIEM developed by Power and Miranda [28]
for unbounded Stokes flow problems to the case of unsteady Stokes flow problems in
bounded and exterior domains.

Since the Brinkman equation, which describes the flow in porous media, is mathe-
matically equivalent to the (unsteady) Stokes resolvent equation, the potential theory
developed for the Stokes resolvent system may be applied to the system of continuity
and Brinkman equations in order to study various flows in porous media.

The purpose of this paper is to obtain an indirect boundary integral formulation for
the three-dimensional viscous flow problem in a granular material with a void. The
flow in the granular material is described by the continuity and Brinkman equations,
and the flow inside the void is governed by the Stokes system of equations. We use
indirect boundary integral representations that reduce the physical problem to a system
of Fredholm integral equations of the second kind with a unique continuous solution.

2. The mathematical formulation of the problem. Let us consider an other-
wise unbounded homogeneous granular material in which a void occupying the bounded
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domain D0 ⊂ R
3 is given. Let us denote by De the unbounded domain, exterior to the

boundary Γ of D0, and assume that the fluid flow far from the void is a uniform one
with velocity and pressure fields U∞ and p∞ respectively (see Fig. 1). Assume that the
boundary Γ of the void is slightly deformed such that at each moment in time it remains
a closed Lyapunov surface of class C(2,α), where α ∈ (0, 1].

D
0
 

D
e
 

Γ  
 U∞

Fig. 1. Viscous flow past a void in a granular material.

Next, we assume that the flow in the granular material (i.e., in the exterior domain
De) is governed by the generalized Darcy equation (or the Brinkman equation), i.e., the
volume averaged velocity field ṽe and the pressure field p̃e satisfy in the porous region
the following equations:

−∇̃p̃e + µeff ∇̃2ṽe − µf

κ
ṽe = 0 in De, (2.1)

∇̃ · ṽe = 0 in De, (2.2)

where κ is the permeability of the porous medium, µf is the viscosity coefficient of the
fluid, µeff is the effective viscosity, and ∇̃2 is the Laplace operator in R

3, i.e.,

∇̃2 =
∂2

∂x̃2
1

+
∂2

∂x̃2
2

+
∂2

∂x̃2
3

.

The flow inside the void region (i.e., in the bounded domain D0) is governed by the
Stokes system of equations:

−∇̃p̃i + µf ∇̃2ṽi = 0 in D0, (2.3)

∇̃ · ṽi = 0 in D0. (2.4)

Note that the superscripts e and i refer to the external flow and respectively to the
internal flow. Also we have assumed that both media, inside and respectively outside Γ,
are incompressible (see the equations (2.2) and (2.4)).

Let us introduce the non-dimensional quantities

x =
x̃
R0

, ve =
ṽe

U∞
, pe =

p̃e

µfU∞/R0

µf

µeff
, vi =

ṽi

U∞
, pi =

p̃i

µfU∞/R0
, (2.5)

where R0 is the characteristic void radius. The non-dimensional undisturbed velocity and
pressure fields are denoted by U∞ and p∞. Then the governing equations (2.1)-(2.4) take
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the following non-dimensional form:

−∇pe + (∇2 − χ2)ve = 0 in De, (2.6)

∇ · ve = 0 in De, (2.7)

−∇pi + ∇2vi = 0 in D0, (2.8)

∇ · vi = 0 in D0, (2.9)

where χ is the positive constant given by

χ =
R0√

κ

√
µf

µeff
.

In the case of equal viscosities, µf = µeff , the coefficient χ takes the form χ = R0/
√

κ.
On the boundary Γ we employ the following boundary conditions:

vi = ve on Γ, (2.10)

ti = te on Γ, (2.11)

i.e., the continuity of the velocity and boundary traction fields on Γ. Note that te is the
boundary traction corresponding to the external fields ve and pe, and ti is the boundary
traction due to the internal fields vi and pi.

Assume that the fields ve − U∞ and pe − p∞ vanish at infinity such that

(|ve − U∞||∇(ve − U∞)|)(x) = o(|x|−2) as |x| → ∞,

(|ve − U∞||pe − p∞|)(x) = o(|x|−2) as |x| → ∞.

(2.12)

Therefore, we have obtained the boundary value problem (2.6)-(2.12) with the un-
known fields ve, pe, vi and pi. The purpose of this paper is to obtain a boundary inte-
gral equation method in order to show that this boundary value problem has a unique
classical solution.

3. The uniqueness result of the solution. The following theorem refers to the
uniqueness result of the classical solution to the boundary value problem (2.6)-(2.12).

Theorem 3.1. The boundary value problem (2.6)-(2.12) has at most one classical solu-
tion ((ve, pe), (vi, pi)) ∈ ((C2(De)∩C1(De))×C1(De))×((C2(D0)∩C1(D0))×C1(D0)).

Proof. Let us assume that the boundary value problem (2.6)-(2.12) has two classical
solutions

((ve
1, p

e
1), (v

i
1, p

i
1)) ∈ ((C2(De) ∩ C1(De)) × C1(De)) × ((C2(D0) ∩ C1(D0)) × C1(D0)),

((ve
2, p

e
2), (v

i
2, p

i
2)) ∈ ((C2(De) ∩ C1(De)) × C1(De)) × ((C2(D0) ∩ C1(D0)) × C1(D0))
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and let ((ve
0, p

e
0), (vi

0, p
i
0)) be the difference of them. Then we have

−∇pe
0 + (∇2 − χ2)ve

0 = 0, ∇ · ve
0 = 0 in De, (3.1)

−∇pi
0 + ∇2vi

0 = 0, ∇ · vi
0 = 0 in D0, (3.2)

vi
0 = ve

0 on Γ, (3.3)

ti
0 = te

0 on Γ, (3.4)

