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Abstract

Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In
the presence of certain extensionality axioms they produce classical logic, while in the
presence of weaker decidability conditions for terms they produce various superintuitionistic
intermediate logics. In this thesis, I argue that there are important philosophical lessons
to be learned from these results. To make the case, I begin with a historical discussion
situating the development of Hilbert’s operators in relation to his evolving program in
the foundations of mathematics and in relation to philosophical motivations leading to the
development of intuitionistic logic. This sets the stage for a brief description of the relevant
part of Dummett’s program to recast debates in metaphysics, and in particular disputes
about realism and anti-realism, as closely intertwined with issues in philosophical logic,
with the acceptance of classical logic for a domain reflecting a commitment to realism for
that domain. Then I review extant results about what is provable and what is not when
one adds epsilon to intuitionistic logic, largely due to Bell and DeVidi, and I give several
new proofs of intermediate logics from intuitionistic logic+ε without identity. With all this
in hand, I turn to a discussion of the philosophical significance of choice operators. Among
the conclusions I defend are that these results provide a finer-grained basis for Dummett’s
contention that commitment to classically valid but intuitionistically invalid principles
reflect metaphysical commitments by showing those principles to be derivable from certain
existence assumptions; that Dummett’s framework is improved by these results as they
show that questions of realism and anti-realism are not an “all or nothing” matter, but that
there are plausibly metaphysical stances between the poles of anti-realism (corresponding to
acceptance just of intutionistic logic) and realism (corresponding to acceptance of classical
logic), because different sorts of ontological assumptions yield intermediate rather than
classical logic; and that these intermediate positions between classical and intuitionistic
logic link up in interesting ways with our intuitions about issues of objectivity and reality,
and do so usefully by linking to questions around intriguing everyday concepts such as “is
smart,” which I suggest involve a number of distinct dimensions which might themselves be
objective, but because of their multivalent structure are themselves intermediate between
being objective and not. Finally, I discuss the implications of these results for ongoing
debates about the status of arbitrary and ideal objects in the foundations of logic, showing
among other things that much of the discussion is flawed because it does not recognize the
degree to which the claims being made depend on the presumption that one is working
with a very strong (i.e., classical) logic.
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Chapter 1

Introduction

In 1975 Radu Diaconescu proved that, in a topos, if every epimorphism has a section then
every subobject has a complement. If the metaphysical implications of this result are
not immediately apparent, the reader can be forgiven. Even mathematically sophisticated
readers might not recognize the import of this result, which is why in the same year
Goodman and Myhill felt the need to translate the proof into a language more common
to mathematical logicians, publishing a short proof of the analogous result in set theory,
which showed that in intuitionistic set theory a choice function of a certain type implies
the law of excluded middle (cf. Diaconescu, 1975; Goodman and Myhill, 1975). The
metaphysical implications of this result should be obvious due to the importance the law
of excluded middle has played in debates over realism, specifically in the work of Michael
Dummett.

It is now well known among specialists that the axiom of choice, added to intuitionistic
set theories of various sorts, makes them classical. But even in a logical, rather than set
theoretic, framework one can strengthen a logic by adding choice principles. Hilbert’s ε
and τ operators, for example, are well known examples of logical formulations of the axiom
of choice. The τ operator was introduced by Hilbert as the “transfinite axiom” in “Die
logischen Grundlagen der Mathematik” (Hilbert, 1923, p.156)1. Hilbert later replaced τ
with the weaker ε axiom (cf. Hilbert, 1926, 1927)2. The ε and τ axioms may be written
as follows:

(1.1) ϕ(x) → ϕ(εϕ)

1First presented in a lecture course of the same name over the 1922-1923 winter term (see Grattan-

Guinness, 2000, p.473).
2That is, ε is weaker that τ when they are added to “weak” systems like intuitionistic logic. They are

inter-definable (in fact, dual) operators in classical logic: we can, for instance, define τϕ to be ε¬ϕ.
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(1.2) ϕ(τϕ) → ϕ(x)

Under the standard interpretation of the existential and universal quantifiers (1.1) gives
us ∃xAx↔ A(εA) and (1.2) gives us A(τA) ↔ ∀xA(x). Hence it can be said that the epsilon
operator can be thought of as asserting that there is an object ǫϕ that is most likely to
have the property ϕ, while in sentence (1.2) the tau operator asserts that there is an object
τϕ that is least likely to have the property ϕ. As Hilbert puts it:

For us to illustrate its content, if we take the predicate A to mean “to be
corrupt,” then we would have to understand by τA a man of such inviolable
sense of justice, that if he should prove to be corrupt, then all human beings
are corrupt.3

The ǫ and τ term forming operators.4 are conservative over classical logic; that is their
addition to classical logic does not enable one to prove any proposition which one could
not prove with classical logic, which doesn’t include the operator in question. However,
ǫ and τ can strengthen intuitionistic logic, without necessarily making it classical. In
certain contexts choice operators strengthen intuitionistic logic by making DeMorgan’s
intuitionistically invalid law, ¬(B ∧ C) ⊢ ¬B ∨ ¬C, and the linearity axiom, ⊢ (C →
B) ∨ (B → C), derivable. In other contexts, notably when they include an extensionality

3“Um uns seinen Inhalt zu veranschaulichen, nehmen wir etwa für A das Prädikat “bestechlich sein”;
dann hätten wir unter τ A einen bestimmten Mann von so unverbrüchlichem Gerechtigkeitssinn zu ver-
stehen, dass, wenn er sich als bestechlich sollte. Tatsächlich alle Menschen überhaupt haupt bestechlich
sind” (My translation. Hilbert, 1923, p.156).

4Strictly they are variable binding term forming operators which are a category of operators that include
Hilbert’s ε, τ and η and Russell’s �. They are also referred to by some as subnectors; a term Haskell Curry
coined to describe “a functor which converts [a sentence]... into a noun”(Curry, 1966, p.14) Curry’s
taxonomy of functors was developed from Tarski and Carnap (see Tarski 1935 fn.7 p. 274 or Tarski

1956 fn.2 p.161 and Carnap 1942). However, what Carnap called a functor, Curry names a “nominal
functor” (Curry, 1966, p.13 fn. 19). Tarski employs the term functor in this sense due to Kotarbinski
and the terms: “ ‘sentence-forming functor’ and ‘name-forming functor’ from Kazimier Ajdukiewicz” (see
Ajdukiewicz, 1928). These terms belong to what Curry refered to as the grammatics of communicative
languages a “study of the rules for determining the sentences of a language”. In Curry’s grammatics, the
significant class of objects are not expressions, by which he means simply strings of symbols, but phrases
of which:

There are three main classes ... viz., nouns, sentences, and functors. A noun names some
object (real or imaginary); a sentence expresses a statement; and a functor is a means of
combining phrases to form other phrases (Curry, 1963, p.32).

Nouns and sentences are called “closed phrases” and functors are phrases that combine other phrases
(see Curry 1966, p.13, and Curry 1963, pp.32-34). Though Curry notes that his terminology for types
of functor, i.e. ‘junctor’ and ‘nector’ are “suggested by the use of ‘junction’ and ‘nexus’ in Jespersen
(Jespersen, 1924)” his usage is different. The following table depicts Curry’s taxonomy of functors:
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axiom, they make the logic classical. Because of the ontological nature of choice operators,
i.e. they in some manner assert the existence of objects, they provide a particularly
interesting example of how logics are strengthened. This is of interest because of the close
relations between logical strength and metaphysics.

1.1 Logic and Metaphysics

The goal of this thesis is to extract the metaphysical lessons offered by these results. On
their face they suggest that choice principles—which postulate the existence of particular
sorts of objects—are intimately related to the validity of principles that are, from the
classical point of view, logical. Thus these results seem likely to tell us something important
about the relationship between existence and correct reasoning—between metaphysics and
logic. We intend to make clear the lessons that results of this sort can teach us. Learning
why the results are true will involve becoming clear about how the results are proven.
Along the way we prove some new results about the implications of choice principles in
logics without identity, which help fend off some misconceptions about what is presupposed
when getting the “logic” out of the “metaphysics.”

The metaphysical lessons this topic promises are best seen by considering the role of
logic in metaphysics. According to Dummett’s analysis, a logic is correct for a particular
domain of discourse if it reflects the metaphysical status of the entities discussed in that
discourse. And so, he argues, metaphysical debates about realism and anti-realism are
really about the correct set of logical laws (Dummett, 1978b). Specifically Dummett
asserts that one is realist about a domain if one accepts bivalence for that domain, which
implies the law of excluded middle, and rejecting the law of excluded middle as a logical
law is a prerequisite to any sort of anti-realism or even metaphysically neutral position
about a domain.

The most well known example of Dummett’s argument, that the law of excluded middle
implies realism for a domain, is in reference to the debate between intuitionism and math-
ematical Platonism (cf. Dummett, 1975 and Dummett, 1977). He has also applied this

Values

Arguments Phrase Noun Sentence
Phrase Functor Nominal Functor Sentential Functor
All Nominal Junctor Adjunctor or Operator Predicator
Some Sentential Nector Subnector (Pronector)
Mixed Mixed Nector (Mixed Nector) (Ad Nector)
All Sentential (Pure Nector) (Pure Subnector) Connector

In above table of functors, the names in parentheses are not present in Curry’s system, and he added
them simply to provide completeness (see Curry, 1966, pp.14–15).
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argument to anti-realism about the past (cf. Dummett, 1978b and Dummett, 1978a)
and critiqued David Lewis’s argument that all possible worlds are real (cf. Lewis, 1986
and Dummett, 1993c). In all these cases Dummett argues that, to resolve metaphysical
debates, we must choose a logic that does not appeal to principles which are not justifiable
in that domain (Dummett, 1991).

In the The Logical Basis of Metaphysics Dummett asserts that most attempts to solve
metaphysical debates over realism take a “top down approach” starting at the level of
justifying a particular metaphysical position, or principle, and applying it then to the
domain in question. Instead he suggests that we should approach such problems from the
“bottom up” (Dummett, 1991, pp.12-13). By this he means we should look at the logic
that underlies the language of the domain of the entities in question.

Realism about a domain involves the entities of that domain being “mind independent”
in some suitable sense. That is, if realism is true, the claims we make about those entities
are, Dummett suggests, made true or false independently of us. So, at least for well
formulated claims in that domain, our claims should be true or false, whether or not we
can come to know their truth values. This, broadly stated, is the way Dummett makes
the connection between realism and bivalence. Since bivalence implies the correctness
of classical logic, we get the connection between realism about a domain and the law of
excluded middle holding for that domain. When we think about varieties of anti-realism
in the history of philosophy—phenomenalism or nominalism, for instance—we see that
the “objects” in question are somehow mind- or language-dependent, and so, Dummett
suggests, we have no recourse to mind-independent reality to fix truth values of claims that
are in principle unknowable by us. Hence we have no principled reason to accept bivalence
in these domains, and so no justification for the adoption of excluded middle.

Thus he simplifies the question about the reality of entities to a more tractable question
about the semantic value of statements referring to the entities in question; that is, whether
these sentences are or can be true or false, independent of our knowledge, or ability to have
knowledge, of them. From there, he makes the connection to debates about the correctness
of logical principles in a domain.

In a like manner we can look at how the addition of something like a choice principle
would modify that interpretation by strengthening the logic. Not only can we use the formal
results about choice principles to investigate the general position that there is a connection
between realism and logic, but we can also look at the arguments Dummett has made with
reference to particular domains, e.g. time. These arguments can be used as examples of
investigations of the relation between various domains and different logical systems. By
looking at these arguments we gain some insight into the relation between logics that are
created by the addition of choice axioms and the objects that choice principles seem to
posit.
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1.1.1 Problems with Dummett’s views

Dummett’s argument is if realism is correct then there is a mind independent reality that
our language latches onto correctly, that is accurately represents, in certain domains —
i.e. those for which realism holds. This reality, rather than our knowledge, fixes the truth
values of claims in such domains, whether or not we can, even in principle, actually know
the truth of a sentence. Since our language hooks up to the reality of those domains, all
sentences about such domains are either true or false. This argument thus connects logical
principles to realism through truth.

However there are problems with arguments of this sort. There is of course the question
of whether or not our language ever totally and completely accurately depicts reality, that
is, the problem of radical anti-realism. There is also the problem that one could accept
classical logic and not bivalence. While realism perhaps implies classical logic, through
the law of excluded middle, classical logic may not necessarily in the same manner imply
realism. One could accept some sort of supervaluational semantics or boolean algebra
valued semantics. In any boolean algebra, the value of sentences would not necessarily be
true or false, but the law of excluded middle would still hold.

1.2 The Axiom of Choice and Hilbert’s Programme

The axiom of choice is the claim that for a family of non-empty sets L there is a function
that selects an element of each set which is a member of that family L. Zermelo first
formulated the axiom in 1904 as a choice function f on L such that for each non-empty
set X ∈ L, f(X) ∈ X (Bell 2009, pp.1-2 cf. Zermelo 1904, p.140 ). Zermelo used the
axiom to prove the well ordering theorem, that every set can be well-ordered (Zermelo,
1904, p.140). This answered part of the first question that Hilbert posed in his famous 1900
address where he posed 23 questions that he saw as shaping the future of mathematics.5

The existence of a choice function is easily established for finite families of sets. More-
over, the “countable” axiom of choice is usually regarded as uncontroversial. For infinities
beyond that, however, it encountered criticism almost immediately, with Émile Borel as-
serting that “any argument where one supposes an arbitrary choice a non-denumerably
infinite number of times is outside the domain of mathematics” (quoted in Bell 2009

5While the first problem “Cantor’s Problem of the Cardinal Number of the Continuum” cannot be said
to be solved, or even perhaps solvable, it is in Hilbert’s discussion of it that the well-ordering theorem is
mentioned. Hilbert asked, “whether the totality of all numbers may not be arranged in another manner
so that every partial assemblage may have a first element” and suggests that the solution to this problem
may be key to the provability of the entire problem (Hilbert, 1900b, p.446-47).
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p.2).6

John Bell asserts that the axiom of choice is “the most fertile principle of set theory” and
notes that over 200 principles have been proven classically equivalent to the axiom of choice
(Bell, 2009, pp.2-4).7 Foundationally, though, one of the most important developments
is Diaconescu’s proof showing that the axiom of choice enables one to derive the law of
excluded middle in an intuitionistic context.

Errett Bishop argued that the axiom of choice is acceptable in a constructive system as
it is implied by what we mean by existence (Bishop, 1967, p.9). Bishop, in fact, criticised
the understanding of choice by classical mathematicians, while asserting that choice was
constructive:

When a classical mathematician claims he is a constructivist, he probably
means he avoids the axiom of choice. This axiom is unique in its ability to
trouble the conscience of the classical mathematician, but in fact it is not a
real source of the unconstructivities of classical mathematics. A choice func-
tion exists in constructive mathematics, because a choice is implied by the
very meaning of existence. Applications of the axiom of choice in classical
mathematics either are irrelevant or are combined with a sweeping appeal to
the principle of omniscience. The axiom of choice is used to extract elements
from equivalence classes where they should never have been put in the first
place. For instance, a real number should not be defined as an equivalence
class of Cauchy sequences of rational numbers; there is no need to drag in the
equivalence classes. The proof that the real numbers can be well ordered is an
instance of a proof in which a sweeping use of the principle of omniscience is
combined with an appeal to the axiom of choice. Such proofs offer little hope of
constructivization. It is not likely that the theorem “the real numbers can be
well ordered” will be given a constructive version consonant with the intuitive
interpretation of the classical result (Bishop, 1967, pp.9-10).

While the axiom of choice in intuitionistic set theory implies the law of excluded middle,
it does so only if, as is usual in most set theories, the sets or functions are extensional.
Hence it has been noted that in Martin Löf’s constructive type theory the axiom of choice is
derivable, but not the law of excluded middle, because there is no extensionality principle.
As well, John Bell has presented what he calls a ‘weak set theory’ in which the law of
excluded middle does not follow from the axiom of choice (Bell, 2009, pp 120-131).

6Quite a few seemingly paradoxical results can be obtained by use of the axiom of choice, or its
equivalents, which is why it is so often criticised, including the fact that, in topology, any solid sphere can
be decomposed into a finite number of subsets and recomposed into two spheres of the same size.

7These include: Zermelo’s well-ordering theorem, the trichotomy principle, König’s theorem, Tarski’s
theorem, Tychonov’s theorem, the model existence theorem for first order logic, the Hamel basis theorem,
Tukey’s lemma, Hausdorff maximal principle, the antichain principle, and Zorn’s lemma to name a few.
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1.3 Structure of Thesis

This dissertation will be divided into three parts. The first part is a historical contextual-
ization of the inquiry. The metaphysical debates and the positions various philosophers, lo-
gicians and mathematicians engaged with were constrained by the historical circumstances.
Describing the historical circumstances should help clarify how the various streams come
together and why. This story has been told in bits and pieces by various authors but the
big picture, as it relates specifically to the topics we want to address, has not been sorted
out.

We will start by looking at Hilbert’s attempts to fight a rearguard action against con-
structivists and find a finitist foundation for mathematics that would prevent us from being
evicted “from the paradise Cantor has made for us”. Then we will look at Dummett’s ap-
propriation of Brouwer’s mathematical anti-realism, through which he suggests that the
link between “mind- or language-dependence” of a domain of discourse and the correctness
of intuitionistic logic for it should serve as a model for anti-realism more generally. This
will set the stage for part two, where we will introduce certain mathematical results that
have only begun to be properly investigated post-Dummett.

In part two we will briefly set out the main results that show the relationship between
choice principles and logical principles, and prove a several new ones. We will also survey
two semantics for intuitionistic predicate logics + ε.

In part three we will develop the argument that there are important philosophical
lessons to be learned from the results in part two. For the main results, the lessons have
not been properly drawn because the mathematical results have been presented by math-
ematicians who have been at times content to pronounce on what they take to be the
metaphysical import, but who have not provided the necessary philosophical arguments.
In this part of the thesis we will attempt to provide these arguments and show how these
results provide two important philosophical insights. The first is a point about the in-
tersection of logic and metaphysics. Dummett’s argument about the interconnection of
realism about a domain and acceptance of the law of excluded middle, and anti-realism
about a domain and anti-realism paints a rather black and white picture.

What we show is that the ontological assumptions inherent in the ε-operator produce
logics that describe middle grounds between classical and intuitionistic logics, and hence,
between full blown realism and anti-realism about a domain. To do so, we need not tackle
a large intractable philosophical problem like “what would the correct logic for ethical
language be.” We will find that many common properties, that seem at first quite simple
and to some degree objective, may have structures that call for a logic weaker than classical
logic, but more metaphysically rich than intuitionistic logic. For example, consider the
metaphysical implications of a domain where Dummett’s scheme (A → B) ∨ (B → A)
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holds, but the law of excluded middle doesn’t. In such domains we can model examples
of properties composed of ‘objective’ but non-comparable sub-properties. Take, as an
example, the concept of intelligence, which is itself composed of various dimensions (or sub-
concepts), each of which seems in itself objective but when combined you get something
that is less objective—since it might not do to compare mathematical with musical or
literary genius, though we might feel quite at ease measuring such aspects of intelligence
separately.

The second contribution that our investigations of choice operators will provide is with
regard to some long standing discussions of the inter-related issues of abstraction and ideal
(or generic or arbitrary) objects. We will show, among other things, that much of the
discussion is flawed because it does not recognize the degree to which the claims being
made depend on the presumption that one is working with a very strong (i.e., classical)
logic.
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Part I

Historical Context

11





Chapter 2

The Origins and Development of
Hilbert’s Programme

2.1 Introduction

The development of the logical systems we will consider in this thesis was motivated by
the debates over the foundations of mathematics in the late nineteenth and early twentieth
century. There were several catalysts that brought foundational issues to the foreground
at the end of the nineteenth and beginning of the twentieth century. The development in
the nineteenth century of non-Euclidean geometry which undermined Kant’s position that
geometry was the a priori intuition of space,1 and then Dedekind’s the construction of the

1Efforts were made to recover the Kantian view, for example Bertrand Russell’s fellowship dissertation,
An Essay in the Foundations of Geometry (Russell, 1897), made an attempt at resolving the Kantian
position by generalizing on this point to allow for certain non-Euclidean geometries, allowing for geome-
tries that preserved “constant measure of curvature”. However, he ended up accidentally asserting the
impossibility of Reinmann geometry of which he had not heard (Russell, 1959, p.31). Brouwer notes
this in his early paper on the “Nature of Geometry” (Brouwer, 1909A) where he states that Russell’s
early view that only the projective axioms in physics are a priori would work, except that for the recent
discovery that “this standpoint becomes untenable in light of modern mechanics, because space and time
are no longer considered as independent, and therefore not unambiguously defined”. However in his thesis
(cf. Brouwer, 1907, pp.65-71), before becoming aware of Einstein’s theory of general relativity, Brouwer
discussed Russell’s attempt at reconstructing a Kantian view, admitting that it was not contradictory, but
in the end rejected it. Brouwer argued that Euclidean geometry was not a priori :

The three-dimensional Euclidean geometry is a six-parameter group, in which the motions
of empirical rigid bodies in our immediate neighbourhood can be represented with a high
degree of approximation... but it can be very well imagined that with the same organization
of human intellect another mathematical construction would have become as popular (cf.
Brouwer, 1907, pp.69-71).
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real numbers and the work of Cantor on transfinite numbers, which introduced the concept
of a completed infinite, both of which were rejected by early constructivists like Leopold
Kronecker.2

Another catalyst was the “antinomies of set theory”, that is the set theoretic paradoxes
(Hilbert, 1905) discovered by Russell and Zermelo. These were a profound motivating
factor in the development of several foundational programmes including intuitionism and
Hilbert’s metamathematical theory, as Jean van Heijenoort summarizes:

The paradoxes were extremely disconcerting to those then engaged in investi-
gating the logical foundations of mathematics, and, together with other factors,
they led to four major new developments, which occurred within a very short
span of time:

(1) Hilbert’s metamathematics ;

(2) Brouwer’s intuitionism ;

(3) Zermelo’s axiomatic set theory ;

(4) Russell’s theory of types .

Hilbert’s metamathematics was, at that time, a rudimentary and vague pro-
gram, which was to be developed only 20 years later. Brouwer’s intuitionism
was a profound new conception of mathematics that demanded much time to
be developed and understood (van Heijenoort, 2012, p.328).

Hilbert knew of Russell’s paradox quite early on, not only because Frege himself had
written to him about it in 1903 describing Russell’s letter that showed the paradox in
basic law five of Frege’s Grundgesetze (Frege, 1893, 1903), but also because his protégée
Ernst Zermelo had discovered the same set theoretic paradox “three or four years” before
Russell (Grattan-Guinness, 2000, p.216).3 However, van Heijenoort is correct that
both Hilbert’s and Brouwer’s programmes took 20 or so years to develop, so until then the
foundational programme of importance was logicism and the development of type theory.
But while Brouwer and Hilbert both gave lip service to the fact that the set theoretic
paradoxes were motivators for a new development of mathematical foundations, neither
approached them directly. Hilbert’s axiomatics became model theory as we know it today,
and while Brouwer did produce an intuitionistic set theory, it was not the basis of his
foundational arguments, but a consequence.

2Who once famously asserted that,“God made integers; all else is the work of man.” Original: “Die
ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk” (Von Weber, 1891, p.19).

3If it should seem an injustice that the paradox is known as Russell’s, Grattan-Guinness notes we should
not worry as Russell developed a version of the axiom of choice the summer before Zermelo (Grattan-

Guinness, 2000, p.340).
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Hilbert’s work is often divided into several periods. Hermann Weyl’s obituary, “David
Hilbert and his Mathematical Work” divides it neatly into five periods:

i. Theory of invariants (1885-1893).

ii. Theory of algebraic number fields (1893-1898).

iii. Foundations:

(a) Foundations of geometry (1898-1902),

(b) Foundations of mathematics in general (1922-1930).

iv. Integral equations (1902-1912).

v. Physics (1910-1922) (Weyl, 1944, p.617)

However, several people have pointed out this division does not take into account much
of the work Hilbert was doing in lecture courses, nor the overlap where Hilbert was working
or publishing in multiple areas. Hence we can extend his foundational periods: while it is
true that he published on foundations of geometry from 1898 to about 1902 and foundations
of arithmetic from 1900 to 1905; he also gave lectures on foundational topics in 1908, 1910,
1913, 1914/15, 1917, and 1918. In addition, much of the work he did on axiomatizing
physics is tightly connected with his programme for mathematics. In the 1920s onward he
continues to lecture and publish on foundations of mathematics and was also adding to his
Foundations of Geometry (see Moore 1997, p.68, Sieg 1999, p.2-3, 8, and Ewald 1996,
p.1088 for details.)

In this chapter, first we will discuss Hilbert’s reaction to early constructive views, which
were restrictive with regard both to reasoning in mathematics, and the subject matter of
mathematics. Then we will briefly discuss Hilbert’s invariant theory papers and how the
success of such non-constructive efforts may have affected his views toward the importance
of non-constructive proofs, which will lead to a discussion of his early foundational work
first on geometry then on analysis. At first Hilbert wanted to justify what he took to be
standard mathematical practice by developing a consistent axiom system for arithmetic.
Hilbert’s second major foundational period produced what is often referred to as Hilbert’s
programme, this comes out of his reaction to what he saw as the work left to be done
after logicism. Hilbert’s programme was his attempt to provide a ‘finitist’ foundational
system for mathematics. We will continue to see the development of Hibert’s foundational
work throughout the period from 1910-1918, including Hilbert’s response to Russell and
Frege’s logicism and how this response informed the logical programme that led Hilbert,
Ackermann, and Bernays to introduce first the τ and then the ε axioms in the early 1920s.
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The goal of the this chapter then is to tell the story of the development of Hilbert’s
choice operators in the context of the development of his views on mathematics, logic and
philosophy of mathematics. Hence the choice operators will be treated as an end point and
we will look at the various influences that brought about the development of Hilbert’s ε-
calculus through that lens. The development of ε and τ were integral to Hilbert’s strategy
for developing his ‘finitist’ foundational system, especially as it pertains to his reaction
to the various forms of constructivism from the early constructivism of Kronecker, which
Hilbert rightly saw as a form of conservatism in mathematical methods, through to the
more philosophically grounded positions held by Poincaré, the French semi-intuitionists,
and Brouwer.

Various aspects of Hilbert’s metamathematical development influenced or were prereq-
uisites for development of choice operators. As noted above we start with the early desire
to protect indirect proof from Kroneckarian type criticism. Hilbert’s rejection of the un-
knowable in mathematics served as an early motivation for the development of Hilbert’s
programme. Hilbert’s development of the axiomatic method applied successfully to geom-
etry and then to arithmetic and his approach to developing manageable systems rather
than universal logics enabled him to separate out foundations from ordinary mathematical
practice. The development of the views about metamathematics as different from ordinary
mathematics was to some extent worked out as a reaction to Poincaré’s accusations of cir-
cularity, and his interest in Frege and Russell’s logicist programmes, which was tempered
by the failures of Frege and the limitations of Principia Mathematica. Dealing with the
criticism of Brouwer and Weyl inspired Hilbert’s own finitism with regard to metamathe-
matical reasoning.

Hilbert’s desire to protect what he referred to as “transfinite” reasoning from the crit-
icisms of constructivists led him to the strategy of providing a foundation that would be
‘finitist’ at the level of methamathematics to provide for classical logic at the level of ordi-
nary mathematics. This strategy ended of course with Gödel’s incompleteness proof, but
the logical machinery that Hilbert invented for this purpose remains.

Hilbert saw the questions of foundations of mathematics not as obstacles to overcome,
but as questions that will have a final answer:

I should like to rid the world of the question of the foundations of mathemat-
ics once and for all by making every mathematical statement into a formula
that can be concretely exhibited and rigorously derived, and thereby bring
mathematical concept formations and inferences into such a form that they are
irrefutable and yet furnish a model [Bild ] of the entire science (Hilbert, 1931,
p.1152).

The development of Hilbert’s τ and ε-operators must be seen in this light, as part of the
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machinery to provide methods for the foundation of basic number theory, despite the fact
that these operators smuggle in less than constructive assumptions.

2.2 Early Constructivism

Before presenting the development of Hilbert’s foundational programme, we should briefly
give a short account of Kronecker’s position, as it was the dominant view to which Hilbert
developed in opposition to, especially in the first phase of his foundational work.

For Kronecker analysis and specifically the then new method of treating the notion of
infinity as a number, as Cantor did, was unacceptable. Kronecker asserted that eventually
it would be shown that such methods were inexact and lacking rigour.4

Unfortunately a detailed account of Kronecker’s position in his own words is not avail-
able, as William Ewald points out: “Despite his deeply held philosophical convictions,
Kronecker’s writings on the philosophy of mathematics are scanty and contain little more
than a sketch of his position” (Ewald, 1996, p.942). Hilbert surveyed Kronecker’s phi-
losophy of mathematics in his 1920 lectures at Göttingen, listing the following aspects of
Kronecker’s views:

...he rejected set theory as a mere game of fantasy containing nothing but
illegitimate combinations that are no longer mathematical concepts. In number
theory all truths are indubitable, the proofs incontestable and immediately
comprehensible to common sense. This rests on their enduring checkability...

On the basis of his way of looking at things, Kronecker forbids already the
simplest irrational number

√
2; he introduces the concept of the modulus x2−2

in place of this ‘inadmissible’ concept...

4Weierstrass recounts Kronecker’s assault on mathematical analysis in the wake of Cantor’s work,
quoting him as saying:

If I have time and strength, I myself will show the mathematical world that not only geometry,
but also arithmetic can lead the way for analysis and are certainly more rigorous. If I can
not do it, those who come after me will ... and they will recognize the inexactitude of all of
these findings which you term so-called analysis.

Original:

Wenn mir noch Jahre und Kräfte genug bleiben, werde ich selber der mathematischen Welt
zeigen, dass nicht nur die Geometrie, sondern auch die Arithmetik der Analysis die Wege
weisen kann, und sicher die strengeren. Kann ich es nicht mehr thun, so werden’s die thun,
die nach mir kommen... und sie werden auch die Unrichtigkeit aller jener Schlüsse erkennen,
mit denen jetzt die sogenannte Analysis arbeitet. (Kronecker quoted by Weierstrass in
Mittag-Leffler, 1900, p.151. My translation.)
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Kronecker told me personally that the statement that there are infinitely
many prime numbers makes no sense until one has shown that after every
prime number there is another prime number within a determinable numerical
interval...

And Kronecker restricts logic as well. Just as he forbids arbitrary operation
with the concepts ‘reducible’, ‘irreducible’, etc., so he stands towards the purely
logical propositions like the tertium non datur, whose applicability he admits
only under the condition that there is the possibility of deciding the existential
question by a finite procedure (Hilbert, 1920, p.944).

Besides accounts by other people, often those opposed to his position e.g. Weier-

strass (1874-1888), Von Weber (1891) and Hilbert (1920), we have a statement
of Kronecker’s philosophy of mathematics only in his paper “On the Concept of Num-
ber” (Kronecker, 1887) and the introduction to his Lectures on the theory of numbers
(Kronecker, 1901) which covers much the same material (Ewald, 1996, p.947 fn.a).

In Kronecker (1887) he writes that finite arithmetical methods were the only ones
that we were able to treat a priori, and hence these were the only methods that were on
a firm basis:

The difference in principle between geometry and mechanics on the one hand
and the remaining mathematical disciplines (here gathered together under the
term ‘arithmetic’) on the other is, according to Gauss, that the object of the
latter, number, is merely our mind’s product, while space as well as time also
have outside of our mind a reality, whose laws we cannot completely prescribe
a priori (Kronecker, 1887, Intro.)

Kronecker presented a view that ‘arithmetic’ grounds all of mathematics, by arthmetic
he meant, “all mathematical disciplines with the exception of geometry and mechanics—
especially, therefore, algebra and analysis” (Kronecker, 1887, Intro.). But Kronecker
was sure that soon:

we shall one day succeed in ’arithmetizing’ the entire content of all these math-
ematical disciplines—that is, in grounding them solely on the number-concept
taken in its narrowest sense, and thus in casting off the modifications and ex-
tensions of this concept... (Kronecker, 1887, Intro.)

Kronecker proceeded to define the integers and from there the laws of addition and mul-
tiplication of numbers (Kronecker, 1887, §1-4), then he asserted that the “introduction
in principle of ‘indeterminates’ ” allows us to disregard “all the concepts that, properly
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speaking, are foreign to arithmetic — for instance, that of irrational algebraic numbers,”
and even, should we wish, negative numbers (Kronecker, 1887, §5).

Kronecker was thus very much opposed to any sort of mathematical practice that was
not specifically reducible to the natural numbers. In contrast to this position Hilbert’s
first large success in mathematics, his invariant theory papers, was based on an infinitely
ranging non-constructive existence proof, which was exactly the sort of infinitiary reasoning
to which Kronecker objected. Hilbert’s programme, the development of his foundational
view, is often seen as a rebellion first against Kronecker’s constructivism and then only
later Brouwer’s (cf. Gray, 2000, 1998, 1999; Posy, 1974; Reid, 1986). Gray asserts that
his opposition to Kronecker “dates from Hilbert’s activities in foundations of mathematics,
has been read back into the earlier period” (Gray, 1998, p.24). However the story is more
complicated, Hilbert was aware of Kronecker’s objection to his work on invariant analysis
and clearly would have known that his claim, in “On the Concept of Number” (Hilbert,
1900a, §16), that his method will provide a “proof that the system of real numbers is
a consistent (complete) set”, would be rejected by Kronecker for whom even negative
integer’s were suspect (Kronecker, 1887, §5). Hilbert certainly criticised Kronecker as
early as 1904 (see Hilbert 1905, p.130 ) and Hilbert generally does not mention Brouwer’s
foundational position until (Hilbert, 1923), after the point that his former Ph.D. student
Weyl converted to intuitionsim. Up until this period Hilbert generally uses Kronecker
and Poincaré as his foil when discussing constructive mathematics (see Hilbert 1920,
pp.944–945). However we should note that Hilbert’s desire to provide a finitist foundation
for mathematics and his attempts to provide axiomatizations of arithmetic show that he
took seriously the challenges and criticisms that views like Kronecker and other early
constructivists like Poincaré made. In fact Hilbert’s criticism of Kronecker’s “dogmatist”
views about integers was actually made from a more conservative position regarding their
existence and a was part of his attempt to provide a logico-mathematical foundation for
the concept of number, rather than taking even the concept of integer as a given (Hilbert,
1905, p.130).

2.3 The Road to Hilbert’s Programme

Hilbert’s programme is generally said to have developed in the period from 1917 to 1930
when the terms “‘formalism’ and ‘metamathematics’ became attached to his philosophy
and techniques.” However Hilbert’s first period of interest in foundations of mathematics
which ran until 1905 could be characterised as “axiomatics with proof and model theory”
(Grattan-Guinness, 2000, p.208). 5 Before his production of this work on the founda-

5Ewald like Weyl divides Hilberts career into several phases. Ewald describes this period as lasting
from 1898 to 1903, being when: “Hilbert’s career was devoted to the foundations of geometry and to the
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tions of geometry, Hilbert produced the work which brought him notoriety and put him
into conflict with those early constructivists whose views he would try to answer in his
foundational programme.

2.3.1 The Invariant Theory Papers

From 1885 to 1893 Hilbert published a series of papers that solved several long standing
problems in invariant analysis (Hilbert, 1885, 1887, 1890, 1893). Unlike Gordan’s earlier
proof of a basis for binary forms which was computational, that is constructive, Hilbert
provided an existence proof, which relied on the use of the law of excluded middle extended
to an infinite case.6 The invariant theory papers, and specifically the proof of Hilbert’s
basis theorem, were greeted with mixed responses. Since Gordan’s proof there had been
little progress on what had become known as Gordan’s problem,7 as Constance Reid writes
“in 20 years of effort by English, German, French and Italian mathematicians, no one had
been able to extend Gordan’s proof beyond binary forms” (Reid, 1986, p.30). Hilbert’s
basis theorem8 answered that question, but did not provide a construction of each of
the specific systems of invariants. Hilbert provided only an existence proof of the basis
theorem, a method well used in geometry, but not so accepted in analysis at the time
(pp.36-37 Reid, 1986; Gray, 2000, p.31). As Gray puts it, Hilbert’s proof was “decidedly
non-constructive” and “clear from everything Hilbert wrote that he thought it at most a
small step from geometry to algebra and back” (Gray, 1997, p.8).9

axiomatic method, with some excursions into the foundations of arithmetic” (Ewald, 1996, p.1088). As
we have noted 1905 was not the end of Hilbert’s interest in foundations and considering his lectures on
foundational topics in 1908, 1910, 1913, 1914/15, 1917, and 1918, dividing his interests into set periods
must always be understood with a grain of salt. That his views developed eventually into a more defined
programme though cannot be denied.

6There have more recently been several constructive proofs of the basis theory (Gray, 1999, p.9). Gray
notes the result is recent citing (Sturmfels, 1993, p.11). The first proof I can find of it is by student of
Errent Bishop (Tennenbaum, 1973).

7This problem could be stated as follows: “was there a basis, a finite system of invariants in terms
of which all other invariants, although infinite in number, could be expressed rationally and integrally?”
(Reid, 1986, p.30).

8that states that “If R is a Noetherian ring, then so is any polynomial ring in a finite number of
indeterminates over R” (cf. Zariski et al., 1958, pp.200-203)

9Gray gives a short description of Hilbert’s invariant theory papers:

The first of these four papers is a rich one, broaching the theory of syzygies, and asking for
the generalisation of Noether’s theorem to arbitrary dimensions... The second paper shows
how to use the basis theorem to illuminate the ideas of dimension, genus, order, and rank of
an algebraic variety, and so makes explicit contact with Kronecker’s work. Setting the third
paper on Gebilde [varieties] aside, we come to the famous paper in which the basis theorem
is proved. ... Only the final section of the paper is specifically addressed to the theory of
algebraic invariants (Gray, 1997, p.8) .
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The result was therefore not immediately welcomed by all; Gordan objected to Hilbert’s
non-computational proof method remarking: “Das ist nicht Mathematik. Das ist Theolo-
gie” (“This is not Mathematics. This is Theology”) (Noether, 1914, p.18),10 in a letter
communicating his review of Hilbert’s papers to Felix Klein the editor of Mathematische
Annalen. Others realized the value of Hilbert’s result. Hermann Minkowski for example,
in a letter to Hilbert, wrote:

For a long while it has been clear to me that it could be only a question of time
until the old invariant question was settled by you — only the dot was lacking
on the ‘i’; but that it all turned out to be so surprisingly simple has made me
very happy, and I congratulate you (quoted in Reid, 1986, p.37).

But it was Felix Klein, who would later bring Hilbert to Göttingen from Königsberg,11

who was Hilbert’s biggest advocate. He, as the editor of the Annalen Mathematische,
disregarded Gordan’s negative review and wrote to Hilbert that: “Without doubt this is
the most important work on general algebra that the Annalen has ever published” (quoted
in Rowe, 1989, p.195). And in this manner the use of existence proofs ranging over an
infinite class was tied to Hilbert’s first great mathematical achievement. In their defence
Hilbert was later to write:

The value of pure existence proofs consists precisely in that the individual
Construction is eliminated by them and that many different constructions are
subsumed under one fundamental idea, so that only what is essential to the
proof stands out clearly; brevity and economy of thought are the raison d’étre of
existence proofs. In fact, pure existence theorems have been the most important
landmarks in the historical development of our science. But such considerations
do not trouble the devout intuitionist (Hilbert, 1927, p.475).

Defence of existence proofs and the mathematical achievements that Hilbert saw flow-
ing from them was one of the early motivations for the development of the Hilbertian
foundational programme. Motivated to justify and protect his earlier victories, Hilbert
saw that pure existence proofs could be justified in analysis if it could be given a solid
foundation that answered the criticisms of Kronecker and other early constructivists. His
first attempts at this would lean heavily on his work on axiomatization of Geometry, so
that is where we turn to next.

10Note that as Hilbert’s method became much more accepted, Gordan relented and was quoted as saying,
“I have convinced myself that even theology has its merits.” (Reid, 1986, p.37).

11On Klein’s building of the ‘Göttingen Empire’ in mathematics, an attempt to move the centre of
German mathematics from Berlin to Göttingen, see Gray (2000, pp.23-35).
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2.3.2 From the Foundations of Geometry to the Foundations of
Mathematics

At the beginning of his career Hilbert, though an algebraist by training, focused on ge-
ometry, which he was concerned with throughout the 1890s, giving a course while still
a Privatedozent at Königsberg on projective geometry in 1891 and one in 1894 on foun-
dational questions.12 In 1894, he published a short paper in which he derived a novel
proof that “the straight line is the shortest connection between two points” (Hilbert,
1894).13 In 1895, after moving to Göttingen, Hilbert gave special short course over Easter
in 1898 “On the concept of the infinite”, dealing with geometrical spaces and continuity
(Grattan-Guinness, 2000, p.207). Since as “part of the growing interest in axiomatics,
it had become clear that Euclid had not specified all the assumptions that he needed...
Hilbert decided to fill all the remaining gaps” (Grattan-Guinness, 2000, p.207). The
result of this effort was published as The Foundations of Geometry (Hilbert, 1899).14

The study of the foundations of geometry stayed an interest of Hilbert, who continued to
add to the book over the years. The original book (Hilbert, 1899) grew from 92 pages
to over 320 pages by the seventh edition (Hilbert, 1930). The first edition (Hilbert,
1899) consisted of seven chapters, the first listing five groups of axioms, and the second
focusing on independence and consistency of the axioms.15 In writing the The Foundations
of Geometry Hilbert developed our modern conception of an axiomatized system, setting
the stage for his development of metamathematics and what we now know as model theory.
The development of separate logical systems for different purposes, rather than a universal
logic, with all the problems of such systems, can be in some ways be traced to his attempt
to do separately for arithmetic what he had done for geometry. Much of Hilbert’s foun-
dational approach can be related to his understanding of what mathematicians use when
they reason about certain parts of mathematics, in geometry we do not need all the axioms
we use in algebra, and vice-versa.

12These included: the independence of axioms, and axioms of connection and continuity i.e.‘Archimedes’s
axiom’ (Grattan-Guinness, 2000, p.207).

13He derives this as an exercise in the foundations of geometry on the “assumption that points, lines,
and planes are taken as elements” and the following axioms: the axioms of the elements’ mutual relations
(every line has two points), the axioms of segments and sequences of points on a line (that between two
points of a line there is a third, and that points can be ordered); and the axiom of continuity (that an
infinite sequence of points on a line can be extended) (Hilbert and Bernays, 1999, pp.108-109).

14The short book was one of a two volume special edition honouring Carl Friedrich Gauss and the
physicist Wilhelm Weber, conceived of by Klein.

15The other chapters were: “The Theory Of Proportion”, “The Theory Of Plane Areas”, “Desargues’s
Theorem”, “Pascal’s Theorem” and “Geometrical Constructions Based Upon The Axioms I-V” (Hilbert,
1899, 1902).
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2.3.3 Hilbert’s Problems

While Hilbert’s 1904 address to the international mathematics conference in Heidelberg,
“Über die Grundlagen der Logik und der Arithmetik” (Hilbert, 1905) has been said to
mark the beginning of Hilbert’s foundational programme,16 Hilbert had already mentioned
the need for such a proof in the presentation of the second of the problems listed in his
famous 1900 address (Hilbert, 1900b) to the Third International Congress of Mathemat-
ics.17 In this address, Hilbert outlined a series of 23 ‘problems’ for mathematics in the next
century.18 In addition to these problems he presented a call to arms asserting that:

this conviction of the solvability of every mathematical problem is a powerful
incentive to the worker. We hear within us the perpetual call: There is a
problem. Seek its solution. You can find it by pure reason, for in mathematics
there is not ignorabimus (Hilbert, 1900b).

This optimistic call to arms was a response to a view put forth in Emil du Bois-Reymond’s
1872 address that there were limits to scientific knowledge (du Bois-Reymond, 1872,
1880) often summarized in the maxim “ignoramus et ignorabimus”19 (see Bartocci et al.
2011, p.3, and, Gray 2000, p.57).

Hilbert’s epistemic optimism held that for mathematics and physics that there are
no unknowable truths, or perhaps more generously, unsolvable problems. This is one
philosophical position that needs to be understood when comparing the motivations for
his foundational to those of constructivists. In addition the series of problems Hilbert
presented in 1900 included at least two that touch issues we will discuss in this thesis:
the first problem, which lead his student Zermelo to first formulate the axiom of choice
(Zermelo, 1908), and the second problem, which called for a providing of a foundation for
mathematics, specifically one which would be resistant to the criticism of constructivists.

Hilbert’s opposition to to constructivist viewpoints, both the conservatism of Kronecker
and Brouwer’s later ideas, has often been connected with this epistemic optimism, that is,
the view that all mathematical problems have a solution. 20 Yet he was not deaf to their

16It was, Richard Zack writes, “the first time, he sketched his plan to provide a rigorous foundation for
mathematics via syntactic consistency proofs” (Zach, 2009).

17Regarded even to this day as, “perhaps the most influential speech ever given to mathematicians” (
Joyce 1997 quoted in Hardy et al. 2009 p.142, interestingly this sentence shows up in several other books
without attribution, e.g. Saxe 2002, p.26, Chimakonam 2012 p.102).

18The oral address presented 10 problems, the written version (translated to French and available to the
congress attendees) provided the full 23 problems.

19“We do not know and will not know.” Note that du Bois-Reymond did not use this exact phrasing,
rather he discussed the ignoramus and the ignorabimus separately.

20i.e. his rejection of the ignorabimus in mathematics.
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arguments, which lead him to attempt to develop a consistency proof for mathematics,
specifically for arithmetic, using finitary methods. Another important and central aspect
of Hilbert’s various research programmes was his use of axiomatic systems, first in his work
in geometry and then in arithmetic. Although he did not publish on foundational questions
between 1905 and 1917, he returned to these questions in his 1921 paper (Hilbert, 1923).
His return to such issues has been suggested to have been in response to what he saw as
Weyl’s defection to the intuitionism (Weyl, 1921).21

Throughout his early writings on foundational issues Hilbert also rejected Frege’s logi-
cist view that arithmetic could be reduced to logic, arguing rather that concepts belonging
both were presupposed in the definition of the other (Hilbert, 1905, p.131), and hence
that they needed to be defined together. Hilbert thus rejected the idea that propositions
were primary in a logico-arithmetic system and began with developing his system from
‘entities’ (cf. Hilbert, 1905, p.132ff.). It is not surprising then that he introduced the
τ and ǫ axioms into his logical system when he returned to foundational investigations
(Hilbert, 1923, 1926) linking as they do elements of the domains with a propositional
logic.

2.4 The Origin of the Ignorabimus

The famous expression of Hilberts that “there is no ignorabimus in mathematics” is often
mentioned (Reid 1986, p.72, Gray 2000, p.58, McCarty 2004, p.530, Corry 2004,
p.102, Bottazzini 2011, p.2) as response to Emil du Bois-Reymond.22 Emil du Bois-
Reymond was a well respected German physiologist, whose address, “Über die Grenzen
des Naturerkennens” (“On the limits of our understanding of nature”)23 which he gave to

21In the words of Per Martin Löf:

A new phase in this controversy began in 1921 with the publication of Weyls paper Über
die neue Grundlagenkrise der Mathematik (Weyl 1921), and that is what really fired it and
made it so bitter. (And it seems clear that it had to do with the fact that Weyl was after
all Hilberts doctoral student: he took his doctors degree with Hilbert, and I do not know,
but presumably Hilbert thought of him as the best of his doctoral students over the years)
(Martin-Löf, 2008, p.246).

