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Abstract: In this article, the homotopy perturbation method has been
successfully applied to find the approximate solution of a Caputo fractional
Volterra-Fredholm integro-differential equation. The reliability of the method
and reduction in the size of the computational work give this method a wider
applicability. Also, the behavior of the solution can be formally determined
by the analytical approximate. Moreover, we proved the existence and unique-
ness results of the solution. Finally, an example is included to demonstrate the
validity and applicability of the proposed technique.
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1. Introduction

In the recent years, numerous papers have been concentrating on the develop-
ment of analytical and numerical methods for fractional order integro-differential
equations. In this paper, we consider a Caputo fractional Volterra-Fredholm
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integro-differential equation of the form:

cDαu(x) = a(x)u(x) + g(x) +

∫ x

0
K1(x, t)F1(u(t))dt

+

∫ 1

0
K2(x, t)F2(u(t))dt, (1)

with the initial condition

y(i)(0) = δi, i = 0, 1, 2, · · · , n− 1, (2)

where cDα is the Caputo fractional derivative, n − 1 < α ≤ n and n ∈ N,
u : J −→ R, where J = [0, 1] is the continuous function which has to be
determined, g : J −→ R and Ki : J × J −→ R, are continuous functions.
Fi : R −→ R, i = 1, 2 are Lipschitz continuous functions.

An application of the fractional order derivatives was first given in 1823 by
Abel [1] who applied the fractional calculus in the solution of an integral equa-
tion that arises in the formulation of the Tautochrone problem. The fractional
integro-differential equations have attracted much more interest of mathemati-
cians and physicists which provides an efficiency for the description of many
practical dynamical arising in engineering and scientific disciplines such as,
physics, biology, electrochemistry, chemistry, economics, electromagnetic, con-
trol theory and viscoelasticity [2, 4, 5, 6, 7, 8, 16, 17, 20]. In the recent years,
many authors focus on the development of numerical and analytical techniques
for fractional integro-differential equations. For instance, we can mention the
following works. Al-Samadi and Gumah [3] applied the homotopy analysis
method for fractional SEIR epidemic model, Zurigat et al. [22] applied HAM for
system of fractional integro-differential equations, Yang and Hou [20] applied
the Laplace decomposition method to solve the fractional integro-differential
equations, Mittal and Nigam [17] applied the Adomian decomposition method
to approximate solutions for fractional integro-differential equations, and Ma
and Huang [16] applied hybrid collocation method to study integro-differential
equations of fractional order.

The main objective of the present paper is to study the behavior of the
solution that can be formally determined by homotopy perturbation method.
Moreover, we prove existence and uniqueness results.

The rest of the paper is organized as follows: In Section 2, some preliminar-
ies and basic definitions related to fractional calculus are recalled. In Section 3,
a homotopy perturbation method is constructed for solving Caputo fractional
Volterra-Fredholm integro-differential equations. In Section 4, the existence
and uniqueness of the solution have been proved. In Section 5, the analytical



EXISTENCE AND UNIQUENESS THEOREMS... 335

example is presented to illustrate the accuracy of this method. Finally, we will
give a report on our paper and a brief conclusion are given in Section 6.

2. Preliminaries

As tools of mathematical analysis, the definitions of fractional derivative and
fractional integration are provided by several different approaches. The most
frequently used definitions of the operators of fractional calculus involves the
Riemann-Liouville fractional derivative and the Caputo derivative, see for ex-
ample [19, 18, 14, 21].

Definition 1. The Riemann-Liouville fractional integral of order α > 0 of
a function f is defined as

Jαf(x) =
1

Γ(α)

∫ x

0
(x− t)α−1f(t)dt, x > 0, α ∈ R

+,

J0f(x) = f(x), (3)

where R
+ is the set of positive real numbers.

Definition 2. The fractional derivative of f(x) in the Caputo sense is
defined by

cDα
xf(x) = Jm−αDmf(x)

=





1

Γ(m− α)

∫ x

0
(x− t)m−α−1 d

mf(t)

dtm
dt, m− 1 < α < m,

dmf(x)

dxm
, α = m, m ∈ N,

(4)

where the parameter α is the order of the derivative and is allowed to be real
or even complex, with ℜα > 0. In this paper, only real and positive α will be
considered.