(|ve
0||∇ve

0|)(x) = o(|x|−2), (|ve
0||pe

0|)(x) = o(|x|−2) as |x| → ∞. (3.5)

In view of the equations (3.1) it follows that the fields ve
0 and pe

0 satisfy the identity
(see [15], pp. 24-25)∫

De

(χ2|ve
0|2 + 2Ekj(ve

0)Ekj(ve
0))dx = −

∫
Γ

ve
0 · te

0dΓ, (3.6)

where

Ekj(ve
0) =

1
2

(
∂ve

0,k

∂xj
+

∂ve
0,j

∂xk

)
, ve

0 = (ve
0,1, v

e
0,2, v

e
0,3),

and te
0 = (te0,1, t

e
0,2, t

e
0,3) is the boundary traction due to the fields ve

0 and pe
0, i.e.,

te0,j = Tjk(ve
0)nk = (−pe

0δjk + 2Ejk(ve
0))nk.

Note that in the identity (3.6) we have used the repeated-index summation convention.
From now on, we will take into account this rule.

Using the equations (3.2), it can be proved that the fields vi
0 and pi

0 satisfy the
following identity (see [15], p. 15):

2
∫

D0

Ejk(vi
0)Ejk(vi

0)dx =
∫

Γ

vi
0 · ti

0dΓ, (3.7)

where

Ejk(vi
0) =

1
2

(
∂vi

0,j

∂xk
+

∂vi
0,k

∂xj

)
, vi

0 = (vi
0,1, v

i
0,2, v

i
0,3),

and ti
0 is the boundary traction due to the fields vi

0 and pi
0, i.e.,

ti
0 = (ti0,1, t

i
0,2, t

i
0,3), ti0,j = Tjk(vi

0)nk, Tjk(vi
0) = (−pi

0δjk + 2Ejk(vi
0))nk.

In view of the relations (3.3), (3.4), (3.6) and (3.7) we get the identity∫
De

(χ2|ve
0|2 + 2Ejk(ve

0)Ejk(ve
0))dx = −2

∫
D0

Ejk(vi
0)Ejk(vi

0)dx. (3.8)

Since the left-hand side of this identity is non-negative and the right-hand side is less
than or equal to zero it follows that∫

De

(χ2|ve
0|2 + 2Ejk(ve

0)Ejk(ve
0))dx = 0,

∫
D0

Ejk(vi
0)Ejk(vi

0)dx = 0, (3.9)

and hence

ve
0 = 0 in De, (3.10)

Ejk(vi
0) = 0 in D0, i = 1, . . . , n. (3.11)
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From (3.1) and (3.10) it follows that ∇pe
0 = 0 in De, and the vanishing condition of

p0 at infinity yields that pe
0 = 0 in De. Hence we have

ve
0 = 0, pe

0 = 0 in De. (3.12)

Now, using the condition (3.3), the property (3.10), and the uniqueness of the classical
solution to the Stokes system in a bounded domain (see [15], Theorem 1.3.3), we deduce
that

vi
0 = 0, pi

0 = c in D0, (3.13)

where c ∈ R.
On the other hand, from the properties (3.12) we find that

te
0 = 0 on Γ, (3.14)

and, in view of the condition (3.4), it follows that

ti
0 = −cn = 0 on Γ,

i.e., c = 0. Therefore, we have

ve
0 = 0, pe

0 = 0 in D0. (3.15)

The relations (3.12) and (3.15) yield that

(ve
1, p

e
1) = (ve

2, p
e
2) in De, (vi

1, p
i
1) = (vi

2, p
i
2) in D0,

i.e., the desired uniqueness result. This completes the proof of Theorem 3.1. �

4. The theory of hydrodynamic potentials. In this section we give a brief de-
scription of the main properties of the potential theory for the system of equations (2.6)
and (2.7) and respectively for the Stokes system of equations (2.8) and (2.9).

4.1. The fundamental solution for the system of equations (2.6) and (2.7). Let us
denote by (Gχ2

(Gχ2

jk ),Πχ2
(Πχ2

j )) the fundamental solution of the system of equations
(2.6) and (2.7), i.e.,

∂Gχ2

jk (x− y)
∂xj

= 0, (4.1)

−
∂Πχ2

j (x− y)
∂xk

+ (∇2
x − χ2)Gχ2

kj (x− y) = −8πδkjδ(x− y), (4.2)

where δ(x − y) is the delta function or Dirac distribution in R
3. Also ∇x means the

gradient operator with respect to the point x.
The functions Gχ2

jk and Πχ2

j are given by (see e.g. [15], p. 81)

Gχ2

jk (x− y) =
δjk

|x − y|A1(χ|x− y|) +
(xj − yj)(xk − yk)

|x − y|3 A2(χ|x− y|),

Πχ2

j (x− y) = 2
xj − yj

|x − y|3 ,

(4.3)
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where
A1(z) = 2e−z(1 + z−1 + z−2) − 2z−2,

A2(z) = −2e−z(1 + 3z−1 + 3z−2) + 6z−2.

(4.4)

Let Sχ2
(Sχ2

ijk) be the stress tensor associated to the Green function Gχ2
, i.e.,

Sχ2

ijk(x− y) = −Πχ2

j (x − y)δjk +
∂Gχ2

ij (x− y)
δxk

+
∂Gχ2

kj (x− y)
∂xi

. (4.5)

The components of this tensor, Sχ2

ijk, have the following expressions (see e.g. [15], p.
82):

Sχ2

ijk(x − y) = −2
{

δik
xj − yj

|x − y|3 D1(χ|x− y|) (4.6)

+
(

δkj
xi − yi

|x − y|3 + δij
xk − yk

|x − y|3

)
D2(χ|x− y|)

+
(xi − yi)(xj − yj)(xk − yk)

|x − y|5 D3(χ|x− y|)
}

,

where
D1(z) = 2e−z(1 + 3z−1 + 3z−2) − 6z−2 + 1,

D2(z) = e−z(z + 3 + 6z−1 + 6z−2) − 6z−2,

D3(z) = e−z(−2z − 12 − 30z−1 − 30z−2) + 30z−2.