22Brother of the mathematician Paul du Bois-Reymond.
23Which ended with the following passage:

With regard to the enigma of the physical world the investigator of Nature has long been wont
to utter his “Ignoramus” with manly resignation. As he looks back on the victorious career
over which he has passed, he is upheld by the quiet consciousness that wherein he now is
ignorant, he may at least under certain conditions be enlightened, and that he yet will know.
But as regards the enigma what matter and force are, and how they are to be conceived, he
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the of 1872 to the Society of German Scientists and Physicians, in Königsberg (du Bois-

Reymond, 1872) and elaborated on in his 1880 speech “Die sieben Welträthsel” (Seven
World Problems) before the Berlin Academy of Sciences (du Bois-Reymond, 1880), be-
gan a wide ranging debate in the German speaking world on the nature and possibility
of scientific knowledge. The public debate that followed was referred to as the “Ignora-
bimusstreit” (McCarty, 2004, p.523).24

The “no ignorabimus” assertion is the key to much of the motivation of Hilbert’s pro-
gramme, also know as his “solvability thesis”; it also sets the background to Brouwer’s
reaction to Hilbert’s programme in his thesis, and early expressions of his rejection of the
excluded middle (Brouwer, 1907, 1908C). Hence it will be enlightening to look at the
origins of the debate.

Emil du Bois-Reymond stated in his 1880 speech that he was surprised at the reaction
to his earlier address and its claims of “the impossibility, on one hand, of comprehending
the existence of matter and force, and, on the other hand, of explaining consciousness, even
in its lowest degree, on a mechanical theory” which to him seemed “a truism” (du Bois-

Reymond, 1880, p.433). The original paper was well discussed and opinions were so
divided that du Bois-Reymond asserts that by 1880 the term “ignorabimus” had become
a “philosophical shibboleth”.

Du Bois-Reymond’s point was that certain foundational questions in the natural sci-
ences were unanswerable. Though the views of du Bois-Reymond were widely thought
to be Kantian, he himself rejected this classification. In fact, throughout both texts du
Bois-Reymond leans more heavily on Leibniz than any other philosopher, agreeing about
consciousness with Leibniz that even if “he could create an homunculus atom by atom
... he might make the creature think, but not comprehend how it thought” (du Bois-

Reymond, 1880, p.435). His argument about the origin of matter and force is based on
what he considered the basic properties of matter, its divisibility. He describes atoms as
“infinitesimals” which are “regardless of its names ideally divisible” and to which “prop-
erties or a state of motion are attribute” (du Bois-Reymond, 1872, p.21).

Likely more important than the details of the Emil’s du Bois Reymond’s argument, for
our interests in Hilbert’s reaction, is the fact that his brother, “Paul du Bois-Reymond’s
1882 monograph General Function Theory... [was] devoted to transplanting a similar skep-
ticism into the realm of pure mathematics” (McCarty, 2004, p.524).

Much of Paul du Bois-Reymond’s General Function Theory, is written as a form of a

must resign himself once for all to the far more difficult confession “Ignorabimus!” (du Bois-

Reymond, 1872, p.32)

24Denis Charles McCarty notes that Emil’s address “...unleashed a whirlwind of argument and counter-
argument in the press and learned journals over Ignorabimus that continued well into the 20th Century ”
(McCarty, 2004, p.523).
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dialogue between an idealist and an empiricist who answer differently to various questions
about infinities and infinitesimals. For example the empiricist accepts that the unit segment
can be split into an unlimited points while the idealist expands on this asserting that the
number of these points is infinitely large. In this way the idealist “believes in the reality of
extensions of concepts that go beyond the imagination but are necessitated by our thought
processes”, while, on the other hand the “empiricist always remains within the limits of
the natural domain of imagination. He concedes and acknowledges the arbitrarily exact in
geometry but calls the ideally exact an axiom” (Stolz, 1882, p.4).

Paul du Bois-Reymond distinguished between potentially and actually infinite sets,
noting that potential, but not actual, infinities “call into question” the law of excluded
middle (McCarty, 2004, p.525). He presents this account, possibly the first example of
a description of a lawless sequence, in the following manner:

One can also think of the following means of generation for an infinite and
lawless number: every digit is determined by a throw of the die. Since the
assumption can surely be made that throws of the die occur throughout eternity,
a conception of lawless number is thereby produced. Indeed the contemplation
of nature provides us with even better examples (du Bois-Reymond, 1882b,
p.91).25

Paul du Bois Reymond argues that the lack of laws that encode sequences found in nature
give him reason to agree with his brother that we can never possess complete knowledge of
physical systems. Indeed the real infinitesimals that his idealist wishes to claim exist are
not definable if we accept du Bois-Reymond’s empiricist’s view of sequences.26 In addition
unlike Hilbert, and later Brouwer, who despite their differences, both saw mathematics
as an autonomous subject, du Bois-Reymond saw his empiricism as needing a foundation
in the study of “the simplest constituents of our thinking, the representations” i.e. the
physiological psychology studied by his brother Emil (McCarty, 2004, pp.529-530).

Hence what became known in German academic circles as the “Ignorabimusstreit”
would have been clearly in Hilbert’s mind in 1900 when giving his address to Paris. But not
only would he be reacting in general to the concept that there were unsolvable problems

25Original:

Man könnte auch an folgende Entstehungsweise einer endlosen und gesetzlosen Zahl denken:
Jede Stelle wird einfach ausgewürfelt. Da doch die Annahme gemacht werden darf, dass dies
Würfeln von Ewigkeit her oder in alle Ewigkeit stattfindet, so wäre hiermit eine gesetzlose
Zahl in der Idee hergestellt. Indessen die Naturbetrachtung liefert uns bessere Beispiele

My translation, extended and adapted from version quoted in McCarty (2004, p.525).
26McCarty points out there are many “structural similarities between this argument of du Bois-Reymond

and Brouwer’s weak counterexamples” (McCarty, 2004, p.525), which we will discuss in the next chapter.
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in the sciences, he would be defending mathematics from this claim, and defending its
autonomy.

The assertion of an ignorabimus fits well within the constructivism of Kronecker and
other 19th century mathematicians. The preservation of existence proofs were part of
Hilbert’s defence of mathematics; but the methods, of infinitely ranging existence proofs,
which Hilbert had adapted from his work on geometry could not answer the demands of
constructivism. Hence Hilbert’s attempts at a what he called a “finitary” foundational
project. Hilbert was attempting to preserve mathematical practice from ideological re-
strictions. And practice was key to why Hilbert introduced his τ and ε-operators, which
formalized the manner in which mathematicians proved facts about arbitrary objects of a
type.

2.5 Axiomatizing Arithmetic

What we know as Hilbert’s programme was his attempt to provide formalization, specif-
ically a axiomatization of all of mathematics and a proof of the the consistency of math-
ematics. In response to constructive criticism of Hilbert’s proof methods in his invariant
theory papers, and to the Ignorabimusstreit Hilbert wanted this consistency proof to be
created using only “finitary” methods. Though Hilbert’s programme took this form only
in the 1920s, the origins of it can be seen as nascent even in the second problem in his
famous 1900 Paris address. We will trace the development of his programme through his
early attempts to axiomatize arithmetic and his development of his logical methods.

As mentioned above it was the second problem of Hilbert’s famous 1900 Paris address
“The Compatibility of the Arithmetical Axioms” (Hilbert, 1900b, pp.447ff.) that actually
transformed into what became the focus of what is called Hilbert’s programme. Axiom
systems had existed before Hilbert, of course, however what was new with Hilbert in the
use of the axiomatic method was its model theoretic nature. As Michael Hallett notes, the
difference between Hilbert’s axiom systems and those that preceded him is that Hilbert
separates a “certain body of facts” that are given a special status in relation to the system
as a whole (Hallett, 1996, pp.136–137).

The service of axiomatics is to have stressed a separation into the things of
thought [die gedanklichen Dinge] of the [axiomatic] framework and the real
things of the actual world, and then to have carried this out (Hilbert 1922-1923
lecture quoted in Hallett, 1996, p.137).

In his 1922 paper “Die Bedeutung Hilberts für die Philosophie der Mathematische”
(“On the Meaning of Hilbert’s Philosophy of Mathematics”), Bernays discusses the differ-
ence between Hilbert’s and pre-Hilbert axiom systems. Before Hilbert, he writes that an
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axiom system was created by starting “with a few basic principles, of whose truth one is
convinced, [one] places these at the beginning as axioms” developing theorems from these
using logical deductive procedures. In contrast Hilbert’s axioms:

...are not judgements of which it can be said that they are true or false. Only in
connection with the axiom system as a whole do they have a sense. And even
the entire axiom system does not constitute the expression of a truth. Rather
the logical structure ... is in Hilbert’s sense purely hypothetical... The axiom
system itself does not express a state of affairs but rather represents a possible
form of a system of connections, a system which is to be investigated according
to its internal properties (Bernays, 1922b, pp.95-96)

Hilbert’s axiomatic method focused on establishing the consistency of the axioms. All
the atomic objects are thus introduced in axioms rather than being added in an ad hoc
manner. Hence Hilbert’s axiomatising of numbers (Hilbert, 1900a, 1905) begins with
the primitives (e.g 1, =) but does not try to reduce them further, say to equivalence sets.
Rather their nature is expressed in the axioms, i.e. what can be deduced from them. As
Michael Hallett has pointed out, Hilbert was not interested in a universal logic, a logica
magnus in van Heijenoort’s terminology,27 like Russell and Frege, so “there is no necessity
to a say anything about the primitives prior to the development of the theory. Thus, in
particular, there is not necessity (as regards the primitives) for a strong ambient logic”
(Hallett, 1996, p.135–141).

2.5.1 Hilbert’s “On the Concept of Number”

Hilbert’s Paris address is more famous but it was in an earlier paper published the same
year, “Über den Zahlbegriff” (“On the Concept of Number”) (Hilbert, 1900a), which is

27van Heijenoort described the difference between the two types of logical programmes, logica magnus

and logica utens :

. . . over what domain are the quantifiers supposed to range?” At this point the opposition
between absolutism and relativism in logic strikes us with full force. For an absolutist, there
is just one domain, a fixed and all-embracing universe (either on one level or hierarchized in
several levels) which comprehends everything about which there can be any discourse. Such
was the conception of Frege, such was also the conception of Russell, though for him this
universe was stratified according to the theory of types. Under the name of logica magna, such
a universal system has been the constant dream among logicians. Logicism is a modern form
of logica magna. The well known diculties with logicism have led contemporary logicians, for
the most part, away from that dream. Rather than being a logica magna, present-day logic is
a logica utens ; systems are introduced, here and there, according to needs. Different domains
are successively considered for interpretations. In that sense, relativism has at present the
upper hand (van Heijenoort, 1985, pp. 79–80)
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where Hilbert first tackled the axiomatizing of arithmetic and which can be seen as his first
move in what would become his wider foundational programme. This paper can be seen as
a rhetorical response to Kronecker’s paper of thirteen years earlier of the same name (cf.
Kronecker, 1887). In his 1887 paper, Kronecker introduced the integers in a manner
Hilbert describes as “genetic”. Kronecker further argued that the use of algebraic numbers
is unnecessary in that one can reduce all higher algebraic terms to natural numbers.

Hilbert begins by describing what he terms the “genetic method”. The genetic method
of constructing number starts with imagining the: “further positive integers 2, 3, 4 ...
as arising through the process of counting” after which “one develops their laws of cal-
culation” including universally applicable “subtraction” through which “one attains the
negative numbers.”28 Next, fractions are defined as a pair of numbers such “that every
linear function possesses a zero,” then finally the real numbers are defined “as a cut or
a fundamental sequence” which means that “every entire rational indefinite (and indeed
every continuous indefinite) function possesses a zero” (Hilbert, 1900a, p.109–211).

The genetic method, Hilbert states, can be contrasted to the axiomatic method used in
geometry which postulates elements and then “brings these elements into relationship” by
means of the axioms “of linking, of ordering, of congruence and of continuity.” He writes
that, these axioms must be shown to be consistent and complete (Hilbert, 1900a, §3)
and then states the following opinion:

My opinion is this: Despite the high pedagogic and heuristic value of the genetic
method, for the final presentation and the complete logical grounding [Sicherung]
of our knowledge the axiomatic method deserves the first rank.

Hilbert then describes the form that the axiomatic method should take with reference to
“the theory of the concept number”:

We think a system of things [denken ein System von Dingen]; we call these
things numbers and designate [bezeichnen] them by a, b, c, ... We think these
numbers in certain reciprocal relationships [Beziehungen] whose exact and com-
plete description occurs through the following axioms (Hilbert, 1900a, §7).

Hilbert presented his axiom system for arithmetic, which describe the real numbers ax-
iomatically as “an ordered Archimedean field that cannot be embedded in any larger such
field” (Ewald, 1996, p.1090), as follows:

• axioms I 1–6, entitled “Axioms of connection,” defined addition and multiplication;

28A step we can contrast to Kronecker’s paper of the same name where he suggest one can dispense with
negative integers (Kronecker, 1887, §5)
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• axioms II 1–6, entitled “Axioms of calculation,” covered the use of the equality
relation;

• axioms III 1–4, entitled “Axioms of ordering,” provided ordering by inequalities; and
finally

• axioms IV 1–2 entitled “Axioms of continuity” were the “Archimedian axiom” which
stated:

If a > 0 and b > 0 are two arbitrary numbers, then it is always possible
to add a to itself so often that the resulting sum has the property that
a+ a+ ...+ a > b.

i.e. the real numbers formed an Archimedian field, and the “Axiom of completeness”:
which stated:

It is not possible to add to the system of numbers another system of things
so that the axioms I, II, III, and IV-1 are also all satisfied in the combined
system; in short, the numbers form a system of things which is incapable
of being extended while continuing to satisfy all the axioms (Hilbert,
1900a).

The completeness axiom stood out in that it was not directly about the real numbers.
Ewald notes that the axiom “was criticized at the time both for its logical complexity... and
for not obviously being the statement of a continuity condition for the real line” (Ewald,
1996, fn. b, pp.1090-1091).29 After presenting these axioms Hilbert then confidently
remarked that: “To prove the consistency of the above axioms, one needs only a suitable
modification of familiar methods of inference” (Hilbert, 1900a, §16). Such a “suitable
modification” was obviously not easily found and Hilbert continued in his quest to prove the
consistency and completeness of arithmetic up until Gödel gave his famous incompleteness
proofs.

However in his next paper on the subject (Hilbert, 1905) Hilbert changes his method
and provides a syntactic consistency proof.

2.5.2 Hilbert “On the Foundations of Logic and Arithmetic”

In 1904 Hilbert addressed the “Third International Congress of Mathematicians” and
sketched his plan to provide a rigorous foundation for mathematics, published as ‘On

29Specifically by Poincaré for being impredicative (Poincaré, 1906)
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the Foundations of Logic and Arithmetic’ (Hilbert, 1905)30, specifically by showing the
consistency of arithmetic.

Hilbert discussed the positions and labelled the views of others who had investigated the
foundations of number dividing them into two groups. In the first group, whom he asserted
did not investigate “deeply into the essence of the integer” Hilbert put Kronecker, whom he
labelled a “dogmatist”, and whose restrictive philosophy of mathematics he rejected assert-
ing that his philosophy of mathematics accepted the integer as dogma without providing
a foundation; Hermann von Helmholtz whom he labeled an “empiricist”, and whose views
he rejected because they were to his mind not just finitist, but unable to deal with large
finites; and Elwin Bruno Christoffel, whom he labelled an “opportunist”, whom, though
an opponent of Kronecker’s views qua the value of irrational numbers, did not succeed in
giving “a pertinent refutation of Kronecker’s conception” (Hilbert, 1905, p.130). Then
Hilbert turned to those whom he felt had probed “more deeply into the essence of the inte-
ger”, these included Gottlob Frege, Richard Dedekind and Georg Cantor. However Hilbert
realised that Frege’s logicism was vulnerable to set theoretic paradoxes, and that: “from
the very beginning a major goal of the investigations into the notion of number should be to
avoid such contradictions and to clarify these paradoxes” (Hilbert, 1905, p.130, emphasis
in original). Dedekind’s method Hilbert labelled as “transcedental” damning it as using a
similar method of “philosophers”, because it uses the concept of the “totality of all objects”
which he asserted would lead to a contradiction. Finally he assessed Cantor’s work as “leav-
ing room for subjective judgement” in distinguishing between consistent and inconsistent
sets, praising him for noticing this distinction, while criticising him for not providing clear
criteria with which to distinguish the two (Hilbert, 1905, p.131). Here we begin to see a
foreshadowing of Hilbert’s approbation of Whitehead’s and Russell’s Principia Mathemtica
which would lead Hilbert in 1917 to proclaim their “enterprise of axiomatizing logic” as
the “crowning achievement of the work of axiomatization” (Hilbert, 1917, p.9).

After rejecting the above methods of grounding the concept of integer, Hilbert presents
his own. He writes that the method should be axiomatic, but at this time, he rejects the
logicism of Frege:

Arithmetic is often considered to be a part of logic, and the traditional fun-
damental logical notions are usually presupposed when it is a question of es-
tablishing a foundation for arithmetic. If we observe attentively, however, we
realize that in the traditional exposition of the laws of logic certain fundamen-
tal arithmetic notions are already used, for example, the notion of set and, to
some extent, also that of number (Hilbert, 1905, p.131)

30Grattan-Guinness points out that the original title was simply ‘Über die Grundlagen der Arithmetik’
but was changed for publication to ‘Über die Grundlagen der Logik und der Arithmetik’ perhaps to avoid
confusion with Frege’s publication of the same name (Frege, 1884)
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Hilbert first introduces an object, or rather a “thought-object... denoted by a sign... 1
(one)”. This (simple) object he then concatenates in combinations e.g.: “11, 111, 1111,”
and combinations of combinations e.g.: “(1)(11), (11)(11)(11), ((11)(11))(11), ...” then he
adds a second simple object “=” and forms combinations with it:

1 =, 11 =, ..., (1)(= 1)(===), ((11)(1)(=))(==), 1 = 1, (11) = (1)(1)

Next he introduces the notion of differing combinations: “combinations deviate in any
way from each other with regard to the mode and order of succession in the combinations”,
and divides the combinations into two classes: of entities and of nonentities. A combination
is a “true proposition” if it belongs to the class of entities, and its negation true if it belongs
to the class of non-entities. He then introduces notation for implication, ‘and’ and ‘or’.

Hilbert now introduces his axioms (1) and (2)31

(1) x = x

(2){x = y ∧ w(x) → w(y)}

These two axioms define the notion represented by ‘=’ according to Hilbert, and the
consequences of the two axioms are particular sequences of 1s and =s. Note though that
axioms (1) and (2) do not provide any sentences of the form ¬a (Hilbert, 1905, pp.131-
132).

Hilbert adds the symbols for belonging to a infinite set the ‘following’ operation and
an ‘accompanying’ operation and uses this notation to introduce the following axioms32:

(3)f(x∈U) = (f ′x)∈U

(4)(f(x∈U) = f(y∈U)) → (x∈U = y∈U)

(5)¬(f(x∈U) = 1∈U)

Now he questions as to whether such axioms could create a contradiction. He notes
that only (5) can give rise to axioms of the form ¬a, and hence asserts that any axiom
that would contradict (5) would be of the form:

(6)∃xf(x∈U) = 1∈U

31I have used modern notation. Hilbert used: ‘|’ for implication, ‘u.’(und) for conjunction, and ‘o.’
(oder) for disjunction; x̄ for negation; and A(xu) for universal and A(xo) for the existential quantifiers.

32which he writes, ux, f and f′ respectively
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At this point he shows that all the formulas of the form a = b that can be generated
using the axioms have the quality of being “homogeneous” i.e. are of the same number of
simple objects on either side of the = sign, and notes that (6) is a homogeneous equation,
and so provides a syntactic consistency proof of his axiom system (Hilbert, 1905, pp.133-
134).

Hilbert’s goal in this paper was to “develop logic together with analysis in a common
frame, so that proofs can be viewed as finite mathematical objects; then show that such
formal proofs cannot lead to a contradiction” (Sieg, 1999, p.7). Hilbert (1905) thus
shows several features of his later programme. The first is the desire for a consistency
proof, specifically one that works on the syntax of the system. Hilbert’s later programme
focuses on providing a finitist foundation and here we see Hilbert’s first real attempt to
deal with Kronecker’s position, on his own terms. Poincaré’s response to Hilbert’s 1904
address would further refine his approach to his programme.

2.5.3 Poincaré’s Response to Hilbert (1905)

Poincaré contrasts Hilbert’s efforts in this paper with Russell’s logical system33, noting
that for “Russell any object whatsoever, which he designates by x, is an object absolutely
undetermined about which he supposes nothing; for Hilbert it is one of the combinations
formed with the symbols 1 and =” (Poincaré, 1906, pp.1039-1040). This means that there
may not be the introduction of undefined objects only combinations of defined objects.

Poincaré notes that the “contrast with Russell’s viewpoint is complete” this is because
according to Poincaré:

Russell is faithful to his point of view, which is that of comprehension. He
starts from the general idea of being, and enriches it more and more while
restricting it, by adding new qualities. Hilbert on the contrary recognizes as
possible beings only combinations of objects already known; so that (looking at
only one side of his thought) we might say he takes the viewpoint of extension
(Poincaré, 1906, p.1040).

Poincaré asserts that this difference can be seen in Hilbert’s criticism of Fregean logi-
cism, specifically in näive set theory’s susceptibility to paradoxes. Noting that: “in
Hilbert’s eyes, to take, in an intransigent fashion, the point of view of comprehension
(as Russell does) is to be lacking in precision and rigour, and to expose oneself to contra-
diction” (Poincaré, 1906, p.1039-140). Though Poincaré does not dwell on the question,
and criticises Hilbert use of complete inductions the principle of induction, he asserts that

33That is the system presented in Russell (1903).
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“the example of Burali-Forti ... inclines me to say that Hilbert is right” (Poincaré, 1906,
p.1039-140).

2.5.4 Hilbert’s 1905 Lecture Course ‘Logical Principles of Math-
ematical Thought’

In the lecture course on the ‘Logical principles of mathematical thought’ in 1905 Hilbert
had more time to expand on the paper he had given in 1904 (Hilbert, 1905). The
course began by contrasting differing methods of presenting arithmetic: the geometrical,
by appeal to diagrams; the genetic, where rationals were ordered pairs of integers, and
irrationals treated as decimal expansions; and the axiomatic. Again his preference as in
(Hilbert, 1905) was the axiomatic. He followed along the lines of his paper, but with
much more attention to consistency and independence. The lectures were not only focused
on providing axiom systems for arithmetic and geometry but also physical systems and
probability (see Grattan-Guinness 2000, p.215 and Zach 1999, p.333). Hilbert was
developing his logical methods, which he would take up again in 1917. He starts the course
off by presenting first set theory and introducing the paradoxes discovered by Russell and
Zermelo, later noting:

“The paradoxes we have just introduced show sufficiently that an examination
and redevelopment of the foundations of mathematics and logic is urgently
necessary” (Hilbert 1905 Lectures quoted in Zach, 1999, p.333).

Hilbert presents, in these lectures, an algebraic presentation of propositional logic much
like that used in the Heidelberg lecture, Hilbert (1905)34

It would now have to be investigated in how far the axioms are dependent and
independent of one another [ . . . ] What would be most important here,
however, is the proof that the 12 axioms do not contradict each other, i.e., that
using the process defined one cannot obtain a proposition which contradicts
the axioms, say, X + X̄ = 0. These are only hints which have not been carried
out completely as of yet, and one still has free reign in the details; generally
speaking this whole section supplies material for the ultimate solution of the
interesting questions, rather than give the ultimate solution (Hilbert quoted
in Zach, 1999, p.334)

34In these lectures Hilbert uses “‘≡’ for identity, ‘| ’ for implication, and in a reverse from normal ‘ · ’
for disjunction and ‘ +’ for conjunction” and, 0 for truth and 1 for falsehood and X̄ for the negation of X
(Grattan-Guinness, 2000, p.215).
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As seen above much of what he needs for this has been presented in 1905. Zach notes
also that Hilbert presents a “nonderivability proof using an arithmetical interpretation of
the axioms” (Zach, 1999, p.334). In addition Hilbert shows that “every propositional
formula can be brought into one of two normal forms” by using de Morgan’s laws to
show that all propositions can be turned into sums and products of atomic propositions
and their negations, then “using the distributive law, this can be rewritten as a sum
of products” (Hilbert 1905 lectures quoted in Zach, 1999, pp.334-335). Hilbert also
discussed consequence, interpreting implication using the standard classical definition of
the material conditional “Y follows from X if X · Y = 0” (Hilbert 1905 lectures quoted
in Zach, 1999, p.335). Hilbert proves this about consequence:

A proposition Y follows from another proposition X if and only if it is of the
form A · X, where A is some proposition. To deduce is to multiply correct
propositions with arbitrary propositions. (Hilbert 1905 lectures quoted in
Zach, 1999, p.335).

Hilbert asserts that A is to be defined as a proof. He then uses his normal form
theorem as the first attempted proof of decidability for the propositional calculus (Zach,
1999, p.335). This is an example of what Hilbert was looking for in his Paris address when
he declared that there is no Ignorabimus. But as Zach notes, there are several problems
with his presentation, including, “Hilbert’s earlier error of claiming that the normal form
for a given formula is unique” (Zach, 1999, p.336). Hilbert’s previous method could not
work because:

For Hilbert’s procedure to work, we would not only have to be able to enumerate
all possible proofs A, but also be able to check if A · (a + b + · · · ) = Y . This
would presumably have to be done by comparing normal forms, since no other
method—e.g., truth tables—is available. But normal forms are not unique, so
there is no guarantee that the left and right side will result in the same one
(Zach, 1999, p.336).

Still this course presents many of the aspects of Hilbert’s programme that he would not
come back to until 1917. As Zach puts it:

Here, in 1905, one of Hilbert’s aims in the foundations of mathematics is made
almost explicit, namely the aim to provide decision procedures for logic on the
one hand, and particular systems of mathematics and science, e.g., arithmetic,
on the other (Zach, 1999, p.336).
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2.6 The Middle Period

Hilbert, though he did not publish on the foundations of mathematics during the period
from 1905 to 1917, did however give several lecture courses on set theory, logic and the
foundations of mathematics and physics:

Hilbert lectured on Zahlbegriff und Prinzipienfragen der Mathematik [The Con-
cept of Number and Principle Issues of Mathematics] (Summer 1908), on El-
emente und Prinzipienfragen der Mathematik [Elements and Principle Issues
of Mathematics](Summer 1910), on Grundlagen der Mathematik und Physik
[Foundations of Mathematics and Physics](Summer 1913), Prinzipien der Math-
ematik [Principles of Mathematics] (Summer 1913), Probleme and Prinzipien
der Mathematik [Problems and Principles of Mathematics](Winter 1914/15),
and on Mengenlehre [Set Theory] (Summer 1917) (Sieg, 1999, p.8).35.

Wilfried Sieg notes that none of the courses “broke new ground” and in none but the
ones given in the summer of 1905 does he take up the proof theoretic approach of his 1904
paper (Hilbert, 1905) (Sieg, 1999, p.9). In the lecture notes of 1910 Hilbert does provide
an extended discussion of the “set theoretic antinomies”. As Sieg writes: “This time the
fundamental problem is seen as related to what Hilbert calls genetische Definitionen,” the
genetic definitions that Hilbert discussed in his papers Über den Zahlbegriff (Hilbert,
1900a). This discussion linkes his previous discussion of Kronecker “to the future, i.e., to
a fully developed finitist standpoint” (Sieg, 1999, p.9).

There is no need to consider irrational numbers; the geometric series 1+ 1/2+
1/4+1/8+ “and so on” is already an example. Not even formulas in which finite,
but only indeterminate whole numbers n occur are immune to our critique. To
be able to apply them one sets n :: 1, 2, 3, 4, 5, “and so on”. Kronecker who
intended to reduce all of mathematics to the whole numbers was consequently
not radical enough, for n’ does occur in his formula. He should have restricted
himself to the specific numbers 7, 15, 24. Thus, one sees what kind of difficulties
have to be faced when calculating with letters. Already the simple formula
a+ b = b+ a can be attacked.

...Despite the high pedagogic and heuristic value of the genetic method, for
the final presentation and the complete logical grounding of our knowledge the
axiomatic method deserves to be preferred (Hilbert 1910 lecture quoted in
Sieg, 1999, p.10).

35For more information see also Vito Michele Abrusci’s (Abrusci, 1989) and Volker Peckhaus’ surveys
of Hilbert’s lectures (Peckhaus, 1990, 1994)
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He then presents an axiom system for natural numbers and notes that it is the “first step
in the foundational investigation”:

... if we set up the axioms of arithmetic, but forego their further reduction
and take over uncritically the usual laws of logic, then we have to realize that
we have not overcome the difficulties for a first philosophical-epistemological
foundation; rather, we have just cut them off in this way (Hilbert 1910 lecture
quoted in Sieg, 1999, pp.10-11).

At this point Hilbert suggests that we can further reduce the axioms given to the laws of
logic. He does not do this though, and this part of his project will have to wait until 1917
(Sieg, 1999, p.11).

2.6.1 Hilbert and Logicism

As noted above Hilbert’s foundational periods are often times divided into two periods from
1900 to 1905 and from 1922 to 1931, however these dates are based on the publications of
the early papers on arithmetical foundations (Hilbert, 1900a,b, 1905) and the papers on
mathematical logic Hilbert (1923, 1926, 1927) but fail to note his address on “Axiomatic
Thinking” Hilbert (1917, 1918) (see Sieg 1999, p.2-3, Moore 1997, p.68) and of course
his courses from 1917/18, 1920 “The problem of mathematical logic” (Hilbert, 1920), and
1921/22. At first Hilbert’s goal seemed to be only to derive a consistent system, but by 1913
the logicist programme seemed to have achieved this much success, Hilbert refers to Russell
and Whitehead’s Principia Mathematica (Whitehead and Russell, 1910, 1912, 1913) in
glowing terms in his 1917 address36 “Axiomatische Denken” (Axiomatic Thinking) stating
that, “In the completion of this extensive enterprise by Russell for the axiomatization of
logic one can behold the crowning of the work of axiomatization in general” (Hilbert,
1918, p.8). And in fact it would be one of Russell’s innovations in the Principia, specifically
the �-operator, that would lead Hilbert to develop the τ and ε-operators.

Frege and Hilbert’s early exchange about the nature of axiomatic systems and the
discovery of Russell’s paradox or rather the discovery of how it applied to Frege’s basic law
V of his Grundgesetze der Arithmetik (Frege, 1893, 1903) had originally made Hilbert
critical of the logicist programme. In Hilbert’s address to the international congress of
mathematician in Heidelberg we have him noting that the distinction between mathematics
and logic is not clear:

Arithmetic is often considered to be part of logic and the traditional fun-
damental, logical notions are usually presupposed when it is a question of es-
tablishing a foundation of arithmetic. If we observe attentively, however, we

36Which he gave in neutral Zurich, where he invited Paul Bernays to work with him at Göttingen.
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realize that in the traditional exposition of the laws of logic certain fundamen-
tal arithmetic notions are already used, for example, the notion of set and, to
some extent, also that of number. Thus we find ourselves turning in a circle,
and that is why a partly simultaneous development of the laws of logic and
arithmetic is required if paradoxes are to be avoided ( Hilbert 1905, p.131
translated in Zach 2003, p.211).

Hilbert returned to writing on foundational issues, in his 1917/1918 paper “Axioma-
tisches Denken” (Hilbert, 1917, 1918) where he seems to have actually embraced some
aspects of logicism. By this time Hilbert’s concerns with set theoretic paradoxes have been
dealt with by the development of Russell’s type theory.

In his 1917 address Hilbert details the nature of what he sees as the place for the
axiomatic method in math and the neighbouring sciences. First “the facts of a specific
field of more or less comprehensive knowledge” are collected and “set in order”. This
ordering of facts is done with the aid of a “framework of concepts” which Hilbert notes
becomes the “theory” of the field of knowledge. The “framework of concepts” is defined by
him as the logical relation between concepts that corresponds to first the relation between
the concepts and objects of the field of knowledge, and second the relation of the facts of
the field of knowledge and relations of concepts to one another (Hilbert, 1918, p.1).

He asks what criteria must such a successful framework satisfy:

If the theory of a field of knowledge, that is, the framework of concepts that
represents the theory, is to serve its purpose, namely the orientation and order,
it must then satisfy chiefly two fixed demands: it must offer, first, a general
view of the dependence or independence of the propositions of the theory and,
second, a guarantee of consistency of all propositions of the theory. In particu-
lar, the axioms of each theory have to be proved in accordance with these two
viewpoints (Hilbert, 1918, p.3).

With regard to independence results, Hilbert gives several examples: “parallel axiom
in geometry offered the classic example for the examination of independence of an axiom”;
“arbitrary forces,” and “arbitrary secondary conditions” in classical mechanics; and in
the analysis of “real numbers” he gives the example of the Archimedian axiom which is
“independent of all other axioms of arithmetic” again drawing comparisons with physics
(Hilbert, 1918, pp.4-5).

After presenting these examples Hilbert now turns to consistency, with which he is
much more concerned. He notes that consistency is “manifestly of greater importance,
since the presence of a contradiction in a theory manifestly imperils the stability of the
entire theory” (Hilbert, 1918, p.6). Not only is it important, Hilbert notes that it is often
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contentious as “[t]he understanding of the internal consistency is linked to difficulty even
in the long accepted and flourishing theories” (Hilbert, 1918, p.6). This happen Hilbert
says because: “It often happens that the internal consistency of a theory is considered
self-explanatory while, in truth, deep mathematical developments are necessary for proofs
” (Hilbert, 1918, p.6).

Moving from examples in physics to mathematics, Hilbert states that in physics the
changes in axiom systems are based on observation of the physical world, but notes that,
“the situation changes, however, if contradictions appear in purely theoretical fields of
knowledge”. He gives the example of the “paradox of the set of all sets” noting that
“distinguished mathematicians as Kronecker and Poincaré for instance felt induced to
deny set theory ...any justification of existence” (Hilbert, 1918, p.7). Hilbert credits the
axiomatic method for resolving the paradox:

As he [Zermelo] set up suitable axioms to restrict, on the one hand, the arbi-
trariness in the definitions of sets themselves and, on the other, the admissibility
of statements on their elements in a specific way, Zermelo succeeded to develop
set theory in such a manner that the paradoxes under discussion fall away and,
for all restrictions, the purport and applicability of set theory remains the same
(Hilbert, 1918, pp.7-8).

Hilbert asserts that for set theory as well as in physical cases, the contradictions were
“brought out in the process of developing a theory” and were eliminated as the definition of
the system was revised. Hilbert thus felt that in a properly developed axiomatic systems,
“contradictions are always altogether impossible in a field of knowledge founded on the
erected system of axioms” (Hilbert, 1918, p.8).

Like he found in geometry, Hilbert notes that the consistency of any axiom system that
depends upon the consistency of arithmetic can then be reduced to that problem, pointing
out that “no doubt for the fields of physical knowledge, too, it is always sufficient to reduce
the question of inner consistency to the consistency of arithmetic axioms” (Hilbert, 1918,
p.8). Likewise he continues “the consistency of the axiomatic system for real numbers is
reduced, through the use of set theoretic concepts, to the same question for integers”
(Hilbert, 1918, p.9). At this point there is nowhere else to go, Hilbert writes:

Only in two cases, namely if it is a question of the axioms of integers themselves,
and if it is a question of the foundation of set theory, this mode of reduction
to another specific field of knowledge is manifestly impracticable, since beyond
logic there is no more discipline to which an appeal could be lodged (Hilbert,
1918, p.9).
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Hence the necessity to “axiomatize logic itself and then to establish that number theory
as well as set theory is only a part of logic,” which at this point Hilbert writes has finally
been accomplished by Russell and Whitehead (Hilbert, 1918, p.9). However Hilbert has
not completely bought into the logicist programme, believing that there are still “difficult
epistemological questions of specific mathematical coloration” to be answered before the
axiomatization of logic could be said to be finished. These include:

1. “the problem of principal solvability of every mathematical question”

2. “the problem of supplementary controllability of the results of a mathematical inves-
tigation”

3. “the question of a criterion for the simplicity of mathematical proofs”

4. “the question of relations between contentualness (Inhaltlichkeit) and formalism in
mathematics and logic”, and

5. “the problem of decidability of a mathematical question by a finite number of oper-
ations” (Hilbert, 1918, p.9).

These problems, made perhaps more clear by the study of Principia Mathematica by
Hilbert and his students, started Hilbert on a series of investigations that developed into
the programme of the 1920s and on. As Zach puts it:

These unresolved problems of axiomatics led Hilbert to devote significant effort
to work on logic in the following years. In 1917, Paul Bernays joined him as
his assistant in Göttingen... The course from 1917, in particular, contains a
sophisticated development of first-order logic, and forms the basis of Hilbert
and Ackermann’s textbook Principles of Theoretical Logic ... In 1918, Bernays
submitted a treatise on the propositional calculus of Principia mathematica as a
Habilitationsschrift ; it contains the first completeness proof of the propositional
calculus for truth-functional semantics (Zach, 2006, 415).

The fifth of the above problems is the famous Entscheidungsproblem (decision problem)
one of key parts of Hilbert’s programme. The decision problem was presented by Hilbert
and Ackermann in their 1928 book on mathematical logic (Hilbert and Ackermann,
1928), but its roots go back as far as Hilbert’s reaction to the Ignorabimusstreit in his
Paris address where he asserted that all mathematical questions can be answered. As is
well known Gödel’s incompleteness theorem answers the question of whether their can be
such a method to answer all such questions in a finite number of steps in the negative (see
Gödel, 1931).
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2.7 Hilbert’s Programme

As we have seen above, by 1918 Hilbert had devised the questions that would make up
the core of his foundational programme. By the summer of 1920 Hilbert had returned
to foundational issues giving a lecture course entitled “Probleme der mathematischen
Logik”(Problems of Mathematical Logic) (Hilbert, 1920). And so by the summer of
1920, Hilbert’s foundational programme was now taking shape and was focused around
two key principles, as Avigad and Zach summarize:

First, modern mathematical methods were to be represented in formal deduc-
tive systems. Second, these formal systems were to be proved syntactically
consistent, not by exhibiting a model or reducing their consistency to another
system, but by a direct metamathematical argument of an explicit, “finitary”
character (Avigad and Zach, 2013).

Wilfried Sieg points out (Sieg, 1999) Hilbert’s notes from the period of 1917 to 1922
“reveal a dialectic progression from a critical logicism through a radical constructivism
toward finitism.” So by the time of the papers of the early 1920s (Hilbert, 1922, 1923,
1926) Hilbert had abandoned any of his logicist leanings, though he had taken several
lessons from his close study of the Principia Mathematica including an interest in Russell’s
use of the term forming operators (�) for definite descriptions, which he subsequently
developed into the more useful ε-operator (Hilbert and Bernays, 1934, 1939, pp.393-
466 and pp.1-209 respectively).

Hilbert and Bernays give the following definition of how their finitary methods were
supposed to work and are limited to objects and processes that can be conceived of and
completed in principle. Using as an example their method of introducing basic number
theory they write:37

Our treatment of the basics of number theory and algebra was meant to demon-
strate how to apply and implement direct contentual inference that takes place
in thought experiments on intuitively conceived objects and that is free of ax-
iomatic assumptions. Let us call this kind of inference “finitistic” inference for
short, and likewise the methodological attitude underlying this kind of inference
as the “finitistic attitude or the “finitistic” standpoint. In the same sense, we
will speak of finitistic concept formations and assertions: With each use of the
word “finitistic”, we convey the idea that the relevant consideration, assertion,
or definition is confined to

37In this quotation Hilbert and Bernays are referring to the material presented in the first chapter of
Hilbert and Bernays (1934), which resembles very much the methods developed in Hilbert’s earlier
papers especially Hilbert (1900a, 1905), discussed earlier in this chapter.
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• objects that are conceivable in principle, and

• processes that can be effectively executed in principle,

and thus remains within the scope of a concrete treatment (Hilbert and
Bernays, 1934, 1939, p.34).

Sieg’s survey of Hilbert’s lecture notes fills in much historical detail about the develop-
ment of Hilbert’s views. These notes explain the contrasting styles of Hilberts writings in
the teens and the twenties, for example, Sieg notes that: “In sharp contrast, [to the 1917
and 1918 papers] the 1922 papers by Hilbert and Bernays seem to set out the philosophical
and mathematical-logical goals of the Hilbert Program” (Sieg, 1999, p.3). This did not
happen overnight, rather in the winter term of 1920 Hilbert revisits the material in his 1917
and 1918 lectures, and in final third of his 1920 lecture notes Hilbert argues that Dedekind
and Frege’s set theoretic and logical developments, “did not succeed in establishing the
consistency of ordinary number theory,” asserting that:

To solve these problems I don’t see any other possibility, but to rebuild number
theory from the beginning and to shape concepts and inferences in such a way
that paradoxes are excluded from the outset and that proof procedures become
completely surveyable (Hilbert 1920 Lectures in Sieg, 1999, p.23).

2.7.1 Hilbert’s “New Grounding of Mathematics”

Given his views presented above, when describing Hilbert’s programme the term’s finitist
and formalist are both often used, but both of these terms are misnomers. The goal of
the programme was not to limit mathematics to a finite fragment nor was the goal of the
programme to reduce mathematics to simply the marks on the page. Sieg notes that in
“On the Infinite” (Hilbert, 1926) Hilbert’s goal was to defend two claims:

(i) proof theory can secure the foundations of classical mathematics “once and for
all”, and

(ii) proof theory can answer “pre-existent questions that the theory was not specifi-
cally created to answer” (Sieg, 1988, p.341)

Hilbert thus continued to believed in the autonomy of mathematics, something he had
defended first in his 1900 Paris address. Hence Michael Hallett writes, that a key feature
of Hilbert’s particular philosophy of mathematics is: “the desire to show that mathematics
is autonomous, not dependant on ‘foreign elements’ or on appeals to intuition, as least in
its deductive development” (Hallett, 1996, p.138). This meant that mathematics would
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never be dependant on a physical theory. What then are the objects of number theory?
Hilbert answers that

...the objects (Gegenstäinde) of number theory are for me—in direct contrast
to Dedekind and Frege—the signs themselves, whose shape (Gestalt) can be
generally and certainly recognized by us—independently of space and time,
of the special conditions of the production of the sign, and of insignificant
differences in the finished product (Hilbert, 1922, p.202).

Hence, the subject of mathematics is not the physical marks or any physical phenomena,
but the signs themselves which are intuited (see section 3.2.1 on intuition). Hilbert’s stated
goal remained the same, a consistency proof for the axioms of analysis. Hilbert is thus
found stating in a lecture in 1922 that:

a satisfactory conclusion to the research into these [mathematical] foundations
can only be attained by the solution of the problem of the consistency of the
axioms of analysis. If we can produce this proof, then we can say that math-
ematical statements are in fact incontestable and ultimate truths—a piece of
knowledge that (also because of its general philosophical character) is of the
greatest signicance for us (Hilbert, 1922, p.202).

Thus asserted that a proper foundation would be developed by building on the work
of the logicists and Zermelo’s set theory, and rejecting what he saw as Weyl’s criticisms
that the “modern critique of analysis” had ended in “chaos and senselessness” (Hilbert,
1922, p.202). His lecture begins by referring to the problems encountered, as he saw it by
the logicist project:

...abstract operation with general concept-scopes and contents has proved to
be inadequate and uncertain. Instead, as a precondition for the application
of logical inferences and for the activation of logical operations, something
must already be given in representation (in der Vorstellung): certain extra-
logical discrete objects, which exist intuitively as immediate experience before
all thought (Hilbert, 1922, p.202).

Hilbert continues:

If logical inference is to be certain, then these objects must be capable of being
completely surveyed in all their parts, and their presentation, their difference,
their succession (like the objects themselves) must exist for us immediately,
intuitively, as something that cannot be reduced to something else (Hilbert,
1922, p.202).
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And thus it is in his 1922 paper “The New Grounding of Mathematics” that Hilbert first
describes a method of constructing a fragment of number theory by the manipulation of
signs, though this is still much along the lines of his 1900 paper “On the Concept of
Number” (Hilbert, 1900a):

When we develop number theory in this way, there are no axioms, and no con-
tradictions of any sort are possible. We simply have concrete signs as objects,
we operate with them, and we make contentual [inhaltliche] statements about
them. And in particular, regarding the proof just given that a + b = b + a,
I should like to stress that this proof is merely a procedure that rests on the
construction and deconstruction of number signs and that it is essentially dif-
ferent from the principle that plays such a prominent role in higher arithmetic,
namely, the principle of complete induction or of inference from n to n + 1
(Hilbert, 1922, p.203).38

He continues that while we can “make considerable further progress in number theory”
by using such a method we cannot develop all of mathematics in this manner, rather such
procedures “break down” when “we cross over into higher arithmetic and algebra” and
want to discuss “assertions about infinitely many numbers or functions” (Hilbert, 1922,
pp.203-204). Rather, he notes that to understand analysis, “we need real, actual formulas
for its construction.” However, we can move up a level if we consider “axioms, formulae,
and proofs of the mathematical theory” themselves to be “the objects of a contentual
investigation,” hence Hilbert asserts that:

we need to have a strict formalization of the entire mathematical theory, inclu-
sive of its proofs, so that-... mathematical inferences and definitions become
a formal part of the edice of mathematics. The axioms, formulae, and proofs
that make up this formal edice are precisely what the number-signs were in the
construction of elementary number theory... and with them alone, as with the
number-signs in number theory, contentual thought takes place—i.e. only with
them is actual thought practiced. (Hilbert, 1922, p.203).

Contentual thoughts he then writes, are “removed elsewhere—to a higher plane, as it
were” but even as these thoughts are elevated we can still “draw a sharp and systematic
distinction in mathematics between the formulae and formal proofs on the one hand, and
the contentual ideas on the other” (Hilbert, 1922, p.203).

After sketching his proof theory Hilbert notes that his system is consistent, but does not
give a proof, which is likely because to make a proof later will actually take considerable

38Compare to (Hilbert, 1900a) discussed above.
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modifications i.e. the removal of the all sign and the replacement of the axiom of complete
induction with an induction schema (Hilbert, 1922, p.214, fn. d (by Bernays)).

Hilbert then describes what he sees as the “general tendency and direction in which
the new grounding of mathematics ought to proceed” (Hilbert, 1922, p.211). He focuses
on two points:

First: everything that hitherto made up mathematics proper is now to be
strictly formalized, so that mathematics proper, or mathematics in the strict
sense, becomes a stock of provable formulae. The formulae of this stock are
distinguished from the usual formulae of mathematics only by the fact that,
besides the mathematical signs, they also contain the → sign, the all-sign, and
the sign for statements. This circumstance corresponds to a conviction have
long maintained? namely, that a simultaneous construction of arithmetic and
formal logic is necessary because of the close connection and inseparability of
arithmetical and logical truths.

Secondly: in addition to this proper mathematics, there appears a mathematics
that is to some extent new, a metamathematics which serves to safeguard it
by protecting it from the terror of unnecessary prohibitions as well as from the
difficulty of paradoxes. In this metamathematics—in contrast to the purely for-
mal modes of inference in mathematics proper—we apply contentual inference,
in particular, to the proof of the consistency of the axioms (Hilbert, 1922,
pp.211-212)

Around this point Hilbert’s also provides a description of his philosophy of mathematics,
which as Zach points out, appears in several of his publications almost word for word:

as a condition for the use of logical inferences and the performance of logical
operations, something must already be given to our faculty of representation,
certain extra-logical concrete objects that are intuitively present as immediate
experience prior to all thought. If logical inference is to be reliable, it must
be possible to survey these objects completely in all their parts, and the fact
that they occur, that they differ from one another, and that they follow each
other, or are concatenated, is immediately given intuitively, together with the
objects, as something that can neither be reduced to anything else nor requires
reduction. This is the basic philosophical position that I consider requisite
for mathematics and, in general, for all scientific thinking, understanding, and
communication (Hilbert, 1926, p.376)39.