The following properties are well known in fractional calculus:

1. JαJvf = Jα+vf, α, v > 0,

2. Jαxβ = Γ(β+1)
Γ(β+α+1) x

β+α,

3. Jα cDαf(x) = f(x)−
∑m−1

k=0 f (k)(0+)x
k

k! , x > 0, m−1<α≤m.
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Definition 3. The Riemann-Liouville fractional derivative of order α > 0
is defined as

Dαf(x) = DmJm−αf(x), m− 1 < α ≤ m, m ∈ N. (5)

Theorem 4. ([21], Banach contraction principle) Let (X, d) be a complete
metric space, then each contraction mapping T : X −→ X has a unique fixed
point x of T in X, i.e. Tx = x.

Theorem 5. ([13], Schauder’s fixed point theorem) Let X be a Banach
space and let A a convex, closed subset of X. If T : A −→ A be the map such
that the set {Tu : u ∈ A} is relatively compact in X (or T is continuous and
completely continuous). Then T has at least one fixed point u∗ ∈ A : Tu∗ = u∗.

3. Homotopy Perturbation Method (HPM)

The homotopy perturbation method first proposed by He [10, 11, 12]. To illus-
trate the basic idea of this method, we consider the following nonlinear differ-
ential equation

A(u)− f(r) = 0, r ∈ Ω, (6)

under the boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (7)

where A is a general differential operator, B is a boundary operator, f(r) is a
known analytic function, Γ is the boundary of the domain Ω.

In general, the operator A can be divided into two parts L and N , where
L is linear, while N is nonlinear. Eq. (6) therefore can be rewritten as follows
[9]:

L(u) +N(u)− f(r) = 0. (8)

By the homotopy technique (Liao 1992, 1997, [15]), we construct a homotopy
v(r, p) : Ω× [0, 1] −→ R which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v) − f(r)] = 0, p ∈ [0, 1], (9)

or

H(v, p) = L(v)− L(u0) + pL(u0)] + p[N(v)− f(r)] = 0, (10)
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where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of
Eq.(6) which satisfies the boundary conditions. From Eqs.(9), (10) we have

H(v, 0) = L(v)− L(u0) = 0, (11)

H(v, 1) = A(v)− f(r) = 0. (12)

The changing in the process of p from zero to unity is just that of v(r, p) from
u0(r) to u(r). In topology this is called deformation and L(v) − L(u0), and
A(v) − f(r) are called homotopic. Now, assume that the solution of Eqs. (9),
(10) can be expressed as

v = v0 + pv1 + p2v2 + · · · . (13)

The approximate solution of Eq.(6) can be obtained by setting p = 1, namely

u = lim
p→1

v = v0 + v1 + v2 + · · · . (14)

3.1. Homotopy Perturbation Method Applied to Caputo Fractional
Volterra-Fredholm Integro-Differential Equation

We consider Caputo fractional Volterra-Fredholm integro-differential equation
given by (1), with the initial condition (2).

We can define

(1− P )cDαu(x) + P [cDαu(x)− a(x)u(x)− g(x)

−

∫ x

0
K1(x, t)F1(u(t))dt−

∫ 1

0
K2(x, t)F2(u(t))dt] = 0. (15)

In view of the basic assumption of HPM, solution of (1) can be expressed as a
power series in P :

u(x) =c Dαu0(x) + P cDαu1(x) + P 2cDαu2(x) + P 3cDαu3(x) + · · · . (16)

If we put P −→ 1 in (16), we get the approximate solution of (1):

u(x) =c Dαu0(x) +
c Dαu1(x) +

c Dαu2(x) +
c Dαu3(x) + · · · . (17)

Now, we substitute (16) into (15), then equating the terms with identical
power of P , we obtain the following series of linear equations:

P 0 : cDαu0(x) = 0,

P 1 : cDαu1(x) = g(x) + a(x)u0(x) +

∫ x

0
K1(x, t)F1(u0(t))dt
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+

∫ 1

0
K2(x, t)F2(u0(t))dt,

P 2 : cDαu2(x) = a(x)u1(x) +

∫ x

0
K1(x, t)F1(u1(t))dt

+

∫ 1

0
K2(x, t)F2(u1(t))dt,

P 3 : cDαu3(x) = a(x)u2(x) +

∫ x

0
K1(x, t)F1(u2(t))dt

+

∫ 1

0
K2(x, t)F2(u2(t))dt,

... (18)