(4.7)

Let Λχ2
(Λχ2

jk ) be the pressure tensor associated to the stress tensor Sχ2
(Sχ2

jkl). These
tensors determine a fundamental solution to the system of equations (2.6) and (2.7) in
R

3, i.e.,

∂Sχ2

jkl(y − x)
∂xk

= 0 for x 	= y, (4.8)

−
∂Λχ2

jl (x− y)
∂xk

+ (∇2
x − χ2)Sχ2

jkl(y − x) = 0 for x 	= y. (4.9)

We have (see e.g. [15], pp. 190, 196)

Λχ2

ik (x− y) = 2
δik

|x − y|3 (R2 − 2) + 12
(xi − yi)(xk − yk)

|x − y|5 , (4.10)

where R = χ|x− y|.
4.2. The fundamental solution of the Stokes system. Let (G(Gjk),ΠS(ΠS

j )) be the
fundamental solution of the Stokes system in R

3, i.e.,

∂Gjk(x− y)
∂xj

= 0, (4.11)

−∂ΠS
k (x− y)
∂xj

+ ∇2
xGjk(x− y) = −8πδkjδ(x− y). (4.12)
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We have (see e.g. [18], p. 50; [15], p. 38)

Gjk(x − y) =
δkj

|x − y| +
(xj − yj)(xk − yk)

|x − y|3 , (4.13)

ΠS
j (x − y) = 2

xj − yj

|x − y|3 . (4.14)

Also, let SS(SS
ijk) be the stress tensor associated to the Green function G(Gjk). Note

that

SS
ijk(x− y) = −ΠS

j (x − y)δjk +
∂Gij(x− y)

δxk
+

∂Gkj(x − y)
∂xi

= −6
(xi − yi)(xj − yj)(xk − yk)

|x − y|5 .

(4.15)

For further arguments we denote by ΛS(ΛS
ik) the pressure tensor corresponding to

the stress tensor SS(SS
ijk). The pair (SS ,ΛS) determine a fundamental solution to the

Stokes system in the sense that

∂SS
ijk(y − x)

∂xj
= 0 for x 	= y, (4.16)

−∂ΛS
ik(x− y)
∂xj

+ ∇2
xSS

ijk(y − x) = 0 for x 	= y. (4.17)

The pressure tensor ΛS has the following components (see e.g. [15], pp. 128, 132):

ΛS
ik(x − y) = 4

(
− δik

|x − y|3 + 3
(xi − yi)(xk − yk)

|x − y|5

)
. (4.18)

4.3. The potential theory for the Stokes system. Let us consider the vector functions
g = (g1, g2, g3) and h = (h1, h2, h3) such that g,h ∈ C0(Γ). The hydrodynamic single-
layer potential with density g is the vector function V(·,g) given by

V(x,g) =
1
8π

∫
Γ

G(x− y) · g(y)dΓ(y), x ∈ R
3 \ Γ. (4.19)

The hydrodynamic double-layer potential with density h is the vector function W(·,h)
with the following components:

Wj(x,h) =
1
8π

∫
Γ

KS
ij(y,x)hi(y)dΓ(y), x ∈ R

3 \ Γ, (4.20)

where

KS
ij(y,x) = SS

ijk(y − x)nk(y). (4.21)

Also, let P s(·,g) and P d(·,h) be the functions given by

P s(x,g) =
1
8π

∫
Γ

ΠS
i (x− y)gi(y)dΓ(y), x ∈ R

3 \ Γ, (4.22)

P d(x,h) =
1
8π

∫
Γ

ΛS
ik(x− y)nk(y)hi(y)dΓ(y), x ∈ R

3 \ Γ. (4.23)
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According to the equations (4.11), (4.12), (4.16) and (4.17), we deduce that each of
the pairs (V(·,g), P s(·,g)) and (W(·,h), P d(·,h)) is a classical solution to the Stokes
system in both regions D0 and De, i.e.,

∇ · V(·,g) = 0, −∇P s(·,g) + ∇2V(·,g) = 0, (4.24)

∇ · W(·,h) = 0, −∇P d(·,h) + ∇2W(·,h) = 0 (4.25)

in D0 and De respectively.
The single- and double-layer potentials behave at infinity as follows:

V(x,g) = O(|x|−1) as |x| → ∞ (4.26)

P s(x,h) = O(|x|−2) as |x| → ∞. (4.27)

W(x,h) = O(|x|−2), P d(x,h) = O(|x|−3) as |x| → ∞. (4.28)

Let T(V) be the stress tensor field due to the single-layer potential V(·,g). According
to the equations (4.15) we find that

Tij(V)(x) = −P s(x,g)δij +
∂Vi(x,g)

∂xj
+

∂Vj(x,g)
∂xi

=
1
8π

∫
Γ

SS
ijk(x − y)gi(y)dΓ(y), x ∈ R

3 \ Γ.

(4.29)

In addition, the normal stresses due to the single-layer potential V(·,g) are defined in
a neighbourhood U of Γ by the relation

tj(V)(x) = Tjl(V)(x)nl(x̃), x ∈ U \ Γ, j = 1, 2, 3, (4.30)

where x̃ is the unique projection of x ∈ U onto Γ.
Let w be a (scalar, vector, or tensor) field defined in a domain containing Γ. Then we

denote by w−(x0) and w+(x0) the limiting values of w in a point x0 ∈ Γ, evaluated from
D0 and De respectively.