39Zach (Zach, 2006, p.206) notes that this passage appears more or less the same in 1922b; 1926; 1928;
1931b
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Hilbert’s goal was to provide a foundation for arithmetic through “finitist”methods,
which he hoped could rescue it, and logic, from constructivist criticisms. This involved
dividing mathematics into two parts: a set of “meaningful propositions, as well as finitarily
admissible constructions and methods of proof” and the “rest, which includes classical
infinitary mathematics (full first-order arithmetic, analysis, and set theory, in particular)”
which were to be understood as simply instrumentally meaningful (Zach, 2006, pp.419–
420).

That the objects of mathematics were “intuitively present as immediate experience prior
to all thought” means that Hilbert understood them as being apprehended by intuition, in
a Kantian manner. As Bernays describes:

the objects of intuitive number theory, the number signs, are, according to
Hilbert, also not ‘created by thought’. But this does not mean that they exist
independently of their intuitive construction, to use the Kantian term that is
quite appropriate here (Bernays, 1923, p.226)

As noted above, the objects of investigation were not physical nor the physical symbols
but the intuitively given mathematical objects. Mancosu (Mancosu, 1998b, pp.145ff.)
has argued that between the early papers (cf. Hilbert, 1900a,b, 1902, 1905) and his later
writings ([ cf. Bernays, 1928) one can detect a shift, from a form of perceptual intuition,
to something more like form of pure intuition in the Kantian sense. In Hilbert (1931),
he asserts that although:

we can no longer agree with Kant in the details, nevertheless the most general
fundamental idea of Kantian epistemology retains its significance: to acertain
the a priori in intuitive mode of thought (Hilbert, 1931, pp.1149–1150).

Hence Hilbert writes, in what we may take to be a Kantian tone, that “besides experience
and thought, there is yet a third source of knowledge” which is a priori. He refers to it
as the “fundamental mode of thought” and the “finite mode of thought”. This mode of
thought is how we apprehend that which is “already given to us in advance in our faculty of
representation: certain extra-logical concrete objects that exist intuitively as an immediate
experience before all thought” (Hilbert, 1931, p.1150). There are limitations to what the
Kantian inspired a priori can achieve. As Hilbert stated the details of Kant’s theory could
not be accepted, including Kant’s belief in geomentry’s status as a priori, but Hilbert also
includes as examples of propositions that are generally held to be a priori, ”but cannot
be achieved within the frame of the finite mode of thought,” both the “tertium non datur
as well as the so-called transfinite statements generally” (Hilbert, 1931, p.1150). Hilbert
however notes that number theory demands the use of transfinite axioms, and writes that:
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These difficulties must be overcome; for how can knowledge be possible at all
if not even number theory can be given a firm foundation, and if full unity and
absolute correctness cannot be demanded even here! (Hilbert, 1931, p.1150)

According to Hilbert the problems with the transfinite axioms and law of excluded middle
occur only in the infinite case—though this is of course the only case about which con-
structivists like Brouwer would worry—and hence the “operation with the infinite must
be secured in the finite; and precisely this occurs in my proof theory” (Hilbert, 1931,
p.1151). He then gives the following description of what he terms the “fundamental idea”
of his proof theory:

Everything that makes up mathematics in the traditional sense is rigorously
formalized, so that mathematics proper (or mathematics in the narrow sense)
becomes a stock of formulae. These are distinguished from the usual formulae
of mathematics only in the following way: that besides the usual signs, the
logical signs appear as wellin particular, the signs for ’implies’ (→) and for
‘not’ (̄ ). Certain formulae that serve as a foundation for the formal edifice of
mathematics are called axioms. A proof is a figure, which must be intuitively
presented to us as such; it consists of inferences, where each of the premisses
is either an axiom, or agrees with the end-formula of an inference that comes
earlier in the proof, or results from such a formula by substitution. Instead of
contentual inference, in proof theory we have an external action according to
rules, namely, the use of the inference schemata and of substitution. A formula
shall be called provable if it is either an axiom or the end-formula of a proof
(Hilbert, 1931, p.1152).

Hilbert then writes that this “proper, formalized mathematics” is secured by a new form
of mathematics. This he calls “a metamathematics that is necessary to secure formalized
mathematics”. It is in this metamathematics, which he contrasts to “the purely formal
modes of inference of mathematics proper,” where “contentual inference” occurs, but,
Hilbert continues, the only point of metamathematics is to “prove the consistency of the
axioms” (Hilbert, 1931, pp.1152-1153). After making these distinctions, Hilbert defended
his proof theory asserting that the critics objections have been unjustified:

My theory has been subjected to the reproach that, although the theorems
are indeed consistent, they are not for that reason proved. To be sure, they
are provable, as I have shown here in simple cases. More generally, it turns
out (as I was convinced from the outset) that the attainment of consistency
is the essential thing in proof theory, and the question of provability (possibly
with a suitable extension of the conditions that preserves the finite character)

47



is settled at the same time. However, it cannot be demanded of a theory that
all the relevant questions which it poses be fully solved at the outset; it suffices
if the path to that goal has been indicated (Hilbert, 1931, pp.1155-1156).

Hilbert was certain at this point that his theory stood on its own and needed no outside
justification:

And for justification I need neither God, like Kronecker, nor the assumption
of a special capacity of our understanding directed towards the principle of
complete induction, like Poincaré, nor some ur -intuition like Brouwer, nor, like
Whitehead and Russell, the axioms of infinity and reducibility, which are real,
contentual presuppositions, not compensated for by proofs of consistency, and
of which the latter is not even plausible (Hilbert, 1931, p.1156).

Hilbert’s criticism of Brouwer’s ur-intuitionism was well placed as Brouwer’s philo-
sophical justifications obscured his important investigations; not until intuitionistic logic
was separated from Brouwer’s näıve philosophy was its importance made clear, and more
sophisticated arguments for mathematical and logical intuitionism given.

Hilbert’s optimism was finally answered by Gödel’s incompleteness theorems. Gödel
had already proved the completeness theorem for first-order logic (Gödel, 1930), before
proving his incompleteness proofs (Gödel, 1931) which showed that part of Hilbert’s pro-
gramme was not actually possible. Specifically the first incompleteness proof shows that in
a logical theory capable of expressing elementary arithmetic there is no decision procedure
for provability, i.e. it is not complete 40. The second incompleteness theorem proves that
the consistency of a logical theory strong enough to describe elementary arithmetic cannot
be proven in that same system 41

40Kleene puts it in the following manner:

Theorem IV. There is no decision procedure for provability in the formal system N of §38
[predicate calculus with the addition of Peano’s third, forth and fifth axioms (providing that
zero, its successors, and any successor of a number is a numbers); the axioms of equality; and
axioms that provide recursive definitions of addition and multiplication (cf. Kleene, 1967,
pp.206–210); or briefly, N is undecidable (Kleene, 1967, p.248).

Kleene continues:

More generally, this applies not just to the formal system N of §38, but to any formal system
N in which, to each a, there can be found effectively a closed formula Ca such that (a) and
(b) hold.

where a and b are the Church-Turning Thesis and its inverse, which Kleene symbolizes as:

{⊢ Cain N} → (∃x)T (a, a, x) and, (∃x)T (a, a, x) → {⊢ Cain N}

(Kleene, 1967, pp.247–248)
41In Gödel’s terms:
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2.8 Choice Operators

As noted above the τ -operator was first introduced by Hilbert in his 1922 paper “Die
logischen Grundlagen der Mathematik” (The Logical Foundation of Mathematics) as the
transfinite axiom. Starting in 1925 in the paper “On the Infinite”, Hilbert began to work
instead with the more familiar ε operator (Hilbert, 1926). The value of ε, Hilbert argued,
was that it allows us to prove the “transfinite axioms”:

∀xA(x) → A(y)

¬∀xA(x) → ∃x¬A(x)

¬∃xA(x) → ∀x¬A(x)

Hilbert notes that all of these, “transfinite axioms are derived from a single axiom, one that
also contains the core of one of the most attacked axioms in the literature of mathematics,
namely the axiom of choice”:

A(x) → AεA

Hilbert refers to this as a “transfinite logical choice function” (Hilbert, 1926, p.382).
These axioms while introduced in these papers, and Ackermann’s dissertation, were pre-
sented in a much more developed manner, with reference to Russell’s �-operator from
which they were developed, in Hilbert and Bernay’s text on mathematical foundations the
Grundlagen der Arithmetik ; and hence it is to this book we now turn our attention.

2.8.1 Hilbert and Bernay’s Grundlagen der Arithmetik

Hilbert and Bernay’s two volume Grundlagen der Arithmetik was, in the words of Claus-
Peter Wirth, “the central and most involved presentation of Hilberts program and Hilberts
proof theory” (Hilbert and Bernays, 2013, p. vi). The second volume in particular

Theorem XI. Let κ be any recursive consistent class of formulas; then the sentential formula
stating that κ is consistent is not κ-provable; in particular, the consistency of P is not
provable in P , provided P is consistent (in the opposite case, of course, every proposition is
provable [in P ]) (Gödel, 1932, p.614).

where κ is a theory strong enough to describe elementary arithmetic.
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interests us, as it is here where Hilbert presents the ε-operator and derives the various ε
theorems.

Hilbert does not introduce the ε operator directly as he did in his (Hilbert, 1922,
1926) but rather by adapting the definite description operator (�) introduced by Russell:
“We are thus led to the following definition, in which ‘ (�x)(ϕx)’ is to be read ‘the term x
which satisfies ϕx’.” (Russell, 1908)42.

Hilbert writes that using the ε-operator one can introduce a function symbol f(a, ..., k, x)
from what Hilbert calls the “symbolic resolution”43 of the existential fromula:

(∃x), A(a, ..., k, x)

in a manner that differs from the introduction of the same function symbol via the ι-rule
only in that there is no longer the condition that one must also be able to derive the
“uniqueness formula”44:

(∀x)(∀y)(A(a, ..., k, x) ∧ A(a, ..., k, y) → x = y)
(Hilbert and Bernays, 1939, p.9).

As an intermediate step Hilbert introduces the ν-operator which differs from the ι-operator
only in that in comparison with the ι-rule the second uniqueness formula is no longer
required as a premise (Hilbert and Bernays, 1939, p.10 esp. fn.1).

2.8.2 Russell’s �-Operator and Hilbert’s ε-Operator

At the end of book one of Hilbert and Bernays Grundlagen “we find a rival theory of
definite descriptions to Russells”, and in book 2 the epsilon terms are introduced in relation
to this theory (Slater, 2009, p.387). Recall that Russells theory of definite descriptions
an expression like: “The King of France is bald” is broken into three parts:

1. ‘there is a king of France’

2. ‘there is only one king of France’

3. ‘he is bald’

42Hilbert writes the operator simply as ι.
43“der symbolischen Auflösung”
44“Unitätsformel”

50



Russell used the �-operator to symbolise the definite description. In Russell’s system it is an
incomplete symbol i.e. an abbreviations for formulas not containing them. By incomplete
symbol, Russell meant that: “Every use of ‘(�x)(ϕx),’ where it apparently occurs as a
constituent of a proposition in the place of an object, is defined in terms of the primitive
ideas already on hand” (Whitehead and Russell, 1910, p.31). Hence Russell notes that
both his term defining operators are incomplete:

Both symbols [� and x̂ ] are incomplete symbols defined only in use... We now
proceed to define E!(�x)(ϕx) so that it can be read ‘the x satisfying ϕx exists.’
... Its definition is:

E!(�x)(ϕx). =: (∃c) : ϕx. ≡x .x = c Df,

i.e. “the x satisfying ϕx̂ exists” is to mean “there is an object c such that
ϕx is true when x is c but not otherwise” (Whitehead and Russell, 1910,
pp.31-32).45

This means that �-terms are nothing more than abbreviations for longer terms and are not
part of the language proper. This is because Russell thought that normal proper names
are nothing more than definite descriptions in disguise, while the only names that were
strictly name were denoted by indexicals like ‘this’ and ‘that’ which drew upon immediate
experience.46

45Whitehead and Russell then note the equivalent forms of iota-terms:

The following are equivalent forms:

E!(�x)(ϕx). =: (∃c) : ϕc : ϕx. ⊃x .x = c,

E!(�x)(ϕx). =: (∃c).ϕc : ϕx.ϕy. ⊃x,y .x = y,

E!(�x)(ϕx). =: (∃c) : ϕc : x 6= c. ⊃x . ∼ ϕx.

(Whitehead and Russell, 1910, p.32)

46Russell makes a distinction between “ordinary” proper names and “logically” proper names e.g.:

While logically proper names (words such as “this” or “that” which refer to sensations of
which an agent is immediately aware) do have referents associated with them, descriptive
phrases (such as “the smallest number less than pi”) should be viewed merely as collections of
quantifiers (such as “all” and “some”) and propositional functions (such as “x is a number”).
As such, they are not to be viewed as referring terms but, rather, as “incomplete symbols”
(Irvine, 2014).

Note that Russell, in the papers generally taken to describe this view (“On Denoting” (1905), “Knowledge
by Acquaintance and Knowledge by Description” (1910), “Descriptions” (1919) (Chapter 16 of Introduction
to Mathematical Philosophy) and “The Philosophy of Logical Atomism” (1918, 1919)), never used the
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Russell writes in “The Philosophy of Logical Atomism” that the nature of names is not
simply apparent. Rather it is:

... very difficult to get any instance of a name at all in the proper strict
logical sense of the word. The only words one does use as names in the logical
sense are words like ‘this’ or ‘that.’ One can use ‘this’ as a name to stand for a
particular with which one is acquainted at the moment. We say ‘This is white.’
If you agree that ‘This is white,’ meaning the ‘this’ that you see, you are using
‘this’ as a proper name. But if you try to apprehend the proposition that I am
expressing when I say ‘This is white,’ you cannot do it. ” (Russell, 1918,
p.524)

In comparison to the �-terms, ε-terms are not “incomplete” symbols, that is they are
not abbreviations for predicates, rather they are to be understood to be themselves terms.

In §8 of book one of the Grundlagen47 on definite descriptions and their elimination
Hilbert and Bernays describe what they call “an important logical notion, which is often
used in common reasoning and is especially often used in mathematics”.48 Specifically
this notation formalizes expressions in natural language where on might use the definite
article. They give several examples such as “the greatest common divisor of 63 and 84”
or the “highest mountaion in the alps”. They note that all these examples are unique, i.e.
they hold for one and only one object.49 For this sort of definite description they follow
Russell and Whitehead and represent as ιxA(x) (Hilbert and Bernays, 1934, p.393).50

But they say for a predicate A(a) where the a represents just a place holder, the ι-term
can be introduced if the predicate hold for one and only one object which they express
with two formulae:51

(∃x)Ax
expression “logically proper name” rather he uses it only in a quotation of Strawson’s critique of his view
(Russell, 1957, p.386).

47Entitled “Der Begiff ‘derjenige, wlecher’ und seine Eliminierbarkeit” (Hilbert and Bernays, 1934,
p392), Claus-Peter Wirth trans: “The Notion ‘that which’ and its Eliminability” (Hilbert and Bernays,
2013), Elsenbroich trans: “Definite Descriptions and the Possibility of their Elimination” (Hilbert and
Bernays, 2004), Gaillard and Guillaume trans: “La notion ‘le, qui’ et son éliminabilité” (Hilbert and
Bernays, 2001).

48“Dennoch fehlt darin die Darstellung einer gewissen logischen Begriffsbildung, welche sowohl im
alltäglichen Denken wie insbesondere in der Mathematik viel gebraucht wird” (Hilbert and Bernays,
1934) translation from (Hilbert and Bernays, 2004).

49“Hier wird jedesmal ein Gegenstand dadurch charakterisiert, daßein bestimmtes Prädikat auf ihn und
auf ihn allein zutrifft. Im Bereich der von uns betrachteten Aussagen stellt sich ein solches” (Hilbert and
Bernays, 1934, p.392).

50Hilbert and Bernays do not rotate the iota as Russell does.
51I have used modern symbols for the quantifier below to improve readability.
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(∀x)(∀y)(Ax ∧ Ay → x = y)

These Hilbert and Bernays refer to as the “Unitäformen” (i.e. uniqueness formulae)
belonging to the predicate A. The ι-term then ιxA(x) represents “the object x for which A

holds”52 (Hilbert and Bernays, 2004). Hilbert and Bernays insist that the uniqueness
formulae for ιxA(x) must already be derived to introduce the ι-term, because they note
that Russell and Whitehead parse the formulae B(ιxA)(x) as asserting that “There exists
a single object for which A(a) holds and for which B(a) holds as well”53 (Hilbert and
Bernays, 2004).

They then define what they refer to as the ι-rule: For every formula A(x) the expression
ιxA(x) is a term if the following derivation can be made:

(∃x)A(x)
(∀x)(∀y)(A(x) ∧ A(y) → x = y)

A(ιxA(x))
.

The rules for renaming variables holds for term forming operators like the ι-symbol
in the same manner as for variables bound by quantifiers (Hilbert and Bernays, 1934,
pp.393-394).

The ε symbol as defined by Hilbert subsumes the ι-symbol when they both are in the
language. In fact one can expect it to “absorb the weaker ι-symbol whenever that symbol
can be used; and such is indeed the case” (Kneebone, 1963, p.102)

If, for some formula A, the uniqueness formulae

(∃x)A(x)(2.1)

and

(∀x)(∀y)[Ax & Ay → x = y](2.2)

are both derivable, we are able by the ι-schema to derive the formula

A(ιxA(x)).(2.3)

But since, by substitution in the ε-formula, we have

A(ιxA(x)) → A(εxA(x)),

52“dasjenige Ding x, für welches A(x) besteht” (Hilbert and Bernays, 1934, 393).
53“Es gibt ein einziges Ding, auf welches A(a) zutrifft, und auf dieses trifft auch B(a) zu” (Hilbert

and Bernays, 1934, p.393).
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the derived formula (2.3) at once yields the formula

A(εxA(x)).(2.4)

From (2.2), (2.3), and (2.4) we now easily derive the formula

εxA(x) = ιxA(x)

and thus the ε-term is demonstrably identical with the ι-term whenever the
latter may be introduced (Kneebone, 1963, p.101-102).

This does not mean that the epsilon term is equivalent, despite Kneebone’s confusing
phrasing. When then ι-term can be introduced, that is when both of what Hilbert refers
to as the “uniqueness formulae” (Unitätsformeln) are premises.

Hilbert and Bernays do not proceed directly to the ε-term from ι-terms. They develop
an intermediate term η-term:

The modified ι-rule we use the letter η to distinguish it from ι reads as
follows: Let a formula (∃v)A(v) be either derivable or an axiom. Then the term
ηvA(v) can be introduced and the formula

A(ηvA(v))

can be used as an axiom. (Hilbert and Bernays, 1939, p.10)

According to the η-rule, the term ηvA(v), in correspondence with the term
ιvA(v), is still dependent on the derivability of one formula, i.e. the formula
(∃v)A(v). We can now lift this restriction as follows. (Hilbert and Bernays,
1939, p.11)

Let us assume the derivable formula

¬((∃y)A(y)) ∨ (∃x)A(x),

from which we obtain the formula

(∃x((∃yA(y) → A(x)),

by transformations of the predicate calculus. By the derivability of this formula
and according to the η -rule we can introduce the term

ηx((∃y)A(y) → A(x)),

54



and take the formula

(∃y)A(y) → ηx((∃y)A(y) → A(x)),

as an axiom. Let us now define the ε-symbol explicitly by the equality

εxA(x) = ηx((∃y)A(y) → A(x)).

Then we obtain the formula

(∃x)A(x) → A(εxA(x)),

(Hilbert and Bernays, 1939, p.11)

They continue by noting that if the we rename the y variable in the antecedant of
(∃y)A(y) → ηx((∃y)A(y) → A(x)),

if the variable y is renamed into x in the antecedent. The application of a
η-symbol becomes superfluous by this formula, in which we can rename the
bound variable in the antecedent as well as in the consequent into any other
variable, as, if the formula

(∃v)A(v)
is derivable, we can immediately obtain

A(εvA(v))

by substitution and the inference schema.

It is now natural to eliminate the η-rule completely and to introduce the
symbol εvA(v) as a basic symbol together with the formula

(ε0)(∃x)A(x) → A(εxA(x))

into the formalism (Hilbert and Bernays, 1939, pp.11-12)

2.8.3 Hilbert’s Epsilon Theorems

Hilbert’s use of ε operators was not focused on the use of ideal elements themselves but
rather the derivation of finitist consistency proofs. The epsilon terms themselves are to
be removed in the final results. The first and second epsilon theorems were described by
Hilbert and Bernays in the following manner:
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These theorems refer to a formalism F , obtained from the predicate calculus
on addition of the ε-symbol and some additional object, predicate and function
symbols and on extension of the axioms by the ε-formula plus some basic axioms
not containing ε-symbols P, ...,Pk. Now the following two theorems mean the
following for this formalism F :

1. Let E be a formula derivable from F , not containing bound variables.
Let the axioms P, ...,Pk not contain bound variables either. Then the
formula E can be derived from the axioms P, ...,Pk not using bound
variables, i.e. simply using the elementary calculus with free variables
(‘first ε-theorem’).

2. Let E be a formula derivable from F , not containing the ε-symbol.
Then this formula can be derived from the axioms P, ...,Pk only using the
predicate calculus (‘second ε-theorem’).

(Hilbert and Bernays, 1939, p.18).54

Hilbert’s classical epsilon theorems form the basis for the proof of Herbrand’s theorem
which can be stated in the following manner:

If an existential formula

∃x1...∃xkA(x1, ..., xk)

is derivable in first-order predicate logic (without equality), where A is quantifier-
free, then there are sequences of terms t11, ..., t

1
k, ..., t

n
1 , ..., t

n
k such that:

A(t11, ..., t
1
k) ∨ ... ∨ A(tn1 , ..., tnk)

is a tautology (Avigad and Zach, 2013).

54Avigad and Zack describe the first epsilon theorem thusly:

First epsilon theorem: Suppose Γ ∪ {A} is a set of quantifier-free formulae not involving the
epsilon symbol. If A is derivable from Γ in the epsilon calculus, then A is derivable from Γ in
quantifier-free predicate logic

and the second in the following manner:

Second epsilon theorem: Suppose Γ∪{A} is a set of formulae not involving the epsilon symbol.
If A is derivable from Γ in the epsilon calculus, then A is derivable from Γ in predicate logic
(Avigad and Zach, 2013).
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Hilbert and Bernays used the ideal elements in his proof of Herbrand’s theorem, but
it should be noted that the ideal elements and quantified statements do not appear in the
conclusion. In fact Hilbert’s first two epsilon theorems actually prove that if something
can be proved in the epsilon calculus then they are derivable in a quantifier free predicate
logic (Avigad and Zach, 2013).

Classical epsilon calculus is conservative over classical logic as these theorems attest.
However, as we will demonstrate in Chapter 4, in the intuitionistic case the addition of
the epsilon operator enables one to derive results one cannot in intuitionistic logic without
epsilon. The logics one can derive which are weaker than classical logic but stronger than
intuitionistic logics are often termed superintuitionistic or intermediate logics.
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Chapter 3

Intuitionistism, Intuitionistic Logic
and Anti-Realism

3.1 Introduction

The proofs in the next chapter involve adding Hilbert’s epsilon operator to first order
intuitionisitic logic. We encountered epsilon in the last chapter as part of our investigation
of Hilbert’s efforts to put mathematics on firm finitist foundations. In addition, we have
also encountered intuitionism with relation to and as a movement critical of Hilbert’s
programme. What we are trying to do in this chapter then is to draw metaphysical lessons
from what may merely seem to be results having to do with formal mathematical systems.
The claim rests on there being at least something persuasive about the Dummettian view
of the relationship between logic and metaphysics—roughly, that intuitionistic logic is logic
per se, and the acceptance of classical logic is legitimate only in the case one accepts realism.
The goals of this chapter are, essentially, three: to make clear what that claim amounts
to; and to explain Dummett’s grounds for saying it, so that the claim has at least a prima
facie claim to plausibility; and to present some of the material that will be important to
set up the eventual case for the philosophical importance of the formal results to follow.

Dummett has argued that the great insight of intuitionism is the connection between
logic and metaphysics, noting that while many views rejected realism about a diverse set
of subject-matters,1 it was Brouwer who first understood that this had implications for

1Dummett notes that there are:

...several philosophical doctrines that reject realist views of various subject-matters: phe-
nomenalism rejects realism about the material universe, behaviourism rejects realism about
the mental, instrumentalism rejects realism about scientific theories. But, historically, these
have all concentrated on what constitute the objects of the sphere within which they oppose
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reasoning. As Dummett puts it:

...[Brouwer’s] genius enabled him to perceive, what the opponents of other
varieties of realism had failed to realise, that the improved conception must
be applied, first of all, to our understanding of propositions about the subject-
matter in question, in Brouwer’s case to our understanding of mathematical
propositions. Only when this is done does it become apparent that the new
non-realist conception demands a change in the logic with which we operate
(Dummett, 2008, pp.341-342).

Though both Hilbert’s programme and intuitionism to some degree attempt to adhere
to constructivist principles, differently understood, the ontological cleavage between these
two major twentieth century developments can be understood with regard to their differing
goals. Hilbert is attempting to derive, from principles he deems constructive, classical
principles, which are needed to allow for the infinitely ranging existence proofs that he
felt were necessary to mathematical practice. In fact, the epsilon operator too is justified
in terms of the mathematical practice of choosing an ideal or arbitrary object to reason
about, thereby enabling one to reason about an entire class of objects (see Hilbert,
1926). Intuitionistic logic, and mathematics, on the other hand, is developed in almost
the opposite manner. It is defined not by an end but rather by its philosophical starting
point. Intuitionsitic logic hence is an attempt to define a logic that does not offend its
philosophical principles.

The contrast is thus between a movement that attempts to recover “seemingly” non-
constructive principles from arguably constructive principles, while the other is delimiting
the class of logically correct principles by not admitting those principles from which non-
constructive principles can be proven. From a strictly intuitionisitic viewpoint, if the
addition of a principle P allowed the deduction of a non-constructive principle Q, then that
principle P would be considered non-constructive. Hibert’s method, on the other hand,
is to attempt to assert that a “seemingly” non-constructive principle Q is constructive
because it can be proven by the addition of some principle R which we have convinced
ourselves is constructive.

Michael Dummett argues that the intuitionist’s attention to logical hygiene give intu-
itionistic logic a special status in that it is metaphysically neutral. Specifically, he argues
that the introduction and elimination rules of intuitionistic logic make clear that it is truth
preserving without smuggling in realist metaphysical assumptions. The view that there
is a metaphysically neutral logic is, of course, disputed by many. For example, Timothy
Williamson, in his 2013 book Modal Logic as Metaphysics, writes that “all major logical

realism (Dummett, 2008, p.341).
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principles have been rejected on metaphysical grounds.” For example, he notes how argu-
ments about the unreality of time, including those of Dummett, have been used to reject
the law of excluded middle, how Graham Priest’s arguments about true contradictions
have been used to reject explosion, and how it has been argued that the sorites paradox is
made true simply by the “structural principle that chaining together valid arguments yields
another valid argument”. Williamson then asserts simply that each “deviant metaphysics
corresponds to the deviant logic”, and since this is the case, it follows simply that:

Any logical principle has persuasive force in some dialectical contexts and not
in others. Logic has no metaphysically neutral core. Like any other science, its
findings are open to legitimate challenge, even when the challenges are in fact
mistaken (Williamson, 2013, p.146).

He anticipates the obvious objection that such a definition of logic leaves it open to such
a relativism and asserts that while:

...some readers may prefer to use the word ‘logic’ differently. They can rephrase
the conclusions of this chapter by using another word. But whatever advantages
may accrue to their way of using ‘logic’, they will not include isolating some
claims that are in principle metaphysically uncontroversial. There are none
(Williamson, 2013, pp.146-147).

Another objection sometimes levelled at intuitionism is one that, for instance, Troel-

stra (2003, p.14) levels at the so-called BHK interpretation,2, but that applies to con-
structive mathematics and logic more generally, that is that the “abstract notion of a
constructive proof and construction are used as primitives” and are hence unanalysed.
The analysis of what a constructive proof is, however, is key to Dummett’s arguments as
we shall see below.

Rather than trying to respond to all these objections directly, I will simply note that,
like most worthwhile things in philosophy, Dummett’s view is not without critics. I will
instead try to explain why Dummett’s views, especially his claim that intuitionistic logic
is ‘metaphysically neutral’ while stronger logics are not, are plausible. To the extent that
it has plausibility, the results discussed in later chapters constitute a useful filling in of
details about the relationship between logic and metaphysics.

Despite these caveats, that the abstract notion of construction is assumed, and that
one can always generate a deviant metaphysics that can call into question any logical

2Brouwer–Heyting–Kolomogorov
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system, Dummett’s arguments still merit special attention.3 Dummett’s arguments point
to a connection between realism about some entity or phenomena, say time or numbers,
and the acceptance of the law of excluded middle with regard to the context in which
this realism is accepted.4 Since this is the direction in which choice terms strengthen
intuitionisitic logic, it is by examining these arguments that we should most likely find
worthwhile answers.

This chapter will proceed as follows. We begin with a sketch of the history of intuition-
ism. In section 3.2, we will discuss what we might call intuitionism’s pre-history, before it
took shape, in the hands of LEJ Brouwer and others in the 20th Century, in the sense the
term has that gives rise to the phrase “intuitionistic logic”. Moving from there to consider
the nearer origins of how this logic was introduced. In section 3.3 we will briefly discuss
Brouwer’s version of intuitionism, and contrast it to its key rival in the foundations of
mathematics in the early 20th century, namely Hilbert’s formalism. This discussion will
make clear Brouwer’s distinctive contribution: a compelling argument that one’s meta-
physical views are linked in a fundamental way to which principles of reasoning one ought
to accept as correct.

At this point, it is a good idea to give some more detail about the outline of the
chapter, section 3.4 will be a sort of formal interlude. The main items of business will
be presentations of two different formalizations of intuitionistic logic, one axiomatic and
one as a system of natural deduction. Each system will be important for subsequent
discussion. We will also briefly introduce some basic ideas of intermediate logic, since in
later chapters we will be considering proofs that demonstrate how adding choice principles
to intuitionistic logic convert it into one or another intermediate logic.

In section 3.5, I consider the use that Dummett makes of the insights he reads out of
the work of traditional intuitionists like Brouwer. One might regard Dummett’s view as
“Brouwer meets Wittgenstein,” as Dummett links his insight on the connection between
logic and metaphysics with the idea that meaning is use. “Use” of a linguistic item, in
Dummett’s hands and stated in a rough and ready way, is to be spelled out in terms of
what information is needed to legitimately infer statements involving the expression, and
in terms of what can be inferred from such statements.

3This is not to say that many of these divergent metaphysics could not be re-worked or re-worded in
some manner as to make the intuitionist-to-classical logic difference the important one for describing them
in relation to some other metaphysical system.

4Though Dummett’s general line of argument is similar in these various cases, he did not assert that
anti-realism is globally the case:

I saw the matter, rather, as the posing of a question how far, and in what contexts, a certain
generic line of argument could be pushed, where the answers ‘No distance at all’ and ‘In no
context at all’ could not be credibly entertained, and the answers ‘To the bitter end’ and ‘In
all conceivable contexts’ were almost as unlikely to be right (Dummett, 1993b, p.464).
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In section 3.6, I will look at how this general view applies to the specific case of log-
ical vocabulary. This is the lynchpin of Dummett’s argument that intuitionistic logic is
metaphysically neutral (because the relevant introduction and elimination rules are “har-
monious”), while stronger systems are not.

Finally, in section 3.7 I briefly introduce some attempts to discuss “harmonious” ver-
sions of the epsilon principle one finds in the literature, mostly as something that it will
be useful to contrast the original, “non-harmonious”, version of epsilon to be investigated
in later chapters.

3.2 Defining Intuitionism

Broadly stated intuitionism traditionally asserts that some faculty of the mind intuits
certain knowledge, in the case of mathematical intuitionism, mathematical knowledge. In-
tuitionism thus is a form of constructivism; mathematical constructivists are those who
believe one “determines the legitimacy of mathematical objects by whether they are cog-
nitively graspable by our human faculties” (Posy, 1974, p.126). As Posy points out both
as a constructivist and an intuitionist Brouwer shares much with Kant, since for Kant,
mathematical objects are constructed in intuition (see Kant, 1724-1804, A735/B763).

However Brouwer’s view does differ from Kant’s. In fact, he first used the term “neo-
intuitionism” to differentiate himself from earlier intuitionist views.5 Brouwer likely used
the term neo-intuitionist because he rejected the Kantian view that time and space were
a priori (cf. Brouwer, 1913C, pp.78-80). Brouwer’s position can be seen in relation to
both neo-Kantian philosophy, and the positions of the French semi-intuitionists and earlier
mathematical constructivists, such as Leopold Kronecker and other critics of Cantor’s
work on set theory, but intuitionism can be taken to mean several things. The philosophical
motivations for Brouwer’s intuitionism are not necessarily the only, or the best, motivations
for accepting the mathematical and logical consequences of his view. It may be best to
survey what is generally meant by philosophical intuitionism and then look at how that
relates to Brouwer’s views about mathematics and logic.

5Brouwer did not use the term intuitionist until 1911 (Brouwer, 1911A) referring to what we now
know as the French pre-intuitionists Poincaré and Borel. He used the term neo-intuitionist in 1912 to
refer to his own views. As Per Martin Löf writes “... it was not until the twenties that he took the
shrewd step of calling his own conception intuitionism tout court, qualifying his predecessors instead as
pre-intuitionists or the old-intuitionists” (Martin-Löf, 2008, p.245). Heyting later referred to these
views as semi-intuitionist (first in a chapter entitled “Die französischen Halbintuitionisten”/“Le Semi-
intuitionnisme Français”, Heyting 1934, p.4, expanded and translated (to French) as Heyting 1955,
p.6).
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3.2.1 Philosophical Intuitionism

‘Intuitionism’ is traditionally used, in philosophy, to describe a group of views that assert
that there is an aspect of human consciousness as the source of knowledge. Hence an
intuitionist view asserts that we do not simply have a faculty of discursive reason, but also
an “act of direct apprehension” called intuition, as one of the foundations of knowledge
(van Stigt, 1998, p.4).

The philosophical roots of intuitionism can be traced back through Kant and Descartes
and some would say as far back as Aristotle (van Stigt, 1998, p.4). Intuitionism broadly
considered is a philosophical doctrine, or rather intuitionistic theories are philosophical
doctrines, that assert the primacy of individual consciousness or some aspect of individual
consciousness as the origin or source of knowledge (see van Stigt 1998, p4, Largeault
1993, p.8).

The origin of the distinction between intuiting and reasoning is not clear. Walter
van Stigt asserts that “elements of intuitionism” may be found in Aristotle’s concept of
νoυ̃ς (van Stigt, 1998, p.4), (intellect) which is distinguishes from λóγoς, (reason).6

Jean Largeault asserts, on the other hand, that the best place to locate the origin of the
distinction between discursive thought and intuition is in Plotinus (Largeault, 1993,
p.9).7

However it is with Descartes that the modern concept of intuition as the origin of
all true knowledge is probably best identified. It is likely this Cartesian understanding of

6The passage he is most likely referring to is from the Nicomachean Ethics where Aritotle is comparing
intelligence and the other intellectual virtues:

For understanding [νοῦς] is about the (first) terms, (those) have not account of them; but
intelligence [λόγος] is about the last thing, the object of perception, not scientific knowledge.
This is not the perception of special objects, the sort by which we perceive that the last
among mathematical objects is a triangle; for it will stop here too. This is another species (of
perception of special objects); but it is still perception rather than intelligence” (Aristotle,
1985, 1142a, p. 161).

Original:

ὁ μὲν γὰρ νοῦς τὼν ὅρων, ὥν οὐκ ἔστι λόγος, ἣ δὲ τοῦ ἐσξάτου,οὕ οὐκ ἔστιν ἐπιστήμη ἀλλ᾿
αἴσθησις, οὐξ ἠ τω̄ν ἰδίων, ἀλλ᾿ οἵᾳ αἰσθανόνεθα ὅτι τὸ ἐν τοϊς μαθηματικοϊς ἔσξατον τρίγωον:
στήσεται γὰρ κἀκεῖ. ἁλλ῾ αὕτη μᾶλλον αἴσθησις, ἐκείνης δ᾿ ἄλλο εἵδος (Aristotle, 1894,
1142a).

7Plotinus made a “distinction between ‘universal’ Intellect and particular intellects” (Gerson, 1994)
“For when it [Intellect] is active in itself, the products of its activity are the other intellects” Φυξῆς δὲ
ἐνεργούσης ὡς γένους ἢ εἴδους αἱ ἀλλαι φυξαὶ ὡς εἰδη. (Enneads VI.2.22.267). The universal being that
which apprehended the Platonic forms and which is hence shared“among all things”. The particular
intellects νοῖ or νοε͂ς which include among others “immediate consciousness” συναὶσθησις (Gerson, 1994,
p.45).
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intuition is the origin of the modern philosophical intuitionism, giving rise to a philosophical
tradition that eventually influenced the development of mathematical intuitionism of both
the French semi-intuitionists and Brouwer. Recall that for Descartes intuition is the sole
origin of knowledge:

It is an indubitable conception formed by an unclouded mental mind; one
that originates solely from the light of reason, and is more certain even than
deduction, because it is simpler ... Thus, anybody can see by mental intuition
that he himself exists, that he thinks, that a triangle is bounded by just three
lines, and a globe by a single surface, and so on; there are far more of such
truths than most people observe, because they disdain to turn their mind to
such easy topics.

More complex things, on the other hand:

are known although not self-evident, so long as they are deduced from principles
known to be true by a continuous and uninterrupted movement of thought, with
clear intuition of each point (Descartes, 1954, pp.10-12)

Brouwer, in his 1909 inaugural address (Brouwer, 1909A) as a privatedocent on the
foundations of geometry and topology, discussed his view on the intuition of time and
two-in-one-ness and traced the idea of the a priori nature of the intuition of time back to
Descartes.

As we noted in the last chapter, Hilbert too believed in the pure intuition of math-
ematical reasoning, even though he criticised justifications of mathematics based on an
“ur-intuition like Brouwer” (Hilbert, 1931, p.1156). In fact, he continued to believed
that the foundation of mathematics was to be grounded in a Kantian inspired “a priori
intuitive mode of thought” (Hilbert, 1931, pp.1149–1150).8

3.3 Brouwer’s intuitionism

Intuitionism, specifically mathematical intuitionism, is most often connected with Brouwer,
but as a philosophical position it did not simply spring into existence in 1907 when Brouwer
wrote his Ph.D. dissertation (Brouwer, 1907).9

8It should also be noted that, as part of his PhD public promotion exercise in a formal debate against
two fellow mathematics students, Hilbert defended the proposition: “That the objections to Kant’s theory
of the a priori nature of arithmetical judgement are unfounded” (Reid, 1986, p.17).

9Nor in 1911 when Brouwer first used the term intuitionism in his review of Manoury’s book on
elementary mathematics (Brouwer, 1911A).
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Mathematical intuitionism, though philosophically motivated, is not just a philosoph-
ical position, but has implications for the actual practice of mathematics. The methods
to an intuitionist are constructive, but of course while a Brouwerian intuitionist is a con-
structivist of a sort, not all constructivists are Brouwerian intuitionists. Not only are there
other types of constructivists in terms of degree, but also in kind. In addition Michael
Dummett and others have argued that one need not accept Brouwer’s philosophical intu-
itionism to agree that intuitionist methods in logic and mathematics are correct. Dummett
first pointed out in Dummett (1975) that any philosophical position that opposes a realist
metaphysics, not only about philosophy of mathematics, but about any subject matter,
requires that we use a different reasoning criteria than classical logic.

In short, it is true, as Carl Posy writes, that “Kant’s philosophy of mathematics is
[Brouwer’s intuitionism’s] forerunner” (Posy, 1974, p.132). But Brouwer’s intuitionism
is an important turning point, because it was Brouwer who gave clearly articulated argu-
ments for the rejection of certain principles of classical logic, the law of excluded middle
in particular, because they were incompatible with his metaphysical assumptions.

That is not to say that earlier constructivists did not reject certain proof methods.
Some of the methods employed by Georg Cantor in the development of his set theory were
criticised by Leopold Kronecker (see Dauben 1979, p.66 and also Troelstra 1991, pp.1-
2) and Henri Poincaré (Dauben, 1979, p.266). In fact through the 1870s and the 1880s,
Kronecker became a more and more strident opponent of methods of which he disapproved
(see Dauben 1979, p.66 and Mittag-Leffler 1900, pp.150-151, and for the reception of
these views see Hilbert 1905, and Hilbert 1920 ). But it was Brouwer who first argued,
in print, that a change in our metaphysical views could be directly related to the need to
change our logic, and was the first to express why this was in regard to his intuitionism.
Brouwer’s metaphysical views were for him a starting point and he allowed them to lead
him to a decision as to what methods were in line with his philosophy of mathematics.

3.3.1 Intuitionism and Formalism

Brouwer’s thesis Brouwer (1907) was the first place we see him confronting Hilbert’s
programme. At this stage Brouwer focused his criticism on Hilbert’s optimistic “solvability
conviction” that every mathematical problem has a solution, which is not surprising given
“that the only items [written by Hilbert] that were available to him were the Heidelberg
lecture of 1904 and the Mathematical Problems paper from 1900” (Martin-Löf, 2008,
p.245). Then in 1908 in “The unreliability of the logical principles” Brouwer turns this
into the criticism of the law of excluded middle asserting that:

The question of the validity of the principium tertii exclusi is equivalent to the
question whether unsolvable mathematical problems can exist. There is not a
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shred of proof for this conviction, which has sometimes been put forward that
there exists no unsolvable mathematical problem (Brouwer, 1908C, p.109).

Troelstra writes that Brouwer’s thesis ‘Over de Grondslagen der Wiskunde’ (Brouwer,
1907) defended a position “more radically and more consistently than the semi-intuitionists”
though Troelstra asserts that the essentials of Brouwer’s philosophical position were already
to be found in his 1905 paper (Brouwer, 1905A). Brouwer’s philosophical views did not
change much throughout his life. Troelstra summarizes the main points of his philosophical
views based on Brouwer (1949C) as follows:

Brouwer’s main ideas are:

1. Mathematics is not formal; the objects of mathematics are mental con-
structions in the mind of the (ideal) mathematician. Only the thought
constructions of the (idealized) mathematician are exact.

2. Mathematics is independent of experience in the outside world, and math-
ematics is in principle also independent of language. Communication by
language may serve to suggest similar thought constructions to others, but
there is no guarantee that these other constructions are the same. (This
is a solipsistic element in Brouwer’s philosophy.)

3. Mathematics does not depend on logic; on the contrary, logic is part of
mathematics (Troelstra, 1991, p.8).

Brouwer’s programme was based on these principles, though Brouwer did not at first
pursue intuitionisitic mathematics, rather he worked on classical topology from the period
between 1907 and 1913. Troelstra notes that:

In these years his view of the continuum and of countable sets is quite similar
to Borel’s position on these matters. Thus he writes:

The continuum as a whole was intuitively given to us; a construc-
tion of the continuum, an act which would create “all” its parts as
individualized by the mathematical intuition is unthinkable and im-
possible. The mathematical intuition is not capable of creating other
than countable quantities in an individualized way (Brouwer, 1907,
p.62, cf. also p.10).

(Troelstra, 1991, pp.8-9)
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However Brouwer had already started to differentiate his views from the French semi-
intuitionists: Brouwer’s view was that the natural numbers and the continuum were both
aspects of the same “primeval intuition” a view which differed from Borel’s “pragmatic in-
tersubjectivism” (Troelstra, 1991, p.9). Troelstra notes that almost immediately after
completing his thesis Brouwer had concluded that classical logic did not apply to math-
ematics and until around 1913 Brouwer “did not publicly dissociate himself from [the
French semi-intuitionists]” (Troelstra, 1991, p.9). But it was not until after 1912 when
he obtained his professorship at the University of Amsterdam, that he returned to the
foundations of mathematics and developed his own views in earnest.

3.3.2 Hilbert and Brouwer

As van Dalen writes, perhaps overstating the case somewhat for rhetorical effect:

Nowadays the names of Brouwer and Hilbert are automatically associated as
the chief antagonists in the most prominent conflict in the mathematical world
of this century, the notorious Grundlagenstreit (van Dalen, 1990, p.18)

Well, perhaps, but as noted in the previous chapter Hilbert does not mention Brouwer’s
foundational position until (Hilbert, 1923), after his former student Weyl for a time con-
verted to Brouwer’s intuitionism. It was only after seeing his prized former student change
sides, that Hilbert criticised Brouwer more directly. Indeed, at first Hilbert and Brouwer
were well disposed to one another, with Hilbert writing him a letter of recommendation
for the chair at Amsterdam, and even offering Brouwer a chair at Göttingen. However, as
van Dalen writes:

Gradually the scientific differences between the two adversaries turned into a
personal animosity. The Grundlagenstreit is in part the collision of two strong
characters, both convinced that they were under a personal obligation to save
mathematics from destruction (van Dalen, 1990, p.19).

The disagreement between Brouwer and Hilbert finally became well known because of a
conflict over the journal Mathematische Annalen wherein Hilbert, to remove Brouwer from
the editorial board, convinced Springer to dissolve the entire board and to reconstitute the
journal with Hilbert at its helm (for details see van Dalen, 1990).10

10Since the Mathematische Annalen was, at the time, the pre-eminent mathematical journal, this conflict
ended up involving many of the world’s major mathematicians, most of whom did not return to the editorial
board after the journal’s reforming. This included the physicist Albert Einstein who, in private letters,
wrote that the whole affair had the air of: “one of the most funny and successful farces performed by
people who take themselves deadly seriously” (Einstein in letter of November 27, 1928 to Max Born,
quoted in van Dalen, 1990, p.26). Einstein also referred to the affair as a “War of Mice and Frogs”
(Froschmäusekrieg) after the pseudo-Homeric Batrachomyomachia a comic epic poem parodying the Iliad.
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3.4 Intuitionistic Logic

It has been argued that intuitionisitic logic is one of the two logical systems that “stand
out as having a solid philosophical-mathematical justification” i.e. for which, one can
provide a good argument that they are “the” correct logic to describe the foundations of
mathematics—for classical logic because it provides an “ontological basis” and for intu-
itionistic logic due to its “epistemic motivation” (van Dalen, 2002, p.1). Intuitionistic
logic is technically a subsystem of classical logic, that is, all intuitionistic principles are
classically correct, but it lacks certain principles such as the excluded middle (or tertium
non datur) (A ∨ ¬A). However, as van Dalen points out, while intuitionisitic logic is
subsystem of classical logic:

the matter changes, however, in higher-order logic and in mathematical the-
ories. In those cases specific intuitionistic principles come into play, e.g. in
the theory of choice sequences the meaning of the prefix ∀ξ∃x derives from the
nature of the mathematical objects concerned (van Dalen, 2002, p.1).

So while intuitionistic logic can be seen as a subsystem of classical logic, the same
principles lead, in number theory to intuitionistic theories that seem to contradict classical
theories. In Troelstra’s words:

choice sequences, when taken seriously as mathematical objects, enforced the
use of intuitionistic logic, since some of the principles valid for choice sequences
contradicted classical logic (Troelsta, 1998, p.199).

A choice sequence is constructed in one of two manners, either by the application of a
rule, a lawlike sequence, or in some random manner, a lawless sequence, e.g. the roll of a
die.

A lawless sequence α is thought of as a process of choosing values α(0), α(1), α(2), α(3), ...
such that:

(a) at any moment only an initial segment is known, and no restrictions are
imposed on future choices,

(b) initially one may specify that α starts with an initial segment (α(0), α(1), ..., α(n)).
(Troelstra, 1983, p. 208)

Since the choice is free, such constructions describe dynamic rather than static states of
information. Hence we should not be surprised that such cases require intuitionistic logic
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to describe them correctly. That is, the law of excluded middle fails for lawless sequences
because there is no fact of the matter as to what the next segment of a lawless sequence is
until it is chosen.