4. The Main Results

In this section, we shall give an existence and uniqueness results of Eq.(1), with
the initial condition (2) and prove these. Before starting and proving the main
results, we introduce the following hypotheses:

(A1) There exist two constants LF1
, LF2

> 0 such that, for any u1, u2 ∈
C(J,R)

|F1(u1(x))− F1(u2(x))| ≤ LF1
|u1 − u2|

and
|F2(u1(x))− F2(u2(x))| ≤ LF2

|u1 − u2| .

(A2) There exist two functions K∗
1 ,K

∗
2 ∈ C(D,R+), the set of all positive

function continuous on D = {(x, t) ∈ R× R : 0 ≤ t ≤ x ≤ 1} such that

K∗
1 = sup

x,t∈[0,1]

∫ x

0
|K1(x, t)| dt < ∞, K∗

2 = sup
x,t∈[0,1]

∫ x

0
|K2(x, t)| dt < ∞.

(A3) The two functions a, g : J → R are continuous.

Lemma 6. If u0(x) ∈ C(J,R), then u(x) ∈ C(J,R+) is a solution of the
problem (1)− (2) iff u is satisfying

u(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u(s)ds
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+
1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds +

1

Γ(α)

∫ x

0
(x− s)α−1 (19)

×

(∫ s

0
K1(s, τ)F1(u(τ))dτ +

∫ 1

0
K2(s, τ)F2(u(τ))dτ

)
ds,

for x ∈ J, and u0 =
∑n−1

k=0 u
k(0+)

xk

k!
.

Our first result is based on the Banach contraction principle.

Theorem 7. Assume that (A1), (A2) and (A3) hold. If
(
‖a‖∞ +K∗

1LF1
+K∗

2LF2

Γ(α+ 1)

)
< 1. (20)

Then there exists a unique solution u(x) ∈ C(J) to (1)− (2).

Proof. By Lemma 6, we know that a function u is a solution to (1)− (2) iff
u satisfies Eq. (19). Let the operator T : C(J,R) → C(J,R) be defined by

(Tu)(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u(s)ds

+
1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds +

1

Γ(α)

∫ x

0
(x− s)α−1

×

(∫ s

0
K1(s, τ)F1(u(τ))dτ +

∫ 1

0
K2(s, τ)F2(u(τ))dτ

)
ds,

we can see that, if u ∈ C(J,R) is a fixed point of T , then u is a solution of
(1)− (2).

Now we prove T has a fixed point u in C(J,R). For that, let u1, u2 ∈ C(J,R)
and for any x ∈ [0, 1] such that

u1(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u1(s)ds

+
1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds +

1

Γ(α)

∫ x

0
(x− s)α−1

×

(∫ s

0
K1(s, τ)F1(u1(τ))dτ +

∫ 1

0
K2(s, τ)F2(u1(τ))dτ

)
ds,

and,

u2(x) = u0 +
1

Γ(α)

∫ x

0
(x− s)α−1a(s)u2(s)ds



340 A.A. Hamoud, K.P. Ghadle, M.Sh.B. Issa, Giniswamy

+
1

Γ(α)

∫ x

0
(x− s)α−1g(s)ds +

1

Γ(α)

∫ x

0
(x− s)α−1

×

(∫ s

0
K1(s, τ)F1(u2(τ))dτ +

∫ 1

0
K2(s, τ)F2(u2(τ))dτ

)
ds.

Consequently, we get

|(Tu1)(x)− (Tu2)(x)|

≤
1

Γ(α)

∫ x

0
(x− s)α−1 |a(s)| |u1(s)− u2(s)| ds+

1

Γ(α)

∫ x

0

×(x− s)α−1

( ∫ s

0 |K1(s, τ)| |F1(u1(τ)) − F1(u2(τ))| dτ

+
∫ 1
0 |K2(s, τ)| |F2(u1(τ)) − F2(u2(τ))| dτ

)
ds

≤

(
‖a‖∞

Γ(α+ 1)
+

K∗
1LF1

Γ(α+ 1)
+

K∗
2LF2

Γ(α+ 1)

)
|u1(x)− u2(x)|

=

(
‖a‖∞ +K∗

1LF1
+K∗

2LF2

Γ(α+ 1)

)
|u1(x)− u2(x)| .