The following theorem refers to the continuity behaviour of the hydrodynamic poten-
tials across the boundary Γ of the domain D0 (see e.g. [15], Chapter 3):

Theorem 4.1. Let g and h be two continuous vector fields on Γ and let V(·,g), W(·,h)
and t(V) be the functions given by the relations (4.19), (4.20) and (4.30). Then for any
x0 ∈ Γ we have

V+(x0,g) = V−(x0,g) = V(x0,g), (4.31)

W+
j (x0,h) =

1
2
hj(x0) +

1
8π

∫
Γ

KS
ij(y,x0)hi(y)dΓ(y), (4.32)

W−
j (x0,h) = −1

2
hj(x0) +

1
8π

∫
Γ

KS
ij(y,x0)hi(y)dΓ(y), (4.33)

t+j (V)(x0) = −1
2
gj(x0) +

1
8π

∫
Γ

KS
ji(x0,y)gi(y)dΓ(y), (4.34)

t−j (V)(x0) =
1
2
gj(x0) +

1
8π

∫
Γ

KS
ji(x0,y)gi(y)dΓ(y), (4.35)

where all double-layer integrals are improper integrals, with weakly singular kernels.
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Let us now consider the single- and double-layer integral operators

V : C0(Γ) → C0(Γ), Kd : C0(Γ) → C0(Γ)

given by

(Vg)(x0) = V(x0,g), (Kdh)j(x0) =
1
8π

∫
Γ

KS
ij(y,x0)hi(y)dΓ(y) (4.36)

for x0 ∈ Γ and all g,h ∈ C0(Γ).
Since Γ is a closed Lyapunov surface it follows that the kernels of the integral operators

V and Kd, G(x− y) and KS(y − x), are weakly singular, and hence these operators are
compact from C0(Γ) into C0(Γ).

Let 〈·, ·〉 : L2(Γ) × L2(Γ) → R be the inner product given by

〈g,h〉 =
∫

Γ

g(y) · h(y)dΓ(y), g,h ∈ L2(Γ), (4.37)

and let Kd∗ : C0(Γ) → C0(Γ) be the adjoint of the double-layer integral operator Kd

with respect to this inner product. Straightforward computation yields that

(Kd∗g)j(x) =
1
8π

∫
Γ

KS
ji(x,y)gi(y)dΓ(y), g ∈ C0(Γ), x ∈ Γ, (4.38)

j = 1, . . . , n. Note that Kd∗ is also compact from C0(Γ) into C0(Γ).
Assume that 0 < γ ≤ 1. For the next arguments, we denote by Cγ(Γ) the set of Hölder

continuous real-valued functions on Γ with exponent γ. Also let Ck,γ(Γ) be the space
of those real-valued functions that are k-times continuously differentiable and whose
kth-partial derivatives are Hölder continuous on Γ with exponent γ. For simplicity, the
spaces (Cγ(Γ))3 and (Ck,γ(Γ))3 of corresponding vector functions will be simply denoted
by Cγ(Γ) and Ck,γ(Γ), but we always make a distinction between the two different cases.
Note that Ck,γ(Γ) is a Banach space (see e.g. [6], p. 241).

In addition to the previous properties, we have the following results related to the
single- and double-layer integral operators V and Kd (see e.g. [7], [20]):

Theorem 4.2. Let us assume that Γ is a closed Lyapunov surface of class C1,α, α ∈ (0, 1],
and let λ ∈ (0, α). Then:

• The single-layer integral operator V is continuous from Cλ(Γ) into C1,λ(Γ).
• The double-layer integral operator Kd is continuous from C1,λ(Γ) into C1,λ(Γ).
On the other hand, we have the following property:
• If Γ ∈ C2,α, α ∈ (0, 1], and Φ ∈ C1,γ(Γ), γ ∈ (0, 1), then there exist the limiting

values of the boundary traction due to the double-layer potential W(·, Φ) on both sides
of Γ, T+(W(Φ)) and T−(W(Φ)), and these limiting values are equal, i.e.,

T+(W(Φ)) = T−(W(Φ)) ≡ T(W(Φ)) on Γ. (4.39)

The equality (4.39) expresses the continuity property of the boundary traction due to
the double-layer potential W(·, Φ) across the boundary Γ, when the density Φ belongs
to the class C1,γ(Γ), γ ∈ (0, 1), and is similar to the Lyapunov-Tauber Theorem from
the classical potential theory (see e.g. [29], p. 163; [15], p. 151).
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4.4. The potential theory for the system of equations (2.6) and (2.7). Let us now refer
to the system of equations (2.6) and (2.7) and let g and h be two continuous vector
functions on Γ. Then the single- and double-layer potentials, Vχ2,3(·,g) Wχ2,3(·,h),
associated to this system, are given by

Vχ2,3(x,g) =
1
8π

∫
Γ

Gχ2
(x− y) · g(y)dΓ(y), x ∈ R

3 \ Γ, (4.40)

(Wχ2,3)j(x,h) =
1
8π

∫
Γ

Sχ2

ijk(y − x)nk(y)hi(y)dΓ(y), x ∈ R
3 \ Γ. (4.41)

We also consider the functions P s
χ2,3(·,g) and P d

χ2,3(·,h) given by

P s
χ2,3(x,g) =

1
8π

∫
Γ

Πχ2

i (x− y)gi(y)dΓ(y), x ∈ R
3 \ Γ, (4.42)

P d
χ2,3(x,h) =

1
8π

∫
Γ

Λχ2

ik (x− y)nk(y)hi(y)dΓ(y), x ∈ R
3 \ Γ. (4.43)

Taking into account the equations (4.1), (4.2), (4.8) and (4.9) we deduce that each of
the pairs (Vχ2,3(·,g), P s

χ2,3(·,g)) and (Wχ2,3(·,h), P d
χ2,3(·,h)) is a classical solution to

the system of equations (2.6) and (2.7) in R
3 \ Γ, i.e.,

∇ · Vχ2,3(·,g) = 0, −∇P s
χ2,3(·,g) + (∇2 − χ2)Vχ2,3(·,g) = 0, (4.44)

∇ · Wχ2,3(·,h) = 0, −∇P d
χ2,3(·,h) + (∇2 − χ2)Wχ2,3(·,h) = 0 (4.45)

in R
3 \ Γ.