So while it is true in one sense that intuitionistic logic is a subset of classical logic, that
is, that intuitionistic logic uses a subset of the axioms that classical logic uses, because
it has fewer restrictions (i.e. axioms) intuitionistic logic has more models than classical
logic. And because intuitionistic logic is valid in both intuitionist and classical models, it
is the classical models which are a subset of intuitionistic models. So which is a subset of
the other is not as clear cut as those who make this rhetorical point may wish it to be.

3.4.1 Formalizations of intuitionistic logic

As is well known Arend Heyting, Brouwer’s student, axiomatized and formalized intu-
itionistic logic in ( Heyting 1930a,b,c and Heyting 1931) and then more completely in
(Heyting, 1934). Much of Heyting’s work, however, had been anticipated by Andrei Kol-
mogorov (Kolomogorov, 1925), who explain intuitionistic logic in terms of “problems”
and “solutions” rather than proofs.

As Per Martin Löf points out, Kolomogorov felt that he had provided “an objective
verdict in this controversy” between Brouwer and Hilbert (Martin-Löf, 2008, p.248).
By ignoring Brouwer’s dislike of language and logic, Kolomogorov simply removed all the
axioms of classical logic, the formal system he labels H for Hilbert, which seemed non-
constructive to him and retained the ones he felt were justified for an intutionistic logic,
labelled B for Brouwer (Kolomogorov, 1925, p.422).11

As noted above, aside from terminology the main difference between Heyting’s and
Kolomogorov’s interpretations of intuitionistic logic was the acceptance of explosion. The
similarity of the two versions indicates why this understanding of proof as primary is
often refereed to as the Brouwer-Heyting-Kolmogorov (BHK) interpretation.12 Troelstra
explains:

Where classical semantics describes how the truth-value of a logically com-
pound statement is determined by the truth-values of its components, the
BHK-interpretation describes what it means to prove a logically compound
statement in terms of what it means to prove the components. In this expla-
nation, “constructive proof,” and “constructive method” appear as primitive

11Kolomogorov’s logic is often referred to as minimal logic because in addition to removing the law of
excluded middle ⊢ ϕ ∧ ¬ϕ he also removed the principle of explosion: ϕ ∧ ¬ϕ ⊢ ψ, traditionally known as
ex falso quodlibet or ex contradictione sequitur quodlibet

12The BHK-interpretation can also be formalized in Kleene’s realizability theory or Per Martin Löf’s
typed lambda calculus, also known as the Curry-Howard isomorphism.
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notions. Kolmogorov interpreted statements as problems, and the solving of
the problem associated with a logically compound statement is explained in
terms of what it means to solve the problems represented by the components.
The connection with Heyting’s formulation becomes clear if we think of “solv-
ing the problem associated with statement A” as “proving A” (Troelstra

and van Ulsen, 1999, p.2)

The following table compares several interpretations of the propositional meaning for
intuitionistic systems. Each of these “interpretations” describes the semantic value of a
proposition in a different manner, either in terms of the proof of that proposition or in
terms of the construction of that proposition.

Interpretation a ∈ A means: A true
Gentzen a is a proof of proposition A A is true
Heyting a fulfils the expectation A A is fulfilled
Kolmogorov a is a solution to problem A A has a solution
Martin-Löf a is an element of A A has an element

(table from, Ranta 1994, p. 40)

This list is by no means exhaustive. For instance we could add Kleene’s interpretation
of intuitionistic logic in terms of realizability, which is understood by a mapping of the
natural numbers onto an Heyting arithmetic (HA), such that if a sentence is true in HA
there is some natural number which is mapped onto that sentence that realises it.

Note that the term “interpretation” above does not denote what is normally meant in
logic as the assignment of meaning to the symbols of a formal language by the definition of a
domain and the mappings of functions and predicate symbols onto that domain, but a more
informal understanding of the meaning of the symbols and their semantic interpretations.

3.4.2 Axiom Systems for Intuitionistic Logic

The full axiomatization of what we now know as intuitionistic propositional and predicate
logic were thus first presented in Heyting (1930a), and then in Gentzen (1935).13 The
following is taken from standard presentation of Hilbert style axioms for intuitionistic
first-order predicate logic, or intuitionistic predicate calculus (IPC) presented by Kleene

(1952, pp.81-82, see also p.101, and pp.441ff):

13In addition Kolomogorov (1925) and Gödel (1933) proved the equiconsistency of intuitionistic and
classical theories, meaning that all classical theorems expressed in the classical predicate calculus are not
false in intuitionistic logic.
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Rules and Axiom Schemata for Propositional Calculus

(1a) ϕ→ (ψ → ϕ)
(1b) (ϕ→ ψ) → ((ϕ→ (ψ → χ)) → (ϕ→ χ))
(3) ϕ→ (ψ → ϕ ∧ ψ)
(5a) ϕ→ ϕ ∨ ψ
(5b) ψ → ϕ ∨ ψ
(6) (ϕ→ χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))
(7) (ϕ→ ψ) → ((ϕ→ ¬ψ) → ¬ϕ)

(2)
ϕ→ ψ ϕ

ψ

(4a) ϕ ∧ ψ → ϕ
(4b) ϕ ∧ ψ → ψ

(8) ¬ϕ→ (ϕ→ ψ)

Rules and Axiom Schemata for Predicate Calculus

(9)
(ψ → ϕ(x))

(ψ → ∀xϕ(x))
(11) ϕ(t) → ∃xϕ(x)

(10) ∀xϕ(x) → ϕ(t)

(12)
(ϕ(x) → ψ)

(∃xϕ(x) → ψ)

3.4.3 Introduction and Elimination Rules

Gerhard Gentzen introduced natural deduction (Gentzen, 1934, 1935) along with the
sequent calculus, though Jaśkowski had already made the first attempt at providing a
structural rules based form of natural deduction in 1926 (see Jaśkowski, 1934). Dag
Prawitz (Prawitz, 1965) provided a full presentation of natural deduction and translated
the proof of the Hauptsatz, or the normal form theorem, which Prawitz notes was first
“established by Gentzen for the calculi of sequents” but for which he feels his proof using
“natural deduction is in many ways simpler and more illuminating” (Prawitz, 1965, p.10).

Gentzen style natural deduction emphasises how such constructions take place by rely-
ing on inference rules rather than axioms. Such a system reflects the nature of construc-
tive reasoning, instead of focusing on known truths, and applying one rule (modus ponens)
there are rules for the introduction and elimination of each of the logical operators (see van
Dalen, 2002, pp.10-11). Dummett’s arguments about the nature of intuitionisitic logic,
which we will discuss below in sections 3.5 and 3.6, turn on the nature of the harmony
between introduction and elimination rules.

∧–Introduction and Elimination Rules

A B
A ∧ B

A ∧B
A

A ∧ B
B
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∨–Introduction and Elimination Rules

B
A ∨ B

A
A ∨B

.. . . .
.

A ∨ B

[A]

. . . . .
.

C

[B]

. . . . .
.

C
C

→–Introduction and Elimination Rules

[A]

...

B
A→ B

A→ B A
B

∀–Introduction and Elimination Rules

[x ∈ A]

...

B(x)

∀x∈AB(x)

(∀x∈A)B(x) t ∈ A

B(t)

∃–Introduction and Elimination Rules

t ∈ A B(t)

(∃x∈A)B(x)
(∃x∈A)B(x)

[x ∈ A] [B(x)]

. . . . .
.

C

C

⊥–Elimination Rule

⊥
A

Classical logic can be presented in a natural deduction system with the addition of a
classical ⊥ rule:
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[¬A]
...

⊥
A

Since ¬A is an abbreviation for A→ ⊥ the above gives us double negation (see Prawitz,
1965, pp.20-21).

Note that the universal and the existential quantifiers, as shown above, explicitly quan-
tify over-defined domains [e.g. (∃x ∈ A)B(x) ], not all interpretations formalize the domains
of the quantifiers and instead often employ some form of arbitrary object; we shall discuss
debates over arbitrary objects in natural deduction in more detail in Chapter 6.

3.4.4 Intermediate Logics

Extensions to intuitionisitic logics are termed superintuitionistic logics, those between in-
tuitionistic logic and classical logic are termed intermediate logics.14

Dan van Dalen in his introduction to intuitionistic logic notes that:

Among these logics that deal with the familiar connectives and quantifiers two
stand out as having a solid philosophical—mathematical justification. On the
one hand there is a classical logic with its ontological basis and on the other
hand intuitionistic logic with its epistemic motivation. The case for other log-
ics is considerably weaker; although one may consider intermediate logics with
more or less plausible principles from certain viewpoints none of them is ac-
companied by a comparably compelling philosophy (van Dalen, 2002, p.1).

While van Dalen is certainly correct that the vast majority of the infinite number of
intermediate logics are philosophically uninteresting, there are several that do stand out
as more interesting than others for various reasons. For our purposes, let us consider
three: De Morgan logic as an example of a logic that includes all four of De Morgan’s
laws, and in which there is a more complete duality between conjunction and disjunction;
Dummett-Gödel logic where the linearity axiom holds; and thirdly all of the logics between
Dummett-Gödel logic and classical logic, not individually but taken as a whole.15

14We will use the terms interchangeably as we are not considering any inconsistent logics: “An interme-
diate propositional logic is the same as a consistent superintuitionistic logic” (Gabbay and Maksimova,
2011, p.103).

15These logics can be understood as:
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What we will find in the next part of the thesis is that the addition of existence prin-
ciples, specifically the ε-operator to intuitionistic logic enables us to prove DeMorgan’s
intuitionistically invalid law and Dummett’s scheme — depending on the addition of cer-
tain decidability criteria. While this is not as obviously philosophically interesting as mo-
tivations for classical or intuitionistic logic, it does show that there is a path between the
two involving the addition of ontological principles not as strong as the excluded middle.
This is important to what follows, because the normal method of increasing the strength
of logics is to add logical axioms. For example the DeMorgan’s law that is not valid in
intutionistic logic (¬(B ∧ C) ⊢ ¬B ∨ ¬C) when added to intutionistic logic gives us a
DeMorgan logic, (aka KC or Jankov’s logic). De Morgan logics are weaker than Gödel–
Dummett logic, (aka LC, G) for which Dummett’s scheme, also known as the linearity
axiom ((B → C) ∨ (C → B)), holds. And there are in fact a countably infinite number of
intermediate logics between Gödel–Dummett logic and classical logic.

Intermediate logics are more often studied from the point of view of modal logics. That
is intermediate logics are often compared to their cognate modal logics. The McKinsey–
Tarski translation theorem (McKinsey and Tarski, 1948) shows how S4 and S5 are
equivalent to intuitionistic and classical logic respectively. Dummett and Lemmon further
proved that DeMorgan’s and Gödel–Dummett logics are respectively translatable to their
modal versions S4.2 and S4.3.16

Gödel proves two points about intuitionistic logic in his short paper “On the intuition-
istic propositional calculus” (Gödel, 1932): first that intuitionistic propositional logic is
not equivalent to any many-valued logic; and second that:

Infinitely many systems lie between H [of intuitionisitic predicate calculus]
and the system A [of classical logic] of the ordinary propositional calculus, that
is, there is a monotonically decreasing sequence of systems all of which include
H as a subset and are included in A as subsets (Gödel, 1932, p.223).

Dummett extended this work describing the system LC, which is defined by adding the
following axiom to intuitionistic logic:

⊢ (ϕ→ ψ) ∨ (ψ → ϕ)

the class of rooted linearly ordered Kripke models, or alternatively, as many-valued logics
whose connectives are interpreted as functions over subsets of the real interval [0,1] Tiu

(2011).

16S4.3 is formed by adding ✷(✷p → ✷q) ∨ ✷(✷q → ✷p) to S4. Under Dummett’s translation T
of the modal into the propositional language that is the translation of and is translatable into (p →
q)∨ (q → p). More generally, Dummett proves that ⊢IL α iff ⊢S4.3 T (α) , while S4.2 is formed by adding
✷(⋄✷p → ✷ ⋄ ✷p) or ✷(⋄✷ ⋄ p → ✷ ⋄ p) to S4. The first of which is translatable into ¬p ∨ ¬¬p and so
⊢KC α iff ⊢S4.2 T (α) (Dummett and Lemmon, 1959)
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Toshio Umezawa (1955, 1959a,b) coined the term “intermediate logics” to describe the
class of logics between intuitionsitic and classical logic. He showed that the logics between
classical logic and Dummett-Gödel logic can be enumerated in several ways. By extending
the law of the excluded middle:

Rn = α1 ∨ (α1 → α2) ∨ (α2 → α3) ∨ ... ∨ (αn−1 → αn) ∨ ¬αn (n ≥ 2)

such that Rn ⊢ Rn+1 but Rn+1 0 Rn

and providing a proof that Rω ≡ (ϕ → ψ) ∨ (ψ → ϕ) (Umezawa, 1955, pp.188-189);
or by extending other versions of the excluded middle. Tsutomo Hosoi (Hosoi, 1966a,b,
1967a,b) surveys much of this material and proves a similar result using Peirce’s law:

(P1) = ((α1 → α0) → α1) → α1 (Peirce’s Law)

(Pi+1) = ((αi+1 → Pi) → αi+1) → αi+1 (i ≤ 1)

in this case Pω ≡ (ϕ→ ψ) ∨ (ψ → ϕ) (Hosoi, 1967a, pp.1-2).

These examples of intermediate logics, including Hosoi’s modifications of Pierce’s law,
will feature in our discussion of algebraic semantics in later chapters. In particular to the
question of “how many truth values are there?” Each of the Pi corresponds to a Heyting
algebra in the sense that Pi is valid if the truth values are a linear ordering with i + 1
elements in it, but invalid if there are i + 2 linearly ordered truth values. That is, P1,
Pierce’s law, is valid if the truth values form the traditional two valued Boolean algebra of
classical logic, but it can fail to be true if there are three truth values. P2 is valid if there
are 3 truth values, but can fail if there are four. And so on.

This means that in a language where Dummett’s scheme is true every pair of elements is
ordered by implication. Recall one standard definition of implication on a Heyting algebra:

(y → z) ≡
∨

{x|x ∧ y ≤ z}

Hence “ordered by implication” does not mean that every truth value object is greater
or equal than or less than or equal to every other element, simply that for any two elements
ordered by implication the join (∨) of the meets(∧) of every antecedent is less than or equal
to every consequence. This is why Dummett’s scheme is valid, for example, not only in
linear partial orderings but also in all Boolean algebras.

3.5 Dummett and Intuitionistic Logic

While Dummett is well known for extolling the virtues of constructivist approaches in
mathematics and logic, and while he certainly owes important debts to Brouwer, it would
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be a mistake to think of him as an intuitionist of Brouwer’s sort. Dummett writes that
he is not interested in preforming an “exegesis of the writings of Brouwer or of Heyting”
or studying how they argued for intuitionism. Instead for Dummett “the question is what
forms of justification of intuitionistic mathematics will stand up,” and more specifically
this question can be narrowed down to what he referred to as, “the most fundamental
feature of intuitionistic mathematics, its underlying logic” (Dummett, 1975, p.215).

Dummett asserts that the only good justification for the choice of intuitionistic logic
over classical is one based on a question of meaning and the demand that the meaning of
a statement be defined by the use of that statement and not our intuitions about what
entities are real or not ( Dummett 1975, p.5). In fact, in the ‘The Philosophical Basis
of Intuitionistic Logic’ Dummett argues that only an approach “turning on the answers
given to general questions in the theory of meaning” can justify an anti-realist, specifically
an intuitionistic, interpretation of mathematical statements. He thus writes that, “the
route to a defence of an intuitionistic interpretation of mathematical statements which
begins from the ontological status of mathematical objects is closed” unless one is willing
to accept “the most resolute scepticism concerning subjunctive conditionals.” Specifically,
to follow such a line to anti-realism, one must be willing to “deny that there exists any
proposition which is now true about what the result of a computation which has not yet
been performed would be if it were to be performed” (Dummett, 1975, p.247). Thus
Dummett would view traditional philosophical intuitionism as näive, or in his own words
“hard headed”.

How might general considerations about meaning lead to anti-realism? Dummett’s view
is that to know the meaning of a statement is to know its role in language. Indeed it follows
that we understand a mathematical calculation or construction when we can calculate it
or follow the proof of it. Dummett describes this process as “learning the use” and thus
as the “learning of the meaning of a mathematical language”:

When we learn a mathematical notation, or mathematical expressions, or,
more generally, the language of a mathematical theory, what we learn to do is
to make use of the statements of that language: we learn when they may be
established by computation, and how to carry out the relevant computations,
we learn from what they may be inferred and what may be inferred from them,
that is what role they play in mathematical proofs... ( Dummett 1975, p.7).

Worth mentioning here that Dummett himself identifies the first aspect with a version
of verificationism, and the second with a kind of pragmatism.

Dummett writes further that use has two aspects. The first aspect is the conditions for
the use of a statement in a language, which he identifies with a version of verificationism,
and the second aspect is the consequences of the use of a statement which he identifies with
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a kind of pragmatism ( Dummett 1975, p.11). Of course, the plausibility of such a view
is called into question if what is required to know the meaning of a term is every possible
inferential relationship it might have to any other bit of the language. Dummett therefore
defends a “molecularist” view under which the grasp of a bit of language involves mastery
of a small, “canonical” subset of its uses (Dummett, 1975, p.12). His view therefore
contrasts with earlier non-realist views like idealism which were holist about language
(such as F.H. Bradley).17 This conception of language does put restrictions on the two
aspects of use:

If a linguistic system as a whole is to be coherent there must be harmony
between these two aspects: [for instance] it must not be possible to deduce ob-
servation statements from which the perceptual stimuli require dissent ( Dum-

mett 1975, pp.10-11).

Dummett goes on to argue that these two key aspects of use of logical words are
reflected in the introduction- and elimination-rules of intuitionistic logic. These rules pre-
serve the harmony that is required in the two aspects of language use, and thus, according
to Dummett, intuitionistic logic correctly models use as a primary to meaning. Classical
logic, on the other hand, is consistent but not harmonious, because in classical logic one
can infer a disjunctive statement by means of double negation elimination without ever
calling upon the disjunctive introduction rule ( Dummett 1975, pp.12-13). While in in-
tuitionistic logic the introduction-rules describe the manner in which logical constants are
introduced in a proof, and the elimination-rules the removal of these constants, in fact,

17Bradley asserted that facts and relations must be taken as a whole not as discrete parts arguing:

If relations are facts that exist between facts, then what comes between the relations and the
other facts? The real truth is that the units on one side, and on the other side the relation
existing between them, are nothing actual (Bradley, 1883, Ch. 2 §65).

In the second edition of 1922 he adds the following note, to contrast his views with the logical atomism of
Russell (1918), stating that:

This is the doctrine for which I have now for so many years contended... Relations exist
only in and through a whole which can not in the end be resolved into relations and terms.
“And,” “together” and “between,” are all in the end senseless apart from such a whole. The
opposite view is maintained (as I understand) by Mr. Russell, and was perhaps at last tacitly
adopted by Prof. Royce. But, for myself, I am unable to find that Mr. Russell has ever really
faced this question (Bradley, 1922, Ch. 2 §65 en. 50).

Russell to his credit did face this question in his 1913 manuscript Theory of Knowledge (Russell, 1984)
especially in the Chapter IX entitled “Logical Data”. Though Bradley could not have known this as,
though much of this work was published in a series of papers in The Monist between 1914 and 1915 (see
Russell, 1914b,c,d,a, 1915b,a), the parts that addressed the question of the relation between facts and
relations remained unpublished until 1984.
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the elimination rules never let you extract, from a logical sentence with a particular logical
term as its main operator, any content that was not required to be established before that
instance of the operator could be introduced into the proof. But the elimination rules do
allow you to extract all the content. One sees, then, the outline of Dummett’s grounds
for the view that intuitionistic logic is logic properly so-called, and is metaphysically neu-
tral. Use of a harmonious set of inference rules yields nothing that is not contained in the
premises one brings in from elsewhere, but one never loses any of that content either. For
a non-harmonious system we have no such guarantee.

What the introduction rules describe is how constituent propositions of a proof, each
of which have appropriate proofs, are placed in relation to each other to form a logical
construction. The relations required between these constituents to construct a proposition
with the operator in question as the main logical operator are described by the rule. This
act of constructive proof is dependent on each step following from the previous ones and
there being a harmony in the rules. It is not merely that the correct application of the
introduction and elimination rules does not produce a contradiction, but rather, that we
are guaranteed that nothing not contained in the premises is contained in the conclusion
and that all content used therefore constructing the conclusion can be extracted from it.
Lacking harmony means that classical logic can provide no such guarantee.

With this in view, we can see how Dummett came to make his influential proposal to
reconsider disputes about realism and anti-realism—not only in mathematics, but more
generally—as disputes about meaning.

In trying to describe the general form of disputes of the kind in which I was
interested, I needed some generic means of referring to the particular subject-
matter of any one such dispute. Very often, realism of a particular variety is
referred to as realism about some particular class of putative entities—mental
events, for example, or mathematical objects. I chose to speak instead of the
“disputed class of statements” rather than of the “disputed class of objects”
(Dummett, 1993c, p.465).

The suggestion is that instead of beginning our investigations of the metaphysical nature
of the objects of a domain of discourse with a metaphysical argument about the nature
of those objects; based on, perhaps, our intuitions about the objects, we should look at
what principles of reasoning are correct for the domain. Intuitionistic logic, because of the
harmony between the introduction and elimination rules, is “harmless” in the sense that
we can be sure it will introduce no new content into our information about the domain,
and will not lose any of it either. But if we accept non-harmonious rules, and in particular
if we accept the reasoning principles of classical logic, we must be doing so for some non-
logical reason. In particular, the grounds for accepting classical logic are, if they are ever
legitimate, to be found in grounds for accepting realism for the discourse in question.

79



However things are not as clear as Dummett’s method of beginning with logical princi-
ples and deciding what metaphysics fits these principles. This line of reasoning is certainly
suggestive. In the coming chapters, I hope to usefully elaborate on it. There are other
grounds, not obviously the same as lack of harmony, for declaring a principle non-logical.
One is explicit ontological content. A standard objection to Russell and Whitehead’s sug-
gestion that their view in Principia Mathematica should count as logicism is their use of
the axiom of infinity—a principle most would not count as logical because it postulates
the existence of any objects at all.18 As David DeVidi puts it “The prevailing view among
philosophers, I think, is that if a principle of reasoning depends on existence assumptions
for its correctness, then it’s not, properly speaking, a logical principle” (DeVidi, 2011,
p.1). The results below show that the relationship between logic and metaphysics is not
merely an all or nothing equation of intuitionistic logic with anti-realism and full classical
logic with realism. As we will see, there are principles that we have good reason to re-
gard as non-logical principles yet that imply principles that classical logic declares ‘logical’,
without implying all of classical logic.

3.6 Dummett and Logical Laws

In the Logical Basis of Metaphysics Dummett argues that we can justify logical laws on
the basis of semantic theory but that a semantic theory needs to be justified in terms of
a meaning theory. He gives the following argument for why debates about metaphysics
reduce to debates about meaning theory:

The realist argues that an independently existing material universe is the only
hypothesis that explains the regularities in our experience. The idealist retorts
by asking, with Berkeley, what content the belief in an autonomous realm of
matter can have. It is, however, useless to carry on a debate in favour of one
or other of these competing pictures as if they were rival hypotheses to be
supported by evidence. What we need to do is to formulate theses which are
no longer in pictorial language but which embody the intended applications
of these pictures. If we do that, those theses will be found to be theses be-
longing to the theory of meaning, theses about the correct meaning-theory for
statements of one or another kind. When we have resolved the issue about the
correct meaning-theory, then we shall surely find that one or another of the
rival pictures will force itself on us, unless it proves that we want to reject all
the competing pictures (Dummett, 1991, p. 339).

18The problem with this axiom isn’t that it postulates infinitely many, but that it postulates any. The
axiom of empty set in standard set theory is non-logical for the same reason.
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However this does not mean that the reasoning that a semantic theory uses to justify
logical laws is without basis. Rather Dummett asserts that some forms of deduction are
self-justified. He accepts that this may be “pragmatically circular” but there is not a
problem. He states:

Since a justification of a logical law will take the form of a deductive argument,
there can be no justification that appeals to no other laws whatever; but that
does not matter, since there is no sceptic who denies the validity of all principles
of deductive reasoning, and, if there were, there would obviously be no reasoning
with him (Dummett, 1991, pp203-204).

For Dummett, there are two ways of justifying a logical law: through self justification,
and via a semantic theory. Those that Dummett refers to as self-justifying he evaluates
using methods he refers to as proof theoretic justification of the second (Dummett, 1991,
pp.252 ff.) and third grade (Dummett, 1991, pp. 259 ff.). We will look at the methods
with which Dummett evaluates these logical laws and consider his criteria when evaluating
Hilbert’s choice operators.

3.6.1 Harmony and Introduction Rules

It is clear that there are things that are terribly wrong with Arthur Prior’s ‘tonk’ rule—
which uses the introduction rules of ‘or’ and the elimination rules of ‘and’ (Prior, 1960).
The most obvious problem is inconsistency. But the rules governing the uses of a bit of
language ought to satisfy conditions stricter than mere consistency. As we’ve seen each bit
of language will have two sorts of principles and these principles must be harmonious.

Natural language is not immune to contradiction and paradox. Such things arise due to
the “multiplicity of principles governing out linguistic practices” (Dummett, 1991, p.210).
However Dummett asserts that we can “distinguish two general categories of such princi-
ples,” the first set deal with the “circumstances that warrant an assertion” what Dummett
refers to generally as “principles of verification,” and the second the “principles determining
the consequences of possible utterences” (Dummett, 1991, pp.210-212). What Dummett
calls the “twin notions of verification and of consequences” (Dummett, 1991, p.214) must
be in harmony with each other, though he admits that “there is no automatic mechanism to
ensure that they will be” (Dummett, 1991, p.215). That is harmony implies consistency
but consistency does not necessarily imply harmony.

The introduction and elimination rules for the logical constants are paradignmatic of the
verificationist and pragmantist meaning theories and hence of Dummett’s two aspects of
language use. Thus Dummett writes that the “canonical verification of a statement _A and
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B ^ will proceed by verifying both A and B, and then applying the standard introduction
rule for ‘and’.” Likewise he continues the “canonical means for arriving at the consequences
of a conjunctive statement _A and B ^ will consist in applying either or both of the standard
elimination rules for ‘and’, and then drawing consequences from A or from B or both”
(Dummett, 1991, p.216).

Hence Dummett asserts that :

we have for the logical constants a hope that a verificationist account of their
meanings can be given in terms of a familiar type of logical law, allowing us,
in their case, a gratifyingly sharp notion of what those meanings consist in.
Just the same holds good for pragmatist meaning-theories (Dummett, 1991,
p.216).

The introduction of new rules of inference, Dummett writes, is modulated by a “fear
of disharmony” hence:

A weakening of the introduction rules, while leaving the elimination rules un-
changed, or a strengthening of the elimination rules, while leaving the intro-
duction rules unchanged, must upset a harmony that prevailed previously: we
can now draw conclusions not warranted by our methods of arriving at the
premisses (Dummett, 1991, p.217).

Thus for Dummett, reference to both pragmatist or verificationist theories of meaning
is important for understanding the appropriate use, and so the meanings of the logical
constants. He notes that someone, giving as an example Wittgenstein, who, without
reference to both theories of meaning, wishes to present a theory of meaning focused
only on “mastery of use” of sentences containing the various logical constants “is likely
to invoke the introduction rule for the existential quantifier and the elimination rule for
the universal one;” but Dummett cautions this is not enough. One cannot be said to
completely understand the use of a quantifier or connective without knowing both rules
(Dummett, 1991, p.217).

Dummett introduces the notion of a conservative extension to a formal language as
a “more precise characterisation of the notion of harmony.” A conservative extension
involves adding “new primitive predicates, terms, or functors, and introducing new axioms
or rules of inference to govern expressions formed by means of the new vocabulary” in such
a manner that in the new theory one can prove no statement, that does not contain the
new vocabulary, which they could not prove in the original (Dummett, 1991, pp.217–218).
But a conservative extension is restricted to adding elements and rules etc. to those that
are already accepted.
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Harmony, Dummett has argued, “within a language as a whole” is a requirement for a
“compositional meaning-theory” (cf. Dummett, 1991, p.215-220). But as applied to an
element of a language, e.g. a logical constant, harmony means that for a connective ∗ :

the canonical ways of establishing a statement _A ∗ B ^ as true should match,
and be matched by, the consequences which accepting that statement as true
is canonically treated as having

This means that the introduction and elimination rules for the connective are in harmony.
Dummett suggests that non-conservativeness follows when “within the restricted domain
of logic” and “for an arbitrary logical constant c” if we can apply the introduction rules
for the constant c and then immediately draw a consequence “that we could not otherwise
have drawn” by then applying elimination rule to the conclusion of the introduction rule,
using the conclusion as a major premise (Dummett, 1991, p.247).

For an example of a connective that fails this requirement we need go no further than
the above mentioned tonk :

A

A-tonk -B

B

Dummett gives as an example of a harmonious pair of rules: the introduction rule and
elimination rules for ‘∧”. Here we apply the introduction and then the elimination rule:

A B

A ∧ B
A

which shows that, in this instance the “detour through _A∧B ^ was superfluous”, unlike the
above with Prior’s tonk where we start simply with A and end up with B, the conclusion
in this case gives use nothing we did not already have. Dummett then considers the ∨-
introduction and elimination rules. The standard left and right introduction rules for the
connective ∨ are:

A
A ∨ B

B
A ∨B

The elimination rule for ∨ is:

. . . . .
.

A ∨B

[A]

. . . . .
.

C

[B]

. . . . .
.

C
C
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The square brackets around the hypotheses A and B, on which the two intermediate
premises C depend, are discharged by the application of the rule. That is, given that one
can derive C from either the hypotheses A and B, one can then eliminate the ∨-statement
A ∨ B to conclude C. Note though if the elimination rule is immediately preceded by the
introduction rule we have the following:

. . . (α) . .
.

A
A ∨B

[A]

. . .
(β)

. .
.

C

[B]

. . .
(γ)

. .
.

C
C

where (α), (β), and (γ) are the labels for the sub-arguments that lead to A and the two
Cs respectively. But in such a case the use of the introduction and elimination rules are
superfluous, as we can move directly via (α) to A and thence through (β) to C skipping
the introduction of the disjunct sentence _A∨B ^ and its elimination (cf. Dummett, 1991,
p.249).

Dummett argues that harmony may be “provisionally” identified with this procedure,
which he refers to as “levelling local peaks.” It is a “fundamental type of reduction step
used in the process of normalizing natural deduction proofs” introduced by Dag Prawitz
in line with Gentzen’s removal of the cut rule in the sequent calculus. If a proof can
be normalized with respect to a logical constant c it means that the sentence using that
constant has been introduced and eliminated in the course of that proof. This Dummett
notes implies a “relative consistency: if an arbitrary atomic sentence can be proved using
the rules governing c, it could have been proved without using those rules” (Dummett,
1991, p.250).

Dummett then makes the distinction between “intrinsic harmony” and “total harmony”
(i.e. “harmony in context”). By “total harmony” he means that the addition of a logical
constant produces a conservative extension to the logical theory to which it has been added,
whereas “intrinsic harmony” is to be understood as involving simply the “eliminability of
local peaks” (Dummett, 1991, pp.250–251).

Rules of inference can be termed self-justifying if no proof is needed that they are
in order. According to Dummett therefore it is “essential to develop a characterisation
that will allow it to recognize a set of logical laws as self-justifying by their very form”
(Dummett, 1991, p.251). Dummett refers to Gerhard Gentzen’s dissertation on logical
deduction where he argues that such rules can be understood as in some sense self justifying:
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The introductions represent, as it were, the ‘definitions’ of the symbols con-
cerned, and the eliminations are no more, in the final analysis, than the conse-
quences of these definitions. This fact may be expressed as follows: In elimi-
nating a symbol, we may use the formula with whose terminal symbol we are
dealing only ‘in the sense afforded it by the introduction of that symbol’. An
example may clarify what is meant: We were able to introduce the formula
A ⊃ B when there existed a derivation of B from the assumption formula A.
If we then wished to use that formula by eliminating the ⊃-symbol (we could,
of course, also use it to form longer formulae, e.g., (A ⊃ B∨ C,∨–I), we could
do this precisely by inferring B directly, once A has been proved, for what
A ⊃ B attests is just the existence of a derivation from B from A (Gentzen,
1934, pp.80–81).

Dummett prefers to say that the elimination rules are “justified” rather than conse-
quences of the introduction rules as there is no aspect of logical consequence in Gentzen’s
explanation (Dummett, 1991, p.252).

3.6.2 Proof Theoretic Justification

Let us continue our investigation of Dummett’s argument of how intuitionistic logic can be
understood as metaphysically neutral. We will now look at Dummett’s analysis of what he
calls proof theoretic justification, specifically with regard to the standard logical operators,
and how this relates to what he calls canonical arguments.

Dummett separates proof theoretic justification into several degrees; the first grade he
describes as follows:

A proof-theoretic justification of the first grade assumes, of the logical laws it
takes as its base, only that they are valid (Dummett, 1991, p.252).

Prawitz (Prawitz, 1974, 1973) provides a method which Dummett refers to as “proof
theoretic justification of the second grade”. This, Dummett asserts, is good enough for
simple introduction rules (e.g. ∨ and ∧) because “for the standard introduction rules
governing these constants involve neither free variables nor the discharge of hypotheses”
(Dummett, 1991, p.259). In second grade proof theoretic justification:

the assumption it makes concerning the introduction rules it takes as a base is
correspondingly stronger, namely, that they are collectively in a certain sense
complete (Dummett, 1991, p.252).
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However Dummett’s version differs from Prawitz’s in that Prawitz considers only “the
standard introduction rules for the standard logical constants” whereas Dummett wishes
to “achieve a quite general formulation for all conceivable logical constants, provided that
they are govemed by introduction rules of a restricted type” (Dummett, 1991, p.252).

What then is this sort of justification? Dummett gives the following answer:

The strategy of proof-theoretic justifications of the second grade is that of all
proof-theoretic justifications, namely, to show that we can dispense with the
rule up for justification: if we have a valid argument for the premisses of a
proposed application of it, we already have a valid argument, not appealing to
that rule, for the conclusion (Dummett, 1991, p.254).

Such a justification is certainly dependent on what Dummett refers to as the “fun-
damental assumption.” The fundamental assumption is the view Dummett adapts from
Belnap that whenever we have a sentence with a logical constant c as the principal op-
erator, we could have in principle derived that sentence using the introduction rule for c
(Dummett, 1991, p.251). As Dummett puts it:

The fundamental assumption is that, whenever we are entitled to assert a com-
plex statement, we could have arrived at it by means of an argument terminat-
ing with at least one of the introduction rules governing its principal operator
(Dummett, 1991, p.257).

Dummett uses as an example the distributive law to demonstrate this:

A ∧ (B ∨ C)
(A ∧ B) ∨ (A ∧ C)

The premises which could get us the antecedent A∧(B∨C) by means of the introduction
rule for the primary operator ∧, are A and B ∨ C. The introduction rule for the primary
operator ∨ of B ∨C gives us two options either B or C. Hence we will have as premises A
and B or A and C which is enough to justify the conclusion (A∧B)∨ (A∧C) (Dummett,
1991, p.253).

86



Types of Introduction Rules and the Complexity Condition

In considering the formal properties that an introduction rule needs to have to be considered
self-justifying, Dummett considers first what is the general definition of a rule of inference,
and secondly introduces a vocabulary to describe the types of possible introduction rules.
In general he notes that:

A rule of inference may be called an introduction rule for a logical constant c
if its conclusion is required to have c as principal operator; it may be called an
elimination rule for c if one of its premisses is required to have c as principal
operator, relative to which that will be the ‘major premiss’ (Dummett, 1991,
p.256).

Rules of inference can be divided into several types:

• “single-ended” rules are those not simultaneously both introduction and elimination
rules. We may call double ended those rules that do not meet this condition.

• “pure” are those in which only one logical constant appears. We will refer to rules
that are not pure as ‘impure’.

• “simple” rules are those where the logical operator that appears in the rule is the
primary operator in the sentence. We will refer to rules that are not simple as
‘complex’.

• “sheer” rules are those where for any introduction rule for a logical constant, that
constant does not appear in any hypothesis, and conversely in the elimination rules
for the constant, the logical constant does not appear in the conclusion. We will refer
to those that are not sheer as ‘restricted’.

• “oblique” or indirect rules are those where a logical constant appears in a hypothesis
discharged by that rule. “Direct” rules are those which are not “oblique”.

Double ended rules, those which can “simultaneously be an introduction rule for one
logical constant and an elimination rule for another,” Dummett does not consider self
justifying. As examples Dummett gives the “distributive law”, “the law of transitivity
for ‘→’ ” which is an introduction rule and elimination rule, and “modus tollendo ponens”
which is an elimination rule for two different constants.

Examples of rules typed by Dummett’s system:

• The classical double negation rule ¬¬ϕ ⊢ ϕ is pure, single-ended and complex.
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• modus tollendo ponens ϕ→ ψ,¬ψ ⊢ ¬ϕ is simple, single-ended and impure

• the transitivity law ϕ→ ψ, ψ → χ ⊢ ϕ→ χ is pure, simple and double-ended.

Recall the “fundamental assumption” means that “ whenever we are entitled to assert a
complex statement, we could have arrived at it by means of an argument terminating with
at least one of the introduction rules governing its principal operator.” So the meaning of
a logical constant is all the introduction rules “governing it as a whole”.

Thus according to this line of argument Dummett states that:

To determine the meaning of a logical constant in a compositional meaning-
theory it is necessary and sufficient to determine that of a sentence of which
that constant is principal operator, relative to the meanings of the subsentences.
Hence, what the introduction rules for a constant c are required collectively
to do is to display all the canonical ways in which a sentence with principal
operator c can be inferred (Dummett, 1991, p.257).

This he asserts might lead one to think “we should follow the example of Gentzen by
restricting our rules, at least for constants other than negation, to those that are pure,
simple, and single-ended,” but Dummett finds such a condition to be too onerous.

Impure rules should not be objected to, according to Dummett, so long as they are not
cyclical. Cyclicality would not occur if the constants were ordered in such a manner that
their ordering depended on those preceding it.19 But even such an ordering, Dummett notes
is not necessary as “the principle of compositionality in no way demands this [ordering];
all that is essentially presupposed for the understanding of a complex sentence is the
understanding of the subsentences.” That is:

Hence the minimal demand we should make on an introduction rule intended
to be self-justifying is that its form be such as to guarantee that, in any appli-
cation of it, the conclusion will be of higher logical complexity than any of the
premisses and than any discharged hypothesis. We may call this the ‘complex-
ity condition’. In practice, it is evident that there will be no loss of generality
if we require the rule to be single-ended, since, for a premiss with the same
principal operator as the conclusion, we may substitute the hypotheses from
which that premiss could be derived by the relevant introduction rule. We may
accordingly recognise as an introduction rule a single-ended rule satisfying the
complexity condition (Dummett, 1991, p. 258).

19Such an ordering would also mean complex rules too should be permitted, if the main operator in such
complex rules was already justified by a constant preceding it in the ordering.
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It is in satisfying this “complexity condition” that the simple rules satisfy the conditions
for what Dummett calls proof-theoretic justifications of the second grade. This second
grade we noted above was that they show that: “ if we have a valid argument for the
premisses of a proposed application of it, we already have a valid argument, not appealing
to that rule, for the conclusion” (Dummett, 1991, p.254). Proof theoretic justification
of the third grade is what Dummett asserts we need for rules that employ either “free
variables” or “the discharge of hypotheses” (Dummett, 1991, p.259). To prove proof-
theoretic justifications of the third grade we will have to have a broader “notion of an
argument” that admits examples of open sentences to which the fundamental assumption
does not apply (Dummett, 1991, p.259). Let us look first at the differences between the
simple and complex constants, and then see how Dummett rewrites the definition of a
canonical argument.

The simple constants: ∨ and ∧ and ∃

Dummett defined “valid arguments” as those which can be transformed into canonical
arguments. And for statements with only simple connectives such as ∨ and ∧ and the
existential quantifier ∃, the “antecedent of the conclusion” is simply the “union of the
antecedents of the premises,” and the definition of a canonical argument is simple.

A canonical argument, Dummett defines for these simple cases as:

one in which no initial premiss is a complex sentence (no complex sentence
stands at a topmost node) and in which all the transitions are in accordance
either with one of the boundary rules or with one of the given set of introduction
rules (Dummett, 1991, pp.254-255).

By a boundary rule, Dummett means, those “certain rules of inference, which we recog-
nise as valid, for deriving atomic sentences from one or more other atomic sentences”
(Dummett, 1991, p.254).

For an arbitrary argument then, we can term that argument valid if we have a method
that can transform “any supplementation of it into a canonical argument with the same
final conclusion and no new initial premisses” (Dummett, 1991, p.255).

If we say that we are canonically entitled to assert a sentence when we have a
canonical argument for it, then our definition deems an argument valid when
we can effectively show ourselves canonically entitled to assert the conclusion
whenever we are canonically entitled to assert the premisses (Dummett, 1991,
p.255)
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Taking as an example the distributive law discussed above, the reduction of the ar-
gument into simple atomic sentences is direct as it is clear that the “antecedent of the
conclusion” is simply the “union of the antecedents of the premises” (Dummett, 1991,
p.259).

Dummett notes that there is a problem with introduction rules which involve a hypoth-
esis that is discharged, such as the introduction rule for → or ∀.

∀ and →

The introduction rules for the logical constants ∀ and → are not as simple as ∨, ∧, and ∃,
as they employ free variables and the discharge of hypotheses respectively.

The standard introduction rule for ∀ is:

A(a)

∀xA(x)

with the proviso that the free variable a does not occur in any hypothesis on which the
open sentence A(a) depends, or in the conclusion (e.g. where A is a complex sentence
containing the free variable a for example A ≡ P (a) ∨Q(x)).

This means a definition of a canonical argument for the universal quantifier needs to
handle open sentences. Dummett notes that we have to impose several constraints on
introduction rules for constants that employ open sentences. First we must “assume that
the language contains a constant term for each element of the domain” such that any free
variable in an argument can be replaced by any of the constant terms. Secondly:

for it to be self-justifying... if one or more of the premisses of an application of
the rule contains a free variable, but the conclusion does not, that free variable
should not occur in any of the hypotheses on which the conclusion depends.
This condition, which is satisfied by the universal quantifier-introduction rule, is
needed in order to guarantee that, if we are entitled to assert a closed sentence,
it should be possible to derive it by means of the given introduction rules from
closed initial premisses (Dummett, 1991, pp.259-260).

The use of discharged hypotheses also create problems in the introduction rule for →.
Between the premise and the conclusion, we cannot necessarily avoid the use of elimination
rules. Dummett gives as an example:
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A
B ∧ C
B

A ∧ B
(B ∧ C) → (A ∧ B)

The proof unavoidably uses the elimination rule for ∧. Therefore because of the use
of free variables or discharged hypotheses a canonical argument cannot be “automatically
valid,” because firstly “we can place no general restriction upon the derivations of open
sentences” and because it is“impossible to demand that a subordinate deduction be capable
of being framed so as to appeal only to introduction rules” where a subordinate deduction
is any step between the hypothetical premise and the conclusion (Dummett, 1991, p.260).

Canonical Argument

Given the above considerations about the introduction rules that employ free variables and
the discharge of hypotheses, we can now refine the definition of a canonical argument to
be such only if the following four conditions hold:

(a) its final conclusion is a closed sentence;

(b) all its initial premisses are closed atomic sentences;

(c) every atomic sentence in the main stem is either an initial premiss or is
derived by a boundary rule;

(d) every closed complex sentence in the main stem is derived by means of one
of the given set of introduction rules (Dummett, 1991, p.260).

A ‘valid’ argument remains one that “we can effectively transform any supplementation
of an instance of it into a valid canonical argument” but since not all canonical arguments
can be guaranteed to be prima facie ‘valid’20 we define those that are as those in which
“every critical sub-argument it contains is valid” (Dummett, 1991, p.261).21

Dummett now defines validity for both arbitrary and canonical arguments. Arbitrary
arguments “will be said to be ‘valid’ if we can effectively transform any supplementation of
an instance of it into a valid canonical argument with the same final conclusion and initial
premisses”. A canonical argument, on the other hand, will be deemed ‘valid,’ “just in case
every critical subargument it contains is valid” (Dummett, 1991, p.260).

20E.g. those that depend on the derivations of open sentences.
21Dummett defines a critical subargument of an argument (α) as one where

...if its conclusion stands, in (α), immediately above a closed sentence in the main stem of
(α), but is itself either an open sentence or a closed sentence not in the main stem.

He defines a supplementation of an argument as what “results from replacing every initial premiss by a
valid canonical argument with that premiss as final conclusion” (Dummett, 1991, p.261).
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3.6.3 Canonical Proofs and Demonstrations

Dummett had written in his paper “The Philosophical Basis of Intuitionistic Logic” that,
“it is in the terms of a canonical proof that the meanings of the logical constants are given.”
The definitions of the introductions of the logical constants can then be each seen as the
most basic canonical proofs (Dummett, 1975, p.122).

According to Dummett, in intuitionistic logic a true statement is a statement of which
one has a proof. This conception of truth means that the proof of a statement is tied to the
meaning of a statement, which in turn is tied to the network of conditions and consequences
for its correct use. A statement is correctly or truthfully asserted when there is a proof of
the statement. While any statement that has a proof can be asserted Dummett draws a
distinction between different types of proof, that is between a proof proper and a cogent
argument. A proof proper is a ‘proof’, “in the sense of ‘proof’ used in the explanation of
the logical constants” (Dummett, 1975, pp.120–122).

Here he is drawing a distinction between what he calls a canonical proof and what he
calls a demonstration. A demonstration provides a method for obtaining a canonical proof.
Prawitz agrees with Dummett on the difference between what he calls direct or canonical
proofs and indirect proofs, or what Dummett refers to as demonstrations. Direct proofs
provide a proof of a mathematical statement and indirect ones provide a method for finding
the direct proof (Prawitz, 1977, pp.21–22 ). Dummett describes the difference between
the two in the following manner:

A demonstration is just as cogent a ground for the assertion of its conclusion
as is a canonical proof, and is related to it in this way: that a demonstration of
a proposition provides an effective means for finding a canonical proof. But it
is in the terms of a canonical proof that the meanings of the logical constants
are given (Dummett, 1975, p.122)

However at this point Dummett writes that:

The notion of canonical proof thus lies in some obscurity; and this state of affairs
is not indefinitely tolerable, because, unless it is possible to find a coherent
and relatively sharp explanation of the notion, the viability of the intuitionist
explanations of the logical constants must remain in doubt. But, for present
purposes, it does not matter just how the notion of canonical proof is to be
explained; all that matters is that we require some distinction between canonical
proofs and demonstrations (Dummett, 1975, p.124).

In Dummett (1991) he attempts to make the distinction between valid canonical ar-
guments and valid arbitrary arguments, as discussed above. Others have argued that the
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distinction between canonical and non–canonical proofs can be made clear by making a
distinction between proof processes and proofs as objects. Arne Ranta writes:

Dummett (1975) and Prawitz (1977) made a distinction between canonical
and non-canonical proofs and suggested that propositions can be explained by
telling what their canonical proofs are. But they did not distinguish between
proof objects and proof processes (Ranta, 1994, p.41)

Ranta goes on to claim Per Martin-Löf united the informal intuitionistic explanation of
propositions and the formal interpretation of formulae as type in an identification of propo-
sitions and types ( Ranta 1994, p.41, see also Martin-Löf 1975, pp.73-118). Generally
this view can be understood as a tension that needs to be resolved between the formal
representation of proofs, which conceives of them as objects, and that of their use which
understands them as act. Proofs are both. When we say that the act finds the object we
define two levels of meaning, the philosophical and the formal. The proof object is not
the meaning of the proof in the philosophical sense, rather the use is. Nicolaas Govert
de Bruijn’s discusses the difference between meaning as is philosophically understood and
meaning as a machine, which operates on formal language:

In our relation with the machine there is language and nothing but language.
There is no concern for meaning in the usual philosophical sense, relating words
to things in the real world. For our machines the word “meaning” cannot refer
to anything else other than to a mapping from one language system to another
(de Bruijn, 1998, p.42).