From the inequality (20) we have

‖Tu1 − Tu2‖∞ ≤ ‖u1 − u2‖∞ .

This means that T is contraction map. By the Banach contraction principle,
we can conclude that T has a unique fixed point u in C(J,R).

Now, we will study the existence result by means of Schauder’s fixed point
theorem.

Theorem 8. Assume that F1, F2 are continuous functions and (A2), (A3)
hold, if

‖a‖∞
Γ(α+ 1)

< 1. (21)

Then there exists at least a solution u(x) ∈ C(J,R) to problem (1)− (2).

Proof. Let the operator T : C(J,R) → C(J,R), be defined as in Theorem
7.

First, we prove that the operator T is completely continuous.
(1) We show that T is continuous.
Let un be a sequence such that un → u in C(J,R). Then for each un, u

∈ C(J,R) and for any x ∈ J we have

|(Tun)(x) − (Tu)(x)|
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≤
1

Γ(α)

∫ x

0
(x− s)α−1 |a(s)| |un(s)− u(s)| ds+

1

Γ(α)

×

∫ x

0
(x− s)α−1

( ∫ s

0 |K1(s, τ)| |F1(un(τ))− F1(u(τ))| dτ

+
∫ 1
0 |K2(s, τ)| |F2(un(τ))− F2(u(τ))| dτ

)
ds

≤
1

Γ(α)

∫ x

0
(x− s)α−1sup

s∈J

|a(s)| sup
s∈J

|un(s)− u(s)| ds

+
1

Γ(α)

∫ x

0
(x− s)α−1

×




sup
s,τ∈J

∫ τ

0 |K1(s, τ)| sup
τ∈J

|F1(un(τ))− F1(u(τ))| dτ

+ sup
s,τ∈J

∫ 1
0 |K2(s, τ)| sup

τ∈J

|F2(un(τ))− F2(u(τ))| dτ


 ds

≤ ‖a‖∞ ‖un(.)− u(.)‖∞
1

Γ(α)

∫ x

0
(x− s)α−1ds

+K∗
1 ‖F1(un(.)) − F1(u(.))‖∞

1

Γ(α)

∫ x

0
(x− s)α−1ds

+K∗
2 ‖F2(un(.)) − F2(u(.))‖∞

1

Γ(α)

∫ x

0
(x− s)α−1ds.

Since
∫ x

0 (x− s)α−1ds is bounded, lim
n→∞

un(x) = u(x) and F1, F2 are continuous

functions, we conclude that ‖Tun − Tu‖∞ → 0 as n → ∞, thus, T is continuous
on C(J,R).

(2) We verify that T maps bounded sets into bounded sets in C(J,R).
Indeed, just we show that for any λ > 0 there exists a positive constant ℓ

such that for each u ∈ Bλ = {u ∈ C(J,R) : ‖u‖∞ ≤ λ}, one has ‖Tu‖∞ ≤ ℓ.
Let µ1 = sup

(u)∈J×[0,λ]
F1(u(x)) + 1, and µ2 = sup

(u)∈J×[0,λ]
F2(u(x)) + 1,

and for any u ∈ Br and for each x ∈ J, we have

|(Tu)(x)|

= |u0|+
1

Γ(α)

∫ x

0
(x− s)α−1 |a(s)| |u(s)| ds

+
1

Γ(α)

∫ x

0
(x− s)α−1 |g(s)| ds+

1

Γ(α)

∫ x

0
(x− s)α−1

×

(∫ s

0
|K1(s, τ)| |F1(u(τ))| dτ +

∫ 1

0
|K2(s, τ)| |F2(u(τ))| dτ

)
ds

≤ |u0|+ ‖u‖∞ ‖a‖∞
xα

Γ(α+ 1)
+ ‖g‖∞

xα

Γ(α+ 1)
+

K∗
1µ1x

α

Γ(α+ 1)
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+
K∗

2µ2x
α

Γ(α+ 1)

≤

(
|u0|+

‖a‖∞ λ+ ‖g‖∞ +K∗
1µ1 +K∗

2µ2

Γ(α+ 1)

)
:= ℓ.