Let Hχ2,3(·,g) be the normal stresses provided by the single-layer potential Vχ2,3(·,g)
defined in a neighbourhood U ⊂ R

3 of Γ by the relations

(Hχ2,3)j(x,g) =
1
8π

∫
Γ

Sχ2

jik(x − y)nk(x̃)gi(y)dΓ(y), x 	∈ Γ, (4.46)

where x̃ is the unique projection of x ∈ U onto Γ.
Let us introduce the kernel matrices Kχ2,3(y,x) and Dχ2,3(x,y) with the components

(Kχ2,3)ij(y,x) = Sχ2

ijk(y − x)nk(y), (Dχ2,3)ij(x,y) = Sχ2

jik(x− y)nk(x̃), (4.47)

i, j = 1, 2, 3. Therefore, the double-layer potential Wχ2,3(·,h) and the normal stress
associated with the single-layer potential Hχ2,3(·,g) can be written in the form

Wχ2,3(x,h) =
1
3π

∫
Γ

h(y) · Kχ2,3(y,x)dΓ(y),

Hχ2,3(x,g) =
1
8π

∫
Γ

g(y) · Dχ2,3(x,y)dΓ(y)

(4.48)

for x 	∈ Γ.
Furthermore, using the decomposition formulas

Gχ2

ji (x − y) = Gji(x− y) + Gc
ji(x− y),

Sχ2

ijk(y − x)nk(y) = SS
ijk(y − x)nk(y) + Sc

ijk(y − x)nk(y),
(4.49)
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where the kernel Gc is continuous and Sc bounded, we deduce that the continuity be-
haviour of the functions Vχ2,3(·,g), Wχ2,3(·,h) and Hχ2,3(·,g) is determined only by
the tensors G and SS , which correspond to the Stokes system. Therefore, we have the
following result (see e.g. [15], p. 201):

Theorem 4.3. Let g and h be two continuous vector functions on Γ and let Vχ2,3(·,g),
Wχ2,3(·,h) and Hχ2,3(·,g) be the functions given by the relations (4.40), (4.41) and
(4.46). Then for any x0 ∈ Γ

V+
χ2,3(x0,g) = V−

χ2,3(x0,g) = Vχ2,3(x0,g), (4.50)

W+
χ2,3(x0,h) − W∗

χ2,3(x0,h) = h(x0) = W∗
χ2,3(x0, h) − W−

χ2,3(x0,h), (4.51)

H+
χ2,3(x0,g) − H∗

χ2,3(x0,g) = −g(x0) = H∗
χ2,3(x0,g) − H−

χ2,3(x0,g), (4.52)

where

(W∗
χ2,3)j(x0,h) =

1
8π

∫
Γ

Sχ2

ijk(y − x0)nk(y)hi(y)dΓ(y),

(H∗
χ2,3)j(x0,g) =

1
8π

∫
Γ

Sχ2

jik(x0 − y)nk(x0)gi(y)dΓ(y).

(4.53)

In addition, Vχ2,3(·,g), Wχ2,3(·,h), P s
χ2,3(·,g), P d

χ2,3(·,h) have the following decay
behaviour at infinity:

Vχ2,3(x,g) = O(|x|−3), Wχ2,3(x,h) = O(|x|−2) as |x| → ∞, (4.54)

P s
χ2,3(x,g) = O(|x|−2) as |x| → ∞,

P d
χ2,3(x,h) = O(|x|−1) as |x| → ∞.

(4.55)

Let Vχ2,3 : C0(Γ) → C0(Γ) and Kd
χ2,3 : C0(Γ) → C0(Γ) be the single- and double-layer

integral operators given by

(Vχ2,3g)(x0) = Vχ2,3(x0,g), (Kd
χ2,3h)(x0) = W∗

χ2,3(x0,h), (4.56)

for x0 ∈ Γ and all g,h ∈ C0(Γ). Using the decomposition formulas (4.49) it follows
that both kernels Gχ2

(x − y) and Kχ2,3(y,x) of these operators have a weakly singular
behaviour. Consequently, both operators Vχ2,3 and Kd

χ2,3 are compact from C0(Γ) into
C0(Γ). In addition, we have the following properties (see also [17], where there are
mentioned mapping properties of these operators):

Theorem 4.4. • If Γ ∈ C2,α and λ ∈ (0, α), α ∈ (0, 1], then the new integral operators
Vc : Cλ(Γ) → C1,λ(Γ) and Kc : C1,λ(Γ) → C1,λ(Γ) given by

Vc = Vχ2,3 − V , Kc = Kχ2,3 − K, (4.57)

are compact linear operators.
• If Γ ∈ C2,α and Φ ∈ C1,γ(Γ), α ∈ (0, 1], γ ∈ (0, 1), then there exist the limiting

values of the boundary traction due to the double-layer potential Wχ2,3(·, Φ) on both
sides of Γ, T+(Wχ2,3(Φ)) and T−(Wχ2,3(Φ)), and they are equal, i.e.,

T+(Wχ2,3(Φ)) = T−(Wχ2,3(Φ)) ≡ T(Wχ2,3(Φ)) on Γ. (4.58)
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Proof. Taking into account the expressions of the complementary kernels Gc
ji(x − y)

and Sc
ijk(y − x)nk(y) (see the relations (4.3)-(4.7), (4.13) and (4.15)) it can be proved

that the integral operators

Vc : Cλ(Γ) → C2,λ(Γ), Kc : C1,λ(Γ) → C2,λ(Γ)

are continuous. In addition, the space C2,λ(Γ) is compactly embedded into C1,λ(Γ) (see
e.g. [42]). Therefore, the operator Vc : Cλ(Γ) → C1,λ(Γ) is compact as the product of
the continuous operator Vc : Cλ(Γ) → C2,λ(Γ) with the compact embedding operator
from C2,λ(Γ) into C1,λ(Γ). With similar kinds of arguments it follows that the operator
Kc : C1,λ(Γ) → C1,λ(Γ) is also compact.