That is we can see here there are two types of meaning. One the philosophical that
always inhabits our metalanguage and another, a formal definition of meaning that is a
significantly rich language system, like constructive type theory, that does not always, but
at times is metalinguistic. Further discussion of how constructive type theory applies to
the definition of proof is beyond the scope of this chapter.

Though one cannot assert that infinitely lengthy proofs can be surveyed or understood
as canonically expressed by presenting all their steps as introduction rules, they are po-
tentially describable. Furthermore, if a method can be described that, though infinite in
length, describes how one would reach a proof if it were possible, one ends up in a situation
where one is not appealing to some third realm, or unknowable truth. Such a demonstra-
tion is still grounded in use. It is this conception of use in principle which extends the
criterion of meaningfulness, that might otherwise place a quite radical verificationist limit
on the assertible statements of mathematics, and hence in the meaning of the content of
the proof. As Dummett puts it:
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That is why such a proof may be an infinite structure: a proof of a universally
quantified statement will be an operation which, applied to each natural num-
ber, will yield a proof of the corresponding instance; and, if this operation is
carried out for each natural number, we shall have proofs of denumerably many
statements. The conception of the mental construction which is the fully anal-
ysed proof as being an infinite structure must, of course, be interpreted in the
light of the intuitionist view that all infinity is potential infinity: the mental
construction consists of a grasp of general principles according to which any
finite segment of the proof could be explicitly constructed... Indeed, it might
reasonably be said that the standard intuitionistic meanings of the universal
and conditional quantifiers involve that a proof is such a potentially infinite
structure (Dummett, 1975, p.242).

Having surveyed Dummett’s arguments about the nature of logcial laws, and his evalu-
ation of the introduction and elimination rules, it seems appropriate to consider what the
introduction and elimination rules would be for the epsilon calculus.

3.7 The Introduction and Elimination Rules for Intu-

itionistic Logic +ε

There have been various suggestions for the introduction and elimination rules for the
epsilon operator first presented by Mints (1977) and Dragalin (1974):

A(a)

(∀x)A(x)
(∀x)A(x)
A(t)

A(b)

∃xAx
∃xA(x)
AεxA(x)

((∀x)B(x) ∧ (∃x)A(x))
BεxAx

((∃x)Ax ∧ BεxAx)
(∃x)B(x)

where a is again a free variable, a does not occur in any hypothesis on which the open sen-
tence A(a) depends, and b is a term other than an epsilon term (Mints, 1977). Smirnov
(1971) uses a similar presentation except his epsilon elimination rule is simply:

BεxA(x)

∃xA(x)
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In addition there have been various attempts to provide conservative epsilon extensions
to intuitionistic logic (cf. Smirnov, 1979; Leivant, 1973; Dragalin, 1974; Mints, 1974,
1977, 1991; Mints et al., 1996; Mints and Tupailo, 1999; Mints and Sarenac, 2003;
Mints, 2012; Meyer-Viol, 1995a,b). Slater (2009, p.398) notes that Mints’ system
requires that all sequents be what he refers to as formally “meaningful.” That is “an
epsilon term, say, εxAxyz’, appearing in an occurrence of some sequent is only ’meaningful’,
according to Mints (Mints, 1977, 318), if the formula (∀z)(∀y)(∃x)Axyz’ is either in
the antecedent of the sequent, or some sequent below that occurrence”. Likewise Mints
himself notes that Leivant’s system (Leivant, 1973) does not allow what Mints terms
“quasiterms”. Quasiterms and quasiformulae are:

expressions obtained, respectively, from terms and formulas by replacing some
free variables by bound ones. For example, if a is a free variable and y is a
bound one, then εxPxx and εxPxa are terms and εxPxy is only a quasiterm
(Mints, 1974, pp.317-318).

Mints (2012) elaborated on the intuitionistic ε-calculus first presented in his previous
work (Mints, 1974, 1991). In this paper he presented an intuitionistically epsilon cal-
culus in a Gentzen style natural deductive, and sequent calculus without identity that is
conservative over intuitionistic predicate logic. By placing restrictions on the introduction
and elimination rules for epsilon terms, he restricted his IPC+ε from being able to prove
anything that you can’t prove already in IPC by itself (except for statements that include
epsilon terms). For instance, ignoring the fact that Mints used a version without identity,
for the sake of the example, if you had identity you could prove ∃x(x = εx.A(x)) for any
epsilon term εx.A(x), which obviously can’t be proven if you don’t have epsilon terms.

Mints resorted to weakening the rules for quantifiers, specifically the introduction rule
for ∃ and the elimination rule for ∀ requiring that the terms be defined. That means
that epsilon terms cannot be used in either rule, as they remain partially defined in the
language, that is if you can prove ∃x.A(x), then you can invoke the epsilon rule to get
A(ǫx.A(x)), but if you can’t prove the existential, there is no epsilon term for A— the
epsilon operator is only “partially defined”, in much the same manner a function can be
partially defined i.e., it’s not defined for the whole language, like a operation that does not
operate on say zero, like division.

We present in the next chapter several proofs that IPC + ε with and without identity
show how adding the ε axiom along with various decidability criteria is non-conservative
over intuitionistic logic.
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Part II

Formal Results
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Chapter 4

Deriving Logical Axioms from Choice
Principles

4.1 Introduction: The Intuitionistic ε-calculus

In 1993 John Bell published two papers where he showed how the epsilon operator is non-
conservative when added to intuitionistic logic. In the first (Bell, 1993a) he showed how
Markov’s principle and DeMorgan’s law can be derived in the intuitionistic epsilon calculus
plus some “modest” decidability conditions, and then that the law of excluded middle can
be proved by a adding an extensional epsilon axiom. He also presented a simple, sound
formal semantics which allowed him to demonstrate that these assumptions were essential
to each of these proofs. In the second paper, Bell showed that linearity (aka Dummett’s
Scheme) can be derived in intuitionistic type theory without extensionality (Bell, 1993b).
These results are suggestive, since choice is obviously an “ontological” principle, but it
yields, in interesting and distinct ways, logical principles 1.

The intuitionistic ε-calculus is defined as a first-order intuitionistic language L . We
start with the standard axioms and rules of inference for our first order intuitionistic logic
to which we add a choice operator by introducing the ε-axiom schema:

(ε) ∃xϕ → ϕ(x/εxϕ)

We call the resulting language Lε.

In “Intuitionistic ε- and τ -calculi” David DeVidi presented the first semantics for intu-
itionistic logic with the epsilon operator that is not just sound, but also complete (DeVidi

1David DeVidi describes this as “buying logical principles with ontological coin” (DeVidi, 2011).
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1995 cf. DeVidi 1994). In addition he provides independence results showing that the
following sentences, true in classical first order logic, are not provable in the intuitionistic
ǫ-calculus:

⊢ ¬∀xϕ→ ∃x¬ϕ
⊢ ∃x(ϕ→ ∀xϕ)
⊢ (∀xϕ→ ψ) → ∃x(ϕ→ ψ)

⊢ ϕ ∨ ¬ϕ

This means that the intuitionistic ǫ-calculus is a super-intuitionistic logic, and when
one adds decidability conditions, one can prove several standard intermediate sentential
logics. 2

Bell’s proofs of DeMorgan’s intuitionistically invalid law, and of Dummett’s scheme
involve two “decidability conditions.” First, there is a decidable constant a i.e. every
other object is provably either equal to a or distinct from a; and secondly, there is an
object b that is distinct from a.

In addition to reviewing these results we present some new proofs which are a modest
improvement on these proofs. In the new proofs that we present below, we use decision
conditions that relate all elements of a domain to a predicate and constant using implication
but not a full identity relation, e.g. in the DeMorgan’s proof the decision condition asserts
that there is a predicate P and a constant a such that: ∀x((P (x) → P (a))) ∨ ¬(P (x) →
P (a))). This condition is substantially weaker than the one using identity, but it is still
a decidability condition—all elements can be judged in relation to the constant a and the
single placed predicate P .

2Note that there are many quantified sentences true in the classical predicate calculus that are not true
in intuitionistic predicate calculus. The following propositions, true in classical predicate logic, are not
intuitionistically valid but are true in the ε-calculus:

⊢ (ϕ→ ∃x.ψ) → ∃x.(ϕ→ ψ) and ⊢ ∃x.(∃x.ψ → ψ)

The following propositions, also true in classical predicate logic, are not intuitionisitically valid, but are
true in the intuitionistic τ -calculus:

⊢ ¬∀x.ψ → ∃x.¬ψ ⊢ (∀x.ψ → ϕ) → ∃x.(ψ → ϕ)

⊢ ∃x.(ψ → ∀x.ψ) ⊢ ∀x.(ϕ ∨ ψ) → (ϕ ∨ ∀x.ψ)

(see DeVidi, 1995, pp.538-539, for details and proofs.)
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4.2 Syntax

The syntax we present will work with either ε and τ axioms. Instead of separate ε and
τ -calculus languages. We follow DeVidi in defining a σ-calculus to indicate how we will
treat any term-forming operators (DeVidi, 1995, pp.524-527).

We will sketch the language noting the standard features and making careful note where
the language deviates from standard first order logic.

The language we will be using needs all the standard notational conventions of normal
first order logic.

However, we also need some extra tools. Syntactically speaking, term forming operators
are, from the point of view of standard logic, an unusual hybrid. They take, as input, a
variable and a formula and return a term; in standard logic the quantifiers take the same
input and return a formula, while function symbols take terms as input and return terms
as output. This means that the syntax of languages with term forming operators take a
bit of extra attention. We will describe the syntax of a language without identity in some
detail; the additions necessary to make a language with identity are straightforward, so we
include fewer details.

We start with a first order language Lσ (referred to as Lε if is has the ε axiom or
Lτ if it has the τ axiom) with the connectives, standard punctuation, and the general
term-forming operator σ which will be written ε or τ depending on which axiom scheme
is used.

The variables form a countably infinite sequence Var = {v1, v2, v3, ...} and the set of
constants : Con = {c1, c2, c3, ...} which may be empty, finite or countably infinite. Likewise
the predicates form a set Pred =

⋃
1≤n≤ω Predn where for each n Predn is a possibly empty

set of n-ary predicate symbols, but which is not empty for at least one n.

It may also include any number of function symbols of each finite “arity,” and may
include the special two place predicate =.

4.2.1 Notational Conventions

As usual, we will describe certain notational conventions for our logic, the following will
be used as arbitrary variables (x, y, z, u, v, w) and arbitrary constants (a, b, c) possibly
with subscripts. In addition we will describe conventions for arbitrary terms ( s, t, r) and
arbitrary formulas (ϕ, ψ, α, β, γ), and arbitrary expressions (M and N). Though we shall
also present predicates (A(x), B(x), C(x), ..., A(x, y), B(x, y), C(x, y), ...) indicating that x
(or x and y) are among the free variables in the predicate.
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Normally we can define the terms in two separate recursive definitions, but given the
syntactically hybrid nature of term forming operators we cannot do the same thing here.
Instead, we must use a single recursive definition including the clauses for the normal
definitions of formulas and of terms, and the additional clause that:

x ∈ V ar, ϕ ∈ Wff ⇐= σx.ϕ ∈ Term

We will assume normal definitions of atomic formula, identity free formula and note
that the usual notion of scope applies both to quantifiers (∀, ∃) and term forming operators
(σ i.e. ε, and τ). In addition, will assume that c and d are replacing the same variable in
ϕ(c) and ϕ(d), i.e. ϕ(c/x) ϕ(d/x), unless we explicitly note otherwise.

Free and Bound Variables in a Term Forming Calculus

The notion of free and bound variables in a logic with a term forming operator must
include definitions for terms as well as formulas. We follow DeVidi (1995) in the following
definitions:

A given occurrence of a variable x is free in the following cases:

in any term that is (a) a variable or (b) a function term ft1...tn and x ≡ ti or x
occurs in ti and is free there

ϕ ≡ Pt1...tn and x ≡ ti or that occurrence of x is free in ti for some 1 ≤ i ≤ n

ϕ ≡ ¬ψ and the occurrence of x is free in ψ

ϕ ≡ α ∨ β, ϕ ∧ α ∨ β, or ϕ→ α ∨ β and the occurrence of x is free in α or β

ϕ ≡ ∀yψ or ϕ ≡ ∃yψ and x 6≡ y and the occurrence of x is free in ψ

t ≡ σyψ, and y 6≡ x and the occurrence of x is free in ψ then that occurrence is free
in t

A given occurrence of a variable x is bound in the following cases:

ϕ ≡ ∀xψ or ϕ ≡ ∃xψ then every occurrence of x is bound in ϕ

t ≡ σxψ then every occurrence of x is bound in t

Moreover, each free occurrence of x in ψ is said to be bound by the occurrence of ∀x, ∃x,
or σx, respectively (for details see DeVidi, 1995, pp.525-526).
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Free Variable in an expression

The set of variables with at least one free occurrence in an expression M , which we denote
by FV (M). More generally, a free occurrence of a term t in M , is such, that there is no
variable x ∈ FV (t) nor x 6∈ FV (N) for any subterm N of M .

The set of free terms of M , which are terms that have a free occurrence in M , and are
not proper subterms of terms that have a free occurrence in M , is denoted by FT (M).
DeVidi notes that:

this means that it will not in general be the case that FV (M) ⊆ FT (M).
This will give us some needed flexibility later when discussing various interpre-
tations of the σ-terms. (DeVidi, 1995, p.526)

Definition of substitution

Now we need to define substitution of free variables in well formed expressions i.e in
formulas and terms. To the usual definition (see Kleene 1952, p.78) we add the following
clause to deal with our “hybrid” terms:

if s ≡ σyβ and either (i) x 6∈ FV (s) or (ii) x ∈ FV (s) (and so x 6≡ y) and y
does not occur in t and t is free for x in β, then t is free for x in s. (DeVidi,
1995, p.526)

Since V ar is infinite, for any finite set {y1, ..., yn} ⊆ V ar in any formula ϕ or term t, we
can always find n “fresh” variables with which to uniformly replace them, thus generating
a variant ϕ′ or t′ for which any particular term t is free for x; so, as usual, we shall often
assume that such substitutions have been made as necessary without further comment
except when such details are salient to the discussion in question.

4.3 DeMorgan’s Law and the Intuitionistic ε-calculus

Bell’s proof shows that we can prove DeMorgan’s intuitionistically invalid law: ¬(B∧C) ⊢
¬B ∨ ¬C, in intuitionistic ε-calculus with an a and b such that ∀x(x = a ∨ x 6= a) and
(a 6= b). While Bell’s is obviously an interesting result, and he was breaking new ground in
his results, this formulation of the decidability condition is potentially misleading if we are
interested in the philosophical implications of this result. The use of the identity predicate
is mathematically natural, but identity is in itself a metaphysically freighted notion. After
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reviewing Bell’s results we will therefore include in the thesis a new version of this proof,
which replaces Bell’s decision condition with one that uses a version of apartness defined
by the following decision condition: ∀x((Px → Pa) ∨ ¬(Px → Pa)) and two constants
such that ¬(Pb→ Pa).

4.3.1 Bell’s Second Proof of DeMorgan’s Laws from Epsilon

Bell gives two distinct proofs of DeMorgan’s law from the ε-axiom. In the first he shows
that ε implies what he calls “Markov’s principle:”

∀x[¬¬A(x) → A(x)] → [¬∀xA(x) → ∃x¬A(x)] for a decidable predicate A(x).

The principle can be characterized as showing that the “infinitary” version of the De
Morgan law holds for “decidable” predicates A(x). Using the aforementioned modest
decidability conditions, Bell is able to derive De Morgan’s law in its propositional form.
We leave aside the details of this proof to look instead at the second proof where Bell
moves more directly from the epsilon principle to De Morgan’s law.3

Recall that DeMorgan’s intuitionistically invalid law is: ¬(B ∧ C) ⊢ ¬B ∨ ¬C. To
prove DeMorgan’s intuitionistically invalid law Bell assumes what he refers to as a “modest
‘decidibility’ condition” D: ⊢I ∀x(x = a ∨ x 6= a), and a constant b such that ⊢I a 6= b.

Theorem 4.3.1 (Bell’s Second Proof of DeMorgan’s Laws). Given the following decidibility
condition:

(D) ⊢I ∀x(x = a ∨ x 6= a)

and a constant b such that
⊢I a 6= b

then
¬(B ∧ C) ⊢ ¬B ∨ ¬C

3Beeson descibes Markov’s constructivism, giving a slightly different formalization of his eponymous
superintuitionistic principle as follows:

The reasoning by the Markov school is formalized in the intuitionistic predicate calculus, with
one additional principle. The additional principle has been given Markov’s name. Markov’s

principle is
∀x ∈ R(¬x ≤ 0 → x > 0)

(Beeson, 1980, p.47)

104



Proof. We define a formula A(x) in term of B and C:

(∗) A(x) ↔ [(x = a ∧ B) ∨ (x 6= a ∧ C)].

Given the decidability conditions we have:

⊢I A(a) ↔ B

and
⊢I A(b) ↔ C,

and hence:
(∗∗) ⊢I ¬A(x) ↔ [(x = a→ ¬B) ∧ (x 6= a→ ¬C)]

Recall the epsilon axiom:
ϕ(x) → ϕ(εϕ)

Which is equivalent to:
⊢ ∃xϕ(x) ↔ ϕ(εϕ)

Appyling this to the A(a) and A(b),

¬A(a) ⊢I ¬A(ε¬A)

and
¬A(b) ⊢I ¬A(ε¬A)

Since ¬A(a) ↔ B, we have, ¬B ⊢ ¬A(a), and so,

¬B ⊢I ¬A(ε¬A)

and similarly:
¬C ⊢I ¬A(ε¬A)

And so we can say:
¬¬A(ε¬A) ⊢I ¬¬B

and
¬¬A(ε¬A) ⊢I ¬¬C

Combining these two definitions we can state:

¬¬A(ε¬A) ⊢I ¬¬B ∧ ¬¬C
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Since it holds intuitionistically that:

¬¬B ∧ ¬¬C ⊢I ¬¬(B ∧ C)

We can say that:
¬¬A(ε¬A) ⊢I ¬¬(B ∧ C)

Hence:
¬¬¬(B ∧ C) ⊢I ¬¬¬A(ε¬A)

But since it is true in intuitionistic logic that for any ϕ:

⊢I ¬¬¬ϕ↔ ¬ϕ

We have:
¬(B ∧ C) ⊢I ¬A(ε¬A)

Recall above that we were able to show:

(∗∗) ⊢I ¬A(x) ↔ [(x = a→ ¬B) ∧ (x 6= a→ ¬C)]

Now by substituting “ε¬A” for “x” in (**) we obtain:

(∗ ∗ ∗) ¬(B ∧ C) ⊢I [(ε¬A = a→ ¬B) ∧ (ε¬A 6= a→ ¬C)]

Recall the decision condition for objects D:

(D) ⊢I ∀x(x = a ∨ x 6= a)

Now we apply the decision condition:

⊢I ε¬A = a ∨ ε¬A 6= a

This with (***) gives us
¬(B ∧ C) ⊢I ¬B ∨ ¬C

4.4 Proof of DeMorgan’s Laws in Intuitionisitic Logic

+ ε without Identity

While the decidability condition in theorem 4.3.1 seems a reasonably weak principle, the
proof can in fact be done using a weaker principle. We do not need a decidability condition
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that includes equality of objects. We can prove it using apartness ∀x(¬(x 6= a) ∨ x 6= a)
and (a 6= b), or with the following decidability condition: ∀x((Px → Pa) ∨ ¬(Px → Pa))
and two constants such that ¬(Pb→ Pa).

Theorem 4.4.1. In intuitionistic predicate calculus with the ε axiom:

(ε) ⊢ ∃xϕ(x) ↔ ϕ(εϕ)

and a decidability condition:

(D∗) ∀x((Px→ Pa) ∨ ¬(Px→ Pa))

and two constants a and b such that:

¬(Pb→ Pa)

we can derive De Morgan’s intuitionistically invalid law

¬(B ∧ C) ⊢I ¬B ∨ ¬C

Proof. We begin with our decision principle:

(D∗) ⊢I ∀x((Px→ Pa) ∨ ¬(Px→ Pa))

Then we define the predicate A in the following manner assuming that x is not free in
either B or C:

(∗′) A(x) ≡ ((Px→ Pa) ∧B) ∨ (¬(Px→ Pa) ∧ C))

It follows that:
⊢I A(a) ↔ B

and
⊢I A(b) ↔ C

Hence:

⊢I ¬A(x) ↔ ¬[((Px→ Pa) ∧ B) ∨ (¬(Px→ Pa) ∧ C))]

and by De Morgan’s intuitionisitically valid law:
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⊢I ¬A(x) ↔ [¬((Px→ Pa) ∧ B) ∧ ¬(¬(Px→ Pa) ∧ C)]

which by the intuitionistic valid axiom: (ϕ→ ¬ψ) ↔ ¬(ϕ ∧ ψ) gives us:

(∗∗′) ⊢I ¬A(x) ↔ [(Px→ Pa) → ¬B) ∧ (¬(Px→ Pa) → ¬C)]

By the epsilon axion we can now say:

¬A(a) ⊢I ¬A(ε¬A)

and
¬A(b) ⊢I ¬A(ε¬A)

And since ¬B ⊢I ¬A(a), we have ¬B ⊢I ¬A(ε¬A), and so:

¬¬A(ε¬A) ⊢I ¬¬B.

Similarly,
¬¬A(ε¬A) ⊢I ¬¬C

so we have:
¬¬A(ε¬A) ⊢I ¬¬B ∧ ¬¬C

and:
¬¬¬(B ∧ C) ⊢I ¬¬¬A(ε¬A)

Hence since intuitionistically ¬¬¬ϕ ⊢ ¬ϕ is true, we can say:

¬(B ∧ C) ⊢I ¬A(ε¬A).

By (**’) we get:

¬(B ∧ C) ⊢I [(Pε¬A → Pa) → ¬B) ∧ (¬(Pε¬A → Pa) → ¬C)]

and by D∗ we get:
¬(B ∧ C) ⊢I ¬B ∨ ¬C
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4.5 Linearity Axiom and Intuitionistic Predicate Cal-

culus + ε

Bell also provides a proof of Dummett’s scheme, also known as linearity, in intuitionistic
type theory (Bell, 1993a). A similar proof can be made for first order intuitionistic logic
+ε and first order intuitionistic logic +ε without identity.

4.5.1 Dummett’s Scheme

Bell provides a proof of Dummett’s scheme in a intuitionistic type theory (Bell, 1993a, p
334) which he remarks can be modified to be a proof for an intuitionistic ε–calculus. Here
we provide a proof in intuitionistic ε–calculus with identity.

Theorem 4.5.1 (Dummett’s Scheme from Intuitionistic ε–Calculus with Identity). As-
suming a intuitionistic–ε calculus with constants 0 and 1 such that ∀x(x = 0 ∨ x 6= 0) and
(0 6= 1) then for any sentence B and C:

⊢ (B → C) ∨ (C → B)

Proof. Define:

A(x) ≡ (x = 0 ∧ B) ∨ (x = 1 ∧ C)

Then ⊢ A(0) ↔ B and ⊢ A(1) ↔ C, so:

⊢ ∃xA(x) ↔ B ∨ C

Also since (x 6= 0 ∧ A(x)) ⊢ C, we have:

x 6= 0 ⊢ A(x) → C

Recall the epsilon axiom yeilds:

⊢ ∃xA(x) ↔ A(εA)

so we can state:
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⊢ A(εA) ↔ B ∨ C

and

⊢ AεA ↔ (εA = 0 ∧ B) ∨ (εA 6= 0 ∧ C)
hence:

⊢ B ∨ C → A(εA)

⊢ ((B ∨ C) → A(εA)) ∧ (εA = 0 ∨ εA 6= 0)

⊢ (((B ∨ C) → A(εA)) ∧ εA = 0) ∨ (((B ∨ C) → A(εA)) ∧ εA 6= 0)

⊢ ((B ∨ C) → A(0)) ∨ (((B ∨ C) → A(εA)) ∧ A(εA) → C)

⊢ ((B ∨ C) → B) ∨ ((B ∨ C) → C)

⊢ (C → B) ∨ (B → C)

as required.

Theorem 4.5.2 (Dummett’s Scheme from from Intuitionistic ε–Calculus without Iden-
tity). Assuming a intuitionistic–ε calculus with a predicate P , and constants a and b such
that ∀x ((Px→ Pa) ∨ (Px→ Pb)) and ¬(Pb ∧ Pa)4 then for any sentences B and C:

⊢ (B → C) ∨ (C → B)

Proof. Define:

A(x) ≡ ((Px→ Pa) ∧ B) ∨ ((Px→ Pb) ∧ C)

Then by the definition of A and the decidability principle we have ⊢ A(a) ↔ B and
⊢ A(b) ↔ C, so:

⊢ (B ∨ C) → ∃xA(x)

the rest of the proof follow ceteris paribus from the ε-axiom.

Recall the epsilon axiom:

4One could also say ∀x ((Px→ Pa) ∨ (Px→ ¬Pa)) and ¬Pa→ Pb.
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⊢ ∃xA(x) ↔ A(εA)

so we can state:

⊢ (B ∨ C) → A(εA)

hence:

⊢ (B ∨ C) → A(εA)

⊢ (B ∨ C) → A(εA) ∧ ((AεA → Pa) ∨ (AεA → Pb))

⊢ (((B ∨ C) → A(εA)) ∧ ((AεA → Pa)) ∨ (((B ∨ C) → A(εA)) ∧ (AεA → Pb))

⊢ ((B ∨ C) → Pa) ∨ ((B ∨ C) → Pb)

⊢ ((B ∨ C) → B) ∨ ((B ∨ C) → C)

⊢ (C → B) ∨ (B → C)

as required.

4.6 Extensional Epsilon and the Law of Excluded Mid-

dle

Bell provides a proof that the addition of an axiom of “epsilon extensionality” (i.e., that
the identity of epsilon terms is determined by the extension of the predicates out of which
the epsilon term is formed) to the intuitionistic epsilon calculus makes the law of excluded
middle (and so all of classical logic) provable (Bell, 1993a). We will first present a version
of Bell’s proof, then show once again that a weaker principle not involving identity is
sufficient to get the result.

4.6.1 The Proof of the Law of Excluded Middle from Intuition-
isitic Logic+ε and the Axiom of Epsilon Extensionality

The axiom of epsilon extensionality further extends the “decision” condition on objects.

∀x[A(x) ↔ B(x)] → εA = εB
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(Bell, 1993a, p6)

In his proof Bell proves a Lemma:

Lemma 4.6.1. Let T be a theory in a first order language L with constants 0 and 1 such
that ⊢T 0 6= 1; and for any predicate A(x) define:

B(x, y) ≡ y = 0 ∨ A(x)
C(x, y) ≡ y = 1 ∨ A(x)

Suppose that in L there are terms s and t such that:

(1) ⊢T B(x, s) ∧ C(x, t)

and

(2) A(x) ⊢T s = t

then

⊢T A(x) ∨ ¬A(x)

Proof. From (1) we know that ⊢T [s = 0 ∨ A(x)] ∧ [t = 1 ∨ A(x)]

by distributivity we get:

⊢T [s = 0 ∧ t = 1] ∨ A(x)

so we can say:

(3) ⊢T s 6= t ∨ A(x)

however we know:

(2) A(x) ⊢T s = t
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so:

s 6= t ⊢T ¬A(x)

so by (3) we get:

⊢T A(x) ∨ ¬A(x)

Theorem 4.6.2. Suppose that for each formula B(x,y) of L such that ⊢ ∃yB(x, y)

(1’) B(x, εB(x))
(2’) ∀y[B(x, y) ↔ C(x, y)] → εB(x) = εC(x)

Then for any formula A(x),

⊢ A(x) ∨ ¬A(x)

Proof. Consider B(x, y) and C(x, y) as defined in the lemma 0 and 1 respectively ensure
that:

⊢ ∃yB(x, y) and ⊢ ∃yC(x, y). Taking s and t as εB(x) and εC(x) (1’) yields (1) and (2’)
yields (2). The conclusion follows from Lemma 4.6.1.

4.6.2 Proof of LEM from Intutionistic Logic+ε and a Weakened
Extensional Axiom

This proof, like Bell’s of DeMorgan’s Law, can be done without identity. We can replace
the ε-extensionality axiom using identity with the following principle:

For all predicates A(x), B(x) and P (x):

∀x(A(x) → B(x)) → (PεA → PεB).

Now we can revise lemma 4.6.1 as follows:
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Lemma 4.6.3. Given a formula A(x), define B(x, y) and C(x, y):

B(x, y) ≡ Py ∨ A(x) and C(x, y) ≡ ¬Py ∨ A(x)

Suppose we have s and t such that ⊢ B(x, s) ∧ C(x, t), and A(x) ⊢ Ps→ Pt. Then

⊢ A(x) ∨ ¬A(x).

Proof. By distributivity on ⊢ B(x, s) ∧ C(x, t) and the definitions of B(x, y) and C(x, y)
we have:

⊢ (Ps ∧ ¬Pt) ∨ A(x)
From A(x) ⊢ Ps→ Pt we have:

¬(Ps→ Pt) ⊢ ¬A(x)

Since
(Ps ∧ ¬Pt) ⊢ ¬(Ps→ Pt)

we have:
⊢ ¬A(x) ∨ A(x)

as required.

The theorem and proof follow ceteris parabis :

Theorem 4.6.4. Suppose that for each formula B(x,y) of L such that ⊢ ∃yB(x, y) we
have:

(1”) B(x, εB(x))

(2”) ∀y[B(x, y) → C(x, y)] → (PεB(x) → PεC(x))

Then for any formula A(x)
⊢ A(x) ∨ ¬A(x)

Proof. B(x, y) and C(x, y) are defined by the lemma 4.6.3, so from ⊢ ∃yB(x, y) and ⊢
∃yC(x, y). Taking s and t as εB(x) and εC(x) (1

′′) yields (B(x)εB(x) ∧ C(x)εC(x)) and (2′′)
yields A(x) ⊢ PεB(x) → PεC(x). The conclusion follows from Lemma 4.6.3.
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Chapter 5

Semantics for Intuitionistic Logic+ ε

In this chapter we will discuss two semantics for intuitionistic ε-calculus. The first is
developed by John Bell in his 1993 paper “Hilbert’s ǫ-operator and classical logic”(Bell,
1993a) and is sound but not complete. The second sound and complete semantics is
presented by David DeVidi in his 1994 thesis (DeVidi, 1994) and summarized in his
1995 paper “Intuitionistic ε- and τ -calculi” (DeVidi, 1995). We will first present Bell’s
semantics as it is a development of the standard semantics presented for classical ε-calculus
by Asser (Asser, 1957; Leisenring, 1969). We will then sketch DeVidi’s semantics,
specifically focusing only on differences between Bell’s and DeVidi’s semantics. These
differences will present some insight for why the addition of ε to intuitionistic logic makes
a logic super-intuitionistic in an interesting manner.

5.1 Semantic Considerations

There are three issues that must be dealt with in creating a semantics for an intuitionisitic ε-
calculus. The first is dealing with the problem of multiple truth values, the second is dealing
with non-linear truth sets and the third is the problem of trying to avoid extensionality.

The first problem is that Heyting algebras, which make up sets of truth values of
intuitionisitic logics, typically have more than two truth values. Hence while there may be
nothing that, when substituted for x in ϕ(x), makes ϕ(x) true, it doesn’t follow that all the
things we might substitute for x make it false. That is, there will be some elements that
make ϕ(x) truer than do others. This is a problem with the Asser-Leisenring semantics:
call the “truth set” for ϕ(x) the set of things that, when substituted for x, make phi(x)
true. The semantics uses a choice function in the metalanguage to select a member of the
truth set for ϕ(x), and allow it to be the referent of εxϕ(x). But if nothing makes that
formula completely true, then the truth set for ϕ is the empty set. The semantics assigns
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an arbitrary member of the domain to the empty set (since there is nothing that can be
selected from within it). One thing that makes this problematic in the presence of more
than two truth values is that the epsilon formula is not made valid, since ∃x.ϕ(x) can have
a non-true, non-false value, but there is no guarantee that ϕ(x) will have the same value
when the arbitrarily chosen element is substituted in for x. Bell’s answer to this is to put
a restriction on the kinds of Hetying algebras that can serve as lattices of truth values:
they must be inversely well-ordered sets. This guarantees that while the truth set must
be open, there is always a “greatest truth value” that is attained ϕ(x) when the various
elements of the domain are substituted for x. He then has the choice function select from
the set of elements that “achieve” that greatest value, thus making the epsilon principle
valid.

Bell’s solution however does not work for all Heyting algebras, only the subset of them
which are inversely well ordered sets. This is the key reason that his semantics is sound
but not complete. To derive a semantics which is valid for all Heyting algebras DeVidi
semantics puts a restriction on what sorts of interpretations are permitted, rather than
what sort of algebras are permitted.

One of the main problems with creating a choice function is avoiding making the epsilon
extensionality principle (Ack) true.1 This is a problem that DeVidi (DeVidi, 1995, 1994)
and Bell (Bell, 1993b) approach in different ways. As noted above, in a classical ε-calculus
the choice function picks out an element of the truth set for ϕ. The solution works for
non-empty sets but with empty sets the method simply picks out an arbitrary element.

This means that for say three propositions ϕ, ψ, and χ all of which have empty truth
sets, that JεxϕK = JεxψK = JεxχK. But what if all three are not intensionally the same?
For example let ϕ be “the smallest prime that is composite”, ψ be the “dog that is also
a cat” and χ be “a square circle”. The extension of all three of these generally is taken
to be the empty set. However they are not empty for the same reasons. Certainly if we
want our ε-operator to pick out the “most likely element to have a property,” even if the
property is impossible it is reasonable that they should pick out different elements, even if
there are no elements that can possibly fit the criteria. Even though in the case of χ no
squares are round, and hence the set of round squares is empty, an argument can be made
that the most likely element to be a round square should either be round or be square, or,
if not that, at least it should be a two dimensional shape and not say a shade of the colour
blue or the state bird of Western Australia2.

Likewise in the case of ϕ, the smallest prime that is composite, since primes are by
definition not composite, it is just as likely (or unlikely) for any particular prime to be

1Known as (Ack) after Wilhelm Ackerman in whose 1924 PhD thesis ε made one of its first appearances
(Ackermann, 1924, p.8).

2i.e.the Black Swan

116



composite, but again the candidates are all natural numbers, not geometric shapes or
mammals. Perhaps the case of “dogs that are cats” is the easiest to solve, while it may be
taxomologically impossible one could argue that it is not logically impossible, a common
ancestor, some sort of hybrid, or perhaps just a rating of behaviour characteristics might
be how one would assert that a certain type or breed of dog is most cat like.

While the examples given above are all varieties of “impossible predicates,” under any
particular interpretation the epsilon term for contingently empty predicates will also receive
the same referent—the “likeliest square circle” and the “likeliest female Canadian Prime
Minister before 1990” are the same thing.

This is really an instance of a more general problem. By selecting an element from the
truth sets for formulas, one is likely to make valid the extensionality principle appealed to in
the proof of the law of excluded middle in Chapter 4, which states that if ∀x(ϕ(x) ↔ ψ(x)),
then ϕ and ψ have the same truth set. The proof in Chapter 4, however, shows that this
extensionality principle is not something we might want to assume to be generally correct,
since it seems to pack a proof-theoretic wallop. To avoid this, DeVidi’s semantics makes
the reference of epsilon terms depend not only on the semantic values a formula gets for
each possible substitution, but also on the syntactic structure of the formula. Predictably,
the results are somewhat messy. They do, however, yield a sound and complete semantics
for the intuitionistic epsilon calculus.

5.2 Classical Semantics for ε -Calculus

Considering why the standard semantics for the classical ε calculus can be fairly simple
will be instructive for what follows. First, it is useful to have in hand the notion of a truth
set for a formula under an interpretation (and, for simplicity, assume that the formula
has exactly one free variable). This is, as the name suggests, precisely the subset of the
domain of interpretation that includes all and only those elements that make the formula
true when the free variable refers to that element—it is the set of things of which the
formula is true. If ϕ is such a formula, then if the epsilon principle is to be satisfied, εϕ
must be something that makes ϕ true if anything does. If nothing makes ϕ true, then
it really doesn’t matter to what εϕ refers. In short, what is needed to turn an ordinary
interpretation of a predicate language into an interpretation that satisfies the ε calculus is
simply that we be able to select an element of the truth set for each formula ϕ, and assign
that element as the interpretation of εϕ. This is precisely what Asser and Leisenring do—
a classical ε interpretation is simply a classical interpretation to which a choice function
on the domain has been added (Asser, 1957; Leisenring, 1969).3 The definition of

3The function f is defined as a map from the powerset of the domain D of the structure L to that
domain, i.e. f : P(D) −→ D: specifically f is a function, such that, for ∅ 6= X ⊆ D, f(X) ∈ X,
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interpretation is then amended so that εϕ is interpreted by the element selected from the
truth set of ϕ if it is non-empty, and to the element of the domain the function assigns to
the empty set otherwise.

It is important to note a few features of classical, two-valued logic that this simple
semantics depends on. First, it is clear that this semantics will satisfy Ackermann’s exten-
sionality principle. This is harmless in classical logic, where adding the epsilon operator
is conservative over the classical predicate calculus, whether the epsilon terms are deter-
mined extensionally or not. However the extensionality assumption is not harmless in the
intuitionistic case. The second thing to note is that this simple semantics depends on
two-valuedness. But suppose there are intermediate truth values between F and T 4. In
such a semantics, there can be interpretations under which the truth set of ϕ is empty, and
yet not every element of the domain, when assigned to the free variable in ϕ, gives it the
truth value F. In this case, the epsilon principle requires that the truth value of φ(εϕ) be
at least as great as the truth value of ∃x.ϕ.

DeVidi considers classical semantics with more than two truth values (i.e. Boolean
valued models larger than the linear algebra 2) for epsilon (see DeVidi, 1994, pp.201ff.).
Of course, Boolean valued models can be reduced to two valued models—the addition of
extra models doesn’t really generate any new counter-examples, so the Boolean-valued and
two valued epsilon semantics have the same classes of validities so that aspect of DeVidi’s
work is of less interest for present purposes. However, no similar reduction is possible in
the intuitionistic case, so the techniques developed in the Boolean valued case are essential
for developing a (Heyting valued) semantics for the intuitionistic epsilon calculus.

5.3 Existing Semantics for Inutitionistic ε-Calculus

A complete semantics for first order intuitionistic logic with identity and the ε-axiom
is provided by (DeVidi, 1994, 1995). However a simpler model theory is provided by
Bell (1993a), one which is sound but not complete. This soundness proof for first order
intuitionistic logic with identity and the ε-axiom (Bell, 1993a, pp.13-17) can be easily
modified for the intuitionisitic ε-calculus with or without identity.

and f(∅) = d for an arbitrary fixed element d ∈ D. An evaluation function ̺ that maps variables onto
the members of the the domain D defined as: ̺ : V ar −→ D and ̺(x/d) : V ar −→ D be such that
̺(z/d)(z) = d and ̺(z/d)(y) = ̺(y) for y 6= x. Epsilon terms such as εx.ϕ are then interpreted in the
following manner: take the subset X ⊆ D that makes ϕ true on the the valuation ̺(x/d), the interpretation
of εx.ϕ under ̺ is f(X). The truth-set for ϕ and x under ̺ is X, and εx.ϕ is understood to be a member
of that truth-set, except when it is empty, in which case εx.ϕ refers to f(∅) = d the arbitrary element
of the domain. Defining the semantics for a classical epsilon calculus in the above manner means that
ε-terms for formulas that have co-extensive truth-sets receive the same interpretation.

4Or whatever your two truth values may be, e.g. ⊥ and ⊤, true and false, or 1 and 0
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The difference between these two show interestingly how the structure of intuitionistic
ε-calculus is different from intuitionistic logic. Some of the limitations of the model, i.e.
that certain subsets of the domain have to be non-empty, indicate how the models are
limited and hence might highlight how choice principles strengthen logical principles by
limiting the acceptable structures their domains may take.

5.4 Bell’s Semantics for Intuitionistic First Order

Logic + ε

It is useful to begin with a definition of a standard Heyting algebra semantics for intuition-
istic logic. Let L be a standard first order language. The semantics for intutionistic logic
are similar to those for classical logic. However for non-classical logics instead of assuming
that the only two truth values are ⊤ and ⊥ (or T and F, or 1 and 0), we specify an “algebra
of truth values” and make this an explicit part of the interpretation. For intuitionistic logic
we require that the algebra be a Heyting algebra.

A Heyting Algebra (HA) is a lattice with a bottom element and relative pseudo-
complementation5. We will define a lattice, pseudo-complementation, and finally a Heyting
algebra in the following manner:

Definition 5.4.1: We can define a lattice in the following way. Let S =< S,≤> be an
ordered set, i.e. ≤ is a reflexive, transitive, and anti-symmetric relation on S. For T ⊆ S,
we now define the upper and lower bounds in the following manner: if ∀t ∈ T [t ≤ s] then
s is an upper bound for T ,

∨
T , if it exists, denotes the least upper bound of T , also called

the join of T . Dually, if it exists,
∧
T denotes the greatest lower bound, or the meet of T .

We write x ∨ y for
∨{x, y}, and x ∧ y for

∧{x, y}.
Definition 5.4.2: Pseudo-complementation can be defined in the following manner: for
a lattice L and a, b ∈ L; a is said to have a pseudo-complement relative to b if the set
{c ∈ L | c ∧ a ≤ b} has a maximal element.

Definition 5.4.3: A Heyting Algebra is an ordered quadruple 〈H,≤,⇒, 0〉 such that
〈H,≤〉 is a lattice, where 0 is the minimal element, and ⇒ is a binary operator on H
such that for all x, y, z ∈ H, x ≤ y ⇒ z ⇔ x∧ y ≤ z. In other words the ⇒ operator picks
out a join, i.e. y ⇒ z =

∨ {x | x ∧ y ≤ z}.
5A Heyting algebra is sometimes defined as a Brouwerian Lattice with a bottom element. A Brouwerian

Lattice, or implicative lattice, is a lattice with relative pseudo-complementation. However the terminology
is not uniform, in some of the literature a Brouwerian Algebra is taken to mean the same thing as a Co-
Heyting Algebra, the dual of Heyting Algebra. Heyting Algebras, Co-Heyting Algebras, and Brouwerian
Algebras are all also referred to collectively as Pseudo-Boolean Algebras.
I will not present a comprehensive explication of Heyting algebras here. For more detail see Rasiowa

and Sikorski (1963) pp.58ff. or Davey and Priestly (2002) pp.33 ff. and pp.128 ff.
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Note that all Boolean algebras are Heyting algebras, and the set F < T is a Boolean
algebra, often referred to as 2. It is worth noting a few different Heyting algebras that
are important in the discussion below: all linear orders, in particular 2, the only Boolean
algebra that is linear:

1

0

Also the three element linear ordering (3), the natural numbers, the negative integers,
etc... are Heyting algebras. However not all Heyting algebras are linear. For instance, all
finite distributive lattices are Heyting algebras; as are the lolipop, and the inverted lolipop
i.e.:

1

c

a b

0

Other examples of Heyting algebras will be explained as need arises.

An intuitionistic model M is an ordered triple < D,H, I >, where D is a non-empty
set, and I assigns each n-ary basic predicate of L to a function Dn → H, each constant c
of L to an element cM of D, and each function symbol to a function Dn → D. One should
note that this describes the standard classical definition of a model, if we require that L

be 2. We now let α be an assignment of values to all the variables of L : α: V ar → D.

Recall the language Lε from the previous chapter. Bell presents a version of Liesen-
ring/Asser semantics for Lε. That is he appends a choice function to an intuitionistic
model so that it can be used to interpret the ε terms.

However, as noted above, there is the problem that “truth sets” do not work so simply
in the presence of intermediate truth values. That is to put it more precisely, the problem
is that the intepretation of ∃x.ϕ, i.e. ∨

x∈D[ϕ] will not necessarily be equal to [ϕ]α(x/d)

for any particular d, so there may not be any element of D that could render the epsilon
principle satisfiable.

Bell’s intuitionistic epsilon model includes a choice function on the powerset of the
domain with a particular sort of complete Heyting algebra as its truth set—specifically an
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inversely well-ordered set. Thus we follow Bell and define a Lε− structure as a system of
the form:

M =< D,L, e, eqM, PM >

where:

D is a non-empty set
L is an inversely well-ordered set with least element, L =< L,≤>, such sets

are a form of Heyting algebra, but also have the useful property that every
subset has a maximal element and that maximal element is a member of
the set. This neatly solves the problem of “unattained joins”.

e is a choice function for PD, i.e., e is a map PD − {∅} → D such that
e(X) ∈ X for all X 6= ∅ in PD

PM is a map from each n-ary basic predicate in Lε to a function from Dn → L
eqM D×D → L satisfies the standard equity axioms of reflexivity, transitivity,

symmetry, the substitution for functions and the substitution for formulas

The choice function e defines a map from the non-empty subsets of D onto D (i.e.
PD − {∅} → D). From it we can define ē : LD → D, from the set of all functions from
D to the truth set L (i.e. {f : D → L} which we write as LD ), in the following manner:
for each f ∈ LD, that is for each function D → L the set f [D] = {f(d) : d ∈ D} has
the maximal element l =

∨
f [D]. Because L is inversely well ordered, meaning that each

subset has a top element, the choice function picks the top element of each subset of L for
each predictate in Lε.

Now we see how ē is defined in terms of e in the following manner:

ē(f) = e(f−1({l})).

That is the choice function ē, is applied to f : (D → L), which picks out a member of D.

Hence we see that:

(∗) f(ē(f)) = l = ∨f [D]

And so we have defined a choice function on L that will give us a sound semantics if
interpret each function ϕ and term t of our language Lε in the following manner:

given an Lε-structure and a map α from the set Var of variables of L to D
(i.e. a valuation in D) we define, in the standard manner, for each formula ϕ
and each term t of Lε, the value
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JϕKαM ∈ L [t]αM ∈M

of ϕ and t under α in M recursively as follows, (noting that ∧, ∨, →, and ∗ on
the right hand side indicate the, meet, join, relative pseudo-complement, and
pseudo-complement operations in the Heyting algebra of truth values):

Jt1 = t2K
α
M = eqM([t1]

α
M, [t2]

α
M)

[x]αM = α(x) for x ∈ Var

JPtKαM = PM([t]αM)

Jϕ ∧ ψKαM = JϕKαM ∧ JψKαM

Jϕ ∨ ψKαM = JϕKαM ∨ JψKαM

Jϕ→ ψKαM = JϕKαM ⇒ JψKαM

Jϕ↔ ψKαM = JϕKαM ⇔ JψKαM

J¬ϕKαM = (JϕKαM)∗

J∃xϕKαM =
∨
d∈D

JϕK
α(x/d)
M

J∀xϕKαM =
∧
d∈D

JϕK
α(x/d)
M

where α(x/d) is the map which coincides with α except possibly at x where it
assigns the value d.

Finally,
[εxϕ]αM = ē(hϕ),

where hϕ : D → L is defined by:

hϕ(d) = JϕK
α(x/m)
M
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A formula ϕ is said to be M-valid if JϕKαM = 1 for every valuation ϕ in M, and
ε-valid, written �ε ϕ, if ϕ, is M-valid for all M.

(Bell, 1993a, p.14)

With our modified account of Bell’s description above of Lε-structure, we can prove the
soundness for ε-calculus.

Theorem 5.4.1 (Bell’s ε-Soundness Theorem).