Therefore, ‖Tu‖ ≤ ℓ for every u ∈ Br, which implies that TBr ⊂ Bℓ.
(3) We examine that T maps bounded sets into equicontinuous sets of

C(J,R).
Let Bλ is defined as in (2) and for each u ∈ Bλ, x1, x2 ∈ [0, 1], with x1 < x2

we have

|(Tu)(x2)− (Tu)(x1)|

≤
1

Γ(α)

∣∣∣∣
∫ x2

0
(x2 − s)α−1a(s)u(s)ds −

∫ x1

0
(x1 − s)α−1a(s)u(s)ds

∣∣∣∣

+
1

Γ(α)

∣∣∣∣
∫ x2

0
(x2 − s)α−1g(s)ds −

∫ x1

0
(x1 − s)α−1g(s)ds

∣∣∣∣+
1

Γ(α)∣∣∣∣∣∣

∫ x2

0 (x2 − s)α−1
(∫ s

0 K1(s, τ)F1(u(τ))dτ +
∫ 1
0 K2(s, τ)F2(u(τ))dτ

)
ds

−
∫ x1

0 (x1 − s)α−1
(∫ s

0 K1(s, τ)F1(u(τ))dτ +
∫ 1
0 K2(s, τ)F2(u(τ))dτ

)
ds

∣∣∣∣∣∣

=
1

Γ(α)

∣∣∣∣
∫ x2

0 (x2 − s)α−1a(s)u(s)ds −
∫ x1

0 (x2 − s)α−1a(s)u(s)ds
+
∫ x1

0 (x2 − s)α−1a(s)u(s)ds −
∫ x1

0 (x1 − s)α−1a(s)u(s)ds

∣∣∣∣

+
1

Γ(α)

∣∣∣∣
∫ x2

0 (x2 − s)α−1g(s)ds −
∫ x1

0 (x2 − s)α−1g(s)ds
+
∫ x1

0 (x2 − s)α−1g(s)ds −
∫ x1

0 (x1 − s)α−1g(s)ds

∣∣∣∣+
1

Γ(α)∣∣∣∣∣∣∣∣∣∣∣∣

∫ x2

0 (x2 − s)α−1
(∫ s

0 K1(s, τ)F1(u(τ))dτ +
∫ 1
0 K2(s, τ)F2(u(τ))dτ

)
ds

−
∫ x1

0 (x2 − s)α−1
(∫ s

0 K1(s, τ)F1(u(τ))dτ +
∫ 1
0 K2(s, τ)F2(u(τ))dτ

)
ds

+
∫ x1

0 (x2 − s)α−1
(∫ s

0 K1(s, τ)F1(u(τ))dτ +
∫ 1
0 K2(s, τ)F2(u(τ))dτ

)
ds

−
∫ x1

0 (x1 − s)α−1
(∫ s

0 K1(s, τ)F1(u(τ))dτ +
∫ 1
0 K2(s, τ)F2(u(τ))dτ

)
ds.

∣∣∣∣∣∣∣∣∣∣∣∣

Consequently,

|(Tu)(x2)− (Tu)(x1)|

≤
1

Γ(α)

( ∫ x2

x1
(x2 − s)α−1 |a(s)| |u(s)| ds

+
∫ x1

0 (x1 − s)α−1 − (x2 − s)α−1 |a(s)| |u(s)| ds

)

+
1

Γ(α)

( ∫ x2

x1
(x2 − s)α−1 |g(s)| ds

+
∫ x1

0 (x1 − s)α−1 − (x2 − s)α−1 |g(s)| ds

)
+

1

Γ(α)
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∫ x2

x1
(x2 − s)α−1

( ∫ s

0 |K1(s, τ)| |F1(u(τ))| dτ

+
∫ 1
0 |K2(s, τ)| |F2(u(τ))| dτ

)
ds +

∫ x1

0

(x1 − s)α−1 − (x2 − s)α−1

( ∫ s

0 |K1(s, τ)| |F1(u(τ))| dτ

+
∫ 1
0 |K2(s, τ)| |F2(u(τ))| dτ

)
ds




= I1 + I2 + I3,

where:

I1 =
1

Γ(α)
(

∫ x2

x1

(x2 − s)α−1 |a(s)| |u(s)| ds

+

∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1 |a(s)| |u(s)| ds)

≤
(x2 − x1)

α

Γ(α+ 1)
‖a‖∞ λ+

xα1
Γ(α+ 1)

‖a‖∞ λ+
(x2 − x1)

α

Γ(α+ 1)
‖a‖∞ λ

−
xα2

Γ(α+ 1)
‖a‖∞ λ

=
‖a‖∞ λ

Γ(α+ 1)
(2 (x2 − x1)

α + (xα1 − xα2 ))

≤
‖a‖∞ λ

Γ(α+ 1)
2 (x2 − x1)

α , (22)

I2 =
1

Γ(α)
(

∫ x2

x1

(x2 − s)α−1 |g(s)| ds

+

∫ x1

0
(x1 − s)α−1 − (x2 − s)α−1 |g(s)| ds)

≤
(x2 − x1)

α

Γ(α+ 1)
‖g‖∞ +

xα1
Γ(α+ 1)

‖g‖∞ +
(x2 − x1)

α

Γ(α+ 1)
‖g‖∞

−
xα2

Γ(α+ 1)
‖g‖∞

=
‖g‖∞

Γ(α+ 1)
(2 (x2 − x1)

α + (xα1 − xα2 ))

≤
‖g‖∞

Γ(α+ 1)
2 (x2 − x1)

α , (23)
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and

I3 =
1

Γ(α)





∫ x2

x1
(x2 − s)α−1

( ∫ s

0 |K1(s, τ)| |F1(u(τ))| dτ

+
∫ 1
0 |K2(s, τ)| |F2(u(τ))| dτ

)
ds

+
∫ x1

0 (x1 − s)α−1 − (x2 − s)α−1

×

( ∫ s

0 |K1(s, τ)| |F1(u(τ))| dτ

+
∫ 1
0 |K2(s, τ)| |F2(u(τ))| dτ

)
ds





≤
(K∗

1µ1 +K∗
2µ2)

Γ(α+ 1)
(2 (x2 − x1)

α + (xα1 − xα2 ))

≤
(K∗

1µ1 +K∗
2µ2)

Γ(α+ 1)
2 (x2 − x1)

α , (24)

and we can conclude the right-hand side of (22), (23) and (24) is independently
of u ∈ Bλ and tends to zero as x2−x1 → 0. This leads to |(Tu)(x2)− (Tu)(x1)| →
0 as x2 → x1. i.e. the set {TBλ} is equicontinuous.

From I1 to I3 together with the Arzela–Ascoli theorem, we can conclude that
T : C(J,R) → C(J,R) is completely continuous. Finally, we need to investigate
that there exists a closed convex bounded subset B

λ̃
= {u ∈ C(J,R) : ‖u‖∞ ≤

λ̃} such that TB
λ̃
⊆ B

λ̃
. For each positive integer λ̃, then B

λ̃
is clearly closed,

convex and bounded of C(J,R). We claim that there exists a positive integer
ǫ such that TBǫ ⊆ Bǫ. If this property is false, then for every positive integer
λ̃, there exists u

λ̃
∈ B

λ̃
such that (Tu

λ̃
) /∈ TB

λ̃
, i.e.