The proof of the property (4.58) can be consulted in [39]. �
Let Hχ2,3 be the adjoint of the double-layer integral operator Kd

χ2,3 with respect to
the inner product 〈·, ·〉 given by the relation (4.37). Then we have

(Hχ2,3g)(x0) = H∗
χ2,3(x0,g), x0 ∈ Γ, g ∈ C0(Γ). (4.59)

5. The boundary integral formulation and the existence result of the solu-
tion. Let λ be an arbitrary number in the interval (0, α).

In order to prove that the boundary value problem (2.6)-(2.12) has a unique classical
solution, we consider the following boundary integral representations:

ve
k(x) = U∞

k +
1
8π

∫
Γ

Kχ2

jk (y,x)φj(y)dΓ(y)

+
1
8π

∫
Γ

Gχ2

kj (x− y)hj(y)dΓ(y), x ∈ De,

(5.1)

pe(x) = p∞(x) +
1
8π

∫
Γ

Λχ2

jk (x− y)nk(y)φj(y)dΓ(y)

+
1
8π

∫
Γ

Πχ2

j (x− y)hj(y)dΓ(y), x ∈ De,

(5.2)

and

vi
k(x) =

1
8π

∫
Γ

KS
jk(y,x)φj(y)dΓ(y)

+
1
8π

∫
Γ

Gkj(x− y)hj(y)dΓ(y), x ∈ D0,

(5.3)

pi(x) =
1
8π

∫
Γ

ΛS
jk(x− y)nk(y)φj(y)dΓ(y)

+
1
8π

∫
Γ

ΠS
j (x− y)hj(y)dΓ(y), x ∈ D0,

(5.4)

where Φ ∈ C1,λ(Γ) and h ∈ Cλ(Γ) are unknown vector densities.
Therefore, we try to determine the external velocity field ve − U∞ as a combination

between a double-layer potential and a single-layer potential, Wχ2,3(·, Φ) and Vχ2,3(·,h),
each of them corresponding to the system of the continuity and Brinkman equations and
having the unknown densities Φ = (φ1, φ2, φ3) and h = (h1, h2, h3) respectively. Also, the
velocity field vi of the inner flow is thought of as a combination between a double-layer
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potential and a single-layer potential, W(·, Φ) and V(·,h), each of them corresponding
to the Stokes system.

According to the equations (4.24), (4.25), (4.44) and (4.45) it follows that the fields
ve and pe satisfy the system of equations (2.6) and (2.7). Similarly, the fields vi and pi

satisfy the equations (2.8) and (2.9). In addition, the formulas (4.54) and (4.55) yield
that the far field conditions (2.12) are satisfied.

On the other hand, using the continuity behaviour of single- and double-layer poten-
tials across the boundary Γ, i.e. the properties (4.31)-(4.33), (4.50) and (4.51), we find
that

ve+
k (x0) = U∞

k +
1
2
φk(x0) +

1
8π

∫
Γ

Kχ2

jk (y,x0)φj(y)dΓ(y)

+
1
8π

∫
Γ

Gχ2

kj (x0 − y)hj(y)dΓ(y), x0 ∈ Γ,

(5.5)

vi−
k (x0) = −1

2
φk(x0) +

1
8π

∫
Γ

KS
jk(y,x0)φj(y)dΓ(y)

+
1
8π

∫
Γ

Gkj(x0 − y)hj(y)dΓ(y), x0 ∈ Γ.

(5.6)

By imposing the boundary condition (2.10) to the fields ve and vi given by the bound-
ary integral representations (5.1) and (5.3), we obtain the Fredholm integral equations
of the second kind:

φk(x) +
1
8π

∫
Γ

Kc
jk(y,x0)φj(y)dΓ(y)

+
1
8π

∫
Γ

Gc
kj(x0 − y)hj(y)dΓ(y) = −U∞

k , x0 ∈ Γ,

(5.7)

where
Kc

jk(y,x0) = Kχ2

jk (y,x0) − KS
jk(y,x0),

Gc
jk(x0 − y) = Gχ2

jk (x0 − y) − Gjk(x0 − y).
(5.8)

Now, using the continuity property of the normal stresses due to the double-layer
potentials W(·, Φ) and Wχ2,3(·, Φ) across the boundary Γ (see the properties (4.39) and
(4.58)), the jump formulas of the boundary traction due to a single-layer potential (i.e.,
the properties (4.34), (4.35) and (4.52)), as well as the boundary integral representations
(5.1)-(5.4), we deduce that

te+k (x0) = t∞k (x0) −
1
2
hk(x0) +

1
8π

∫
Γ

Kχ2

kj (x0,y)hj(y)dΓ(y)

+ Tkj(Wχ2,3(Φ))(x0)nk(x0), x0 ∈ Γ,

(5.9)

ti−k (x0) =
1
2
hk(x0) +

1
8π

∫
Γ

KS
kj(x0,y)hj(y)dΓ(y)

+ Tkj(W(Φ))(x0)nk(x0), x0 ∈ Γ,

(5.10)

where t∞ is the boundary traction due to the fields U∞ and p∞, i.e., t∞ = −p∞n on Γ.
Also, we have

te+k (x0) = lim
x→x0∈Γ
x∈De

Tkj(ve)(x)nk(x0), ti−k (x0) = lim
x→x0∈Γ
x∈D0

Tkj(vi)(x)nk(x0),
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where T(ve) and T(vi) are the stress tensors due to the external fields (ve, pe) and to
the internal fields (vi, pi), respectively. In addition, T(Wχ2,3(Φ)) and T(W(Φ)) are the
stress tensors corresponding to the double-layer potentials Wχ2,3(·, Φ) and W(·, Φ).