⊢ε ϕ⇒�ε ϕ

for any formula ϕ

Proof. Since the axioms and rules of inference for intuitionistic logic are valid in any com-
plete Heyting algebra valued structure (cf. Kleene 1952, pp.412ff, or Rasiowa and
Sikorski 1963, pp.383–385), to prove soundness we only need to show that ε-axiom is
valid in any Lε-structure (cf. Bell, 1993a, pp.14-15).

Observe that:

∨
hϕ[D] =

∨
d∈D

JϕK
α(a/d)
M = J∃xϕKαM

and

∨
hϕ[D] = hϕ(ē(hϕ)) = hϕ([εxϕ]

α
M

= JϕK
α(x/[εxϕ]α

M
)

M

= Jϕ(x/εxϕ)KαM

Therefore,

J∃xϕ↔ ϕ(x/εϕ)KαM = J∃xϕKαM ⇔ Jϕ(x/εϕ)KαM
= 1,

as required.
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5.5 Bell’s Model and Completeness

As we have seen, Bell’s semantics for the intuitionistic epsilon calculus is sound. He
is therefore able to use it to establish a number of independence results, i.e. to show
that certain things—in particular, the law of excluded middle—are not provable in the
intuitionistic epsilon calculus. However, he does not present a completeness proof for the
very good reason that the semantics he offers is very far from complete. That is, there are
principles valid in this semantics that are not provable in the intuitionistic epsilon calculus.
One glaring example is the principle of ε-extensionality, i.e., Ackermann extensionality. As
we have seen, if this principle were provable in the intuitionistic epsilon calculus, then the
law of excluded middle would also be provable in the intuitionistic epsilon calculus. Yet
this is precisely what Bell’s independence result shows us cannot be the case.

It was considerations of this sort that led DeVidi to pursue the question of what a sound
and complete semantics for various term forming operators, including epsilon, would look
like. The problem with Bell’s semantics shows why much of his attention was devoted to
ways to give a semantics that gradually reduces the degree of extensionality validated by
the semantics.

As we have noted above Bell’s model theory for ε-calculus, while it is sound it is not
complete for all Heyting algebras.

First note that from the (ε)-axiom (∃xϕ → ϕ(x/εxϕ)) and ∃-introduction (ϕ(t) →
∃xϕ(x)) we can easily prove that ∃xϕ ↔ ϕ(x/εxϕ) when we add the ε-scheme to our
language L . And since we have more than two truth values, i.e. 0 or 1, we open up the
possibility that though we may have J∃xϕKαM 6= 0 we may also have:

J∃ϕKαM 6= 1

and hence

{d ∈ D : JϕK
α(x/d)
M = 1} = ∅

but the definition of [εxϕ]αM is ē(hϕ) an arbitrary fixed element of M. So we can have in
this case:

J∃xϕKαM 6= Jϕ[x/εxϕ]KαM

if, for example,

[εxϕ]αM ∈ {m ∈ M : JϕK
α(x/m)
M = 0}.
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And so in a non-classical case, Asser-Leisenring semantics clearly will not do. For
according to this semantics, when the “truth set” for ϕ is empty, ǫxϕ is an arbitrary
element of M , so we clearly can have:

J∃xϕKαM ⇔ Jϕ[x/εxϕ]KαM 6= 1

5.6 DeVidi Semantics for Intuitionistic ε-Calculus

While Bell (1993a) sketches a sound semantics for the intuitionistic epsilon calculus very
much like those constructed for classical epsilon semantics (cf. Asser, 1957; Leisenring,
1969), as we have seen it is not complete. Moreover, unlike in the classical case, it is not
appropriate to simply swallow this defect in the semantics by adding an extensionality
axiom to the epsilon calculus, e.g. Ack, that will make it complete because in the epsilon
case this addition is not harmless and conservative as it is in the classical case. DeVidi

(1994, 1995) sets out to fix this problem by providing a general purpose semantics for op-
erators such as epsilon and tau.6 He approaches the task by investigating various methods
for gradually scaling back the degree of extensionality validated by the semantics. In the
next few sections we will highlight certain features of DeVidi’s semantics without giving
details—which are provided in abundance in DeVidi (1994).

The first distinguishing feature of DeVidi’s semantics compared to Bell’s is how he sets
out to accomplish what Bell does by restricting the algebras of truth values to inversely
well-ordered sets. As noted above, the key virtue of this for Bell is that it assures us that
all “joins are attained”. That is we must ensure that under any interpretation, for every
ϕ(x), the join of the set of truth values that ϕ takes for each value of x is attained by one
of the values that ϕ takes. That means that if Ω is the four element Boolean algebra, it
can’t happen that ϕ(x) sometimes takes a, sometimes takes a∗ (its compliment), but that
it never takes 1, since in that case the join would not be attained.

Making sure that “joins are attained” is automatic, of course, in an inversely well
ordered set of truth values. The cost, though, is that Bell has restricted the class of
Heyting algebras available in ways that risk giving rise to validities in the semantics that
are not provable in the calculus. In particular, inversely well ordered sets are linearly
ordered, and most Heyting algebras are not. DeVidi therefore adopts a different approach
to guaranteeing that joins are attained by building it into the definition of an interpretation.
The algebra of truth values can be any complete Heyting algebra, but an interpretation

6These include what he refers to as very extensional (which includes the ε-extensionality axiom), quasi-
extensional (which includes a slightly weaker quantified version of the ε extensionality axiom), Hilbertian
(with the substitution of identicals but lacking Leibniz’s law) and intuitionistic ε-calculi (that is intuision-
istic logic + ε without an extensionality axiom).
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is only ε-acceptable if every join corresponding to a predicate in the language is attained,
i.e., if and only if the truth value of ∃x.P (x) is equal to the truth value of P (x) when some
individual in the domain is substituted for x.

What this approach does is require that for each interpretation there will be a non-
empty set of elements of the domain that make each formula ‘as true as possible.’ Unfortu-
nately, this creates an additional problem: two predicates might have the same “as true as
possible” set, but the truth value in question might be different for both those predicates.

For example in the most extreme case, all values of x might make ϕ(x) completely
true and all of them might make ψ(x) completely false (e.g., x = x and not(x = x)).
The simplest “as true as possible” semantics will assign the same reference to the epsilon
terms for both of those predicates. The result is that this semantics validates something
even stronger than Ack. DeVidi introduces the principle HAck to get completeness in an
intuitionistic system. We can compare the two axioms as follows:

(Ack) ∀x(ϕ↔ ψ) → (εx.ϕ = εx.ψ)
(HAck) ∀x[(∃y.ϕ→ ϕ[y/x]) ↔ (∃y.ψ → ψ[y/x])] ⊢ εy.ϕ = εy.ψ

Note that in HAck there is an extra condition, that for all x the existential quantified
statement must imply the free version of the statement, making sure that the the epsilon
term will get the same referent (DeVidi, 1994, pp.201 ff.). A logic with HAck DeVidi
terms as quasi-extensional and shows that is it sound and complete (see DeVidi, 1995,
p.530).

The bigger task, though, is to eliminate the need for extensionality assumptions not
merely diagnose which ones are made valid by the existing semantics. This obviously
requires making changes to the semantics. We turn to that question now.

5.7 Skeletons and Ground Terms

In his seminal paper, Günther Asser offers three different sorts of semantics for classical
epsilon calculus (for detail see Asser, 1957, pp.53 ff.). The first is the simple semantics
much discussed above, and given its fullest treatment by Leisenring. The second is such
that εxϕ only gets an interpretation when ∃xϕ is established, and hence can be seen
more as a semantics for Hilbert’s η-operator.7 The third semantics, though, is a first step
towards giving a semantics for epsilon that does not make Ack valid. He does so by making
the referent of εxϕ depend not only on the truth values ϕ takes, but on its syntax. The
semantics DeVidi offers is explicitly a modification of Asser’s approach.8

7Hilbert’s η-operator is briefly discusses above in subsection 2.8.2.
8Both Asser and DeVidi present versions of the semantics which are suitable for interpreting terms

with free variables, which requires making the interpretations depend also on finite sequences of elements
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Asser introduced the idea of “ground terms” as his method for allowing the referents
of epsilon terms to be distinct even if the truth sets of the predicates are identical. The
idea is that the choice function will be a two-place function depending not only on the
truth set, but also on the ground term underlying the epsilon term.9 Since, for instance,
the ground term of “ideal featherless biped” will be different from that for “ideal rational
animal,” the epsilon terms can refer to different objects.

Asser’s ground term makes εx.ϕ(x, α) where α is either a free term, a free variable
or constant: εv1.ϕv1v2 indicating that the syntactical form of the epsilon term for ϕ is a
bound variable and an unbound element of some sort or another. 10

The result of all of this in the classical setting is a semantics for what Asser calls the
“Hilbertian calculus.” It is actually a creature of Asser’s paper, not of Hilbert. In it, the
substitutivity of identicals holds (i.e. that Frege’s “the morning star” and “the evening
star” may be substituted for one another in sentences), but Leibniz’s law does not (i.e.
that we can establish then identity of two elements by the fact that they are truthmakers
for the all the same predicates.)

DeVidi makes two modifications to Asser’s semantics (beyond placing them in an in-
tuitionistic rather than a classical setting). The first is to eliminate the validity of the
substitutivity of identicals, which is unmotivated in the case of epsilon terms. The second,
on the other hand, is designed to prevent the intensionality from going too far. As once we
allow that the reference of an epsilon term εϕ will depend not only on the truth value of
ϕ with x interpreted in various ways, but also on the syntax of ϕ, we are faced with some
choices. It would be possible to allow, for instance, εxP (x) to differ from εyP (y), but this
DeVidi judges a step too far. For the first, he offers skeleton terms as a modification of
Asser’s ground terms (see DeVidi, 1994, pp. 172-190). For the latter he introduces what
he calls the “alpha axiom.”

5.7.1 Skeleton Terms

Asser’s third semantics depicts the syntactic structure of a term by replacing variables and
free terms, i.e. terms t whose variables are not bound in any formula or term for which t
is a subterm, with numbered variables. For example:

εx.P (x)(εy.Q(y)) has as its ground term εv1.P (v1)(v2)

of the domain (to serve as referents of those variables). We set those details aside here as not essential for
the present discussion.

9Again, leaving aside details about interpretation of any free variables in the terms.
10Corcoran et al. (1972, p.179) refers to ground terms as “canonical variable binding term operators

(cvbt)”.
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DeVidi’s skeleton terms preserve more information by not translating free terms into
variables but keeping more of the structure of the original epsilon term, for example:

εx.P (x)(εy.Q(y)) has as its skeleton term εv1.P (v1)(εv2.Qv2)

Unlike ground terms, skeleton terms preserve in the syntactic structure all non-bound
terms and constants, so that one can distinguish as part of an element, not only its referent,
but its name. Hence the following examples:

Original term Ground term Skeleton term
εx.ϕ(x, y) where y is a free variable. εv1.ϕ(v1, v2) εv1.ϕ(v1, v2)
εx.ϕ(x, εy.ψy) where εy.ψy is a free term. εv1.(ϕv1, v2) εv1.ϕ(v1, εv2.ψv2)
εx.ϕ(x, c) where c is a constant. εv1.ϕ(v1, v2) εv1.ϕ(v1, c)

As can be seen from the above examples skeleton terms preserve more type information
about the structure of epsilon terms.

5.7.2 The Alpha Axiom

It is important to note that simply by always being false, or false under the same conditions,
does not mean that propositions should always have the same epsilon term. Hence the most
likely entity to be a talking dog should not be identical to the most likely flying pig, even
though neither talking dogs nor flying pigs exist.

Adding an alpha axiom allows us identify the likeliest x to be a pig and to fly with the
likeliest y to be a pig and to fly. Thus we need a way to distinguish between equivalence
and syntactical equivalence with respect to propositions. Of course, while some syntac-
tic differences in predicates should result in the epsilon terms differing, not all syntactic
differences should.

The α-axiom defines α-convertibility in lambda calculus. It is written:

λx.M = λy.M [x/y] where y does not appear free in M

Having such an axiom means that if two propositions M and N are alpha convertible
i.e. M ≡α N they are syntactically identical. Hence the equivalent for term forming
operators is given by DeVidi as:

σx.ϕ = σy.ϕ[x/y]

where σ is any term forming operator.
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With these definitions, DeVidi is able to provide a variety of completeness proofs for the
various intuitionistic epsilon calculi. In particular, For the “quasi-extensional calculus”,
one adds “HAck” as an axiom, and uses a simple choice function on the “as true as possible”
sets for the formula from which the epsilon term was formed. But if one makes the choice
function depend not only on the truth set but also on the skeleton term, one gets a complete
semantics for the epsilon calculus to which the only addition is the alpha axiom.

5.8 Identity

In my discussion, I have frequently referred to the epsilon calculus without identity. De-
Vidi’s machinery also functions well for this calculus, with a few simple modifications.
Without identity we can write the rule in the following manner, for every formula χ in the
language Lε:

(∗∗) ∀x[∃y.ϕ⇒ ϕ[y/x] ⇔ (∃y.ψ ⇒ ψ[y/x])]

χ[x/εy.ϕ] ⇔ χ[x/εy.ψ]

In lemma 4.6.3 and theorem 4.6.4 we use the following even weaker formulation of axiom
(**) where for the proposition P:

∀x(Ax→ Bx) → (PεA → PεB)

which replaces Bell’s axiom of ε extensionality which we describe in lemma 4.6.1 and
theorem 4.6.2:

∀x[A(x) ↔ B(x)] → εA = εB

Our version is an obviously valid rule, as it replaces the two place identity relation,
with a weaker one place predicate ordered by implication.
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Part III

Philosophical Implications
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Chapter 6

Metaphysical Implications of Choice

6.1 Introduction

In the third part of this thesis we will draw lessons from both the technical results pre-
sented in Part Two and the philosophical debates presented in Part One. In Part One we
discussed the development of Hilbert’s programme, specifically with regard to his choice
operators; Brouwer’s intuitionistism and the origin and development of intuitionistic logic;
and Michael Dummett’s arguments about the connection between metaphysical positions
such as realism and logical strength. In Part Two of the thesis we looked at the formal
results derived by combining intuitionisitic logic and choice operators. After introduc-
ing Bell’s results we presented several new results, about how choice operators strengthen
intuitionistic logic, and then presented the semantic systems of Bell and DeVidi for intu-
itionistic epsilon calculus.

In this chapter we will try then to reconcile the results and semantics presented in Part
two, with the insights about the connections between ontology and logical strength we
can draw from our discussion of Dummett’s arguments presented at the end of part one.
To this end we will consider the sources of the ontological commitments surrounding the
adoption of choice axioms and various ancillary principles about the nature of terms, and
what those ontological commitments are. Hence we will draw some conclusions about the
metaphysical implications of the formal results about intuitionisitic ε-calculus, discussed
and presented in Chapter 4. One manner in which the ontological commitments can in
part be determined is by looking at the nature of the intermediate logics which choice
operators allow us to prove, e.g. to what degree such logics are the correct logics for
different domains of different epistemic or ontological warrant, i.e. whether we are realist
about such a domain or not and to what degree we are. To assess what those commitments
are we will look at the proofs, for the addition of ε (or τ) does not strengthen the logic
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alone but requires the addition of decision principles and epsilon extensionality (Ack) to
get the results shown in Chapter 4. We will discuss how choice operators combine with
decidability principles to strengthen logics and will investigate whether the ideal objects
picked out by epsilon terms are best understood to be abstract objects and if so what sort
of objects. The proofs presented in part two using intuitionist logic plus the ε-operator
and of intuitionist logic plus extensional ε-operator can help us break down further the
metaphysical implications of the strengthening of intuitionistic logic. Thus first we will
discuss how choice works in proofs of superintuitionistic logics. Secondly we will look at
the role of extensionality in the proofs of the law of excluded middle, and the role of
what Bell calls “modest decidability” conditions. Finally we will discuss the debate over
arbitrary objects referring to Kit Fine’s defence, for many of the same criticisms can be
made of choice objects as are made of arbitrary objects.

6.2 From Choice to Excluded Middle

Let us first consider effects of choice on intuitionistic logic, then discuss the proofs of
superintuitionistic logics presented in Chapter 4 and compare the non-constructive nature
of choice with the criticisms of quantifier rules. After this rather abstract discussion it
would perhaps be best to introduce and discuss some examples of various properties that
will help draw into focus the issues at hand.

Choice principles not only strengthen intuitionistic predicate logic by enabling the proof
of certain quantified statements1 not provable in intuitionistic logic (see Rasiowa and
Sikorski, 1963, p. 427), but as Bell notes (Bell, 1993a) they also enable us to prove
well known intermediate sentential axioms: i.e. linearity and weakened excluded middle
(which is equivalent to De Morgan’s intuitionistically invalid law).2 However choice axioms

1The following predicate axioms do not need decision principles to prove and can be proven directly from
intuitionisitic logic +ε without appeal to any extra axioms, but cannot be proven in normal intuitionisitic
predicate logic (see DeVidi 1994 pp.256-259 for details):

⊢ ¬∀xϕ→ ∃x¬ϕ ⊢ ∃x(ϕ→ ∀xϕ)
⊢ (∀xϕ→ ψ) → ∃x(ϕ→ ψ) ⊢ ∀x(ψ ∨ ϕ) → (ψ ∨ ∀xϕ)

2The derivation of DeMorgan’s to WLEM is obvious from the inspection of the following: ¬(ϕ ∧
¬ϕ) ⊢ ¬ϕ ∨ ¬¬ϕ. The other direction is a bit more complicated. We note first that identity gives us:
¬(ϕ ∧ ψ) ⊢ ¬(ϕ ∧ ψ) and we have WLEM: ⊢ ¬ϕ ∨ ¬¬ϕ. Now we consider the two cases:

¬(ϕ ∧ ψ) ⊢ ¬(ϕ ∧ ψ) ∧ ¬ϕ or ¬(ϕ ∧ ψ) ⊢ ¬(ϕ ∧ ψ) ∧ ¬¬ϕ.
Taking the first case, by DeMorgan’s intuitionistically valid law we get: ¬(ϕ ∧ ψ) ⊢ ¬((ϕ ∧ ψ) ∨ ϕ),
and by absorption we get:¬(ϕ ∧ ψ) ⊢ ¬ϕ. The second case is more complicated, we have: ¬(ϕ ∧ ψ) ⊢
¬¬ϕ ∧ ¬(ϕ ∧ ψ) and since ϕ ⊢ ¬¬ϕ we can write: ¬(ϕ ∧ ψ) ⊢ ¬¬ϕ ∧ ¬(¬¬ϕ ∧ ψ) and so we have:
¬(ϕ ∧ ψ) ⊢ ¬(¬ϕ ∨ (¬¬ϕ ∧ ψ)) by De Morgan’s intuitionistically valid law. From here by distribution
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in some intuitionistic theories like Martin-Löf type theory3 and Bell’s weak set theory4 do
not imply excluded middle, which shows that there is more than one ingredient in proofs
in intuitionistic logic of classical or superintuitionisitic principles than choice principles.
Such proofs require the principles themselves and either a decidability condition on terms
or an extensionality axiom for choice terms.

Recall that, in the classical case, due to Herbrand’s theorem, which shows that epsilon
is conservative (see Herbrand, 1930), one may argue that term forming operators are
either simply place holders, or constructed names, since adding them to the language does
not enable any new formulas to be proved, and so requires no new truthmakers.5 That
is, when treated as mere placeholders, we regard the ‘namelikeness’ of the epsilon terms
as illusory, and the seeming ontological commitment as something to be explained away,
so we are committed to the existence of nothing beyond what we were already committed
to before epsilon was introduced. Those who wish to argue for a classical epsilon calculus
must address this criticism directly, perhaps arguing that since Hebrand’s theorem applies
only proofs that start without epsilon terms and end without such terms and hence that the
claim of conservation is limited. However since we are considering the addition of epsilon to
intuitionistic logic where it is not conservative we need not answer such criticisms directly.

In a context where we are not willing to assert the law of excluded middle, the use of
a device like choice operators is obviously more philosophically interesting. Such epsilon
terms are ontologically potent in two ways: First, the prima facie ontological commitment
due to their name-likeness has to be taken more seriously, because their inclusion in the
language makes a difference. It is one thing to explain away something as a mere mode
of speaking if speaking that way makes a difference. If speaking that way changes one’s
logic, presumably it’s more than a mere mode. But the strengthening of the logic also
increases our ontological commitments. That is, given the multiplicity of truth values in
our semantics, an increase in logical strength will raise the truth value of some sentences,
because there will be fewer possible truth values in a stronger logic. Changing logics in such
a manner as to increase the truth value of, for instance, an existential claim, or an atomic
sentence with a name in it, indicates that we are committed to a position that asserts that

we have:¬(ϕ ∧ ψ) ⊢ ¬((¬ϕ ∨ ¬¬ϕ) ∧ (¬ϕ ∨ ψ)) since we know: (¬ϕ ∨ ¬¬ϕ) = 1 we can simplify to:
¬(ϕ ∧ ψ) ⊢ ¬(¬ϕ ∨ ψ) and again by De Morgan’s intuitionistically valid law we get:¬(ϕ ∧ ψ) ⊢ ¬¬ϕ ∧ ¬ψ
which we can simplify to: ¬(ϕ ∧ ψ) ⊢ ¬ψ and combining with the first case and WLEM, we have derived
DeMorgan’s intuitionistically invalid law: ¬(ϕ ∧ ψ) ⊢ ¬ψ ∨ ¬ϕ.

3Martin-Löf type theory is also referred to as the Propositions-as-Types Theory or the Curry-Howard
theory. The defining characteristic of such constructive type theories is the conception of propositions as
types, which is also known as the Curry-Howard Isomorphism (DeVidi, 2004, p.223 n.1)

4Bell’s weak set theory can be understood as a fragment of intuitionistic ∆0 Zermelo set theory and
Aczel’s constructive set theory lacking an extensionality axiom (Bell, 2009, pp.122 n.2)

5ε-terms of course do allow the creation of new names distinct from the names in the language, hence
sentences with epsilon terms that cannot be reduced to non-epsilon sentences could appear as premises in
proofs.
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such objects (or types of objects) have a ‘greater degree’ or ‘more definite existence.’

In the proofs in Chapter 4, we saw how choice operators strengthen intuitionistic logic.
Though it has been argued by some that the axiom of choice is constructive (e.g. Bishop,
1967, p.9),6 acceptance of the ε-principle implies that for every property P , if we acquire
conclusive evidence that some object has the property P , we thereby acquire conclusive
evidence that an object εP exists, and it is the most likely object to have that property.
Stated in this manner there is an obvious way that the ε-principle can be construed as
non-constructive. There is no requirement for one to examine all the objects in the domain
to know whether any of them have a property P . Rather, because of the ordering implicit
in the epsilon axiom, if I show that εP does not have the property P nothing has that
property: i.e. ¬P (εP ) ⊢ ∀x¬P (x).

Similarly, what the τ principle tells us is this: when we have evidence that the least
likely object to have property P has that property, i.e. (ϕτP ), we can infer that all objects
have property P , i.e. (∀xPx). This too is non-constructive, in perhaps a much stronger
manner, for it tells us that all objects have a particular property, again by only examining
one. This is stronger because of the distinction in the intuitionistic case between a property
and a negative property, i.e. not every property is equivalent to a negative property in the
intuitionistic case.7 In the classical case P is equivalent to ¬¬P , so the ε case yields the τ
case, but that a result holds for ¬¬P does not tell us that it holds for P in the intuitionistic
case. That is the most likely not P is the same as the least likely P in the classical case,
and τ and ε are inter-definable in that case. In the intuitionistic case φ(τφ(x)) ⊢ ∀x.φ(x)
and since ∀x.φ(x) ⊢ ∃x.φ(x) we have φ(τφ(x)) ⊢ φ(εφ(x)) but not the inverse.

What the strengthening effects of the decidability principles show us is that one must
give up certain assumptions about objects if we wish to keep choice and not strengthen
our logic.8 In many domains, even if one were not inclined to accept the law of excluded
middle, one might want to accept the ε principle. Perhaps, for example, because we want
to accept the principle that we can talk in general about certain types of objects. But there
is a sense in which one moves away from the epistemic norms of intuitionistic logic when
one accepts the abstraction involved in the move from speaking in general about the fact
that some object has a property to speaking specifically about some ideal object. Evidence

6Arguments about the status of the axiom of choice have often come down to one’s intuitions about it.
Eric Schechter quotes Jerry Bona’s quip, that: “the axiom of choice is obviously true; the well ordering
principle is obviously false; and who can tell about Zorn’s lemma?” which draws attention to the fact
that different formulations of this axiom can seem intuitive or counter-intuitive (personal communication
quoted in Schechter, 1997, p.145).

7Were this the case then we would have ⊢int ϕ↔ ¬ψ and since ⊢int ¬¬¬ψ ↔ ¬ψ we would then be able
to show that ⊢int ¬¬ϕ ↔ ϕ which is principle of double negation and equivalent to the law of excluded
middle.

8As in the above mentioned cases of Per Martin Löf’s typed lambda calculus and John Bell’s weak set
theory.
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that there is some x or other that has a property A does not necessarily give one evidence
that a specific x, has A, nor even that there is a most likely x with that property A.

The argument for the non-constructive nature of the ε axiom is that once one begins
to employ choice objects one is moving another step away epistemically. The quantifier
introduction rules for ∃ and the ε-axiom enables one to move from statements asserting
that a particular object has a particular property A(a), to a quantified statement that
some object has a particular property ∃xA(x), to a statement that a ideal object, named
εA, has the property A; and is in fact a member of the equivalence set of objects that are
most likely to be A-objects. This allows one to make general statements about objects of
a type without talking about a specific object. That is, the epsilon axiom lets one name
an arbitrary or ideal object. One moves from making assertions about an object using a
unique name, represented by a constant, to assertions about all objects of a class, named
by variables, to an ideal representative of that class named by the ε-term.

DeVidi compares the non-constructive nature of choice operators to constructive criti-
cisms of certain uses of the universal quantifier introduction: if for an arbitrary c we have
A(c/y) ⊢⊥, then we can conclude ¬∃xA(x/y), i.e. ∀x¬A(x/y), but a constructive proof
of such a formula would require method for proving ¬A for any t we are presented with,
and this need not be supplied by a demonstration that ¬A(c/x) (DeVidi, 2004, pp.226).9

Likewise the ε-principle lets us translate the notion that for any property A there is a
most likely A-object (εA), i.e. a thing that is most likely to have the property A. Some, e.g.,
Tait (1994), have argued that the constructive nature of quantifiers in intuitionistic logic,
means that we can accept the axiom of choice as constructive as well due to the relationship
between choice and quantifier introduction (see Tait, 1994, pp.59-60). DeVidi argues that
this is putting the cart before the horse:

Employing a temporal metaphor, we might say that the reasoning which sug-
gested that a constructivist ought to accept (ε) went wrong in supposing that
we could, so to speak, wait around until after discovering a proof of ∃x, then
use εx as a label for the t such that (t) is employed in the proof. But (ε) claims
that we can find εx before we know whether ∃x is provable, and this is what
makes it non-constructive (DeVidi, 2004, pp.226-7).

Taking the above into consideration, let us now ask what an introduction rule for
epsilon would look like. The preconditions for the introduction of epsilon are that there is
a property A and that some object must be most likely to have that property (either the

9DeVidi and Korté (2014) present one solution, instead of including rules for ∃E and ∀I they provide
a proof theoretic method, employing a Fitch bar for reasoning within the scope of various quantifiers,
which does away with the “cumbersome restrictions placed on these inference rules” (For an example see
footnote 35 below.)
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most likely or a most likely). However the axiom does not provide a method of defining
that element. In this sense it commits one to accepting a fact to which one does not have
immediate epistemic access. In domains where one might reject realism, epsilon too may
be rejected for similar reasons. And lack of epistemic warrant is one of the key reasons
many have given for rejecting realism.

One way to see the link between realism and the ordering which choice imposes is to
think in terms of properties. An epsilon term for A selects an object from the equivalence
class of the most likely objects to have A even if there no object x such that JA(x)K = 1.
In terms of our algebraic semantics this is because all the joins corresponding to values of
predicates must be attained when we have epsilon in our language since:

J∃x.AK = JA(εA)K =
∨

x∈D

JA(x)K;

that is for any such subset, there is at least a maximal element. This, however, may not
be appropriate for certain properties.

Now let us introduce some examples that may make the above points more perspicuous.
Consider the example of ‘overall intelligence’ as a property for which epsilon may not apply:
there are many types of intelligence, and while we may say when it comes to the spatial
intelligence of a Wayne Gretzky, the creative intelligence of a Picasso, or the mathematical
reasoning ability of a Fields medallist there may not be a way to rank such intelligences in
some obviously linear manner. The sentence “x is intelligent” may give rise to an ordering,
but one with many maximal elements, and no maximum.

On the other hand, if there is some reason for us to accept the idea that there is an
ordering in our domain, whether or not we can know what exactly that ordering is, then we
may want to accept the ε operator. Say perhaps we restrict ourselves to only one component
of intelligence, e.g. memory or even more specifically long term memory, we may see this
as a property more suitable to being understood as ordered or orderable. Likewise in
mathematical domains, certain entities or claims about entities may be orderable in some
manner, even when we cannot directly construct them, while others, especially in trans-
finite cases, may not be.

Like Hilbert’s example of the just man and the τ -axiom,10 we can imagine a similar
example for the ε-axiom. Consider the example of a predicate H(x) indicating that a joke
is funny. Some jokes are funny to some people, but can ε be said to pick out a joke most
likely to be funny? There are several options: there could be several funniest jokes, a set
of funniest jokes, or jokes may not be orderable; there may be no ideal joke. If there was
a set of funniest jokes ε would then pick one from an equivalence class at the top of the
ordering of funniest jokes, but jokes would still have to be ordered. This ordering feature

10see Chapter 1
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seems to apply to some predicates better than to others and “funny” is likely a problematic
predicate for such an ordering. So ε only seems to be applicable to certain domains where
the predicates attach to certain sorts of properties.

It is no accident that the obvious examples of domains where the predicates don’t have
the sort of ordering that determines a class of “most likely” objects for each predicate are
the ones where, intuitively, anti-realism is appealing. The most obvious domain would be
the one that Dummett has discussed in his arguments against a Platonistic interpretation
of mathematical objects (cf. Dummett 1975 Dummett 1977). It is suggestive that the
two examples given above, the first, humour, given famously by Crispin Wright (Wright,
1992), and the second, intelligence, of where epsilon is not plausible, are both examples
of different sorts of cases where anti-realism has proved a tempting option. Humour is a
property that we do not doubt certain things have, but which, at least in some manner, lacks
full objectivity. Wright makes a distinction between “something which we conceive as apt
to map a feature of the world which is independent of human minds—of their existence,
cognitive standards, powers and reactive propensities,” and those things, or properties,
that do not seem to be independent of human minds (Wright, 1992, pp.7-8).11 Likewise
“overall intelligence” is also a notion regarded with significant scepticism by some, and for
reasons that parallel those given for why epsilon might not apply to it—the notion is an
attempt to amalgamate a variety of different subsidiary notions, and there is arguably no
non-arbitrary way to combine the subsidiary notions into a “combined score”. Intelligence
is not the only notion like this. At least sometimes, similar considerations lead people to
deny that “beauty” is something real, for instance.

6.3 Logical Strength and Metaphysical Commitments

Now let us turn our attention to the connection between logical strength and metaphysical
commitments. We will first review the general argument Dummett gives that connects the
two and then discuss how from a model theoretic approach, strengthening a logic means
that it is true for fewer models. Then I will discuss how this applies to the logics that make
De Morgan’s laws and Dummett’s scheme true, and briefly consider how their models differ
from those of intuitionistic and classical logic.

Broadly stated, Dummett argued that acceptance of mind independent reality in a
domain implies the law of excluded middle. This is of course because mind independent
reality means the existence of real stuff—e.g. objects, concepts, ideas etc...—that can
fix the truth values of our claims irrespective of our ability to verify those truth values;
so realism implies bivalence, since reality fixes truth or falsehood to well formed claims.

11Wright’s pluralism about realism and objectivity is complex and we need not go into it in detail for
our purposes. For more details see Wright (2013).
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Bivalence likewise implies the excluded middle 12. So realism implies excluded middle.
Contrapositively, rejection of excluded middle implies anti-realism. On the other hand if
there is no mind-independent reality to fix the truth values of sentences, i.e. if anti-realism
is true, truth can only mean verifiability. And if truth is only verifiability we are left with
no reason to believe in bivalence, and hence no grounds for asserting the law of excluded
middle in general.

Hence in the realist case, that is, in a domain in which we accept mind independence, all
objects about which one can make an existence claim, whether simple or complex, physical
or theoretical, either exist or do not. Classical logic cannot model cases where existence is
more subtle or problematic.13 This is a problem for modelling more epistemically dependent
domains, where we have two competing yet contradictory theories.

The ε-operator lets one construct objects (or rather terms which refer to objects) and
one might think that the simplest method of investigating the ontological effects of adding
them to our logic would be to inquire about the type of objects these are. However
before we do that we should consider that our proofs show that the addition of such
objects also strengthen the logic and strengthen not only the quantified logic, but also
strengthen the sentential logic. Recall that Dummett’s argued that the most productive
method for investigating “realism about some particular class of putative entities” is not
to investigate “disputed class of objects” but to look at the “disputed class of statements”
(Dummett, 1993c, p.465). This strategy replaces discussion of the nature of particular
objects or entities with a discussion of the meaning of sentences. It is reasonable to begin
our investigation by looking at the effects that adding such operators have simply by virtue
of strengthening the underlying logic to which they are added. For the addition of these
operators will change what the “disputed class of statements” will be in as much as they
add to the “disputed class of objects” in the language.

The effects of being able to prove De Morgan’s laws and linearity give us a manner to
analyse disputed classes of sentences with reference to these axioms. We can use Dummett’s
examples of the metaphysical assumptions of the law of excluded middle, and hence of
classical logic, to elucidate the metaphysical assumptions of De Morgan’s laws and linearity,
hence of De Morgan and Gödel-Dummett logics, and how these relate to realism about
specific entities, or aspects of certain entities.

12The story is not as simple as this of course, LEM and bivalence are not the same. Bivalence is semantic
or metalinguistic and LEM is syntactic or in the object language. We need at least a commitment to a
truth theory + LEM to entail bivalence. There are counterexamples: Quantum logic allows LEM without
bivalence and John Bell’s “weakly classical” logic allows bivalence but makes ⊢ ω ∨ ¬ω unprovable from
within the language.

13This slightly overstates the case, as Boolean-valued or supervaluation semantics for classical logic make
the matter somewhat more complex than this statement suggests. But we will set aside such complexities
for the present.
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6.3.1 Models and Strength

The natural way to look at the question of how metaphysical changes are entailed by
weakening (or strengthening) a logic is to consider the problem model theoretically. The
weaker a logic, and the fewer the validities, the more models of which it is true. If possible
models are considered to map the possible states of affairs, then weaker logics allow for
more possibilities. Conversely, strengthening a logic reduces the number of models and
hence the possible states of affairs that might obtain.

Intuitionistic logic allows many, in fact an infinite number of, models which are not valid
in classical logic. This is true even in the propositional case, even though in propositional
logic if ϕ is classically valid then ¬¬ϕ is intuitionistically valid. That is, there cannot be
intuitionistic models in which ¬ϕ is true, when we have a classically valid ϕ because in that
case ¬¬ϕ is intuitionistically valid and ¬¬ϕ and ¬ϕ cannot both be true. Nevertheless
for many classically valid ϕ, there will be non-classical models in which ¬¬ϕ is true but ϕ
is not. Classical validities are more complicated in first order logic, e.g. ¬¬∀x(ϕx ∨ ¬ϕx)
is classically but not intuitionistically valid, and there are models of intuitionistic logic in
which ¬∀x(ϕx ∨ ¬ϕx) is true (see Rasiowa and Sikorski, 1963, pp.427-429).

In general, as we move up the hierarchy of logics from intuitionistic logic to intuitionistic
logic + De Morgan’s laws (or its equivalent intuitionistic logic + weakened excluded middle)
to Gödel-Dummett logic (i.e. intuitionistic logic + linearity) to classical logic, we see a
reduction of possibilities, because we reduce the supply of models.14

Intuitionistic logic is generally taken to be best understood as an epistemic logic. A
fairly natural semantics that captures this epistemic character is sometimes called a state
of information semantics, with the idea that for ϕ to be true at a particular information
state it must be definitively established by the information available at that state. Thus
it is monotonic and adding information will never move the truth value of ϕ from true
to not true. It is useful to consider a few examples of what models must look like for
the key principles of some intermediate logics to fail. First, for the LEM to fail, we must
allow for the possibility that there is a statement which is indeterminate at one state of
information, but where the addition of further information definitely establishes it. For in
this semantics, ¬A is definitely established only if the available information rules out ever
establishing A.

This is because in an epistemic logic when a proposition ϕ is true, there is evidence or a
construction that shows that ϕ is known to be true, while when there is not such evidence

14One of the standard translations (Gödel–Gentzen translation) between intuitionisitic and classical
logics is simply to write ¬¬ϕ for all ϕ, since ¬¬¬ϕ ⊢int ¬ϕ we obtain an intuitionistic embedding of
classical proofs (see Gödel, 1933; Gentzen, 1936). Likewise one could obtain a similar embedding of
classical logic in Gödel-Dummett logic by changing all references to the law of excluded middle to Peirce’s
law and replacing that with the weaker Dummett’s scheme.
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it does not necessarily mean that ¬ϕ is established. Whereas in classical logic the law of
excluded middle implies that there are no such middle grounds.15 The information state
semantics yields counterexamples at each level of the hierarchy of intermediate logics and
classical logic. As noted to make the law of excluded middle fail you need a proposition
A that is indeterminate and a later state where it is true, because in classical logics:
JAK 6= 1 → J¬AK = 1. But in information semantics this isn’t so, and so JA ∨ ¬AK at any
such state. On the other hand, to get linearity to fail you need two different extensions
from your beginning state; one with A true and B indeterminate, while in the other B is
true and A indeterminate. Finally to get weakened excluded middle to fail what you need
is that there be two possible extensions of our knowledge with A true in one and false in
the other. So if weakened excluded middle fails the other two fail, and if linearity fails so
too does the law of excluded middle.

As noted above the law of excluded middle fails when our logic is in some manner
dependent on knowledge, as knowledge increases, so does the number of things that can
be proved. So at some state tn perhaps we cannot say A ∨ ¬A, but if at some state tm we
have a proof of either of these disjunctions we can make the statement.

Consider again the example of humour. Some might say that a joke is either funny or
it is not, but one could also make the argument that there is a middle ground, and that
a joke is only funny relative to an audience, and until an audience reacts to it, there is no
matter of fact about it. To keep with the example of humour, perhaps a joke, presented in
a stand-up comedy routine is funny only in a context, and that such contexts consist of all
the other jokes said, and the audience, and other factors. Could we not then get a context
where linearity fails, the telling of joke A or joke B in some context, say with a particular
type of audience, makes the other joke B or A possibly less funny. To extend this further,
to get WLEM to fail we have two jokes that are both ‘killer’ openers, but both would set
the routine off in a particular direction, changing the context and making the other joke
unfunny.

More generally, what the semantics suggests is that for the law of excluded middle to
fail what is required is that there be states of information that are insufficient to definitively
establish A, while likewise being insufficient to rule it out. Humor is one example, but ar-
guably there are many others; Goldbach’s conjecture certainly seems to be a mathematical
example where our current state of information is of this sort. Other cases will require more
detailed philosophical scrutiny before we can say whether this applies or not—it seems that
linguistic decisions to make our linguistic usage more precise (and so determine a definite
truth value where one previously did not apply) are not extensions of information in the
same sense as would be a new discovery. (In fact, the other semantics, in terms of algebras
of truth values that are not Boolean seems more illuminating of failures of excluded middle
of this sort.) What about empirical claims that have not yet been investigated? Much will

15I continue to elide the difference between bi-valance and excluded middle to simply exposition.

142



turn on what counts as “available information”; presumably we want to allow that there
is a fact about whether the cat is sleeping in the next room right now, even if nobody has
checked, so we are going to have to include such facts as available information despite our
not having looked; and so someone who hopes to be a realist about cats and their locations
but not about mathematical truths like Goldbach’s conjecture must make a distinction
between “not having looked” in the next room and “not having looked” in the areas of
mathematics where the proof of the conjecture actually resides.

Similarly, in the case of linearity, the semantic requirement is quite plausibly satisfied
in the case of many pairs of unsolved mathematical conjectures. Given what we know now,
it seems that a proof of Goldbach’s conjecture need not yield a proof of the Riemann Hy-
pothesis, not vice versa, so there seem to be extensions of our current state of mathematical
knowledge that establish each without the other.

It will be useful in what follows to be able to move fairly freely back and forth be-
tween talk of information states and algebraic semantics, these conditions translate fairly
naturally into the lattices of truth values we introduced in Chapter 5. For example the
law of excluded middle rules out 3 as a lattice of truth values. Linearity is valid in 3, but
invalid in the inverted lollipop (see below). For linearity to fail, it suffices to have a pair
of propositions whose conjunction has a truth value strictly lower than either but whose
disjunction is strictly greater without being equal to 1. That is, there is some important
degree of incompatibility between the propositions (so the conjunction reduces the truth
value of both). A useful way to grasp this idea, though one to be treated with caution,
would be to think in terms of likelihoods for being true: “This shirt is red (all over)”
and “This shirt is blue (all over)” rule each other out, so their conjunction is zero; their
disjunction is more likely than either claim alone, but it is not equal to 1.

Likewise weakened excluded middle fails if we have two propositions that are non-
comparable (i.e., neither entails the other), incompatible, and yet which fail to have a true
disjunction. Now let us look more closely at what De Morgan’s (i.e. weakened excluded
middle) and linearity entail.

6.3.2 DeMorgan’s Laws

De Morgan logic,16 as noted above, admits all of De Morgan’s laws. Consider an example
of a Heyting algebra where De Morgan’s intuitionistically invalid law fails, e.g. the inverted
lolipop, which we introduced in Chapter 5:

16also known as, KC, Jankov’s logic, or simply IPC + ¬¬p ∨ ¬p
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1

c

a b

0

We can let a and b be the truth values of incompatible sentences as ¬a = b and ¬b = a,
and so ¬¬a = a where c is the value of another sentence which though not true i.e. c < 1,
has a higher truth value than a or b, and is in this example the value of the disjunction of
¬a ∨ ¬¬a, and thus we a have a counter-example to WLEM.

In the above example, if a sentence A has the value c, then ¬¬A in this case has the
value of J¬¬AK = ¬¬c = 1.17 Likewise a sentence with a value of c is implied by the double
negation of sentence of value either a or b. While De Morgan’s intuitionistically invalid
law is not true for the above lattice, it does hold for the lolipop:

1

a b

c

0

Indeed it holds in any or in any linearly ordered lattice where any non-zero element is
replaced by any of the the boolean algebras (e.g. 2, 4, or 8, etc...) as 4 is below in the
two stick lollipop though linearity still fails:

1

a

b c

d

0

This means that there can be sentences that are not directly comparable, i.e. there are

17It should be noted that one of the the standard translations of S4 to intuitionistic logic is to define
the modal operator ⋄ as double negation.
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two sentences with values b and c such that neither c ≤ b nor b ≤ c, but whose meet is not
equal to 0. In the diagram above, consider an interpretation of ¬(B ∧ C) → (¬B ∨ ¬C)
setting B and C to the values of b and c. Under such an interpretation we see that:

((b ∧ c) → 0) → ((b→ 0) ∨ (c→ 0)) = (d→ 0) → (0 ∨ 0) = 0 → 0 = 1

That is, to get De Morgan’s intuitionistically invalid law to fail one needs an incom-
parable but incompatible A and B whose disjunction is not 1. We can compare this to
the law of excluded middle which for failure requires a single A and it’s negation whose
disjunction is not 1. Looking at the example of different intelligences, take the claims that
‘John is the smartest in the class’ and ‘Jane is the smartest in the class’. The conjunc-
tion is absurd, by definition of the superlative. But the disjunction, while more likely to
be true than either disjunct, is not entirely true because it’s still possible that nobody is
smartest. To see this, assume for the purposes of this argument that grades do correlate
with intelligence, and they have the same final grade but achieved in two very different
manners, for example, assume two very different assignments testing very different aspects
of intelligence, say writing a poem and a literary critique of a poem. In this example John
got an A+ on a poem and a B on their essay, and Jane got an A+ on their essay, and a
B on their poem, while Cletus got solid B+s on both assignments, all received the same
final grade, but no one can reasonably be said to be in general smarter than the others.

6.3.3 Linearity

Linearity, or Dummett’s scheme, (a→ b)∨ (b→ a) holds in Boolean algebras and linearly
ordered Heyting algebras, including, but not limited to obviously linear algebras such as:
2, the only linearly ordered Boolean algebra, the three element linear ordering, the natural
numbers (with a top), and the negative integers (with a bottom) e.g.:

1 1 ∞ 0

0 a
... −1

0 1
...

0 −∞

These examples, though, suggest that the lattice must be a linear ordering, i.e. that for
any y and z in the lattice, either x ≤ y or y ≤ x. The requirement, algebraically speaking,
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is slightly weaker. The property required to validate Dummett’s scheme, from a algebraic
point of view, is that for any two element y and z of an algebra we have the following:

∨
{x|x ∧ y ≤ z} ∨

∨
{x|x ∧ z ≤ y} = 1

This is a complicated looking condition: the join of all the elements which meet y below
z, joined with the join of all the elements that meet z below y is 1. Let us pause to consider
the condition a bit more closely. First, it’s clearly going to be satisfied in a linearly ordered
algebra, since if z ≤ y, then 1∧ z ≤ y, so one of the two large joins is itself 1. In a Boolean
algebra it will also be satisfied because ¬y ∧ y ≤ x and y ∧ x ≤ y, so the join on the left is
at least ¬x and that on the right at least x. But the condition doesn’t reduce to either of
these.

Horn gives the following example that is neither Boolean nor a simple linear ordering:

The algebra A is described as follows. Let A be the set of all functions on
ω to {0, 1

2
, 1} such that f(0) 6= 0 and f(x) = 1 for all sufficiently large x, or

f(x) = 0 for all x ∈ ω. Then A is a sublattice of the set B of all functions on
ω to {0, 1

2
, 1}. For f, g ∈ A and both not identically 0, f → g exists in A and

has the same meaning as in B. Also for f ∈ A, f → 0 = 0 and 0 → f = 1.
Therefore A is an L-algebra (Horn, 1969, p.404).

The elements of this lattice are (eventually constantly 1) infinite sequences of 0s, 1
2
s

and 1s which, other than the constant 0 sequence (which is 0 in the lattice), start with
either 1

2
or 1.18 The ordering here is the “component wise” one, where f ≤ g if and

only if at each place n in the sequences it is the case that f(n) ≤ g(n).19 Clearly, there
are non-comparable sequences,e.g., 1, 0, 1, 1, 1, 1, . . . and 1, 1, 0, 1, 1, 1, 1, . . ., so this is not
a linear ordering. Nor is it Boolean, obviously, since ¬f = 0 for all non-zero f , while
f ∨ ¬f = f (since joins and meets are also determined component wise). Why does it
satisfy the linearity condition? Either f(n) ≤ g(n) or vice versa. If the former, then the
join of all the h ∈ B such that f ∧ h ≤ g will take value 1 at spot n, and so since joins are
calculated point-wise the join will be 1 at every spot.