∥∥Tu
λ̃
(t)
∥∥
∞

> λ̃ for

some x
λ̃
∈ J where x

λ̃
denotes x depending on λ̃. But by using the previous

hypotheses we have:

≤ |u0|+ ‖u‖∞ ‖a‖∞
tα

Γ(α+ 1)
+ ‖g‖∞

tα

Γ(α+ 1)
+

K∗
1µ1x

α

Γ(α+ 1)

+
K∗

2µ2x
α

Γ(α+ 1)

≤

(
|u0|+

‖a‖∞ λ+ ‖g‖∞ +K∗
1µ1 +K∗

2µ2

Γ(α+ 1)

)

λ̃ <
∥∥Tu

λ̃

∥∥
∞

= sup
x∈J

∣∣(Tu
λ̃
)(x)

∣∣

≤ sup
x∈J





|u0|+
∣∣∣ 1
Γ(α)

∫ x

0 (x− s)α−1a(s) |u(s)| ds
∣∣∣

+
∣∣∣ 1
Γ(α)

∫ x

0 (x− s)α−1g(s)ds
∣∣∣+ 1

Γ(α)

×
∫ x

0 (x− s)α−1(
∫ s

0 |K1(s, τ)| |F1(u(τ))| dτ

+
∫ 1
0 |K2(s, τ)| |F2(u(τ))| dτ)ds





ds
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≤ sup
x∈J

{|u0|+ ‖u‖∞ ‖a‖∞
xα

Γ(α+ 1)
+ ‖g‖∞

xα

Γ(α+ 1)

+
K∗

1µ1x
α

Γ(α+ 1)
+

K∗
2µ2x

α

Γ(α+ 1)
}

≤ sup
x∈J

(
|u0|+

‖a‖∞ λ̃+ ‖g‖∞ +K∗
1µ1 +K∗

2µ2

Γ(α+ 1)

)
.

Dividing both sides by λ̃ and taking the limit as λ̃ → +∞, we obtain

1 <
‖a‖∞

Γ(α+ 1)
,

which contradicts our assumption (21). Hence, for some positive integer λ̃, we
must have TB

λ̃
⊆ B

λ̃
.

An application of Schauder’s fixed point theorem shows that there exists at
least a fixed point u of T in C(J,R). Then u is the solution to (1) − (2) on J,
and the proof is completed.

5. Illustrative Example

In this section, we present the analytical technique based on HPM to solve
Caputo fractional integro-differential equations.

Example 1.

Let us consider Caputo fractional integro-differential equation:

cDαu(x) = u(x) + (1 + ex)x+ 3ex −

∫ x

0
u(t)dt, 3 < α ≤ 4, 0 < x < 1, (25)

with boundary conditions

u(0) = 1, u′′(0) = 2,

u(1) = 1 + e, u′′(1) = 3e. (26)

The exact solution of problem (25)-(26) for α = 4 is

u(x) = 1 + xex. (27)
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According to the homotopy perturbation method, we construct the following
homotopy:

cDαu(x) = P

(
u(x) + (1 + ex)x+ 3ex −

∫ x

0
u(t)dt

)
. (28)

Substitution of (28) into (18) and then equating the terms with same powers
of P yield the following series of linear equations:

P 0 : cDαu0(x) = 0,

P 1 : cDαu1(x) = u0(x) + (1 + ex)x+ 3ex −

∫ x

0
u0(t)dt,

P 2 : cDαu2(x) = u1(x)−

∫ x

0
u1(t)dt,

P 3 : cDαu3(x) = u2(x)−

∫ x

0
u2(t)dt,

Applying the operator Jα to the above series of linear equations and using
initial conditions (26), we get:

u0(x) = 1,

u1(x) = Ax+ x2 +
B

6
x3 +

4xα

Γ(α+ 1)
+

4xα+1

Γ(α+ 2)
+

4xα+2

Γ(α+ 3)

+
4xα+3

Γ(α+ 4)
+

4xα+4

Γ(α+ 5)
,

u2(x) = A
xα+1

Γ(α+ 2)
+ (2−A)

xα+2

Γ(α+ 3)
+ (B − 2)

xα+3

Γ(α+ 4)

−B
xα+4

Γ(α+ 5)
+ 4

x2α

Γ(2α+ 1)
+

x2α+2

Γ(2α+ 3)
+

x2α+3

Γ(2α + 4)

−2
x2α+4

Γ(2α+ 5)
− 4

x2α+5

Γ(2α + 6)
,

where A and B can be determined by imposing boundary conditions.

6. Conclusions

The homotopy perturbation method has been applied to derive approximate an-
alytical solutions for fractional Volterra-Fredholm integro-differential equations.
Also, we proved the existence and uniqueness of the solution. The illustrative
example establishes the precision and efficiency of the proposed technique.
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