Furthermore, making use of the boundary condition (2.11) and the relations (5.9) and
(5.10), we get the equations

−hk(x0) +
1
8π

∫
Γ

Kc
kj(x0,y)hi(y)dΓ(y)

+ Tkj(Wc(Φ))(x0)nj(x0) = −t∞k (x0), x0 ∈ Γ,

(5.11)

where

Wc(Φ) = Wχ2,3(·, Φ) − W(·, Φ). (5.12)

Note that the pressure field of the undisturbed flow p∞ has the form p∞(x) = −χ2U∞ ·x,
x ∈ De, as follows from the Brinkman equation. In addition, the assumption Γ ∈ C2,α

yields that t∞ ∈ C1,β(Γ) for any β ∈ (0, α].
According to the above arguments, we have reduced the boundary value problem (2.6)-

(2.12) to the system of Fredholm integral equations of the second kind (5.7) and (5.11).
In order to prove the existence and uniqueness result of the solution to this system in
the space C1,λ(Γ)×Cλ(Γ), λ ∈ (0, α), we will show that the corresponding homogeneous
system has only the trivial solution in the same space. Then the desired existence and
uniqueness result follows directly from Fredholm’s alternative (see e.g. [16]).

Let us now consider the homogeneous system of equations

φ0
k(x0) +

1
8π

∫
Γ

Kc
jk(y,x0)φ0

j(y)dΓ(y)

+
1
8π

∫
Γ

Gc
kj(x0 − y)h0

j(y)dΓ(y) = 0, x0 ∈ Γ,

(5.13)

−h0
k(x0) +

1
8π

∫
Γ

Kc
kj(x0,y)h0

j(y)dΓ(y)

+ Tkj(Wc(Φ0))(x0)nj(x0) = 0, x0 ∈ Γ,

(5.14)

k = 1, 2, 3.
Also let (Φ0,h0) ∈ C1,λ(Γ) × Cλ(Γ) be an arbitrary solution to this system, and let

(ue, qe) and (ui, qi) be the fields given by

ue
k(x) =

1
8π

∫
Γ

Kχ2

jk (y,x)φ0
j(y)dΓ(y)

+
1
8π

∫
Γ

Gχ2

kj (x− y)h0
j(y)dΓ(y), x ∈ R

3 \ Γ,

(5.15)

qe(x) =
1
8π

∫
Γ

Λχ2

jk (x− y)φ0
j(y)dΓ(y)

+
1
8π

∫
Γ

Πχ2

j (x − y)h0
j(y)dΓ(y), x ∈ R

3 \ Γ,

(5.16)
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and

ui
k(x) =

1
8π

∫
Γ

KS
jk(y,x)φ0

j(y)dΓ(y)

+
1
8π

∫
Γ

Gkj(x− y)h0
j(y)dΓ(y), x ∈ R

3 \ Γ,

(5.17)

qi(x) =
1
8π

∫
Γ

ΛS
jk(x− y)φ0

j(y)dΓ(y)

+
1
8π

∫
Γ

ΠS
j (x − y)h0

j(y)dΓ(y), x ∈ R
3 \ Γ.

(5.18)

In view of the properties (4.24), (4.25), (4.44) and (4.45) it follows that these fields
satisfy the equations

∇ · ue = 0, −∇qe + (∇2 − χ2)ue = 0 in R
3 \ Γ, (5.19)

∇ · ui = 0, −∇qi + ∇2ui = 0 in R
3 \ Γ. (5.20)

In addition, from the properties (4.54) and (4.55) we find that

(|ue||∇ue|)(x) = o(|x|−2), (|ue||pe|)(x) = o(|x|−2) as |x| → ∞. (5.21)

Therefore, the fields ue and qe satisfy the identity (see e.g. [15], p. 24)∫
De

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −
∫

Γ

ue+
k (x)t+k (ue)(x)dΓ(x), (5.22)

where t±k (ue) = T±
kj(u

e)nk, and

Tkj(ue) = −qeδkj + 2Ekj(ue), Ejk(ue) =
1
2

(
∂ue

j

∂xk
+

∂ue
k

∂xj

)
, j, k = 1, 2, 3.

Similarly, the fields ui and qi satisfy the identity (see e.g. [15], p. 15)

2
∫

D0

Ejk(ui)Ejk(ui)dx =
∫

Γ

ui−
k (x)t−k (ui)(x)dΓ(x), (5.23)

where t±k (ui) = T±
kj(u

i)nk, and

Tkj(ui) = −qiδkj + 2Ekj(ui), Ejk(ui) =
1
2

(
∂ui

j

∂xk
+

∂ui
k

∂xj

)
, j, k = 1, 2, 3.