Horn’s example is interesting because of the structure of the lattice. Of course because
it satisfies the condition of linearity, it means that every sentence is implied by every
other. But there are interesting examples that might correspond to a lattice supporting

18There are no reasons for not starting with 0, except ones related to simplifying other proofs in Horn

(1969).
19Component wise ordering works in following manner: take two sequences f =< 1, 0, 0, 0, 1

2
, 1, 1, 1, . . . >

and g =< 1, 1
2
, 1
2
, 1
2
, 0, 1, 1, 1, . . . > their component wise join is f ∨ g =< 1, 1

2
, 1
2
, 1
2
, 1
2
, 1, 1, 1, . . . >, and

their meet is f ∧ g =< 1, 0, 0, 0, 0, 0, 1, 1, 1, . . . >.
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truth values for claims in a domain with potentially infinitely many dimensions on which
to compare something—that is, allowing for infinitely many “yes”, “maybe”, “no” scores,
and of course since the values that we map ω onto can be a series of 0s, 1

2
s, and 1s , or it

could be a series of members of any size set. Consider again the example of intelligence.
It’s not true that “a person is either smart or they’re not”, because “Beth is smart” has
some non-zero, non-1 truth value f , and f ∨¬f = f . But “if Beth is smart, then Cletus is
smart or if Cletus is smart, then Beth is smart” gets truth value 1. Neither of these people
is uniformly smarter than the other. But for every dimension on which Beth is less smart
than Cletus we get the truth value 1 in “if B, then C”, and for every one where Cletus is
less smart than Beth, we get 1 at that dimension, so when we disjoin we get 1 at every
slot. If one claims that Gödel-Dummett logic is the correct one in a domain, say humour,
a proposition asserting, for example, that a certain joke is funny, say H(a), implies, or is
implied by, all assertions that any other joke, say H(b), is funny, that is:

⊢ (H(a) → H(b)) ∨ (H(b) → H(a)).

6.4 Choice and Decidability Conditions

The addition of a choice operator like epsilon is obviously metaphysically loaded, simply
because it adds singular terms to the language, hence it’s adding things that purport to
name objects. At least it does so, assuming that we treat the new terms as we do the other
terms in the language.20 But choice alone does not imply excluded middle, for example in
systems like Martin Löf’s typed calculus or John Bell’s weak set theory because of the lack
of an extensionality axiom. This means that if a language permits certain abstractions,
e.g. ideal terms, one can to some degree balance these abstractions by restricting terms
in some other manner. However one can still prove new quantificational laws, if not new
propositional ones.

Adding the epsilon-axiom is of course trivially non-conservative in that it add terms,
and it allows us to prove certain quantifier laws that can’t be proved constructively, e.g.,
∃x(∃yAy → Ax), (see DeVidi 1994, DeVidi 1995, and Slater 2009, p.398). Adding it,
plus decidability principles make certain important axioms true as seen in the proofs in
part two of this thesis.

In Bell’s proof of DeMorgan’s intuitionistically invalid law what he refers to as a “mod-
est ‘decidability’ condition” simply asserts that there is some a among all objects, that is
well defined (Bell, 1993a, p.4). That is, all other objects have a relation to the object a,

20Some people have considered various restrictions on choice terms as a method of reducing logical
strengthening for example see Mints (1991) p.2.
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they are either equal to it or not (or in the new proof, presented in this thesis, indistin-
guishable from it or not). This may seem very modest in many contexts, for example in
the natural numbers every number is either zero or it isn’t. 21 What Bell shows is that the
decidability conditions used to prove DeMorgan’s intuitionisitically invalid law (equivalent
to the WLEM) and Dummett’s scheme (linearity), turn out to be not so modest after all,
because in the presence of choice axioms these ‘facts’ about terms, enable you to prove
intuitionistically invalid axioms.

An inquiry into how these proofs work must look not only at the results and the
functioning of the operator rules but also at the other assumptions. As we noted above
the proof of DeMorgan’s and linearity in intuitionistic predicate calculus+ε requires not
only ε but also a decidability condition, and the proof of the law of excluded middle
requires ε-extensionality (Ack) or at least the weakened form presented in Chapter 4.
These decidability conditions are needed in combination with the ε-axiom to increase the
strength of the logic. The ε-axiom then enables us to take these facts about terms and
enables us to prove facts about sentences.

For example to prove the law of excluded middle we employ epsilon and the extension-
ality, or in theorem 4.6.4, what we call the weakened extensionality axiom. These work in
much the same manner as the decidability conditions connecting assertions about objects
with assertions about propositions, such as the axioms we are trying to prove. When we
add extensionality for ε:

∀x[A(x) ↔ B(x)] → εA = εB

we add a further ontological claim that these expressions do not have some sort of other
intensional meaning, and are only accidentally coextensive, because they have the same
most likely element. This axiom then is a claim both about statements and about objects.
It is one thing to say that all featherless bipeds are rational beings and all rational beings
are featherless bipeds, but quite another to say that the most likely members of these two
sets are the same members. This perhaps becomes even clearer when we consider empty
predicates: should the most likely square circle also be the most likely golden mountain?

6.4.1 Decidability Conditions for DeMorgan’s Laws

Let us first quickly recap the proofs of DeMorgan intuitionistically invalid law (DEM)
presented in theorems 4.3.1 and 4.4.1.

21At least this is the case in the standard classical understanding of the continuum. However this is not
true in in all contexts, for example in a smooth continuum which admits elements such as ‘zero-square’
infinitesimals (see Bell, 1998, pp.5-6).
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The decidability condition for proving DeMorgan’s intuitionistically invalid law is:22

⊢I ∀x(x = a ∨ x 6= a) and constants a and b such that: ⊢I a 6= b

The proof of theorem 4.3.1 proceeds by defining the sentence B and C in terms of
objects, and it is these objects in particular that are constrained by the conditions : ∀x(x =
a ∨ x 6= a), and there is a b such that ⊢I a 6= b.

When DeMorgan’s laws are true, we can define a sentence to compare to all other
sentences in reference to decidable object and at least one other object that is not equal
to the former. The trick to Bell’s proof is that for any pair of sentences B and C, we
can define a predicate A(x) such that B ↔ A(a) and C ↔ A(b), namely A(x) =df (x =
a ∧B) ∨ x 6= a ∨ B).

So, of course, ¬B ⊢ ¬A(a), and so ¬B ⊢ ¬A(ε¬A). Contraposing, then running the
same reasoning for C, we have that ¬¬A(ε¬A) ⊢ ¬¬B ∧ ¬¬C. Since, intuitionistically, a
conjunctions of double negations is equivalent to the double negation of the conjunction,
using contraposition and the fact that triple and single negations are equivalent we have
¬(B ∧ C) ⊢ ¬A(ǫ¬A)

Now recall how A(x) was defined. For instance, in the original form ¬A(ǫ¬A) is ¬[(ǫ¬A =
a ∧ A) ∨ (ǫ¬A 6= a ∧ B).] Since the decidability of a means that the identity claim in one
of these disjuncts is true, we have that the second conjunct of one of the disjuncts is false,
i.e., ¬B ∨ ¬C.

Clearly both the epsilon principle and the decidability conditions are essentially in-
volved in this proof. But the proof is complicated enough that it might have the flavour of
someone having pulled a rabbit out of a hat, rather than really illuminating the metaphysi-
cal situation. To address this, consider the proof again, but this time getting the weakened
law of excluded middle (WLEM) from it by considering the case where C is ¬B.

In that case, A(x) is defined in the following manner:

A(x) =df (x = a ∧ B) ∨ (x 6= a ∧ ¬B)

.

And we have seen how to get to:

¬(B ∧ ¬B) ⊢ ¬A(ǫ¬A).

Since the formula on the left is simply an instance of non-contradiction, we can focus
on the formula to the right of the turnstile.

22In Chapter 4 we get these results with a weaker condition than Bell’s.
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The formula that really does the work in the proof, in the sense that we apply the
epsilon principle to it, is ¬A, which is the denial of a disjunction. The epsilon principle
tells us that there is a likeliest object to make this negated disjunction true, which is to
say there is an object most likely to falsify both disjuncts. The decidability of a tells us
that this likeliest object is either a or it is not a, and so that the likeliest object can only
falsify the disjunction if at least one of B and ¬B is false.

So implication is not the key; rather it is the ability to create a disjunction between
two propositions which imply the same ε-term but which are incompatible when filled with
certain defined terms. Hence in theorem 4.4.1 the predicative decidability principle shows
that we can derive DeMorgan’s intuitionistically invalid law from intuitionistic logic plus
the epsilon axiom without appealing to identity.

Epsilon lets us assert that if some sentence is true of some object then we may assume
that there is an ‘ideal’ object of this type. Hence whatever we assert to be true of all
objects is true of our ideal object as well. This fact enables us to translate ‘decidability
conditions’ on terms to conditions on sentences.

6.4.2 Decidability Conditions for Dummett’s Scheme

The proofs of Dummett’s scheme, 4.5.1 and 4.5.2 from Chapter 4, use essentially the
same decidability conditions, and defines A(x) in the same way as it is defined in the
proof of DeMorgan’s law. As in the De Morgan case, we assume there are at least two
provably distinct objects, i.e., ⊢ 0 6= 1; and a single object 0, that is decidable, i.e.,
∀x(x = 0 ∨ x 6= 0) ∧ (1 6= 0).

In this proof, instead of applying epsilon to ¬A, we apply it directly to the disjunction
A. For from it we have that A(εA) ↔ (εA = 0 ∧ B) ∨ (εA 6= 0 ∧ C) ↔ B ∨ C.

The formal version of the proof involves application of the distributive law and some
symbolic manipulation. Once again, it may be helpful to unpack the language a bit. B∨C
is equivalent to A(εA), so the likeliest A is the thing likeliest to make B ∨ C true.

Dummett’s scheme is not true in intuitionistic logic because, in intuitionistic logic,
two sentences A and B can be non-comparable in such a manner as to make the scheme
not true,23 for example in the lollipop and inverted lollipop algebras presented above in
section 6.3.2. In Dummett’s scheme all sentences need to be comparable, modulo their
joins, though not necessarily linear, as we noted above in our discussion of Horn algebras.

23That is such that the join of the join of the set of their respective meets 6= 1.
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6.4.3 Extensional Epsilon

We present both Bell’s proof of law of excluded middle from intuitionisitic logic+ε and the
ε-extensionality axiom:

∀x[A(x) ↔ B(x)] → εA = εB

and a proof from what we refer to as the weakened or implicative extensionality axiom
scheme:

∀x(Ax→ Bx) → (PεA → PεB)

Rather than requiring the epsilon terms to equivalent formulae to be identical, this
schema requires that if A(x) implies B(x), the εB has any property “nameable,” in the
languages that εA has.

The implicative extensionality axiom is perhaps weaker than one would expect a simple
logical translation of the identity statement in the original axiom, something perhaps like:

∀x[A(x) ↔ B(x)] → (PεA ↔ PεB)

This schema is still weaker than Ack because the identity of indiscernibles is a second
order principle.

Both the ε and τ principles under the above conditions license the law of excluded
middle. If excluded middle is indeed related, as Dummett argues, to “mind independence”
then it is not entirely surprising to see “extensionality” playing a key role in establishing
the law of excluded middle. That is, one part of the “mind independence” is that we can
speak in general about the objects of propositions and furthermore that an object or term
either has or does not have a property. Thus any talk that implies indeterminacy with
regard to truth or an object only partially having a property is either not well formed
or false. Thus if two properties are true of all the same objects then they are the same
property, this is what extensionality states.

Extensionality is generally understood to correspond with our intuitions about what
is “real” and what isn’t. There is a sense in which extensionality and objectivity are
commonly understood to be linked. That is, the distinction between intensional and ex-
tensional, it is sometimes suggested, is actually the distinction between something “sub-
jective”, or at least merely linguistic, and the actual facts of the matter. As we noted in
Chapter 5 in mathematics when we deal with intensional content we work on the linguistic
object, either the length or structure of the actual formulae. And so treating 2 + 2 and
1+1+1+1 intensionally allows us to treat them as having in some sense different meanings,
but despite being different expressions, extensionally have the same value.

Consider as an example something like preferences. Is there a fact of the matter about
an individual’s preferences? Is there a fact of the matter as to whether, say, someone
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prefers one food over another? That most people have preferences for food they like over
food they dislike would make it seem that there is evidence that this is the case. So
if you asked someone if they preferred “steak to broccoli for dinner” you would not be
surprised to hear them (perhaps a majority of them) say “steak,” but if you asked the
question differently, “do you prefer something that will give you a heart attack to broccoli
for dinner”, you would not be surprised to hear their answer change. Likewise if one were
to ask a ex-smoker who still craves cigarettes, if they would like one, you would not be
surprised to hear them say “yes, but don’t give me one”. It is common in discussion of
preferences to take this as evidence that preferences are not objective in so far as they
depend on the way the situation is described.

So, how does it relate to epsilon? Well, if we consider what sorts of cases are left
open by the L-algebra condition, it included things like “intelligence”, which has many
dimensions that might be objective but there is no objective way of combining them. One
thing that you might try is to explain why extensionality for epsilon terms rules out that
sort of thing. Epsilon by itself (modulo those modest decidability conditions) makes the
realm at least as “real” as intelligence is, but now we also require that the likeliest person
to prove Goldbach’s conjecture is also the likeliest to be the next Bob Dylan. In the case
of intelligence, maybe epsilon picks out different “most likelys” depending on whether you
give a description that focuses on mathematical or linguistic brilliance—a top member
along different dimensions, perhaps. But in the case of something that is more naturally
regarded as objective we can rule out such phenomena—the likeliest dog to bite my leg is
also the likeliest domestic canine to bite my leg.

Taking some arbitrary sentence A the classical assertion ⊢ ¬A∨A can be taken to mean
more than that A is true or false, but propositions are about objects, and if a proposition
asserts that an object has a property, specifically a property that implies existence, the
law of excluded middle (LEM) implies then that all objects that can be described by a
proposition either exist or do not exist.

This is not how the LEM is usually expressed and does not at first glance appear to
be the most problematic aspect of law of excluded middle. But consider some of the more
usual critiques of law of excluded middle — vague descriptions and other sentences that
do not seem to have clear, or worse to have paradoxical truth values. Choice operators
approach such sentences from the point of view of truth-makers for a sentence that has a
vague or paradoxical truth value — a choice operator states that we can always pick out
the most or least likely truth-maker.

Choice operators are thus related to logical principles through this mechanism of
reification—since you can assert the existence of the ideal type, the object more (or least)
likely to have the property and choose the object in the domain with said properties it
is clear that the ontological force of the existence principle is related to that of logical
principles like law of excluded middle.
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6.5 Choice Objects

Up to this point we have focused on the ontological interpretation and the effects of various
contested principles which when added to intuitionistic logic strengthen it and form various
intermediate logics. What we have learnt is that these various superintuitionistic logics
do have ontological implications that are not clear without looking carefully at them and
their models. But if this is the case, and these logics are formed by the addition of choice
terms, and decidability principles on terms, we need now to look carefully at the nature
of these terms. We will now switch focus to the topic of abstraction in general and ideal
objects in particular and consider what others have said on the topic, and consider how
what we have said above applies to these subjects.

In a formal language constants represent proper names and hence pick out objects.
Variables, on the other hand range across sets. The ε operator functions as a sort of hybrid.
If, for simplicity, we consider predicates with one free variable, the epsilon operator binds
that variable and yields a term, i.e., it names a definite object. But which object it is
depends on the predicate P(x)—if anything has the property P , then εP names one of the
things with P. That is, epsilon terms are generally said to pick out one of the set of “the
most likely object to have P”.24

Choice terms (e.g. εxϕ ) are thus said to pick out “ideal elements” (Hilbert, 1926,
p.383), but ‘ideal’ can mean several things. Semantically they pick out the most likely
object to possess a property. This seems quite natural for some choices of P : when we say
“if anyone wins the race it will be Anne”, or “if anyone passes the exam it will be Bill”, it
seems easy to see a ground for the choice, namely that Anne is the fastest runner and Bill
the most diligent studier. This suggests that there is some abstraction about the entities
that will show up in the extension of P .

But this fact seems also to imply there is an abstraction of the entities in the set of things
with the property in question — that is the ‘ideal’ A somehow exemplifies the properties
of an object with the property A. Finding the ideal seems at first to be different in kind
when we talk of finite concrete objects, because it seems that what is needed in this case is
a good definition and method of comparison to derive the set of objects most likely to have
the property A. But even with easily denumerable concrete objects the problem really
becomes one of whether there is a natural way of ordering complex properties that make
it obvious which member is ‘likeliest’. Hence it gets more complicated when we speak of
abstract objects, numbers, geometric shapes, impossible objects etc... and perhaps worse
still in descriptions of ideals that are disjunctive, and exclusive.

There are various ways in which it is puzzling to interpret exactly what epsilon terms

24τ -terms likewise are defined as the objects which are defined by universally quantified statements—
recall Hilbert’s definition from the introduction.
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refer to. The notion of “most likely thing to have P” has often been used as the inter-
pretation of “εP”. But we may ask: what sort of thing is that? For predicates that pick
out fairly concrete things, it might seem fairly clear what is going on: they pick out the
“ideal” P , in the sense of naming the object which has the key characteristics of being a
P to the greatest extent, but with finite and concrete objects the actual item(s) picked
out by epsilon should still have many other properties. Picking out an ideal, of course, is
trickier for abstract objects like triangles or square circles. There is a further complication:
do epsilon terms really pick out objects at all? For, arguably, the referent of an epsilon
term should be less determinate since predicated epsilon terms are logically equivalent with
existentially quantified formulae:

⊢ ∃xϕ↔ Pεϕ

While our formal semantics has so far involved simply picking a suitable element of
the domain of discourse to interpret each epsilon term, perhaps this is philosophically
misleading—these considerations that suggests epsilon terms must pick out ideal or in-
determinate objects suggest that epsilon terms “really” pick out objects that are more
abstract.

We will approach these questions indirectly, first by clarifying an important point about
the context of the debate, i.e. that it is a post-Fregean discussion, then looking at Lewis’s
taxonomy of ways of distinguishing abstract objects from concrete ones.

As we have noted above, what “ideals” are will be different for a set defined by concrete
and abstract properties. When considering ideals for abstract properties that may share the
character of Finean arbitrary objects, ranging over sets, than some other form of abstract
object. The difference between an “ideal” member of a set and an “arbitrary” member
seems intuitively that the “ideal” members are members with all and only the character-
istics that best exemplify the property, whereas “arbitrary” seems to imply a randomly
chosen element. However this characterization doesn’t really match Fine’s account of an
arbitrary object, which acts as a sort of place holder. It is an abstract object that has all
the properties of members of the set, that make the members of the set members of the
set, and none of their accidental properties.

There is a sense in which both quantification and choice are in some sense processes of
abstraction. The normal introduction rule for an existential statement, for example, starts
with a named term, while the quantified statement is not specific as to the name of the
object(s) having the property. If we consider a normal term denoting an object that has a
property, say Pa i.e. the object a has the property P , we can assert that there is at least
one object x that has a property P , ∃xPx, in that it loses specificity, but we cannot say
that the opposite, that is we cannot specify the name of the object or object(s) with the
property P given the assertion ∃xPx is true. The movement from specific to general is
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arguably a type of abstraction, that is the loss of specificity is one way of understanding
from concrete to abstract (see Lewis, 1986, pp.84-86). The statement PεxPx also lacks
this specificity, since the ε-axiom tells us that the sentence PεxPx is logically equivalent
to ∃xPx.

If we want to claim “ideal objects” are abstract to be informative we should first decide
what we mean by “abstract” and consider Lewis’s taxonomy of definitions of abstract
objects.25 However, we will see that the abstract objects that choice objects resemble most
are those often termed arbitrary or random objects. Even there however the semantics that
have been suggested for arbitrary objects and those for choice do not fully correspond. Yet
our discussion of arbitrary objects will not be in vain as it is obvious that they serve cognate
purposes and have similar applications. For example, Fine offers as a virtue of his account
of arbitrary objects that they illuminate aphoristic reference in what are commonly called
“donkey sentences” (Fine, 1983, pp.75-77), an application that has also been suggested
for choice operators. Thus the various criticisms and defences of arbitrary objects must be
considered, and an understanding of their ontological implications should go a long way
towards understanding the implications of choice objects. We shall discuss such examples
in more detail in the next chapter.

6.5.1 Defining Abstract objects

The most obvious interpretation of the ideal version of some thing is that it is an abstraction
of that thing. That is, an ideal object lacks some quality (perhaps only that of specificity)
that an actual object has. When we consider an ideal, though, it stands in for a class of
objects, so instead of a particular triangle, which is either right or not, we consider the
class of all triangles, and our ideal triangle should have all the properties that triangles
have but none, or rather must have none, that only some triangles have. The nature of
triangles are such that it is possible that we see all triangles as being members of the set
of most like triangles.

Goodman and Quine describe what they call a “nominalist position.” Their view is
that nothing that is not explained in terms of concrete entities is valid, hence they reject

25The question for concrete objects seems in some ways to reveal a somewhat easier possible solution
at first. For example, there are many items that one can use as a table, but there are some objects that
are definitely made to be tables as their primary functions and others that are only used as tables but
it is obviously a secondary manner. Take for example entering a room with a normal kitchen table (say
the ubiquitous Ikea Ingo table found in student apartments) and a house door propped up on plastic milk
cartons (a sight also very common in student apartments). If one were asked to “leave the keys on the
table” would there be many people who would have trouble realising on which object to leave the keys?
Obviously there are many objects that one can argue are the archetypical example of some type, so while
borderline cases are likely not the object referred in the use of ε-terms, choosing one specific object is still
problematic.

155



the existence of abstract entities (cf. Goodman and Quine, 1947).26 In their words:

By renouncing abstract entities, we of course exclude all predicates which are
not predicates of concrete individuals or explained in terms of predicates of
concrete individuals. Moreover, we reject any statement or definition—even
one that explains some predicates of concrete individuals in terms of others—if
it commits us to abstract entities (Goodman and Quine, 1947, p.106).

Under such an interpretation of nominalism, platonism or realism about abstract ob-
jects would consist in holding that there is at least one abstract object that is not explained
in terms of concrete entities. Obviously for Quine and Goodman, a “nominalist position”
does not stop one from talking about mathematics; rather, they assert the formulas of
mathematics are “like the beads of an abacus, convenient computational aids which need
involve no question of truth” (Goodman and Quine, 1947, p.122). Similarly Quine deems
the use of arbitrary terms in his presentation of natural deduction necessary, as we shall
see later in our discussion of arbitrary terms.

Dummett discusses the development and the nature of abstract objects in Chapter
fourteen of Frege: Philosophy of Language, where he notes that the use of the terms
‘abstract object’ and ‘concrete object’ are “modern” and began with Frege, and that the
traditional distinction was between universal and particular. The distinction is different
because under the traditional distinction “the difference lies precisely in the fact that we
can predicate universals of other things” but we cannot predicate individuals of other
things (Dummett, 1973, p.471). “A universal” can traditionally, Dummett asserts, “be
alluded to ... in two different ways: both by a predicative expression, by means of which
we predicate the universal of something else; and by a term, by means of which we refer

26Rosen notes that Goodman and Quine’s use of “nominalism” has “little to do with” the traditional
use of the term. Rosen goes on to note that Platonism with regard to abstract objects too needs to be
understood as a modern usage:

In this connection, it is essential to bear in mind that modern platonists (with a small p’) need
not accept any of the distinctive metaphysical and epistemological doctrines of Plato, just
as modern nominalists need not accept the distinctive doctrines of the medieval Nominalists.
Insofar as these terms are useful in a contemporary setting, they stand for thin doctrines:
platonism is the thesis that there is at least one abstract object; nominalism is the thesis
that the number of abstract objects is exactly zero (Rosen, 2012).

Rosen cites Field’s definition of nominalism:

Nominalism is the doctrine that there are no abstract entities. The term “abstract entity”
may not be entirely clear, but one thing that does seem clear is that such alleged entities as
numbers, functions, and sets are abstract—that is, they would be abstract if they existed. In
defending nominalism therefore I am denying that numbers, functions, sets,or similar entities
exist (Field, 1980).
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to the universal in the course of predicating something of it;” an example of the former is
the sentence “x is wise” and the latter “x has wisdom” (Dummett, 1973, p.471).

For Frege though: “Terms (proper names) and predicates are expressions of such radi-
cally different kinds... that it is senseless to suppose that the same thing could be alluded
to both by some predicate and by some term” (Dummett, 1973, p.472). Frege’s criticism
then was simply that a workable semantics is not possible on the traditional distinction.
Dummett gives the example of “wisdom” and the predicate “ξ is wise”, to say that one is
just a reconstrual of the other, e.g. “Wisdom is not confined to the old” is simply another
version of “Not only the old are wise” (Dummett, 1973, p.472). The use of reconstrual
simply denies the “status of genuine term or proper name” to abstract terms. Frege, be-
cause he wished to define numbers, wanted abstract entities to have the status of object
and could not accept that numbers were simply the reconstrual of predicates

Dummett sums up, noting that the most basic ontological question is “what is there?”
On the traditional conception this question is broken into two questions “What particulars
are there” and “Are there universals, and, if so, what universals are there?” Traditional
nominalism answers the first part of the second question with a negative response. Ac-
cording to Dummett, the modern counterparts of this view appear “only against the back-
ground of a Fregean ontological perspective.” The first question is thus “What objects
are there” and “ ‘Are there concepts’, ‘Are there relations’, ‘Are there functions’ and ‘Are
there truth-values?”’ are its “companion” questions (Dummett, 1973, p.473).

While Quine holds the thesis that, for any segment of language which commits us
to the existence of particular objects we must “enquire how to analyse that language in
terms of predicate logic” only then will we understand to which objects we are committed
(Dummett, 1973, p.476). This thesis is according to Dummett predicated on a Fregean
understanding of language and the presumption that “the notion of ’object’ which we are
using has been given in the first place.” (Dummett, 1973, pp.477-478). What Dummett
means is that Fregean semantics objects play a dual role, they are “the referents of proper
names” and “are what predicates are true or false of” (Dummett, 1973, p.474).

The Fregean view that Dummett identifies in Quine is that “the ontological commitment
embodied in a language depends upon its quantificational structure, as revealed by logical
analysis” (Dummett, 1973, p.479). Unlike Frege though, for Quine the question: “ ‘What
objects are there?’, exhausts the content of the general ontological query, ‘What is there?’ ”
while for Frege concepts are required as well, because classes are objects for Frege, and to
explain what a class is one needs to be able to quantify over concepts (Dummett, 1973,
p.479).

As well as rejecting concepts, Goodman and Quine’s modern nominalism rejects other
abstract objects. While Frege’s admits abstract objects into his domain and adjudges them
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harmless,27 to evaluate Frege’s acceptance of such entities Dummett considers how they
are distinguished. Rejecting first the criterion of accessibility or rather lack of accessibility
to human senses as such a distinction makes light-waves concrete but radio waves abstract
(Dummett, 1973, p.480).

The wide variety of abstract objects (e.g. centres of mass, the capital of ξ, conventions in
bridge, and chess openings, games themselves, colour-words used as nouns etc...) “naturally
reinforces Frege’s contention that the distinction between concrete and abstract objects is
not of fundamental logical significance” according to Dummett (Dummett, 1973, pp.486–
487).

In fact Dummett asserts that the “exact line of demarcation” between concrete and
abstract objects is not “clearly marked,” but he believes a distinction can be made by
analysis of the use of language. Though the distinction is muddled because “pure abstract
objects” are “reflections of certain linguistic expressions” these sorts of expressions, terms,
we treat formally in the same manner as we treat proper names of concrete objects. The
distinction to Dummett is that the sense of these expressions “cannot be represented as
consisting in our capacity to identify objects as their bearers” (Dummett, 1973, pp.493–
494). This is because, according to Dummett:

Frege is denying that it is possible, on the traditional basis, to construct a
workable semantics for a language: we can do nothing with the suggestion that
a certain term —say, “wisdom” — should be regarded as standing for the very
same thing as that which a certain predicate — in this case, ‘ξ is wise’ —stands
for.

Frege’s view that objects are the referent’s of names could be accepted and the existence
of abstract object rejected. In fact what Dummett refers to as “nominalism in the latter-day
sense” by which he means the nominalism of Goodman and Quine, is exactly this, not the
denial of universals, but Fregean abstract objects. Such a modern understanding of what
is meant by ‘objects’ even to reject them, Dummett notes, requires this Fregean distinction
between object and concept (Dummett, 1973, p.473). It is this strict demarcation between
concept and object that in certain cases requires a large amount of rewording of what seems
to be perfectly clear language, and which at times seems involve a loss of meaning, that
attracts some to the use of term forming operators as appropriate formalizations.

Where then do choice objects sit under such a picture? It is clear that they are in
some sense abstract, but not merely because they are traditional universals. Epsilon will

27Dummett notes that while “Frege recognizes the possibility of drawing a distinction between concrete
and abstract objects: that is to say, he employs, in Grundlagen, the notion of ‘concrete’ (wirklich, literally
‘actual’) objects, though only in the course of arguing that not every object is concrete”(Dummett, 1973,
p.480).
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not give us “wisdom.” Rather it refers to a most likely “wise thing”. Choice terms are an
attempt to develop something that enables one to have both something less general than
“universal term”, but that serves much the same purpose.

6.5.2 Lewis on Abstract Objects

David Lewis too discusses the various ways we might distinguish abstract objects, describ-
ing four possible methods for defining abstract from concrete objects, with the goal of
presenting worlds as concrete objects. He describes these methods as the “way of exam-
ple,” the “way of abstraction,” the “way of conflation,” and the “way of negation.” He also
notes Dummett’s method based on use but does not consider it in detail (Lewis, 1986,
p.82).

Lewis’s “way of example” is simply the listing of entities that provide examples of
abstract objects and those that are concrete objects. For example, his notes that: “concrete
entities are things like donkeys and puddles and protons and stars, whereas abstract entities
are things like numbers” (Lewis, 1986, p.82). He rejects the “way of example” as provides
no method to judge any borderline cases.

The “way of conflation” is according to Lewis simply the assertion that the distinc-
tion between concrete and abstract entities is simply the same as some other distinction
already made, e.g. the distinction between set and individual, or between universals and
particulars. The reasons for regarding this way as deficient have been covered above.

The method of distinguishing abstract from concrete entities by negation is simply
by noting properties that abstract entities lack a “spatiotemporal location; they do not
enter into causal interaction; they are never indiscernible one from another” (Lewis, 1986,
p.83). The method Lewis settles on is actually a more sophisticated version of the method
of negation, which Lewis terms the “way of abstraction”. To Lewis this ‘way’ of describing
abstract objects as the “historically and etymologically correct thing to mean if we talk of
‘abstract entities,’ ” but not perhaps the “dominant meaning in contemporary philosophy”
(Lewis, 1986, p.85 ).

According to Lewis abstract entities are “abstractions from concrete entities” which
means that abstract entities are derived by “somehow subtracting specificity, so that an
incomplete description of the original concrete entity would be a complete description
of the abstraction” (Lewis, 1986, pp.84-85 ). This version has the advantage of being
epistemologically grounded in some sort of experience. Lewis distinguishes this from the
“negative way”:

...if we can abstract the spatio–temporal location of something, that abstrac-
tion will not be unlocated; rather, there will be nothing to it except location.
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Likewise if we can abstract the causal role of something, then the one thing the
abstraction will do is enter into causal interactions.

Lewis’s “way of abstraction” is about negating, or subtracting, all but one quality.28

Choice operators work on a predicate, presenting a ideal term that stands in place of a the
predicate, so in one sense they subtract specificity, but work not on individual objects, but
on the set that the predicate defines.

What are often referred to as arbitrary objects work in a similar manner. In the
most sophisticated understanding of such objects they are some sort of abstractions that
represent a set, while not strictly being members of the set. The orthodox view, following
Frege, rejects their existence, and asserts that natural language usage that seems to refer to
such objects must be reinterpreted properly into quantified sentences. However there are
some proponents of arbitrary objects, whose arguments in their favour we should consider,
since certain of the criticisms of arbitrary objects may also be made of choice objects. An
abstract object, defined by the way of abstraction, does not quite have what we need for it
to perform the role of an epsilon object. To see why this is the case consider the standard
rejections of “arbitrary objects”.

One of the most famous examples of the criticism of arbitrary objects is Berkeley’s
criticism of Locke’s “abstract triangles” that are “neither oblique nor rectangle, neither
equilateral, isosceles, nor scalene, but all and none of these at once” (cf. Berkeley, 1843,
p.79 §13).29 Of course a triangle must have one of these properties, but Locke asserts
that the idea of a general triangle is “all and none of these at once” which seems to mean
that such an object has a contradictory nature. These are perhaps what we might refer to
as disjunctive objects, or more accurately as exclusive disjunctive objects, i.e. the choice
object of a disjunctive existential proposition such as ∃xPx where P ≡ Ax∨Bx∨Cx and
where ∀xx∈D(Ax∨Bx∨Cx)∧ (¬(Ax∧Bx)∧¬(Bx∧Cx)∧¬(Cx∧Ax)). The example of
different types of triangles are but just one example of such objects. Natural numbers can
too be understood in this manner; they are prime or composite, even or odd, divisible by a
certain prime or not. When we wish to talk about natural numbers using these properties
we often treat them as arbitrary objects, e.g. “some number ξ is prime or composite.” This
seems more natural in ordinary language than using an extensionally quantified statement.

28Lewis argues that “the way of abstraction” enables one to assert that possible worlds are concrete
because:

They lack no specificity, and there is nothing for them to be abstractions from. As for the
parts of worlds, certainly some of them are concrete, such as the other-worldly donkeys and
protons and puddles and stars. But if universals or tropes are non-spatio-temporal parts of
ordinary particulars that in turn are parts of worlds, then here we have abstractions that are
parts of worlds(Lewis, 1986, p.86).

29Berkeley is quoting Locke (1700) IV Chapter 7 section 9.
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Should we consider such objects, arbitrary objects, as reasonable furniture of our universe?
Kit Fine puts the standard argument against arbitrary numbers as follows:

A typical version goes as follows. Take an arbitrary number. Then it is odd
or even, since each individual number is odd or even. But it is not odd, since
some individual number is not odd; and it is not even, since some individual
number is not even. Therefore it is odd or even, yet not odd and not even. A
contradiction (Fine, 1983, p.59).

Obviously no concrete object holds contradictory properties. However if one is choosing
the most likely object to hold a disjunctive property one might choose a concrete object
that was most likely to hold the opposite property than the one it does. Take for example
a legislative body with members of only two parties where, according to the rules of the
body, no member can be a member of more than one party, but on occasion members
defect. At any time no member could be in both, but at any time there are definitely some
members who may change allegiance, and there are members who at any time are more
likely to defect and most likely to be members of the empty set of those who are members
of both parties.30

Are choice objects arbitrary objects? In the case of a proposition which the choice
operation is being applied to a contradictory conjunction, or an exclusive disjunction, it
certainly seems to run into many of the same problems as arbitrary objects. Consider the
classical semantics for epsilon; if we pick an element from the truth set, of some sentence
say A ∨ B for an epsilon term ε(A∨B), we may pick an element that makes one disjunct
true and the other false, but makes the disjunction true. But this does not seem arbitrary
in the manner we want. Fine’s arbitrary objects are said to represent a set, but in such
a manner in which one cannot refer to specific properties (see Fine, 1983, 1985). For
example with an arbitrary natural number one cannot assert that it is even or odd, when
one uses it in reasoning. Likewise choice objects are not resolved. That is, while some
object ε(A∧¬B)∨(B∧¬A) represents an object that could have both conjuncts it is treated
much as an arbitrary object is, as not specifically having a set property or A or B-ness.

Thought they differ from epsilon-objects we should still consider arbitrary objects,
because in some they seem required to make sense of our inferential practices. Could
epsilon terms represent such object, in the intuitionistic case, if not in the classical case?
Recall that a proposition PεP is logically equivalent to ∃xPx and hence should in some

30Likewise with triangles, obviously a triangle cannot by definition be both obtuse and right, but is not
a triangle that has an angle of 89.9◦ more likely to be a right triangle than one with three angles of 60◦

(under some definition of “likely”), if one had to rank triangles that were not right but were most likely
to be right triangles one would likely rank a triangle with a greatest angle of 70◦ higher than one whose
greatest angle was 65◦?

161



manner retain the nature of that proposition with regard to x being unspecific. Let us first
consider what people have meant by arbitrary objects and why they have rejected them,
secondly why Fine tries to rehabilitate them, and finally how they seem required to make
sense of our inferential practices with specific focus on natural deduction.

6.5.3 The Rejection of Arbitrary Objects

Kit Fine in his “Defence of Arbitrary Objects” notes that Frege rejected “indeterminate
numbers” (i.e. arbitrary numbers) as “unnecessary” and “unwise” in light of his theory of
quantification and what he termed the “absurdities in the notion of a variable number”.
Fine continues that this view has become standard “amongst subsequent philosophers”;
as he puts it: “If more philosophers of the present day have not added their voices to the
protest, it is probably because they have not thought it worth the bother” (Fine, 1983,
p.55).31

While the former view is the contemporary orthodoxy, the view that the referents
of variables should be treated as arbitrary individuals did of course have its adherents.
The most commonly cited example of Frege rejection of such numbers is his reply to the
mathematician Czuber, who wrote in his textbook on analysis published in 1898, “By a
real variable, we understand a number that is indeterminate at the outset, and which,
depending on the problem in which it occurs, can assume indefinitely many real values”
(Czuber 1898, quoted in Frege 1979 p.160). In response to this Frege writes that:

The author [Czuber] obviously distinguishes two classes of numbers: the deter-
minate and the indeterminate. We may then ask, say, to which of these classes

31Quine notes that Frege’s rejection of the “variable number” was not completely novel at the time
writing that, “the pronominal character of the variable was clear to Peano” (Quine, 1951, p. 71). To
be clear Peano actually suggests that two different interpretations of variable can be understood. In the
introduction to volume three of his Formulaire de Mathématiques Peano writes that:

In natural language the words ‘this, that, the same, first, second, ... ’ play the role of
variables letters. These could be replaced by the numbers 1, 2, ... by making the appropriate
conventions so as not to produce ambiguities in Arithmetic’ ” ( Peano 1901, p.2)

My translation. The original is as follows:

Dans le langage commun les mots ≪ceci, cela, le même, premier, deuxième,...≫jouent le
rôle des lettres variables. On pourrait les remplacer par les nombres 1, 2,... en faisant des
conventions opportunes pour ne pas produire des ambigüıtés dans l’Arithmétique

Peano means that instead of attaching variables letters, we could introduce arbitrary terms indexed to the
natural numbers. Peano then cites an earlier volume where he discusses two possible systems of variables
and his preference for the pronominal version (e.g. a, b ∈ N ⊂ a+ b = b+ a ) over one that instantiates a
new indexed variable for each member of a class (e.g. N1+N2 = N2+N1 where an instance of the class
is indicated by adding an index) ( Peano 1897 pp.26-27).
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the primes belong, or whether maybe some primes are determinate numbers
and others indeterminate. We may ask further whether in the case of indeter-
minate numbers we must distinguish between the rational and the irrational,
or whether this distinction can only be applied to determinate numbers. How
many indeterminate numbers are there? How are they distinguished from one
another? Can you add two indeterminate numbers, and if so, how? How do
you find the number that is to be regarded as their sum? The same questions
arise for adding a determinate number to an indeterminate one. To which class
does the sum belong? Or maybe it belongs to a third? (Frege, 1979, p.160)

Thus rejection of arbitrary or indeterminate objects has often been put into terms of the
nature of the variable in mathematics. Russell notes in his Principles of Mathematics that
“The variable is, from the formal standpoint, the characteristic notion of Mathematics”
(Russell, 1903, p.90). Russell accepted that phrases like “any number is a number”
do pose, at the very least, a need for interpretation, and that in such cases treating “any
number” as a definite term raises the issue, that it is not a number like any particular
number. However, he prefers to deal with it by rewording such expressions foreshadowing
his method for dealing with non-existent kings of France.32

Tarski too does not admit arbitrary terms into his system, making the distinction
between constants and variables in the following manner in his Introduction to Logic:

As opposed to the constants, the variables do not possess any meaning by
themselves. Thus, the question:

does zero have such and such a property ?

32Russell thus rejects arbitrary numbers with an argument very similar to Frege’s in the Principles of

Mathematics writing that:

The terms included in the object denoted by the defining concept of a variable are called the
values of the variable: thus every value of a variable is a constant. There is a certain difficulty
about such propositions as “any number is a number.” Interpreted by formal implication,
they offer no difficulty, for they assert merely that the propositional function “x is a number
implies x is a number” holds for all values of x. But if “any number” be taken to be a
definite object, it is plain that it is not identical with 1 or 2 or 3 or any number that may be
mentioned. Yet these are all the numbers there are, so that “number” cannot be a number
at all. The fact is that the any concept “any number” does denote one number, but not a
particular one. This is just the distinctive point about any, that it denotes a term of a class,
but in an impartial distributive manner, with no preference for one term over another. Thus
although x is a number, and no one number is x, yet there is here no contradiction, so soon
as it is recognized that x is not one definite term.” (Russell, 1903, p.91)
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e.g.

is zero an integer?

can be answered in the affirmative or in the negative; the answer may be true
or false, but at any rate it is meaningful. A question about x, on the other
hand, for example the question:

is x an integer?

cannot be answered meaningfully. (Tarski, 1946, pp.4-5).33

Indeed, Alonzo Church specifically cites Frege’s objection to the division of the reals
into classes of “constant real numbers” and “variable real numbers”. Though Church notes
that some mathematical writers speak of “variable real numbers” or “oftener ‘variable
quantities’ ” he does not believe that these should be taken “literally”. Church asserts that
“a satisfactory theory has never been developed on this basis and it is not easy to see how
it might be done.”

In a footnote he mentions an example which he describes as “parallel to one of Frege’s
examples” that he sees as an argument against arbitrary objects:

Shall we say that the usual list of seventeen names is a complete list of the Saxon
kings of England, or only that it is a complete list of the constant Saxon kings
of England, and that account must be taken in addition of an indefinite number
of variable Saxon kings? One of these variable Saxon kings would appear to be
a human being of a very striking sort, having been say, a grown man named

33Tarski also felt the need to warn students of earlier views of variables:

In some textbooks of elementary mathematics, particularly in the less recent ones, one does
occasionally come across formulations which convey the impression that it is possible to at-
tribute an independent meaning to variables One might find an explanation that the symbols
“x”, “y”, ... also denote certain numbers or quantities, not “constant numbers” however (which
are denoted by constants such as “0”, “1”, ...), but so-called “variable numbers” or “variable
quantities”. Statements of this kind stem out of a gross misunderstanding. The “variable num-
ber” x which one tries to envisage could not possibly have any specified property, for instance,
it could be neither positive nor negative nor equal to zero; or rather, the properties of such a
number would have to change from case to case, that is to say, the number would sometimes
be positive, sometimes negative, and sometimes equal to zero. But entities of such a kind are
not to be found in our world at all; their existence would contradict the fundamental laws of
thought (Tarski, 1946, p.5).
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Alfred in A.P. 876, and a boy named Edward in A.D. 976. According to the
doctrine we would advocate (following Frege), there are just seventeen Saxon
kings of England, from Egbert to Harold, and neither a variable Saxon king
nor an indeterminate Saxon king is to be admitted to swell the number. And
the like holds for the positive integers, for the real numbers. and for all other
domains abstract and concrete. Variability or indeterminacy, where such exists,
is a matter of language and attaches to symbols or expressions (Church, 1956,
p.13 fn.33 ).

Nicholas Rescher sums up the argument against arbitrary objects or as he refers to
them as “random individuals” in the following passage:

To regard a “random element” as an element or a “random individual” as an
individual is to commit what Whitehead terms the “fallacy of misplaced con-
creteness” and involves what philosophers have come to call a category mistake.
A statement like “ϕy” does not say something about a peculiar “random indi-
vidual” y: it says that the property ϕ characterizes every particular element of
our universe of discourse. There are no “random” or “arbitrarily selected” in-
dividuals, just individuals. The “arbitrariness” or“randomness” resides not in
individuals, but in the deliberate ambiguity of the notation by which reference
to them is made. To talk of “random” or “arbitrarily selected individuals” is
to reify a notational device. And this, in the present instance, is not merely
unwarranted, it is demonstrably absurd. (Rescher, 1958, p.117)

Thus the orthodox view of arbitrary objects and specifically numbers has, since Frege,
been that they are “unwise”, “unnecessary” and “weird”. There is no more compelling
argument than that made by Frege which is tied up entirely with his views on concepts and
objects. In fact Peano’s view seems not to be as Quine insisted of one of being committed
to the “pronominal nature” of the variable but more that either approach is simple a
convention, one as good as the other.

6.5.4 Natural Deduction and the Rehabilitation of Arbitrary
Objects

Though, as we have seen, many have rejected the use of arbitrary objects, or random in-
dividuals, there are several cases where their use seems to be most natural. For example
arbitrary terms have often been employed to provide Gentzen style versions of the intro-
duction and elimination rules for the universal and existential quantifiers, respectfully, in
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first order predicate logic. In this case arbitrary terms seem both natural and useful to
produce rules that mirror those of the other logical connectives.

The universal elimination (∀E) and existential introduction (∃I) rules are obviously cor-
rect. However to provide their opposites one must introduce “restrictions and conditions”
that seem both “unnatural and complicated” (DeVidi and Korté, 2014, p.4).

For example, Quine despite his rejection of abstract objects, presents (Quine, 1959,
pp.159-166) his rules for ∃ elimination and ∀ introduction (which he refers to as Existential
Instantiation and Universal Generalization) with his method of flagging variables. He
begins by noting that, though they are not strictly correct they “are not wholly alien to
unformalized thinking” and hence “can, under certain restrictions, be used as steps in
trustworthy deductions”. Quine thus notes that:

Intervening use of UG or El does not impair the implication of conclusion by
premiss, as long as no flagged variable retains free occurrences in premiss or
conclusion....

The restriction sought may accordingly be formulated, for deductions generally,
as follows:

(A) If there are n(> 1) flagged steps in a deduction, then the flagged variable
of some step must be free in the step-conditionals of none of the remaining
n− 1; the flagged variable of another step must be free in the step-conditionals
of none of the remaining n− 2; and so on... (Quine, 1959, p.163).

Which he rephrases as the following two restrictions:

(B) No variable may be flagged twice in a deduction.

(C) It must be possible to list the flagged variables of a deduction in some order
V1, ..., Vn such that, for each number i from 1 to n − 1, Vi is free in no line in
which Vi+1, ..., Vn is flagged (Quine, 1959, p.164).

Thus he presents his rules as follows:

Rule of universal generalization (UG): We may subjoin a universal quantifica-
tion to a line which is a conservative instance of it.

Rule of existential instantiation (EI): To a line which is an existential quantifi-
cation we may subjoin a conservative instance of it.

Flagging : Off to the right of each line subjoined by UG or El, we must flag the
instantial variable by writing it in the margin.

Restrictions : (B) and (C) above. (Quine, 1959, p.165)
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Francis Jeffry Pelletier notes that Fitch style systems, which follow more closely the
original formulation provided by Gentzen and insist that all applications of these rules
happen in sub-proofs which are marked graphically, are more easily restricted than Quine
style systems of natural deduction (Pelletier, 1999, p.13). Quine style systems, because
they do not cordon off the use of such rules into sub-proofs, require complex restrictions and
flagging. This Pelletier points out led to several logic texts of the 1950s presenting incorrect
versions of both EI and UG. This is a problem that Quine ran into, as he acknowledges in
the forward to the revised edition (Quine, 1959, p.vi):

In §28 there are two convenient deductive rules that cannot be directly justi-
fied, for the good reason that they serve to deduce conclusions from premisses
insufficient to imply them. In past printings of §28 these rules have been in-
directly justified by proving that deductions in which they are used will still
turn out all right in the end, as long as certain arbitrary-looking restrictions
are respected. In this new edition, §28 is rewritten. The rules and restrictions
are now explained and justified in a way that dispels the old air of artificiality.

In §28 Quine notes that while “the basis for UI [universal instantiation] and EG [exis-
tential generalization] was that ‘(x)Fx’ implies ‘Fy’ and ‘Fy’ implies (∃x)Fx. For UG and
EI we cannot plead that ‘Fy’ implies ‘(x)Fx’ nor that ‘(∃x)Fx’ implies ‘Fy’.” (Quine,
1959, p.160). Quine of course then maintains that “under certain restrictions’ these rules
can be used. These restrictions were changed between the 1950 version of the book and
the 1959 as noted above.

Irving Anellis discusses what Pelletier calls the “mysterious stew of ideas” that sur-
rounded natural deduction systems with incorrect restrictions presented in Quine 1950,
and Copi 1954. These could be contrasted with the correct but “radically different” Fitch-
Gentzen sub-proof methods that were also current in the mid-century, but known for the
most part only to specialists (Pelletier, 1999, p.13 fn.13). Anellis (1991) notes that the
system in Copi (1954) came under attack by Hugues Leblanc who provided an obviously
incorrect derivation well within Copi’s rules (Leblanc, 1965, p.210). Leblanc provided a
revised set of restrictions for ∃ elimination and ∀ introduction (see Leblanc, 1965) the
former of which was adapted by Copi in his 1967 revision of his text (Copi, 1967, p.iv).34

The version of these natural deduction rules presented by Suppes is the closest to the
use of a choice operator. Instead of flags or graphical represented sub-proofs, he presents
a “method of handling existential quantifiers by the use of ambiguous names” and notes
that “the central idea of this approach is related to Hilbert’s ε symbol” (Suppes, 1957,

34Copi’s thanks to LeBlanc led to speculation that Copi had paid for the rights to include LeBlanc’s
formulation of the rule. The going rate for an elimination rule in 1967 was $300, according to rumours
cited by Anellis (Anellis, 1991, p.142 fn.4)
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p.vi). In his system, universal generalization (∀ introducation), from free variables which
are not flagged as premises, is allowed, and existential specification (∃ elimination) is done
by means of special constants which he symbolizes using Greek letters.

Anellis notes that Suppes’ method received a second criticism, that LeBlanc had already
levelled at Copi’s version of EI, due to its use of ambiguous names. Gupta argues, like
LeBlanc, that Suppes version of EI means that it cannot be considered an inference rule
but rather should be considered a rule that introduces “auxiliary premises for the purpose
of proof strategy”.

Free variables are treated in two ways in the various formulations of natural deduction
systems in textbooks: “about half treat them [free variables] semantically as existentially
quantified and the other half as universally quantified” (Pelletier, 1999, p.24). Suppes’
versions of EI and UG are also interesting because he uses two different methods, both his
ambiguous names for EI and flagging of free variables of UG. Suppes method of flagging
free variables in the assumptions and his introduction of ambiguous names in EI means
that he has the best of both worlds, free variables treated as universally quantified and
ambiguous names which work more simply than another set of free variables that are
treated as existentially quantified (see Suppes, 1957).

Recent developments in natural deduction have shown that there is no need for arbitrary
objects in natural deduction proofs (see DeVidi and Korté, 2014). The apparent need
for them led to philosophers like Quine to both reject their existence, and use arbitrary
terms in his logic textbooks.35 Quine notes that variables should not be considered in
anyway as names:

35 DeVidi and Korté’s method uses sub-proofs, but is a refinement of the Gentzen-Fitch proof method
in which the flagged free variables or ambiguous names in propositions created by ∃-elimination and used
in ∀-introduction are replaced with variables bound by what they refer to as “commonizing quantifiers”,
which range over sub-proofs (see DeVidi and Korté, 2014). For example, the following two proofs, one
in the standard Fitch style and the other in their method, show how the commonizing quantifier replaces
the arbitrary object that is flagged in the Fitch proof:

Fitch style Example:

1 ∀y¬Py

2 ∃xPx

3 e Pe

4 ∀y¬Py R, 1

5 ¬Pe ∀E, 4

6 ⊥ ¬E, 3,5

7 ⊥ ∃E, 2, 3–6

8 ¬∃xPx ¬I, 2–7

DeVidi-Korté Example:

1 ∀y¬Py A

2 ∃xPx A

3 ∃x UC

4 Px A

5 ¬Px ∀E, 1

6 ⊥ ¬E, 3,5

7 ⊥ ∃E, 2, 3-6

8 ¬∃xPx ¬I, 2-7
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Variables have no meaning beyond the pronominal sort of meaning which is
reflected in translations such as (“Whatever you may select, it = it.”); they
serve merely to indicate cross-references to various positions of quantification
(Quine, 1951, pp. 68-70).

and insists on the Fregean orthodoxy about the nature of variables:

Care must be taken, however, to divorce this traditional word of mathematics
from its archaic connotations. The variable is not best thought of as somehow
varying through time, and causing the sentence in which it occurs to vary with
it. Neither is it to be thought of as an unknown quantity, discoverable by
solving equations. The variables remain mere pronouns for cross-reference to
quantifiers (Quine, 1959, pp.127-128).

However, as we noted above, in his natural deduction system, flagged variables enable
us in his words to “subjoin a conservative instance” of existential statements. Here the
variables no longer simply provide a “cross-reference to quantifiers” but represent arbitrary
instances of the propositions previously quantified.

6.5.5 Fine’s Defence of Arbitrary Objects

Kit Fine attempts to address both Frege’s and other’s criticisms of arbitrary objects in
Fine (1983). Fine thinks that arbitrary objects are “extremely valuable” and attempts
to work out a non-näıve theory of them which he sees as answering the obvious criticisms
(Fine, 1983, p.56).

The four main criticisms of the existence of arbitrary objects that he sees as needing
answering to develop a more sophisticated theory are in Fine’s words as follows:

1. There are no arbitrary objects;

2. the principles governing them are incoherent;

3. the theory leads to questions with no answers;

4. and it is, in any case, of no use. (Fine, 1983, p.56)

Fine deals quickly with the first point, which he breaks up into the sub-questions which
we can call (1a) “Are there actually any such objects?” and assuming that the answer
to the former is yes (1b) “What are they like?” He continues that the answer to (1a) all
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depends on what we mean by “there are.”36 In any “ontologically significant sense” Fine
says that arbitrary objects are not real:

I have a sufficiently robust sense of reality not to want to people my world
with arbitrary numbers or arbitrary men. Indeed, I may be sufficiently robust
not even to want individual numbers or individual men in my world. But if
the intended sense is ontologically neutral, then my answer is a decided ’yes’.
(Fine, 1983, p.57)

Fine asserts that he is “happy to go along with the most ardent reductionist and have
him reduce the whole theory of arbitrary objects to one that trades in more respectable
entities.” He insists that this is not odd, a nominalist who rejects the reality of numbers,
does not refuse to “speak with the mathematician or common man and say that there is
a solution to the equation ‘x + 5 = 12’ or that there are prime numbers greater than 12”
(Fine, 1983, pp. 56-57). Rather he wishes to assert only that they ‘exist’ at what he calls
an “intermediate level of theorizing” (Fine, 1983, p.57).

That done, Fine turns to the question (1b) “What are they like?” and to this he first
gives the general answer that they “belong, like sets or propositions, to the category of
abstractions” (Fine, 1983, p.58). The mistake that critics of arbitrary objects make, he
asserts, is to assume they are on ontological parity with individuals. This is a problem
he feels is rooted in a, “certain metaphysical or psychological picture that may have been
suggested by the more zealous advocates of arbitrary objects,” specifically the view that
abstract entities are simply normal objects “shorn or particular features” as in Lewis’s
“Way of Negation” (see Lewis, 1986, p.83). The other sort of reason that Fine wishes to
reject is that it seems normal to say that an arbitrary member of a set should have all
the properties common to members of that set so that say an arbitrary number should
be either odd or even (Fine, 1983, p.58). Instead he holds that objects are more akin
to functions than individuals. Hence much like choice functions they range over sets, and
seem to pick out elements, but are treated as if they lack specificity.

The incoherence of the principles governing arbitrary objects is the second objection
which Fine addresses. Again he breaks this up into two sub-questions: the problem of
complex properties and the problem of special properties (Fine, 1983, p.59).

The problem of complex properties arises from the idea that members of a set may
be divided by an exclusive disjunction, for example the natural numbers are broken into
odds and evens, and every member of that set is one or the other. What then of arbitrary

36Or in the words of US president Bill Clinton “It depends upon what the meaning of the word ’is’ is.”
Though of course Clinton’s distinction was about the reality of past and future events and Fine’s point is
slightly more prosaic.
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numbers? Do they fall to the criticism of Locke’s triangles? Fine asserts that no, arbitrary
objects fall under what he calls “the principle of generic attribution” a principle which he
gives several more and more refined definitions G1 through G4 (Fine, 1983, pp.59ff).

Fine’s first formulation, (G1) ϕ(a) ≡ ∀iϕi (a ϕ’s iff every individual ϕ’s), of his generic
applicability principle fails because it does not apply to the whole context in which the
arbitrary object applies (Fine, 1983, p.60). This gives us a problem because if our predicate
is E(x) (‘x is even’) and a is an arbitrary number then the claim ¬E(a) follows from the
fact that ¬∀xE(x), but we can also get the opposite result—since we clearly can get ¬O(a),
and ∀(¬Ox→ Ex).

Fine’s G2 and G3 are similarly stages which solve a problem with the previous version,
but fail, as G1 does, to get everything right. Arbitrary objects do not have the properties
that all typical individuals do (e.g. “all individuals are individuals”), so they should not
satisfy certain classical properties, but only ‘generic’ ones. And there may be interdepen-
dence between arbitrary objects when more than one of them is in question in a particular
formula. Eventually, Fine arrives at a final generic applicability principle:

(G4) If ϕ(x1, x2, ..., xn) is a generic condition containing no names for arbitrary
objects, then ϕ(a1, a2, ...an) is true iff ϕ(a1, a2, ...an) is true for all admissible
assignments of individuals i1, i2, ...in to the objects a1, a2, ...an

which also takes into account the fact that there may be interdependence among arbitrary
objects and though a single arbitrary object represents a class of individuals a number of
them may represent a relation between individuals (Fine, 1983, pp.67-68 ).

Fine uses this principle to avoid the problem of complex properties, e.g. ψ(x) ∨ χ(x).
Rather than having a different rule for disjunction of arbitrary objects, Fine suggests that
to evaluate a disjunction applied to some arbitrary object a:

ψ(a) ∨ χ(a), we first apply the rule of generic attribution. This tells us that
ψ(i)∨χ(i) is true iff each of the statements ψ(i)∨χ(i) is true for an individual
in the range of a. We then apply the standard rule of disjunction to each of
the statements ψ(i) ∨ χ(i) (Fine, 1983, p.62).

More interesting for our purposes and something that shows a clear relation between
Fine’s arbitrary objects and choice is his alternate formulation of his principle of generic
attribution. Instead of applying the principle of generic attribution and then the rule for the
operator, he suggests that instead one should understand the statement ψ(a)∨ χ(a) to be
“syntatically ambigious”, that is it may be understood to be formed in two different ways.
It may either be taken to be simply the disjunction of ψ(a) and χ(a) or more interestingly
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it can be understood to be that application of λx(ψ(x) ∨ χ(x)) to a. The latter is not a
simple disjunction and “the extensions of the property abstracts λxϕ(x) may be evaluated
in the usual way for individuals in a way analogous to [the generic attribution principle] for
arbitrary objects” (Fine, 1983, p.62). Of course to make the application of the abstract
property sync with his final version (G4) of his principle of generic attribution it should
be written more properly as:

[λ(x1, x2, ..., xn)ϕ(x1, x2, ..., xn)](a1, a2, ..., an)

The third criticism that Fine addresses is actually several concerns brought up by
Frege. The main two are how one establishes whether or not arbitrary numbers have
certain properties, and what the identity criterion for arbitrary numbers is. To Frege’s
question:

‘to which of these classes [of the determinate and indeterminate numbers] do
the primes belong?’ Some of the determinate (individual) numbers are prime.
But what of the indeterminate (arbitrary) numbers?

Fine answers that arbitrary numbers can have a restricted range and so could be either
restricted to the primes or have a range of all numbers (Fine, 1983, p.66). Fine’s point is
that this is not the sort of question that is appropriate to ask of arbitrary numbers.

To the question of whether an identity criterion for arbitrary objects can be provided,
Fine introduces the idea of dependence among arbitrary objects (Fine, 1983, p.68). An
object is to be considered “independent if it depends upon no other objects and that
otherwise it is dependent.” Identity is then determined in one of two ways:

Suppose first that a and b are independent objects. Then we say that a = b iff
their ranges are the same.

In the case that they are dependent objects, however:

Then we shall say that a = b iff two conditions are satisfied. The first is that
they should depend upon the same arbitrary objects; their ‘dependency range’
should be the same. The second is that they should depend upon these objects
in the same way.

The final criticism that Fine addresses is that there is no need for such entities. Fine
suggests four applications: “(1) the logic of generality; (2) mathematical logic; (3) language;
and (4) the history of ideas” (Fine, 1983, p.73). Of course by the logic of generality he
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means exactly the semantics of natural deduction and the rules of universal generalization
(UG) and existential instantiation (EI) which we have covered above. With regard to
mathematical logic, Fine notes that besides the “modest formal development” of the general
theory presented in his book, the theory may also shed light, on more traditional puzzles
in mathematical logic. He gives as examples nul-potent infinitesimals which might be
treated as arbitrary objects “whose values tend closer and closer to zero” This would
be an improvement on Robinson’s non-standard analysis approach to infinitesimals which
can make room for nilpotent infinitesimals. He also suggests that arbitrary objects might
illuminate Skolem functions, where arbitrary objects “correspond loosely to multi-valued
Skolem functions” (Fine, 1983, p.74).

With regard to language Fine suggests that arbitrary objects have use in understanding
mathematical language, which though it purports to treat variables as ‘signs of general-
ity’ informally holds to a usage that is much closer to that of traditional understanding
of variables (Fine, 1983, p.75). Another interesting application to language is that of
understanding pronouns.

Every farmer owns a donkey. He beats it. He feeds it rarely ...

Fine notes that this is difficult to parse into quantified statements, and is at the least
ambiguous.

How are we to interpret the pronouns ‘he’ and ‘it’? The simple and natural
view of the pronouns is that they are used to refer, in a given discourse, to
objects that in some sense are ‘in play’. But if we stick to an ontology of
individuals, this view can hardly be maintained; for there is no individual
farmer or individual donkey to which the pronouns can sensibly be taken to
refer.

Some would say that the example Fine gives translates as: ∀x∃y(Fx → (Oxy ∧Dy ∧
Bxy ∧ Rxy...)) but this does not reflect the natural language grammars, nor does it let
us get from this sentence and the sentence “Rex is the donkey owned by Bob the farmer”
(say Fb ∧Orb ∧Dr) to the conclusion that therefore “Bob beats Rex” (Bbr).

While some like Fine see entities that would represent pronouns as useful, and a seman-
tics using some sort of operator worth proposing, Peter Geach has criticised investigating
the use of pronouns in this manner, and the desire by some for a formalism more com-
plicated than that of quantified propositional logic. Geach referred to such an effort as
exploring “the labyrinth of idiom” and believed that a proper theory of reference would
focus on only what he termed the “logically important features” of language (Geach,
1962, p.132).
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The example about the inability to infer “Bob beats Rex” suggests that Geach’s charge
is not on target. The inference is clearly a correct one, so it seems that the representation
of pronouns is “logically important.”

Fine’s suggestion is that his theory of arbitrary objects is useful for dealing with pro-
nouns because of its ability to handle the dependence and independence of objects:

‘He’ refers to the arbitrary farmer, ‘it’ to the arbitrary donkey that he owns.
Note that this arbitrary donkey is a dependent object and that for a given
farmer as value for the arbitrary farmer, the arbitrary donkey can only take as
a value a donkey that the farmer owns. Thus the statement ‘He beats it’ will
be true, just as it should be, iff for all values i and j simultaneously assumed
by the arbitrary farmer and donkey, it is true that i beats j (Fine, 1983, p.76).

Fine is not alone in is view that arbitrary or ideal objects can help deal with inter- and
intra-sentential reference. Gareth Evans (Evans, 1977, p.470) in his response to Geach

(1962, 1975) deals with the so-called donkey pronouns (e.g.,the ‘it’ in the sentence “Every
farmer who owns a donkey beats it.”) which he refers to as e-type pronouns, with the
use of term forming operator λ, in much the same manner Fine does. However there is
a whole literature of applying the ε-operator to not only e-type pronouns, but also to a
variety of linguistic phenomena. Further discussion of this and other applications of choice
is unfortunately beyond the scope of this thesis.

6.6 The Nature of Epsilon Terms

Let us now return to epsilon objects, and in particular to the question of what they must
be like given their role in “strengthening” the logic when added to intuitionistic logic. The
strengthening of the logic in part is due to the properties of the sentences that epsilon
abstracts in conjunctions with the facts about terms that are encoded in the decidability
principles. Arbitrary objects like Locke’s triangles are one extreme, defining objects that
entail exclusive disjunctive properties, like being acute, or obtuse; or right, or oblique.

How does this pan out in the proofs presented in Chapter 4? Recall that Bell’s decid-
ability condition was: ∀x(x = a ∨ x 6= a) ∧ (b 6= a). In this condition the term a is well
defined in reference to all terms, that is all objects x either are equal a or not. Furthermore
the second part indicates that at least one term b is definitely not equal to a as well. Then
we define a proposition A(x) ≡ [(x = a ∧ B) ∨ (x 6= a ∧ C)] and propositions B ↔ A(a)
andC ↔ A(b) follow, given decidability.

Thus in the proofs of linearity and DeMorgan’s intuitionistically invalid law, we rely on
the fact that, given the existence of epsilon terms and the existence of one decidable object,
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for any pair of sentences B and C we can define a predicate A(x) so that the following two
conditions hold:

A(εA) iff B ∨ C

¬A(ε¬A) iff ¬B ∨ ¬C.

Roughly, given the decidability conditions and the epsilon principle, we have an “ideal”
element, a likeliest element to make any disjunctive property hold, and an ideal that rules
both disjuncts out. The nature of such objects is obviously connected to issues around the
nature of disjunctive properties.

In a language with identity, we can define the properties A(x) and ¬A(x). That is, any
first order with identity language will allow us to describe the “property” in the following
manner:

A(x): The property of being a if B is true or of being something else if C is
true.

Given the decidability of the identity of a (meaning that we can move from “not failing
to be a” to “being a”), we have:

¬A(x): The property of not being a if B is true and of being a if C is true.

What does the addition of epsilon add to the mix? It gives us two objects: one that
has the property A(x) to precisely the extent that B ∨ C is true, and another that has
the property ¬A(x) precisely to the extent that ¬B ∨ ¬C is true. Here it is tempting to
let “classical”, in particular bivalent, thinking infect our description: since “A(x)” has a
“disjunctive” property, if B is true it will be a, if C is true it will be something else such as
b, if both B and C are true, well it can be either, and if neither is true x can be anything
at all.

But here, recall we don’t have bivalence. The truth value of B ∨ C is the join of the
truth value of B and the truth value of C, and so in general is greater than the truth value
of either disjunct. What epsilon is adding is that there is an object that has the property
A to precisely the extent that B ∨ C is true.

Consider a simple toy example, using numbers we should not take too seriously because
we’re not treating them as meets and joins: suppose one third of all animals are each of
dogs, pigs and humans. For any particular animal there is a one third chance that it’s a
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dog, a third it is a pig, and a one third chance that it’s a human. So, Bd is “Derek is a
pig”, Cd is that “Derek is a dog”, and we write C to abbreviate Cd, B to abbreviate Bd.
Then εA is some element of the domain that has the property A to exactly the extent that
B ∨C is true, i.e.,2

3
. It’s not Derek, because the truth value of B is 1

3
and the truth value

of C is 1
3
. So what is εA? It seems like it’s going to have to be part dog and part pig,

doesn’t it. And what, indeed, will ε¬A be?

It seems, then, that in a non-classical context, the epsilon operator is compelling us
to take some of the talk that occurs in discussions of arbitrary objects somewhat more
seriously.

In a classical, but not bivalent setting, we might consider the natural numbers example:
Ox ∨ Ex has the truth value 1, though each of Ox and Ex truth values n and ¬n in the
middle of the Boolean Algebra 4. What epsilon requires is that, for these sentences Ox
and Ex, εA has the property “odd or even” to the extent 1, though it doesn’t have either
disjunct completely.

Of course, in the classical case, there is a temptation to explain this away: the number
is one or the other, so you really only need to be sure that you’ve picked from the winning
side one of the disjuncts must really have the truth value 1.

The lesson of the proofs, though, is that while we can explain these things away in the
classical setting, it makes a difference in non-classical settings. Let us consider an ordinary
language case where classical logic is at the least doubtful. If we choose a class of properties
that don’t have sharp boundaries, such as colour properties, things look different. So if
we use green or not green, for instance, and assume that there are objects which fail to be
green while also failing to be not green, so that Gx∨¬Gx can have a truth value less than
1, though greater than either Gx or ¬Gx, then having the property of being “green or not
green” is something besides “picking from the winning side”.

We can take from this a metaphysical lesson. In non-classical settings, accepting these
“ideal objects” has consequences. We can characterize different metaphysical categories
based on how harmless the abitrary objects for disjunctive properties are. In objective
domains, where bivalence reigns, the “ideality” can be regarded as merely a matter of us
not knowing which category of a disjunction epsilon comes out of. This is because in such
objective domains all truth values are either 0 or 1, therefore we can simply assume that
it comes from one of the pots that has value 1 if any do.

For domains where, perhaps, De Morgan is correct but bivalence is not correct—e.g.
the example of intelligence given above—we should get something different. If Bob is good
at math, but can’t cook a meal without burning his house down, we can’t say that Bob is
smart, nor can we say that he’s not. But the extent to which Bob is smart or not smart is
greater than the extent to which he is either. So there is something that has the property
“Bob is smart or Bob is not smart” to this greater extent—which is not valued 1. However,
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as we’ve seen, the willingness to accept these ideal objects, and correspondingly to take
these odd properties seriously, also commits us to accepting that the property “Bob is
not smart or Bob is not not smart” is a different property again, and something has that
property completely. That is, some explaining needs to be done that accounts for the
taxonomy of properties imposed by these formal results.

Finally, for truth apt domains where objectivity and realism seem unlikely, we should
find the idea of such properties and ideal objects to be a non-starter. At a very abstract
level of description, this seems plausible enough. If, for instance, beauty really is in the
eye of the beholder, the notion that there is an ideal object for the predicate “x is pretty”
seems unlikely—we are confronted not with issues like the disjunctive properties of being
even or odd for natural numbers, but with something much worse, namely the absence of
typical characteristic of the non-objective property in question. Lack of objectivity seems
likely to rob us of grounds for judging likeliness. What if we translate this down to the
level of the plausibility of the property A(x) corresponding to “Bob is pretty or Bob is
not pretty”? I suggest that what makes it more reasonable to suggest that there could be
such an ideal object in the case of a property like intelligence, if intelligence does indeed
have the multi-factorial structure we’ve supposed as we’ve used it as an example, is that
we are presuming the compatibility of the various factors that make someone intelligent,
and the possibility of their varying independently. To adapt the example slightly, if Yotam
Ottolenghi has more cooking smarts than Bob but less mathematical intelligence, then
what epsilon is asking us to buy an A(x) that has Ottolenghi’s degree of kitchen smarts
and Bob’s level of math smarts. If prettiness really is un-objective, there are no similar
factors on which to pin the judgements, or to arrange ideals, so there is nothing be said
in favour of there being an ideal object that has the A(x) property that captures “Picasso
pretty or sunset pretty”.

6.7 Conclusion

To summarize the lessons of this discussion, it is useful to recall what we might regard as a
fairly standard view of intuitionistic logic, which is that it is somehow a “epistemic” logic in
a way that classical logic is not. We have seen this idea expressed in slightly different ways
by different authors above: it is sometimes claimed that intuitionistic logic is said to have
an “epistemic motivation” and classical logic is said to have an “ontological basis” (van
Dalen, 2002, p.1); and, as discussed at length in Chapter 3, Michael Dummett contends
that intuitionistic logic is metaphysically neutral, largely because it is compatible with a
close link between truth conditions and knowability, while the correctness of classical logic
presupposes a commitment to realism. It is therefore not a new view in philosophy that
as we commit ourselves to a stronger logic by moving from intuitionistic to classical logic,
if we do so legitimately, it is because our ontological commitments have increased.
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What our investigations have shown us is that if we take this picture seriously as a
starting point there is much more philosophical insight to be gained by the investigation of
the relationship between increased ontological commitment and principles of logic. We have
seen that there are degrees of strengthening—that it is not merely a matter of “neutral”
intuitionistic logic and “realist” classical logic, but that there are interesting logical levels
in between.

We have seen that what degree of strengthening beyond intuitionistic logic is achieved
can be connected to assumptions we make about the existence of objects of particular
sorts, as represented by our accepting into our languages terms of various sorts.

The addition of abstract or ideal objects to intuitionistic logic through the means of
choice operators, which allow us to use names of individuals to talk about types of objects,
not specific objects, involves the acceptance of generic objects, i.e. for each property that
there is a most likely object to have that property. This assumption alone already moves
us away from the epistemic or constructive justification of intuitionistic logic—for instance,
we certainly have no recipe for constructing the likeliest φ for every φ. As we have seen,
making this move already changes the logic. By itself, though, it comes nowhere near
taking us all the way to classical logic.

Let us review this in a bit more detail. In this chapter we have discussed how epsilon
terms are ontologically potent, i.e., accepting them involves an ontological commitment.
They act like names and hence represent some sort of objects, and because their inclusion
in an intuitionistic logical language makes a difference to the strength of the language we
cannot dismiss them as mere place-holders or “manners of speaking” that can be explained
away via contextual definition in the manner Russell and others sometimes suggested for
definite descriptions.

However, by themselves the epsilon terms only change the logic in the sense of making
valid certain quantificational laws that are not valid in intuitionistic logic. I have sug-
gested in this chapter that more metaphysically interest lies when certain propositional
“laws” that are not valid in intuitionistic logic are made valid. Choice operators do not
do this alone. We saw that accepting epsilon together with some modest-seeming addi-
tional assumptions—that there are two objects a and b that we can prove to be distinct,
and that for one of them a there is always a fact of the matter for any object whether
it is a or it isn’t—allows us to arrive at a way station between classical and intuitionistic
logic. We were also able to isolate some other, perhaps less modest, assumptions that
are enough to yield classical logic—for instance, that coextensive predicates have identical
epsilon terms. These results suggest this philosophical picture: The sense in which each of
these assumptions involves acceptance of an existence claim or an assumption about the
nature of the objects referred to by the epsilon terms is clear, so these results in a minimal
sense make quite clear that ontological assumptions can “buy logical principles”. Where
the assumptions are warranted, we are paying cash rather than credit. Where we accept
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logical laws such as excluded middle, or the fourth De Morgan’s law, without inquiring
into what grounds our acceptance of the existence of epsilon terms and the assumptions
leaves us with an outstanding philosophical debt.

I suggest that much of the discussion in this chapter usefully suggests that this philo-
sophical picture links up with what is already often thought and said about questions of
realism and anti-realism, objectivity and subjectivity, and so on, but that the way it links
can teach us something. I think that there is much more to be learned by further inves-
tigation and discussion of the philosophical lessons of these results and related ones yet
to be discovered, and that this discussion is only a start. But it is an interesting start.
Some of the points made above are perhaps, in retrospect, unsurprising, but they had not
yet been remarked. In a domain for which epsilon terms are legitimate, if we make an
extensionality assumption we get all of classical logic. So, given the present framework,
those assumptions are tantamount to the assumption of realism. But, as we noted, the link
between extensionality and realism is not news in philosophy. Arguably, what the present
discussion does is lay bare the contribution it makes to the acceptance of “full-blooded
realism.”

More interesting, perhaps, are the issues about existential commitments being sufficient
to justify logics between classical and intuitionistic logic. What then are the sort of do-
mains that the addition of choice seems right, but not extensionality? Given the “modest”
decidability conditions, this makes “Dummett’s scheme” valid, but not excluded middle,
which from the semantic point of view means that the “truth values” in the domain must
be linearly ordered (or rather, have the property of linearity which we have noted is not
exactly the same thing).

What I have suggested above is that such domains are, metaphysically speaking just as
the logic suggests they ought to be, perched somewhere between full-blooded realism and
those for which anti-realism seems most appropriate. Considering what a domain must be
like for linearity to hold for it and yet for it not be classical, we considered cases where
there are composed of many properties that are themselves composed of other properties
that themselves are “objective” (and so for which the is always a matter of fact about
which of two objects has each subsidiary property to a greater extent, for instance) but
where there is no non-arbitrary way to compile them into a single overall ranking. We
used intelligence as an intuitive example of a property that is, arguably, of this sort, but
there are plenty of others. What I also tried to suggest was that those who contend that
intelligence is not a real thing have a point, but so do those who insist that it’s not (as
humor seems to be) unreal either. This account nicely explains why there are sometimes
facts of the matter—e.g. Betty is more intelligent than Bob when she exceeds him on every
dimension—but not always. Intelligence has a kind of objectivity that humor seems not
to have.

The second major line of discussion in this chapter takes the discussion of the metaphys-
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ical lessons of these results about term forming operators in a new direction. Analytical
philosophers, especially those with an interest in logic, have of course spent considerable
time investigating metaphysical matters of many sorts. All the work done so far in this
thesis put us in a position to make a useful contribution to some longstanding discussions
in this literature, namely those involving the inter-related issues of abstraction and ideal
(or generic or arbitrary) objects.

The lesson is easiest to state briefly with reference to Kit Fine’s influential discussion
of arbitrary objects. As I tried to show, the challenges Fine has to answer in defending
arbitrary objects are similar to if not the same as those confronting someone wishing
to advocate for epsilon. It is thus unsurprising to find a term forming operators (λ)
playing an important role in Fine’s account. One indirect lesson of the discussion of
arbitrary objects for this project, then, is that it helps clarify the nature of the ontological
commitments one seems to need to defend be taking aboard when one defends accepting
something like epsilon. The central lesson, though, is that Fine’s discussion fails to account
for the important role of the logic presupposed to be running in the background of his
discussion. As we have seen (and repeatedly noted), both epsilon and tau are conservative
over classical logic, so while there may be some practical advantages (for instance in terms of
computational or representational efficiency) to including them in our languages, including
them need not commit one to the existence of additional entities.

In intuitionistic logic where these operators are not conservative, the terms these terms
purport to refer to are no longer subject to being “explained away.” Thus taking seriously
the role of intuitionistic logic in metaphysics adds a layer of complexity to these discussions.
For one thing, It makes it likely that the question “are there arbitrary objects” is one
that is not going to have a uniform answer, if answering “yes” involves at the same time
committing oneself to a stronger logic than one otherwise would accept. Alternatively, one
might try to make clear why a commitment to arbitrary objects is not the same thing as a
commitment to epsilon objects (or tau objects), in spite of their seeming likeness, and so
the kinds of reasoning that leads from epsilon to strengthened logic. Either way, a defender
of arbitrary objects has more work to do than had previously been thought.
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Chapter 7

Conclusion

7.1 Hilbert and Brouwer

We began this thesis by discussing Hilbert’s famous reaction to early constructive views,
and his reaction to the Ignorabimusstreit, the debate over whether there were problems that,
in principle, humans would never be able to solve. Hilbert’s optimism in asserting that
“there was no ignorabimus in mathematics” is not important simply as a reaction to a the
general fin-de-siècle zeitgeist, but more specifically it represented his rejection of a certain
type of conservative proto-constructivism prevalent among mathematicians like Kronecker,
who represented an important faction in the German mathematical establishment at the
time.

Hilbert’s programme was an attempt to develop a finitist foundation for mathematics,
that is, one that would be acceptable in the terms of those who opposed his existence
proofs. Hilbert saw this as part of his position of defending the consistency, autonomy and
completeness of mathematics. The development of Hibert’s foundational work, from his
early attempts at axiomatising arithmetic, to his response to Russell and Frege’s logicism,
informed the logical programme that led Hilbert, Ackermann, and Bernays to introduce
first the τ and then the ε axioms in the early 1920s.

While Brouwer and Hilbert agreed on the autonomy of mathematics, they disagreed on
how to provide foundations for mathematics. Hilbert wanting to build foundations that
would support the parts of mathematics dependant on principles, like excluded middle,
that in his mind were essential to mathematics; while constructivists like Brouwer were
willing to pare the tree of mathematics down to those parts that could be well supported
by the logical principles he saw as acceptable.

The τ and the ε axioms were introduced into Hilbert’s programme as being obvious
formal cognates to informal mathematical practices where mathematicians often speak of
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an arbitrary object of some type or another. Hilbert’s use of these operators was not focused
on the use of ideal elements themselves, but rather the derivation of finitist consistency
proofs. Hilbert always meant for the ideal elements to be removed in the final results.
Hence Albert Leisenring notes that Hilbert and Bernays use the ε-operator only in what
he calls a “subsidiary role,” that is, they use it to prove certain theorems which could be
proved using the predicate calculus, but which are more easily proved using the ε-calculus
(Leisenring, 1969, p.5) .

It is perhaps ironic that τ and ε-calculi were introduced by Hilbert, Ackermann and
Bernays to help to find a finitist, and hence supposedly constructive, consistency and
completeness proof for arithmetic. In fact the τ and ε-operators are not constructive, and
of course cannot help prove completeness for something that has been shown, by Gödel’s
famous proofs, to be incomplete. Part of the problem is simply until Heyting formalised
intuitionistic logic there was no good account of what constructive or finitist foundations
should look like.

7.2 The Development of Intuitionism

As we saw in Chapter 2, intuitionism can be can be broken up into several related move-
ments. We discussed philosophical intuitionism as a precursor to L.E.J. Brouwer’s in-
tuitionistic mathematics. The principles of Brouwer’s mathematics were formalised into
intuitionistic logic by Kolomgorov and Heyting. Then in the second half of the 20th cen-
tury intuitionistic logic was put on better philosophical foundations by Michael Dummett
and other philosophically minded logicians, or logically minded philosophers.

For the purposes of the present investigation, Dummett’s foundation for intuitionistic
logic is of central importance. Intuitionistic logic is metaphysically neutral, he argues,
because the relevant introduction and elimination rules are “harmonious”, while stronger
systems are not.

The law of exclude middle is not logical, but rather an ontological principle according
to Dummett’s argument that intuitionistic logic is metaphysically neutral and hence ‘logic
proper’ and that the acceptance of classical logic is legitimate only in case one accepts
realism. This is interesting when we take into account that we can prove the law of
excluded middle by adding the ε-operator and extensionality for epsilon to intuitionistic
logic. Extensional ideal elements are enough to get you to a realist position.

There is, of course, another approach one can take in the face of the irrefutable evidence
the non-conservativeness of Hilbert’s operators and so their unsuitability to his original
philosophical intentions. There have been some attempts to provide “harmonious” versions
of the epsilon principle which can be found in the literature. Such approaches always require
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limitations on the epsilon principle that seem ad hoc, and so merely render the principle
unsuitable to Hilbert’s original intentions in another way—recall, the principle is supposed
to be a formal version of a very natural and common form of reasoning in mathematics. In
any case, we set that approach aside for the present investigation as there is ample reason
for philosophers to be interested in what happens when the most natural versions of the
epsilon principle are added to intuitionistic logic.

In fact the addition of the ε-operator to intuitionistic predicate logic lets us prove several
intermediate principles in predicate logic. But what is even more interesting is that the
addition of ε-operator and weaker decidability principles for terms to intuitionistic logic
result in sentential intermediate logics.

7.3 Formal Matters

In Chapter 4 reviewed the proofs given by John Lane Bell in Bell (1993a,b) and pro-
vided several new proofs of both intermediate logics and the law of excluded middle with
decidability conditions that lack identity.

In Chapter 5, we reviewed several different systems of formal semantics for epsilon,
largely because doing so is an efficient way to lay bare some of the complications of giving
an adequate semantics in intuitionistic logic and so to make clear where its addition is
making a difference to the logic. We began with the standard semantics for classical
epsilon, Asser-Leisenring semantics which call the “truth set” for ϕ(x) the set of things
that, when substituted for x, make ϕ(x) true. These semantics use a choice function in the
metalanguage to select a member of the truth set for ϕ(x), and allow it to be the referent
of εxϕ(x).

Günther Asser also developed more complicated semantic machinery to handle classical
epsilon operators when we do not make the simplifying assumption of extensionality. Asser
in fact offers three different sorts of semantics for classical epsilon calculus (for detail
see Asser, 1957, pp.53 ff.). The first is the Asser-Leisenring semantics given its fullest
treatment by Leisenring. But it is the third semantics, that is a first step towards giving a
semantics for epsilon that does not make epsilon extensionity valid. He does so by making
the referent of εϕ depend not only on the truth values ϕ takes, but on its syntax.

There are three issues that must be dealt with in creating a semantics for an intu-
itionisitic ε-calculus. The first is dealing with the problem of multiple truth values, the
second is dealing with non-linear truth sets and the third is the problem of trying to avoid
extensionality.

DeVidi’s semantics differs from Asser’s semantics in two ways. DeVidi eliminates the
validity of the substitutivity of identicals and introduces what he calls the “alpha axiom”
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to rename bound variables. The elimination of substitutivity of identicals he accomplishes
by introducing what he calls skeleton terms, a modification of what Asser referred to as
ground terms.

Asser’s ground term for the expression εx.ϕ(x, α) where α is either a free term, such
as εy.ψy; a free variable, say y; or constant, for example c, is εv1.ϕv1v2, indicating that
the syntactical form of the epsilon term. The skeleton term shows the syntactic form in
more detail, the expression εx.ϕ(x, εy.ψy) where εy.ψy is a free term, has the ground term
εv1.(ϕv1, v2) but its skeleton term is εv1.ϕ(v1, εv2.ψv2).

The alpha axiom simply allows for the renaming of bound variables so that σx.ϕ =
σy.ϕ[x/y] where σ is a choice operator, otherwise every variable would demand a different
skeleton term.

In both Asser’s type three and DeVidi semantics the choice function is a two-place
function depending not only on the truth set, but also on the ground or skeleton term
underlying the epsilon term.

7.4 Philosophical Conclusions

These technical results offer the prospect of philosophical, and in particular metaphysical,
illumination if we consider them while taking seriously the view arrived at in the first
three chapters of the thesis, that due to its verificationist nature intuitionistic logic is
metaphysically neutral while the stronger classical logic is not. We saw in Chapter 6
that by increasing our commitment to the existence of entities we increase the strength
of our logic. That is we can see that by first adding simply the epsilon axiom, and then
stronger and stronger principles about terms, first the decidability conditions then the
extensionality, we get stronger and stronger logics. We get degrees of strengthening, not
merely intuitionistic logic and then classical logic, but logical levels in between.

The addition of choice operators involves a certain acceptance of generic objects. In-
stead of speaking circuitously that there is some x that has a property ϕ, the epsilon
operator lets us name it: εϕ. While this is in some manner non-constructive, it involves
an ontological commitment, it does not alone demand a full blown realist interpretation.
Without further conditions on terms, epsilon terms only make valid certain quantifica-
tional laws that are not valid in intuitionistic logic. But with relatively minor conditions
on terms one can prove intermediate principles. These conditions are not obviously onto-
logically burdensome, they simply say that there are distinct objects, at least two, and of
one of them that it can be distinguished from any other. To put it another way, all objects
that exist either are distinguishable from a canonical term or not, if they are not, then all
other terms are distinguishable from them or not via what we know about the canonical
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term. This is what make objects in some limited sense discrete, they either are or are not
equivalent to the canonical term.

Other, perhaps less modest assumptions, strengthen intuitionistic+ε logic even more,
for example, the Ack principle, that coextensive predicates have identical epsilon terms, or
the following principle:

∀x(ϕ→ ψ) → (̺(εϕ/x) → ̺(εψ/x))

are enough to yield classical logic.

As we have noted the fact that extensionality and realism are connected is not news, but
what is interesting here is that we have a gradation of existential commitments that justify
logics between classical and intuitionistic logic. This is interesting from two directions:
The first is that intermediate logics, which hitherto have not been thought particularly
interesting philosophically, can be connected with particular ontological commitments.
And secondly in that it may give us a way of looking at a gradation of metaphysical
commitments between anti-realism and full blown realism.

This enables us to make something of the discussion of generic, or abstract, objects
and the nature of abstraction itself. We discussed Kit Fine’s defence of arbitrary objects
which are similar to, if not the same as, the sort of ideal objects defined by epsilon, in
fact Fine discussed the term-forming operator lambda in his account. We noted that what
Fine misses out on is the role of the underlying logic. There must be some logical system
running in the background, and it has certain ontological commitments attached to it
whether we want it to or not. If the logic is classical since epsilon and tau are to a large
extent conservative over classical logic including them your logic need not commit you to
the existence of additional entities. But if your logic is constructive, the addition of them
puts you in a very different place.

7.5 Further Directions

There are many untrodden paths and potentially philosophically interesting aspects of
choice operators, that could not be covered here for reasons of space and time.

7.5.1 Modal Objects

Since the choice operators ε and τ define terms that reference most or least likely objects
to have a property, the connection between this and modality is quite obvious.1 It seems

1In fact in intuitionistic modal logic there may be an even tighter connection, as in intuitionistic modal
logic, box is better understood as a preciseness operator, rather than a necessity operator (see DeVidi
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intuitive that the most likely object to have a property say εϕ would also be the object
that would most likely make the sentence ∃x✷ϕ(x) true. Likewise it seems likely that τϕ
would also be the object that would most likely make the sentence ∃x ⋄ ϕ(x) false.

Furthermore there is the question of possible objects and their ontological status. Dum-
mett argues, using the discussion of Quine and Kripke on the question of possible unicorns,
that one must use a modal logic weaker than S5 to describe the logic of possible fictional
objects like unicorns, because they can be possible in different ways (Dummett, 1993a, p.
333-346). This raises the question of the status of the most likely thing to have a possible
property ⋄ϕε⋄ϕ considering that the ε-operator strengthens the logic.

7.5.2 Abstract Objects and Identity in First Order Logic

Several of the proofs given in Chapter 4 are given in a language which lacks identity. Such
formulations are often seen as being more logical, as the inclusion of identity in one’s
language seems to be making an ontological claim.

The technical results of Jakko Hintikka and Kai Wehmeier (Hintikka, 1956;Wehmeier,
2008, 2004, 2012) show that first order logic without identity is equal in expressiveness to
first order logic with identity and provide a transformation algorithm between the two. This
has not yet been given for intuitionistic logic and it is not immediately clear if their proof
would translate. In addition, as Wittgenstein foresaw, to maintain this logical strength
an exclusive interpretation of variables is necessary. It is not immediately clear how such
variables work with regard to term forming operations.

7.5.3 van Heijenoort on Sortal and Mass Terms

Quine (Quine, 1960, pp.90-95) and Strawson (Strawson, 1959, pp.202-209) both assert
that mass terms, in comparison with the use of sortal terms “represent a primitive, archaic
survival of a preparticular level of thought” (van Heijenoort, 1973, p.32). On the
other hand van Heijenoort points out that because the use of mass terms, i.e. stuff talk,
leads to “magnitude talk” and that “magnitude talk” has supplanted “sortal talk” in
scientific discourse, for example, the sortal terms “light and heavy” have been replaced
with the notion of weight in scientific discourse. Hence he asserts that one could easily
take “stuff talk” to represent “a higher level of thought”(van Heijenoort, 1973, p.32).
Van Heijenoort further notes that there is a systematization of “stuff ontology” in modern
physics. “Energy” or “Matter” is spoken of rather than objects.

and Solomon, 1997).
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...modern logic is thoroughly based on the subject-predicate analysis, both
by the form of its prime sentences and the ontology of its semantic. But there,
are, in Western-European languages, words, like mass terms, that suggest an-
other ontology (or is it näıve physics?)(van Heijenoort, 1973, p.33)..

Quine is chided by van Heijenoort for, when considering other methods of talking than
of objects, he discusses only obtuse examples of “temporal segments of rabbits” or “local
manifestations of rabbithood”, while not noticing that both natural languages and some
“systematic” languages, such as the Aristotelian syllogistic and theoretical physics, present
an view that “escapes an ontology of individuals” (van Heijenoort, 1973, p.33).

Epslion terms seem to force an “object” rather than a “stuff” approach. Even magni-
tude predicates are treated in a sortal manner if Mx is “x is 5 kg of gold” the εM is the
name of the object that is best decribed by M i.e. the object most likely to be “5 kg of
gold”. Hence if we add an epsilon axiom to our logic we are supposing a sortal ontology
rather than a stuff ontology.

7.5.4 Natural Language Applications

In their 2000 book Reference and Anaphoric Relations Klaus von Heusinger and Urs Egli
survey the application of choice functions in formal semantics including: using choice func-
tions to represent in situ wh-expressions (Engdahl, 1986; Reinhart, 1992)2 representing
specific indefinites (cf. Reinhart, 1992, 1997; Kratzer, 1998; Winter, 1997), formal-
izing E-type pronouns (Ballmer, 1978; Hintikka and Kulas, 1985; Slater, 1986;
Chierchia, 1992; van der Does, 1993; Egli and von Heusinger, 1995) and defi-
nite NPs (von Heusinger, 1997) (von Heusinger and Egli, 2000). Of course since
von Heusinger’s and Egli’s survey there has been even more recent work by linguists who
have discussed using epsilon to reference nouns in article-less languages such as Japanese
(Nishiguchi, 2015), and computer scientists studying the application of epsilon calculi in
automated proof solvers (Wirth, 2015; Baaz and Weller, 2015).

The most famous of all these examples are the donkey sentences, examples of sentential
anaphora so named for the example Peter Geach adopts from a set of mediaeval examples
of problematic sentence schemata (Geach, 1962).3 Donkey pronouns (e.g.,the ‘it’ in the

2Wh-expressions are clauses or sentences using interrogative words; the five Ws in English who, what,

where, why, how, or the rhetorical interrogatives quis, quid, quando, ubi, cur and quem ad modum, quibus

adminiculis or quomodo, quibus auxiliis (Robertson, 1946, p.7).
3Geach states the example was supplied to him by William Kneale. Later in The Development of Logic

William and Martha Kneale discuss the example which comes from an appendix of rules at the end of the
Modernorum Summulae Logicales. The appendix contained “a list of miscellaneous rules ad discerendos

syllogismos a fallaciarum paralogismis” (Kneale and Kneale, 1971, p.273) (on how to discern syllogisms
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sentence “Every farmer who owns a donkey beats it.”) are also referred to as either d-type
or e-type pronouns.4

If certain aspects of language need to be modelled by a term forming operator, and
then since we know that epsilon strengthens constructive logics then you need take care of
the parts of language modelled by epsilon in a domains where there are good arguments for
taking a non-realist approach: e.g. theoretical objects, possible objects, fictional objects,
mathematical objects.

7.6 Final Thoughts

This thesis should be regarded as programmatic—as is perhaps appropriate for dissertations
which are both a culmination and a beginning of a next stage. I have tried to demonstrate
a few related things: first I have tried to make the case that there is the potential for
rich philosophical rewards from further investigation of the effects of adding term forming
operators to intuitionistic logic, a process that required a good deal of historical and
technical stage setting. Secondly, I have tried to draw from those lessons. Finally, I
briefly tried to show ways in which this investigation is a long way from finished. I intend
to push these investigations forward in the future, and hope other philosophers will join
me.

from fallacious arguments) the first of which includes the example of when terms are distributed in one
part of a syllogism and later undistributed. Geach gives the example in the following manner:

Every donkey that belongs to a villager is running in the race;
Brownie is not running in the race;
Ergo, Brownie is not a donkey that belongs to a villager

The original reads:

Cuiuslibet huis asinus currit.

Brunellus est huis asinus.

Ergo Brunellus currit

Any asses that run are theirs.
Burnel is their ass.
Therefore Burnel runs. (Diel 1489. My Translation.)

4First named such by Gareth Evans (Evans, 1977, p.470) in his response to Geach (1962, 1975).
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as du Bois-Reymond (1887)
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chap. 22. Birkhäuser Basel, pp. 343–390

210



van der Does, J. (1993). “The dynamics of sophisticated laziness.” In Groenendijk

(1993). Institute for Logic, Language and Computation (ILLC), University of Amster-
dam, pp. 1–52

van Heijenoort, J. (1967a). From Frege to Gödel: a source book in mathematical logic,
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