Now, taking into account the fact that (Φ0,h0) is a solution to the system of equations
(5.13) and (5.14), and making use of the relations (4.31)-(4.35) and (4.50)-(4.52), we
obtain the properties

ue+
k = ui−

k on Γ, (5.24)

t+k (ue) = t−k (ui) on Γ, (5.25)

in view of which we get the equality∫
Γ

ue+
k (x)t+k (ue)(x)dΓ =

∫
Γ

ui−
k (x)t−k (ui)(x)dΓ. (5.26)
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The properties (5.22), (5.23) and (5.26) yield that∫
De

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −2
∫

D0

Ejk(ui)Ejk(ui)dx. (5.27)

Consequently, we have
ue = 0 in De, (5.28)

∂ui
j

∂xk
+

∂ui
k

∂xj
= 0 in D0, j, k = 1, 2, 3. (5.29)

The general solution of the system of equations (5.29) represents a rigid body motion
field, i.e., it has the form (see e.g. [15], p. 17)

ui(x) = A + B× x, x ∈ D0, (5.30)

where A and B are constant vectors (or functions which depend only on t).
In addition, in view of the second of equations (5.19) and from the fact that the

pressure field pe vanishes at infinity, we deduce that

pe = 0 in De. (5.31)

From the properties (5.24) and (5.28) it follows that

ui−
k = ue+

k = 0 on Γ. (5.32)

This result together with the property (5.30) yield that A = B = 0, i.e.,

ui = 0, qi = c in D0, (5.33)

where c ∈ R.
On the other hand, from the relations (5.25), (5.28) and (5.31) we get

t−k (ui) = t+k (ue) = 0 on Γ (5.34)

and hence the constant c must be equal to zero, i.e.,

ui = 0, qi = 0 in D0. (5.35)

Now, using the jump formula

ue+ − ue− = Φ0 on Γ

(see the properties (4.50) and (4.51)) as well as the result (5.28), we deduce that

ue− = −Φ0 on Γ. (5.36)

Similarly, from the jump formula

ui+ − ui− = Φ0 on Γ

(see the properties (4.31)-(4.33)) as well as the result (5.32), we find that

ui+ = Φ0 on Γ. (5.37)

On the other hand, from the relations (4.52) we deduce that the boundary traction
due to the fields ue and qe has a jump across Γ given by the formula

t+(ue) − t−(ue) = −h0 on Γ. (5.38)
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But t+(ue) = 0 on Γ and hence

t−(ue) = h0 on Γ. (5.39)

With similar kinds of arguments as before, we get the relation

t+(ui) = −h0 on Γ. (5.40)

In addition, the fields (ue, qe) satisfy the identity∫
D0

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx =
∫

Γ

ue−
k (x)t−k (ue)(x)dΓ(x) (5.41)

and, in view of the properties (5.36) and (5.39), this identity takes the form∫
D0

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −
∫

Γ

Φ0 · h0dΓ. (5.42)

Similarly, the fields (ui, qi) satisfy the identity

2
∫

De

Ejk(ui)Ejk(ui)dx = −
∫

Γ

ui+
k (x)t+k (ui)(x)dΓ(x), (5.43)

which, in view of the properties (5.37) and (5.40), becomes

2
∫

De

Ejk(ui)Ejk(ui)dx =
∫

Γ

Φ0 · h0dΓ. (5.44)

Therefore, from the identities (5.42) and (5.44) we obtain the following equality:∫
D0

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −2
∫

De

Ejk(ui)Ejk(ui)dx, (5.45)

which yields that
ue = 0 in D0 (5.46)

and
ui = 0 in De. (5.47)

The property (5.47), the Stokes equation −∇qi + ∇2ui = 0 in De, and the fact that
the pressure field qi vanishes at infinity yield the additional result

qi = 0 in De. (5.48)

Now, taking into account the relations (5.36) and (5.46) we deduce that

Φ0 = 0 on Γ. (5.49)

In addition, according to the relations (5.40), (5.47) and (5.48) we find that

h0 = 0 on Γ. (5.50)

Consequently, from the properties (5.49) and (5.50) we deduce that the homogeneous
system of equations (5.13) and (5.14) has only the trivial solution in the space C1,λ(Γ)×
Cλ(Γ) and hence, in view of Fredholm’s alternative, the system of Fredholm integral
equations of the second kind (5.7) and (5.11) has a unique solution (Φ,h) ∈ C1,λ(Γ) ×
Cλ(Γ).

The previous arguments lead to the following existence and uniqueness result:
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Theorem 5.1. Let Γ be a close Lyapunov surface of class C2,α in R
3, α ∈ (0, 1], and

let λ ∈ (0, α). Then the system of Fredholm integral equations of the second kind (5.7)
and (5.11) has a unique solution (Φ,h) ∈ C1,λ(Γ) × Cλ(Γ), and the boundary integral
representations (5.1)-(5.4), obtained with the vector densities Φ and h, determine the
unique classical solution

((ve, pe), (vi, pi)) ∈ ((C2(De) ∩ C1(De)) × C1(De)) × ((C2(D0) ∩ C1(D0)) × C1(D0))

to the boundary value problem (2.6)-(2.12).

6. Conclusion. In this paper we have developed an indirect boundary integral for-
mulation in order to show the existence and uniqueness result of the classical solution
to a boundary value problem which describes the three-dimensional viscous flow in a
granular material with a void. We have assumed that the flow in the granular material is
governed by the continuity and Brinkman equations, and that the flow inside the void is
described by the continuity and Stokes equations. The desired existence and uniqueness
result is obtained by using the potential theory for both Stokes and Brinkman equations,
as well as certain results of the theory of integral equations. The corresponding numerical
solution can be obtained by applying a Boundary Element Method (BEM) to the system
of boundary integral equations. Because of the wide range of applications of BEM to
flow in porous media, the boundary integral formulation of the present problem is very
useful. In particular, an extensive application of BEM to groundwater flow is given by
Liggett and Liu [19], Cheng and Ouazar [4]. Since the power of BEM allows one to deal
with any arbitrary geometry, the authors propose to get the corresponding numerical
results for the presence void of arbitrary shape in future investigations.
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